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Abstract: A major issue in the widespread controversy about the legality of poker and 

the appropriate taxation of winnings is whether poker should be considered a game of 

skill or a game of chance. To inform this debate we present an analysis into the role of 

skill in the performance of online poker players, using a large database with hundreds 

of millions of player-hand observations from real money ring games at three different 

stakes levels. We find that players whose earlier profitability was in the top (bottom) 

deciles perform better (worse) and are substantially more likely to end up in the top 

(bottom) performance deciles of the following time period. Regression analyses of 

performance on historical performance and other skill-related proxies provide further 

evidence for persistence and predictability. Simulations point out that skill dominates 

chance when performance is measured over 1,500 or more hands of play. 
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Poker is the most popular card game in the world. Every day, hundreds of thousands of people play 

poker for real money on the Internet (Online Poker Traffic Reports). In 2013, online poker rooms 

generated approximately €2.8 billion in gross win (H2 Gambling Capital). The popularity of the game 

is also evidenced by the many TV reports of major poker tournaments and the number of 

participants in these tournaments. In 2014, for example, 6,683 people paid $10,000 to participate in 

the most renowned poker tournament, the Main Event of the World Series of Poker in Las Vegas. 

At the same time, there is a widespread controversy about the legality of poker and the appropriate 

taxation of winnings. A key issue in the debate is whether poker is to be considered a game of chance 

or a game of skill. Unlike with games of skill, organizing or playing a game of chance is prohibited or 

restricted in many countries. Also, many countries have a separate gam(bl)ing tax for games of 

chance, while money won in a game of skill is generally subject to regular income tax. Kelly, Dhar and 

Verbiest (2007) map legislation and case law on poker for various countries, and show that there is 

great variation. US regulation even differs across states. Over recent years, several law papers have 

argued that poker is a skill game and should be recognized as such (Cabot and Hannum, 2005; 

Grohman, 2006; Tselnik, 2007). 

Authorities often have a less permissive stance towards online poker than towards live poker. In the 

US, for example, the Unlawful Internet Gambling Enforcement Act (UIGEA) that was adopted in 2006 

had a major impact: although the act did not forbid online gambling, it did prohibit the transfer of 

funds to and from online gambling businesses. As depositing money is necessary for playing online 

poker, this act effectively declared online poker illegal. If poker were to be considered as a skill game 

and not as gambling, this could be an argument to exempt the online poker business from the UIGEA 

(Tselnik, 2007). 

Two different research tracks have examined the skill component in poker. One track focuses on 

developing and calculating measures of skill, and can be traced back to Kadane (1986). Borm and van 

der Genugten (2001), Dreef, Borm and van der Genugten (2003, 2004a, 2004b), and Hendrickx et al. 

(2008) propose measures that compare the performances of different types of players, including an 

informed hypothetical player who knows exactly the cards that will be drawn. The use of their 

approach is, however, limited to relatively simple games. Because of the virtually infinite number of 

possible game situations that result from the many different choice (betting) options that players 

have and because of the importance of players’ hidden higher-order beliefs, the approach cannot be 

accurately implemented for the most popular form of poker, No Limit Texas Hold’em. Nevertheless, 

even for simple poker variants, the different studies report a substantial degree of skill. Heubeck 

(2008) reviews the various kinds of proposed skill measures. 
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The second track of studies takes a more empirically oriented approach. Likewise, these papers 

suggest that poker involves a skill component. Larkey et al. (1997) and Cabot and Hannum (2005) ran 

large-scale simulations with different pre-defined playing strategies and find that their more 

sophisticated strategies perform better. DeDonno and Detterman (2008) carried out experiments 

with student-subjects and demonstrate that the group of players who received strategic instructions 

during the session outperformed the control group. Siler (2010) analyzes online poker data and 

establishes that performance is related to playing style, and that style and performance differences 

between players decrease with the level of the stakes. 

In the same spirit as some of the analyses in the present paper, Croson, Fishman and Pope (2008) 

and Levitt and Miles (2014) examine whether there is persistence in the performance of poker 

players. Croson, Fishman and Pope analyze how well players who have finished in the top 18 of a 

high-stakes tournament fare when they are among the final 18 players in a subsequent major 

tournament, and they compare their results with those from a similar analysis for professional golf. 

They find that previous finishes predict current finishes, and that the skill differences across the 

poker players in their sample are similar to those across the golfers. Levitt and Miles analyze a data 

set that comprises the complete rankings of all players who entered a 2010 World Series of Poker 

tournament. They report that players who were a priori classified as being especially skilled indeed 

outperformed the other players. 

In what follows, we analyze the role of skill in the performance of online poker players, using a large 

database with 456 million player-hand observations from real money ring games at three different 

stakes levels. Online poker seems to be the most obvious data source, because the chance-skill 

debate is especially oriented towards issues regarding the legality of internet poker and the taxation 

of winnings from online play. Moreover, the vast amount of data that are available allow for 

powerful analyses. 

We define skill as anything that affects a player’s performance other than chance. In a pure game of 

chance, each player’s expected winnings are zero (in absence of costs) and there normally is no 

persistence or positive autocorrelation in their performance: players’ performance over a given 

period is independent of that over any other period (in absence of budget constraints; explained 

later). If performance is predictable, the game involves elements of skill. 

Our results indicate that skill is an important factor. When we split our sample into subperiods, we 

find that players whose performance was in the top (bottom) deciles of the previous period perform 

better (worse) and are more likely to end up in the top (bottom) deciles of the current period. 
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Regression analyses of performance on past performance and other skill proxies reinforce this 

evidence of persistence in performance. 

From a legal viewpoint, the key question is whether skill dominates chance, that is, whether poker is 

more a game of skill than a game of chance. The answer to this question heavily depends on the 

duration and intensity of play, as the effect of chance diminishes with the number of hands and 

eventually cancels out in the long run.1 Our simulations point out that skill predominates after 

approximately 1,500 hands. 

The paper proceeds as follows: Section I discusses our data and presents descriptive statistics, 

Section II analyzes the persistence of performance using decile analyses, Section III reports on our 

regression analyses, Section IV presents our simulations, and Section IV concludes. 

 

I. Data and Descriptive Statistics 

For our analyses we use data on real money ring games (“cash games”) played at one of the major 

online poker sites. We consider No Limit (NL) Texas Hold’em only because this variant is by far the 

most popular form of poker worldwide. Our data come from an online service called HHDealer. In 

recent years, several companies have specialized in gathering and trading so-called “hand histories” 

from online poker rooms. With software applications they continuously collect information on hands 

played at online poker tables. Many players buy these data to have information on the playing styles 

of others. Because of limited resources, hand history providers are unable to store data on every 

hand that is played online. Out of the websites that responded to our inquiries, HHDealer was able to 

provide the largest number of hands for an uninterrupted period of twelve months. We purchased all 

available data for the games that had been played at three particular stakes levels in the period 

October 2009  September 2010.2 In poker, stakes levels are distinguished by the size of the small 

and the big blind bet. To ground our analysis on distinct stakes levels, we selected data from so-

called “low”, “medium” and “high stakes” games, with big blind sizes of $0.25, $2 and $10, 

respectively. 

                                                           

1
 A “hand” is the game that is played between two subsequent shuffles of the deck: dealing of cards, betting, 

and awarding of the pot (in another context, the term can also refer to the cards dealt to a player). With 

“playing a hand” we mean to be dealt in. Whenever possible, we avoid the use of poker terminology. We 

believe that reading this paper does not require the reader to understand the game. 
2
 For the middle stakes level, the data that we received also contained hands played in September 2009. We 

treat these as if they were played in October 2009. 
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The resulting raw data set contains a total of 76.9 million different hands. The average number of 

players participating in a hand is 5.9, yielding 456.1 million different player-hand observations. Of 

these, 190.6 million (41.8%) are from the low stakes games, 229.1 million (50.2%) are from the 

medium stakes, and 36.4 million (8.0%) are from the high stakes. The smallest number of 

observations recorded in a month was in February 2010 (17.3 million, or 3.8%), and relates to a 

software change that temporarily made data mining more difficult. The peak was in January 2010 

(57.9 million, or 12.7%). 

Table 1 summarizes the data. Our sample contains over 600,000 different players.3 About 457,000 of 

them played at least one hand at our low stakes level ($0.25 big blind), 230,000 played in the 

medium stakes game ($2 big blind) and 34,000 played in the high stakes game ($10 big blind). They 

rarely switched between these three levels: nearly all hands (96%) were played at the stakes level at 

which the player played most frequently. A minority of players (17%) were active at more than one 

of the three levels, but even these players still played 90 percent of their hands at their most favorite 

level. 

[ Please insert Table 1 about here ] 

Players who participated in the high stakes game played on average 1,085 hands at that particular 

level. For the medium and small stakes this number is 996 and 417, respectively. The average 

number of hands played at the three levels combined is 746. There is much variation across players 

in the number of hands that they played at the stakes we have selected. One exceptional player was 

involved in approximately 765,000 hands (0.17% of our sample), while 58.9 percent of all players 

participated in less than one hundred hands. The degree of concentration is high: the one percent 

most active players played 58.5 percent of all hands, and 12.0 percent played 90 percent.4 

Table 1 also shows statistics on players’ winnings, both before and after the deduction of “rake” (the 

commission taken by the operator). To compare and combine performance statistics across stakes 

levels, winnings are scaled by the size of the big blind. For example, a profit of 5 big blinds 

corresponds to a profit of $50 at the high stakes, and $1.25 at the low stakes. To also account for 

differences in the number of hands played, performance is expressed as the number of big blinds 

won per 100 hands (bb/100). For example, a player who has won $20 at a big blind of $2 after 

playing 400 hands has realized a performance of 2.5 bb/100. 

                                                           

3
 We interpret each account as a separate player. People are not allowed to have multiple accounts. 

4
 Most likely, many of the infrequent players were active at other stakes levels than the three included here. 
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On average, players lost 104 bb/100 after charging of rake. This average win rate is much worse than 

the ratio of the average total number of big blinds lost (49) and hands played (746), or 6.6 bb/100. 

The difference is explained by a positive relation between a player’s profitability and the number of 

hands that she played. This relation may reflect the effect of experience, but can also be a 

consequence of budget constraints becoming an obstacle after losses. 

Rake substantially affects players’ winnings. If a hand is not finished in the first betting round (“pre-

flop”), the operator takes a fixed percentage (5% for our data) from the pot with a fixed nominal cap 

that depends on the number of players at the table. Only 32 percent of all players in our sample 

achieved a positive overall result after the deduction of rake. In reality, this percentage is slightly 

higher: players can easily participate in reward schemes and receive deposit bonuses that partly 

make up for it, and they can enter into so-called “rakeback deals” with affiliates of the operator. 

For our analyses of the role of skill in performance we correct for rake, because we do not want our 

findings to be conditional on the rake structure that is employed by the operator. Rake is not an 

intrinsic element of the game, and the percentages and caps differ across sites. Moreover, as 

explained above, the amount of rake that a player effectively pays is not observable. 

To correct players’ winnings for rake, we add back the rake in proportion to their contributions to the 

pot. On average, rake reduces players’ performance by 16 bb/100 in our sample. As a result of the 

fixed nominal cap, the effect of rake on players’ win rates is larger for games with smaller stakes. In 

the absence of rake, 37.5 percent of all players would have made a profit. The extreme values for the 

best and worst win rate in the table were recorded for lucky and unlucky players who played only 

one or two hands. 

 

II. Decile Analyses 

Under the null hypothesis that poker is a game of chance alone, there is no relation between a 

player’s performance scores across different subperiods. Alternatively, if skill plays a material role in 

the game of poker, we would expect a player’s performance in one particular subperiod to be 

indicative of her performance in later subperiods. In this section we subdivide players into deciles 

based on their performance in the first six months of our sample period and examine how the 

players in these deciles fared in the last six months. In the next section we look at the persistence 

and predictability of performance through regression analysis. 

Our sample period covers twelve consecutive months. We split up our data into the subsamples 

October 2009  March 2010 and April  September 2010, and rank the different players into deciles 
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according to the average number of big blinds they have won per hand across the first period (the 

“ranking” period). Because small collections of hands are likely to yield very noisy indicators, we filter 

out players who have played less than 1,000 hands during this ranking period. This leaves a sample of 

17,257 players for the small stakes, 16,435 for the medium stakes, and 2,725 for the high stakes. A 

total of 36,570 players participated in 1,000 or more hands at the three levels combined. On average, 

they played 5,706 hands each (median: 2,245). Next, we examine the average performance of the 

various deciles of players over the second period of six months (the “measurement” period). To 

prevent selection effects, we impose no restriction on the number of hands in this measurement 

period. As explained in the previous section, hand outcomes are corrected for rake and scaled by the 

size of the big blind. 

Table 2 shows the results for the three individual stakes levels (Panel A, B and C) and for the three 

levels combined (Panel D). The left part of the table includes the average performance (in bb/100) for 

each decile over the ranking period (Period 1), while the right part displays how well each decile 

fared in the measurement period (Period 2).5 In a nutshell, the results indicate that there is 

substantial and significant persistence in performance: deciles of players that performed relatively 

well in the first period on average continued to do so in the second period. The findings for individual 

stakes levels are generally similar to those for the three levels combined, and our discussion below 

therefore mainly concentrates on the aggregated sample. 

[ Please insert Table 2 about here ] 

We first discuss the results where measurement-period decile performance is calculated as the 

unweighted average performance across players. In general, players from higher-ranked deciles 

outperform players from lower-ranked deciles. For example, the average player from the top decile 

for the three stakes levels combined lost 23.0 bb/100, while the average player from the bottom 

decile lost 42.5 bb/100; the difference of 19.5 bb/100 is statistically significant (t = 3.12; p = 0.002). 

Across all deciles, the Spearman rank correlation between the average decile performances in the 

ranking period and those in the measurement period is marginally significant (ρ = 0.600; p = 0.073). 

At the individual stakes levels, the correlation coefficient is not significantly different from zero for 

the small stakes, and marginally significant for both the medium and the high stakes. 

                                                           

5
 Note that the deciles comprise less players in the measurement period than in the ranking period. Players 

either ceased to play at some point, moved up or down in stakes, or were simply not covered in our hand 

histories. For the three stakes levels combined, out of the 36,570 players who played at least 1,000 hands 

during the first six months, a subgroup of 20,632 were also active during the subsequent six months. On 

average, the players in this subgroup played 7,038 hands in the first period (median: 2,526) and 4,814 (median: 

717) in the second. 



[8] 

The unweighted average in period two is negative for all ten deciles. This result is related to the 

equal weight assigned to every player in calculating decile performance. There is much variation 

across players in the number of hands they played in Period 2; this number ranges from 1 to 622,936. 

Because a budget constraint can force a player to stop playing when losses accumulate, a negative 

average result from a bad sequence of hands is less likely to be cancelled out or diluted by 

subsequent hands than a positive result after a streak of luck. Consequently, at the player level, 

negative average performances are more likely to occur than positive average performances. Indeed, 

players who played relatively few hands in Period 2 have lower scores: those who played less than 

100 hands (18.9% of all active players) recorded a score of -79.9 bb/100, while the others (81.1%) 

recorded -4.6 bb/100 on average. 

The substantial share of players who played relatively few hands in the measurement period may 

also explain why the decile-level correlation between the average performances in the ranking and 

measurement period is only marginally significant. Performance measurements for infrequent 

players are relatively noisy, and their widely varying scores consequently distort the strength of the 

correlation. In fact, players who played only a few hands are given a questionably large weight when 

decile performance is expressed as a straight average across players. Using a weighted average with 

players’ number of hands as weights would avoid this problem, and we therefore propose this 

measure as an alternative indicator. This weighted average is identical to the average profitability per 

hand across all hands played by the players in a decile combined. Because players who played only 

infrequently are hardly reflected in this alternative measure, we also consider a compromise 

weighting method that uses the square roots of players’ numbers of hands as weights. 

Evaluating on the basis of the two weighted average performance measures strengthens the pattern 

observed. Players from higher-ranked deciles again outperform players from lower-ranked deciles in 

Period 2. For example, hands played by players in the top decile yielded a profit of 5.1 bb/100 across 

all stakes levels, while hands played by bottom decile players lead to a loss of 5.9 bb/100 (difference: 

11.0 bb/100; t = 12.36; p < 0.001). The Spearman rank correlations across the deciles between 

performances in the two periods are higher with weighted than with unweighted average scores and 

always statistically significant  both for the three individual stakes levels and for the three levels 

combined (for all stakes and weightings: ρ ≥ 0.733, p ≤ 0.021). Note that the measurement-period 

performance is positive for most deciles when players’ numbers of hands are used as weights. This is 

striking, because, by definition, the average winnings per hand are zero across all hands in our 

unfiltered sample. Apparently, players who played 1,000 or more hands in the prior six months (and 

thus satisfied our selection criterion) played more profitably than others. This, in itself, might indicate 

that experience pays off in this game. 
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The persistence of performance also appears from how players in a given decile rank relative to all 

other players in Period 2. The last column of Table 2 shows that players from higher-ranked deciles 

generally rank higher than players from lower-ranked deciles do. For example, for all stakes levels 

combined, the average rank of top-decile players is 10,135 (out of 20,632), while that of bottom-

decile players is 12,098. 

At the individual player level, the strength of the correlation between players’ Period 1 and Period 2 

ranks is rather moderate. The correlation coefficient ranges between 0.074 (for the small stakes) and 

0.104 (for the medium stakes). The relatively low degree of correlation as compared to the 

correlation coefficients at the decile level reflects the relevance of variance in performance at the 

individual level – in particular of the variance for players who played only few hands in Period 2. 

Statistically, however, the rank correlation at the individual player level is highly significant for every 

(sub)sample (all p < 0.001). 

As a robustness check, we have also run similar analyses that use three instead of six months as the 

ranking and measurement period, where we divided our one-year sample period into four non-

overlapping quarters (Q1 = October  December 2009, Q2 = January  March 2010, Q3 = April  June 

2010, and Q4 = July  September 2010). Regardless of the pair of successive quarters that we use for 

ranking and measuring, we observe the same pattern of persistence as before: higher-ranked deciles 

generally outperform lower-ranked deciles. Again, the correlations are stronger when we reduce the 

influence of relatively infrequent players by calculating performance as a weighted average, and at 

the individual player level the rank correlation is always highly significant. 

Thus far we have ranked players on the basis of their average performance in big blinds. Though 

simple and natural, this approach ignores the importance of differences between players in the 

number of hands that they played. Few would share the view that a player who has won 500 big 

blinds over 1,000 hands (50 bb/100) is to be considered a better performing player than someone 

who has won 40,000 big blinds over 100,000 hands (40 bb/100). One of the drawbacks of the 

previous approach is that it does not account for the basic statistical rule that the sampling 

distribution of the mean depends on the sample size (ni): the greater the number of observations, 

the less likely that the mean takes an extreme value. For example, if we consider two players with 

equal ability from a larger population, the player who participates in a smaller number of hands is 

more likely to be classified in one of the top or bottom deciles if players are ranked by their average 

winnings per hand. Similarly, the previous approach does not account for differences in playing style 

or the standard deviation of winnings (si): when two players are equally profitable, the more 

adventurous player is more likely to end up in one of the two extremes of the ranking. 
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We therefore propose an alternative measure to rank players that accounts for the number of hands 

and playing style of an individual player (i): 

(1) 
ii

i

ii

ii

i

i
i

ns

BB

n/s

n/BB

ratewinstdev

ratewin
PRM   

where BBi is the sum of big blinds won (before deduction of rake), si is the standard deviation of big 

blinds won, and ni is the number of hands played. We label this measure the “performance 

robustness measure” (PRM). In fact, PRMi equals the t-value of a test of a player’s observed 

performance against the null-hypothesis of zero expected performance. 

Table 3 presents the new results. Accounting for playing style and number of hands in the ranking 

period strengthens the previous evidence for performance persistence. Deciles of players who rank 

higher by their PRMi generally fare better than lower-ranked deciles. The new ranking method turns 

out to be more accurate: in many cases, the performance of a decile in Period 2 is now perfectly or 

almost perfectly monotonically increasing with the rank of a decile for Period 1. For example, for the 

aggregate data, the rank correlation is perfect when Period 2 decile performance is measured with 

players’ numbers of hands as weights. For each stakes level, the rank correlation of performance at 

the individual player level is stronger as well. The new coefficients are about two to four percentage 

points larger, and range between 0.091 (small stakes) and 0.148 (medium stakes). Additional 

analyses with three-month periods yielded similar results. 

[ Please insert Table 3 about here ] 

Another way to look at the persistence of performance is through transition probabilities. Table 4 

shows transition probabilities across performance deciles for players who played 1,000 hands or 

more over the first six months of our sample period. These players are ranked on the basis of their 

performance twice: for Period 1 and for Period 2. The probabilities in the table indicate the empirical 

probability of transitioning from a given decile in the first half-year period to a given decile in the 

second half-year period. Players for whom we have no observations for the second period are not 

included in the ranking for the second period, so essentially the probabilities are conditional on 

participation in the second six months. 

In Panel A, the performance measure that is used to rank players is the standard performance 

measure (bb/100) after correction for rake. The fraction of players in the top decile of Period 1 who 

end up in the top decile in Period 2 is 13.6 percent; players who are in the worst decile end up in the 

worst decile 19.6 percent of the time. These empirical probabilities are substantially greater than the 

value of 10 percent that would be expected under the null hypothesis of no performance persistence 
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(all p < 0.001). At the same time, however, there is some evidence that the likelihood of ending up at 

the opposite extreme is also greater than 10 percent. For example, the chance of transitioning from 

the very best (worst) category to the very worst (best) is 12.3 (11.2) percent. This pattern is 

symptomatic of the inadequacy of the ranking measure used here: players with a higher variance of 

their average winnings due to adventurous or infrequent play are more likely to end up in the 

extreme win rate categories. Ranking players on the basis of our alternative performance robustness 

measure controls for this variance effect. 

In Panel B, players are ranked on the basis of their PRMi.
6 The results are compelling: players from 

the top decile reappear in this decile 20.7 percent of the time, and with a probability of 5.4 percent 

they end up in the bottom decile relatively infrequently. Similarly, losers are unlikely to become 

winners: the worst ten percent rank among the best ten percent in the next six months only 5.2 

percent of the time and among the worst ten percent 18.5 percent of the time. The empirical 

probabilities are even more telling when we look at percentiles (not tabulated): the very best one 

percent of players in Period 1 rank among the very best one percent in Period 2 11.4 percent of the 

time, and among the best ten percent 32.8 percent of the time (11.4 and 3.3 times the base rate). 

They are among the worst ten percent only 3.4 percent of the time. Similarly, the least successful 

players from Period 1 often keep performing poorly: the worst percentile stay in that category 10.2 

percent of the time, and belong to the worst decile in 32.0 percent of the cases. They rarely 

outperform: the best decile is reached only 2.7 percent of the time. 

[ Please insert Table 4 about here ] 

 

III. Regression Analyses 

To further analyze the role of skill we regress performance over the final six months of our sample on 

performance over the first six months, and on other measures that may serve as skill proxies. We 

consider the following explanatory variables: 

- SPM: the standard performance measure or “win rate”, defined as the average number of 

big blinds won per hundred hands after correction for rake. 

                                                           

6
 If ni,2 < 1,000 we substitute si,2 by 1000))0001(( 2

22
2

22 ,i1,i,i,i snsn,s~  , where ni,t is the number of hands 

played by player i in period t, and si,t is the standard deviation of big blinds won by player i in period t. This 

approach avoids the use of an unreliable standard deviation estimate for players who participated in a 

relatively small number of hands during Period 2, and assumes that σi is stable through time. In the extreme 

case where ni,2 ≤ 2 we set 12 ,i,i ss~  . 
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- PRM: the performance robustness measure, defined as the average number of big blinds 

won per hand after correction for rake divided by the estimated standard error. The 

estimated standard error is the sample standard deviation of the rake-corrected winnings 

per hand divided by the square root of the number of hands. 

- Hands (log): the natural logarithm of the number of hands played. This variable is a proxy for 

the experience of players and thus a possible indicator of skill. 

- Tightness: one minus the proportion of hands in which a player voluntarily wagered money 

in the first betting round (“called or raised before the flop”). The degree of tightness is one of 

the two simple measures that are typically used to broadly categorize players’ playing styles. 

Generally, tighter play is thought to be indicative of a better player. Common mistakes in 

poker are to impatiently look for “action” and to overestimate the profitability of playing a 

given hand. 

- Aggressiveness: the number of times a player led the betting (“bet” or “raised”) as a 

proportion of the total number of times the player voluntarily wagered money (“bet”, 

“called” or “raised”). This factor is the other of the two simple playing style measures. 

Aggressive play is generally thought to yield a higher expected performance than passive 

play, because increasing the cost of playing at the right times can pressure other players to 

give up stronger cards or to wager more with weaker ones. 

- Tournaments: a player’s tournament ability rating according to SharkScope, a website that 

tracks virtually all online poker tournament results. The worst possible rating is 50 and the 

best possible rating is 100. The exact calculation is not disclosed by SharkScope. Tournament 

performance is a possible indicator of skill, because of the many similarities between 

tournament and cash game play. 

The last three variables are standardized such that they have a mean of zero and a standard 

deviation of one. To avoid endogeneity issues, all six explanatory variables are solely based on data 

from before Period 2: the first five cover the prior six months (Period 1), and the tournament ability 

rating is determined over the prior twelve months. The tournament ability rating was available for 79 

percent of the players who played 1,000 or more ring game hands in Period 1. 

We run two sets of regressions, one for the standard performance measure and the other for our 

performance robustness measure. In the former case, we face the issue of heteroskedasticity: the 

variance of the error term is proportional to the sample variance of the number of big blinds won 

( 2
is ) and inversely proportional to the number of hands played (ni) in Period 2. We therefore apply 



[13] 

weighted least squares (WLS) to estimate these regression models, where the weighing factor is the 

inverse of the variance of the error term ( 2
ii s/n ). When our performance robustness measure is the 

dependent variable we use ordinary least squares (OLS), because the errors there have constant 

variance by construction. 

Panel A of Table 5 presents the WLS results for the standard performance measure. In each 

univariate regression, performance is significantly related to the skill proxy from the previous period 

(all p < 0.001). Not only the historical performance measure (Model 1), but also the number of hands 

played (Model 2), the two style measures (Models 3 and 4) and the tournament ability variable 

(Model 5) predict performance to a modest but statistically significant extent. Players who 

participated in more hands in the previous period perform better, as do players who adopted a tight 

or aggressive playing style and players who did well in tournaments. Combined, the measures explain 

3.3 percent of the variance in performance (Model 6). The smaller-than-unity coefficient in Model 1 

indicates that there is regression in players’ performance over time. 

We obtain qualitatively similar results when we use our performance robustness measure (Panel B), 

but the explanatory power is higher now. The percentage of variance explained by the joint skill 

proxies is 8.1 percent, which is about 2.5 times as high as the empirical fit of the previous 

multivariate specification. We have also performed the regression analyses for the three stakes levels 

separately. The results and conclusions are all similar to the results for the aggregate sample. 

[ Please insert Table 5 about here ] 

Although these results reinforce our earlier findings of performance persistence and the role of skill 

in poker, the major part of variance in performance remains unexplained by the models and appears 

to be attributable to chance. An issue that we have not yet explicitly addressed so far is the problem 

of errors in variables. In the ideal situation we would know every player’s precise skill level, but given 

the lack of this information we have to use noisy proxies. When explanatory variables are 

mismeasured, coefficients estimated via standard regression methods are biased towards zero and 

the true explanatory power is underestimated. The low empirical fit of the regression models 

indicates that measurement error is a serious issue for the historical performance measures: if a 

random factor explains much of the variation in performance, any measurement of previous 

performance is likely to be subject to a large degree of randomness as well.7 

                                                           

7
 The playing style variables are measured with relatively little error because they are based on a large number 

of draws from a binomial distribution. Their relatively poor predictive power appears to be especially related to 

their more indirect reflection of skill. 
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The bias of an estimated coefficient towards zero as a consequence of measurement error is known 

as attenuation or regression dilution. Although measurement error is not a problem for predictive 

modeling, it can give an unjust impression of the size of the effect of skill on performance here and 

may falsely suggest that a player’s skill is not a stable quality over time. To account for error in both 

the dependent and the independent variable we therefore also run a so-called Deming regression 

(methodological details are in the appendix). The results indicate that the standard regression 

understates the size of the effect of skill on performance to a considerable extent: when we regress 

the win rate from Period 2 on the win rate from Period 1, we obtain a coefficient of 1.392 (p < 0.001). 

When the performance robustness measure is used for the dependent and for the independent 

variable, the coefficient is 1.156 (p < 0.001). These alternative coefficients are not only substantially 

higher and closer to unity than the values of 0.167 and 0.229 reported before, but also significantly 

greater than unity (p < 0.001). Taken at face value, this suggests that the disparity in performance 

between players increases over time. Our robustness analysis at the end of this section, however, 

indicates that the two coefficients are somewhat inflated as a consequence of players’ budget 

constraints. 

The underestimation of the true explanatory power of skill as a consequence of measurement error 

decreases with the number of hands used to calculate the proxy for skill. With more observations, 

measurement error becomes relatively less important: the ratio of the variance of the measurement 

error and the variance of the true explanatory variable decreases with the number of hands. This 

holds for each of our two historical performance measures. For the standard performance measure 

the variance of the measurement error decreases as the number of hands increases. For the 

performance robustness measure the variance of the measurement error is constant (at unity), but 

for this measure an increase in the number of hands leads to more distinctive differences between 

players with a different expected win rate, reducing the relative size of measurement errors. 

To illustrate the effect of the number of observations per player on the empirical fit, we run 

regressions for the pooled results of “teams” of players. More precisely, we first rank players on the 

basis of their performance in Period 1. We then group the players into percentiles, where the best 

one percent of players form a group, the second-best one percent form another group, et cetera. 

Next, for each percentile we calculate Period 1 and Period 2 performance across all hands of the 

players in the group combined. Last, we regress the pooled Period 2 performance on the pooled 

Period 1 performance. The average hypothetical “player” has now played about 2.1 million hands in 

Period 1 (instead of 7,038) and 1.0 million in Period 2 (instead of 4,814). The results are remarkable. 

When performance is expressed as the win rate the R2 is 66.7 percent, and when the performance 

robustness measure is used the R2 is 80.1 percent. 
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We conclude this section with a robustness analysis. To make sure that the documented persistence 

of performance truly reflects the role of skill, we need to verify that the results are not driven by 

differences in budget constraints between players. As already explained in Section II, a budget 

constraint can force a player to stop playing when losses accumulate, and, consequently, a negative 

performance is less likely to be cancelled out or diluted by subsequent hands than a positive 

performance. The stronger a player’s budget constraint at the start of a given period, the greater the 

likelihood that she needs to stop early after losses, and the lower her expected SPM and PRM over 

this period. Differences in budget constraints across players can be both exogenously and 

endogenously determined: some players may simply have smaller fixed budgets for playing than 

others in each period, and players who have lost in a previous period have less funds available in 

their accounts than players who have won. In both cases, the contemporaneous relation between 

the strength of a budget constraint and performance can lead to spurious correlation in players’ 

performance through time. 

To avoid the possible influence of budget constraints, we use hand samples of a fixed size for every 

player. For n = 1,000, 5,000 and 10,000, we select all players who have played at least 2n hands over 

our entire sample period, and test whether performance over the first n hands is predictive of 

performance over the following n hands. 

The regression results are in Table 6, and point out that the persistence of performance is robust to 

this alternative specification. Regardless of n and regardless of which of the two performance 

measures is being used, performance over the second n hands is significantly related to performance 

over the first n hands (all p < 0.001). 

Note that there are also two downsides to this alternative approach. First, there is more 

measurement error because in many cases fewer hands are being used to proxy for skill (especially 

when n = 1,000). Raising n solves this issue, but comes at the cost of the inclusion of fewer players. 

Second, if losing players play less (because of budget constraints or a lost appetite to play), the 

selection criteria lead to a more homogeneous set of players in terms of their performance. Together 

with the exclusion of a possible spurious effect of budget constraints, these effects may explain why 

the R2 values for the two present Model 1 specifications (0.5% for SPM and 0.6% for PRM) are 

remarkably lower than before (2.2% and 4.9%, respectively; see Table 5). Increased measurement 

error also explains why the regression coefficients are smaller than before.8 

                                                           

8
 Note that the R

2
 values for the different fixed numbers of hands suggest that decreasing measurement errors 

are more important than increasing homogeneity when n increases from 1,000 to 5,000, and that the two 

effects are limited or (more or less) cancel out with a further increase to 10,000. Furthermore, the larger 
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To account for measurement error we also estimate the six univariate models for the same fixed-size 

hand samples using Deming regression. Interestingly, all six resulting coefficients are qualitatively 

close to unity (between 0.86 and 1.11) and only two are statistically significantly different from unity. 

This result suggests that the Deming coefficients found before were larger than unity due to a 

spurious effect from budget constraints that is now eliminated, and, more importantly, it points out 

that skill differences between poker players are close to constant over time. 

[ Please insert Table 6 about here ] 

 

IV. Simulations 

The previous analyses demonstrate that there is persistence in the performance of poker players. 

Based on the results, we can confidently rule out that we are dealing with a game of pure chance. 

Skill is a factor of importance, but the key question left unanswered is whether skill also dominates 

chance, that is, whether poker is more a game of skill than a game of chance. The answer to this 

question critically depends on the number of hands “the game of poker” is supposed to constitute. 

The role of chance diminishes with the number of hands, and the law of large numbers implies that it 

eventually cancels out when the number of hands grows large enough. 

In the present section we use simulations to approximate the number of hands above which skill 

predominates. More specifically, in accordance with the decile analyses, we first rank all players who 

have played 1,000 hands or more over the first six months of our sample period according to their 

performance during that first subperiod. Next, for the best performers, we randomly draw (with 

replacement) a given number of h hands from their combined sample of hands recorded for the 

second six months, and we compute their total winnings (in big blinds) across these h hands.9 We do 

the same for the worst performers, and then compare the total winnings of the two player 

categories. For each different value of h, we repeat this procedure 25,000 times and determine the 

proportion of times that the supposedly more skilled players do better than their supposedly less 

                                                                                                                                                                                     

regression coefficients for n = 5,000 than for n = 1,000 again underline the nature and role of measurement 

error, and the larger constants for larger n confirm the selection effect that occurs here. 
9
 To circumvent technical limitations, we draw from a representative subset of one million hands when the 

actual sample size is greater than one million. We have verified that the results are insensitive to this 

approximation. 
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skilled counterparts. A similar approach was used by Randal D. Heeb in his expert report for a U.S. 

Federal court case in New York in 2012.10 

Skill predominates in this comparison when the proportion is greater than 0.75. This threshold 

follows from a simple model where we define the skill factor, πh, as the probability that skill 

determines the more profitable player across h different hands. Accordingly, 1 - πh is the chance 

factor, or the probability that chance determines the more profitable player. When skill alone 

determines the winner (πh = 1), the more skilled player always wins; when chance alone determines 

the winner (πh = 0), the more skilled player wins half the time. More generally, the overall probability 

that the more skilled player is ahead after h hands is equal to ph = πh · 1 + (1 - πh) · 0.5. Skill 

predominates when πh > 0.5, implying ph > 0.75. 

The accuracy of our simulation approach depends on the formation of two distinct groups of players. 

With each draw of hands, we want to simulate and compare the winnings of a relatively skilled and a 

relatively unskilled player. Every time, the former is thus assumed to be the better player, with a 

higher expected performance than the latter. Because we cannot observe a player’s true skill and 

need to rely on an imperfect proxy, we cannot exclude that our simulations sometimes confuse the 

two types. To limit this risk, we draw from the hands of players who ended up in either the very best 

or the very worst performance percentile of the first six months. We use our performance robustness 

measure to rank players, given our earlier evidence that this measure is more accurate than the 

standard performance measure. For the sake of completeness, we also run the simulations with the 

standard performance measure and with the top and bottom deciles of players instead of the top 

and bottom percentiles. 

Figure 1 displays the results. Across a selection of a few hands, the game is hardly different from a 

pure game of chance: the higher-ranked players perform better only slightly more than half the time. 

                                                           

10
 Case 1:11-cr-00414-JBW. For one half of the players in his sample, Heeb estimates a regression model that 

links performance to hundreds of playing style characteristics, including many different variants of Tightness 

and Aggressiveness (see Section III). For the other half, he employs the obtained regression coefficients to 

compute players’ predicted performance. Heeb’s simulations point out that players who rank high according to 

this self-constructed skill measure are ahead of lower-ranked players more than 75 percent of the time after 

only a few hundred hands. A weakness of Heeb’s analysis is that he measures players’ characteristics and their 

performance over the same set of hands. This is likely to lead to spurious correlation between skill and 

performance scores, because both scores are contemporaneously co-determined by the same chance 

elements. For example, players who are dealt a greater fraction of strong hands or hands that connect well 

with the community cards are more likely to score high on the dimension of aggressiveness (and thus relatively 

high on skill) and to record a strong performance. Consequently, his analysis is likely to produce an 

underestimation of the critical number of hands above which skill predominates. 



[18] 

The proportion steeply increases with the number of hands, at a decreasing marginal rate.11 As 

indicated by the solid black line, the critical point where the best percentile of players (according to 

the performance robustness measure) is ahead 75 percent of the times is reached after 1,471 hands. 

As expected, this number is larger when the best and worst percentiles are being selected on the 

basis of the standard performance measure (2,139), and even larger when deciles instead of 

percentiles are being used (6,512 and 7,293 for PRM and SPM, respectively). 

[ Please insert Figure 1 about here ] 

Figure 2 zooms in on the simulation results for h = 10, 100, 1,000 and 10,000, and shows histograms 

for the distribution of the difference in win rate (number of big blinds won per hundred hands) 

between the two groups. While the previous figure only shows the proportion of times this 

difference is positive at a given h, the histograms also show the magnitude of the difference in 

profitability between the higher-ranked and lower-ranked players. Upon visual inspection, the 

distribution is widely but symmetrically distributed around zero when h = 10. The distribution 

gradually becomes more centered around its mean when h increases, and, consequently, with a 

greater h the positive mean win-rate difference of 21.2 bb/100 becomes more apparent (note the 

different scales for the horizontal axes). At h = 10, 100, 1,000 and 10,000, the fractions where the 

higher-ranked players are behind amount to 47, 43, 29 and 4 percent, respectively. Their chances of 

underperforming by more than 10 bb/100 shrink from 44 to 39, 21 and 0.5 percent, respectively. At 

the critical number of approximately 1,500 hands where skill dominates chance, the frequency of 

underperformance by more than 10 bb/100 amounts to 16 percent. 

[ Please insert Figure 2 about here ] 

 

V. Discussion and Conclusions 

Our study shows that there is a significant skill factor in online ring game poker, and that this factor 

dominates the luck factor after a moderate duration of play. In Section II and Section III we have 

examined whether possible skill differences between online poker players explain differences in their 

performance. The results in these sections provide strong evidence against the hypothesis that poker 

is a game of pure chance. For a game of pure chance there would be no correlation in the winnings of 

players across successive time intervals. 

                                                           

11
 In fact, as h increases, the empirical win proportion converges to the win proportion that would result from 

performance being normally distributed (just as the central limit theorem predicts). 
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The decile analyses demonstrate that players who rank higher (lower) in profitability over the 

previous six months generally continue to perform better (worse) than others during the present six 

months. For example, players from the best decile earn about 20 to 25 big blinds per 100 hands more 

during the subsequent six months than players from the worst decile. In line with diminishing returns 

to skill the differences between consecutive deciles are greatest for the ninth and tenth decile. When 

we rank players on the basis of how well they did according to our alternative performance 

robustness measure, we find that top ten percent players rank among the top ten percent of the 

next six months approximately twice as often as others, and among the worst ten percent 

approximately half as often. The results are even more pronounced if we look at the best one 

percent. Similarly, those who perform the worst hardly ever end up in the top category. 

Our regression results reinforce these findings, and show that current performance is not only 

related to historical performance but also in some extent to simple measures of playing style. Players 

who are characterized by a tight or aggressive style generally perform better than their loose or 

passive opponents. Performance is also related to the number of hands that players have played over 

the previous period: more frequent or experienced players achieve better results. This finding can 

indicate that better players choose to play more and that players learn from playing. Both 

interpretations conflict with the pure-chance hypothesis. 

Given these results we believe that we can legitimately conclude that skill is an important factor in 

online ring game poker. However, most jurisdictions do not ask whether a game involves an 

important degree of skill, but, more specifically, whether skill predominates. At the same time, no 

legislator seems to prescribe how this should be tested. The key complication is that the extent to 

which skill differences explain differences in performance depends on the number of hands over 

which performance is measured. If sufficiently many hands are played, skill explains practically all 

variation in performance. This is nicely illustrated by the high explanatory power of our regressions 

with the pooled performance scores of percentiles of players, and by the decile analyses, where the 

(rank) correlation between the past and the current performance of large groups is near-perfect or 

even perfect. A definite answer to the predominance question thus calls for a definition of the 

relevant measurement interval. The possible extremes are a single hand and a player’s life time, and 

intermediate options include an average session, a month, and a (fiscal or calendar) year. 

Instead of predetermining one particular interval ourselves, we have employed simulations to 

estimate the number of hands where skill and chance are equally important. In Section IV, we 

basically run horse races of different durations between a relatively skilled player and a relatively 

unskilled player who are playing independently from each other. These simulations point out that 

skill dominates chance when performance is measured over 1,500 or more hands of play. To put this 
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number into perspective: at a rate of 60-80 hands per hour per table, playing 1,500 hands takes 

people who play only one table at a time about 19 to 25 hours (four to six evenings) of play. 

Participating on multiple tables simultaneously – which is what many experienced players do – 

effectively reduces this duration to one or two sessions. 

As with any empirical estimate, the exact outcome depends on the specific approach. Our estimate 

that skill predominates after 1,500 hands should be seen in this light. The simulations do for example 

not account for possible serial dependence in hand results, which may have led to an 

underestimation of the critical number of hands. However, we believe that we have taken a 

conservative approach, because the two types of players in our simulations were not playing the 

game against each other, and because of selection effects. 

With few exceptions, the series of hand outcomes that we compare consist of hands that have been 

played at tables where the relatively skilled and the relatively unskilled players (virtually) sat down 

with other players than their counterparts in our comparison. The hands were played at different 

tables and at different moments in time. We are thus not analyzing how well a selection of strong 

players fare against a selection of weak ones, but comparing how well they did against a cross-

section of others, including players from their own category. Would higher-ability players be directly 

playing against lower-ability players, skill should be expected to predominate substantially quicker. 

To avoid extremely noisy historical skill estimates, we have required a minimum data history per 

player. Unintentionally, this approach is likely to have generated a selection effect: because intensity 

of play and experience are (almost tautologically) related, relatively inexperienced players are 

underrepresented in our analyses. Every player in our final sample will normally be well informed 

about the rules of the game and master some basic strategic concepts. The emphasis on relatively 

skilled players in our data is probably stronger towards the end of our sample period, because 

relatively poor players are more likely to lose and quit early, and if they continue to play they have 

more potential to learn from experience and improve their game. If we would also observe complete 

beginners playing the game, the differences in performance across players would presumably be 

greater, and the critical number of hands where skill starts to predominate would consequently be 

more quickly reached. 

The relative homogeneity of our sample is probably strengthened by players’ self-selection into 

stakes levels on the basis of their perception of their skill level. Better players are more likely to play 

for larger stakes, while worse or beginning players may feel more comfortable at smaller stakes. This 

self-selection into the game is not unique for poker. In many games, people play against opponents 

of relatively similar ability. When such self-selection occurs, the influence of randomness on the 
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outcome of a contest increases, and it will take a longer series of events before skill differences 

materialize – even with professional sports and with games like chess and bridge. 

We conclude with a brief discussion of the generalizability of our findings. Our study has been limited 

to online play. Due to a lack of readily available data, it is practically impossible to execute an 

analogous, large-scale analysis for offline play. Nevertheless, given that skill is important in the online 

variant, we conjecture that it is likely to be even more important for brick-and-mortar play. One 

reason is that offline play also involves body language and other subtle forms of communication. 

Players are sitting face-to-face and need to carefully control their behavior to not reveal the strength 

of their cards, and by observing others they can sometimes discover useful “tells” about their play. At 

the same time, body language can also be used to deliberately mislead opponents. Furthermore, 

players’ patience is put to the test more in live play than in online play because fewer hands are dealt 

per hour. In live poker, skill will probably dominate chance at fewer hands, but because of the slower 

pace of play and the impossibility to play on multiple tables it may take more hours to reach the 

critical number. 

Another limitation is that we have looked at cash game play only, while both online and offline poker 

are also frequently played in tournament form. This focus was deliberate, because the value of a 

given amount of chips wagered in a tournament hand depends on the phase of the tournament and 

on players’ chip stack size relative to the chip stacks of their opponents. This issue greatly 

complicates the analysis of performance using hand-level data. A more straightforward approach for 

tournaments would be to analyze players’ finishes, which is precisely what Croson, Fishman and 

Pope (2008) and Levitt and Miles (2014) do for major live events. It is hard to tell whether 

tournament poker requires more or less skill than the cash game variant, but we believe that a 

substantial difference is not very likely. In the early phases, tournaments are very similar to cash 

games, and so will be the roles of chance and skill. At later stages, chance increases in importance 

because the blind bets become larger relative to players’ chip stacks, which effectively reduces the 

opportunities for strategic betting. However, for the same reason, meticulous hand selection (which 

dealt hands to play and which not) then becomes even more consequential. Furthermore, especially 

at later stages, players also need to factor in the prize money structure in their decisions. Future 

work could exploit the large amount of available tournament data and see if our speculation that skill 

similarly predominates after a few sessions of play indeed holds true. 
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Appendix: Deming Regression 

Deming regression was first introduced by Adcock (1878). Kummell (1879) extended the method by 

allowing for the errors in the dependent and in the independent variable to have different variances 

(although the former was still assumed to be proportional to the latter for all observations). The 

method is named after the statistician W. Edwards Deming who propagated it (Deming, 1943). For 

our regression, we use the following model: 

(A1) *
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*
2, ii yy    

(A2) tititi yy ,
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where *
,tiy  are the true values and tiy ,  are the observed values for the performance of player i in 

period t (t = 1,2) and where i,t is the measurement error that is normally distributed with a mean of 

zero. 

While standard regression approaches minimize the sum of squares of residuals for the dependent 

variable (ei,2) only, we here minimize the sum of squares of the standardized residuals for both the 

dependent and the independent variable: 
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As show in York (1966), the solution is: 
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In most applications, the variance of the measurement error is not known at the level of individual 

observations. In order to solve the optimization problem it is then usually assumed that the ratio 

   1,2, varvar ii   is the same for all i. We are in the unique situation that we do have accurate 

estimates, which allows us to obtain unbiased estimates of   and  . When the performance of 

poker players is measured as the average number of big blinds won, the variance of the 

measurement error var(i,t) for any specific observation is approximated by titi ns ,
2
, , or the ratio of 

the underlying sample variance of the number of big blinds won ( 2
,tis ) and the number of hands (ni,t). 

When our performance robustness measure is used, the measurement error variance is always equal 

to unity. 
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Table 1: Summary Statistics 

The table shows descriptive statistics for our full sample of 456 million player-hand observations from real 

money ring games No Limit Texas Hold’em at three different stakes levels. For each stakes level and for the 

three levels combined, the first two rows show the number of players and the number of hands at the 

aggregate level. The other rows provide player-level statistics on the number of hands played, the total 

winnings expressed as the number of big blinds won, and the average number of big blinds won per hundred 

hands. Profitability statistics are shown with and without correction for rake (the commission taken by the 

operator). Winnings are corrected for rake by adding back rake in proportion to players’ contribution to the 

pot. The small, medium and high stakes games have big blinds of $0.25, $2 and $10, respectively. 

 
      

  
Small 

stakes 
Medium 

stakes 
High 

stakes 
All 

stakes 

      

Total players  457,063 230,098 33,572 611,484 

Total hands (in millions)  190.6 229.1 36.4 456.1 

Hands 

Mean 417 996 1,085 746 

Minimum 1 1 1 1 

Median 52 82 70 71 

Maximum 341,498 763,791 461,743 764,890 

Stdev 2,648 8,261 7,003 5,909 

Big blinds won 
(raked) 

Mean -39 -51 -20 -49 

Minimum -13,134 -10,461 -6,886 -13,135 

Median -19 -29 -21 -25 

Maximum 11,641 26,516 31,348 30,501 

Stdev 203 374 405 307 

Big blinds won 
(not raked) 

Mean 0 0 0 0 

Minimum -8,748 -7,605 -6,438 -8,749 

Median -9 -21 -19 -15 

Maximum 26,209 44,110 38,631 44,832 

Stdev 255 573 467 433 

Big blinds won per 100 hands 
(raked) 

Mean -99 -104 -106 -104 

Minimum -21,500 -15,740 -12,673 -20,000 

Median -28 -31 -24 -30 

Maximum 11,200 15,000 10,030 15,000 

Stdev 494 455 588 461 

Big blinds won per 100 hands 
(not raked) 

Mean -83 -95 -103 -88 

Minimum -21,000 -15,666 -12,670 -19,400 

Median -16 -24 -22 -20 

Maximum 11,600 15,000 10,040 15,000 

Stdev 474 451 587 448 
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Table 2: Standard Performance Measure Deciles 

The table ranks all players who played 1,000 hands or more over the first six months of our sample period 

(Period 1) into deciles by their performance over these six months, where performance is measured as the 

average number of big blinds won per hundred hands after correction for rake. For each decile, the first 

columns show the number of included players (N) and their average performance (bb/100) for this ranking 

period. The next columns show the number of players from the decile who played at least one hand in the last 

six months of our sample period (Period 2), as well as their average performance for this measurement period 

and how they rank on average relative to all other players who played at least one hand (Rank). Average decile 

performance (bb/100) is expressed both as a straight average (unweighted) and as a weighted average, where 

the weights are either the square roots of players’ number of hands (weighted by n) or players’ number of 

hands (weighted by n). Panel A (B/C) shows the results for observations from the small (medium/high) stakes 

level separately. Panel D shows the results for all stakes levels combined. For each panel, the table shows the 

Spearman rank correlation between the two periods for the average performance at the decile level (for each 

weighting method) and for performance at the player level (in Rank column). 

 
 Period 1 Period 2 

   bb/100    bb/100   

Decile N 
un-

weighted 

weighted 

by n 

weighted 
by n 

N 
un-

weighted 

weighted 

by n 

weighted 
by n 

Rank 

Panel A: Small stakes 

1 1,726 36.6 35.8 34.7 826 -12.9 3.5 6.8 4,034 

2 1,725 19.7 19.6 19.5 862 -12.4 4.7 7.5 3,985 

3 1,726 13.5 13.5 13.4 866 1.4 5.2 6.7 3,895 

4 1,726 9.2 9.2 9.2 842 -2.4 4.7 6.5 3,956 

5 1,726 5.9 5.9 5.9 837 -2.3 4.8 6.4 3,925 

6 1,725 3.0 3.0 3.0 775 -8.3 3.4 4.9 4,068 

7 1,726 -0.1 0.0 0.0 759 -7.5 3.3 5.1 4,141 

8 1,726 -4.0 -3.9 -3.8 771 -11.1 1.4 3.8 4,181 

9 1,725 -10.2 -10.1 -10.0 790 -26.7 -0.1 4.7 4,320 

10 1,726 -30.0 -29.3 -28.4 890 -20.2 -7.5 -1.3 4,587 

Correlation 0.370 0.818 0.964 0.074 

(p-value) (0.296) (0.007) (0.000) (0.000) 

Panel B: Medium stakes 

1 1,644 34.0 33.0 31.6 946 -25.6 -3.5 3.8 4,398 

2 1,643 16.0 15.7 15.3 983 -14.7 0.9 6.0 4,229 

3 1,644 9.8 9.7 9.6 937 -22.0 1.6 5.9 4,253 

4 1,643 6.0 6.0 5.9 923 -14.2 3.0 5.3 3,972 

5 1,644 3.0 3.0 3.1 894 -10.2 0.9 3.8 4,132 

6 1,643 -0.2 -0.2 0.0 833 -36.2 -2.9 2.3 4,485 

7 1,644 -4.4 -4.3 -4.2 821 -18.8 -4.2 1.8 4,627 

8 1,643 -9.7 -9.6 -9.5 831 -29.6 -5.8 1.4 4,673 

9 1,644 -18.2 -18.2 -18.0 862 -40.5 -10.3 -2.7 4,806 

10 1,643 -41.6 -40.8 -39.9 905 -48.8 -18.0 -5.2 5,190 

Correlation 0.612 0.733 0.927 0.104 

(p-value) (0.066) (0.021) (0.000) (0.000) 
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Table 2 (continued) 

 
 Period 1 Period 2 

   bb/100    bb/100   

Decile N 
un-

weighted 

weighted 

by n 

weighted 
by n 

N 
un-

weighted 

weighted 

by n 

weighted 
by n 

Rank 

Panel C: High stakes 

1 273 36.8 35.7 33.9 177 -4.7 3.5 5.8 783 

2 272 16.3 16.1 15.8 171 -12.7 -0.8 2.6 862 

3 273 9.7 9.6 9.5 181 4.3 2.8 2.9 797 

4 272 5.8 5.8 5.8 191 -0.3 2.2 3.9 793 

5 273 2.8 2.8 2.8 182 -3.8 2.1 4.1 817 

6 272 -0.1 0.0 0.2 179 -17.0 0.6 3.5 887 

7 273 -4.0 -3.9 -3.7 159 -5.6 -1.9 -1.1 832 

8 272 -9.1 -9.0 -8.8 148 -7.6 -4.0 -0.8 891 

9 273 -16.5 -16.4 -16.1 158 -32.1 -9.5 -4.1 950 

10 272 -40.2 -39.2 -38.0 150 -21.5 -9.6 -1.9 906 

Correlation 0.636 0.879 0.770 0.088 

(p-value) (0.054) (0.002) (0.014) (0.000) 

Panel D: All stakes 

1 3,657 34.7 33.8 32.7 2,082 -23.0 -0.2 5.1 10,135 

2 3,657 17.5 17.4 17.2 2,126 -13.1 2.2 6.1 9,810 

3 3,657 11.3 11.3 11.1 2,140 -12.6 2.7 6.0 9,736 

4 3,657 7.3 7.2 7.1 2,105 -6.0 3.8 5.9 9,442 

5 3,657 4.1 4.1 4.1 2,099 -13.7 2.3 4.5 9,850 

6 3,657 1.1 1.1 1.2 2,004 -13.3 1.3 3.7 9,907 

7 3,657 -2.5 -2.5 -2.4 1,939 -16.0 -1.0 3.0 10,382 

8 3,657 -7.4 -7.3 -7.3 1,948 -22.0 -3.5 1.7 10,764 

9 3,657 -14.9 -14.8 -14.7 2,047 -25.7 -6.0 0.0 11,062 

10 3,657 -37.7 -37.0 -36.1 2,142 -42.5 -16.5 -5.9 12,098 

Correlation 0.600 0.733 0.927 0.101 

(p-value) (0.073) (0.021) (0.000) (0.000) 
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Table 3: Performance Robustness Measure Deciles 

The table ranks all players who played 1,000 hands or more over the first six months of our sample period into 

deciles by their performance over these six months. Here, the performance measure that is used to rank 

players is the performance robustness measure, which is defined as the average number of big blinds won per 

hand after correction for rake divided by the estimated standard error. The estimated standard error is the 

sample standard deviation of the rake-corrected winnings per hand divided by the square root of the number 

of hands. The statistics shown for each resulting decile are defined as in Table 2. The various panels and 

correlation coefficients are also identically defined. 

 
 Period 1 Period 2 

   bb/100    bb/100   

Decile N 
un-

weighted 

weighted 

by n 

weighted 
by n 

N 
un-

weighted 

weighted 

by n 

weighted 
by n 

Rank 

Panel A: Small stakes 

1 1,726 26.9 21.1 16.0 908 -1.3 6.2 7.4 3,777 

2 1,725 21.0 17.4 13.9 822 1.4 6.1 6.8 3,843 

3 1,726 16.1 13.5 10.7 856 -6.0 3.9 5.5 4,008 

4 1,726 11.9 10.1 8.2 822 -10.8 3.0 5.4 4,089 

5 1,726 7.8 6.7 5.5 819 -8.4 3.7 6.0 4,030 

6 1,725 4.1 3.5 2.9 773 -10.9 2.8 5.2 4,094 

7 1,726 -0.1 0.0 0.0 784 -7.9 2.6 5.3 4,180 

8 1,726 -5.0 -4.4 -3.8 794 -19.0 0.6 3.6 4,236 

9 1,725 -11.5 -10.3 -8.8 807 -23.2 0.2 4.6 4,294 

10 1,726 -27.6 -24.9 -21.6 833 -17.3 -6.6 -0.6 4,587 

Correlation 0.867 0.988 0.939 0.091 

(p-value) (0.003) (0.000) (0.000) (0.000) 

Panel B: Medium stakes 

1 1,644 20.9 12.6 8.7 1,084 -6.4 4.7 6.0 3,709 

2 1,643 19.4 13.7 8.9 946 -8.7 2.0 5.2 4,015 

3 1,644 14.4 10.9 7.2 920 -20.5 -0.4 4.3 4,223 

4 1,643 9.5 7.7 5.6 867 -23.8 -4.1 2.4 4,600 

5 1,644 4.4 3.6 2.6 850 -34.7 -4.2 2.5 4,541 

6 1,643 -0.3 -0.2 -0.2 856 -32.7 -5.6 1.1 4,602 

7 1,644 -5.6 -4.9 -3.9 827 -26.5 -5.5 2.1 4,670 

8 1,643 -11.6 -10.0 -7.9 873 -40.2 -6.5 1.7 4,741 

9 1,644 -20.2 -17.7 -14.6 836 -29.1 -8.4 -1.0 4,777 

10 1,643 -36.3 -32.1 -26.4 876 -42.6 -14.3 -4.8 5,063 

Correlation 0.855 0.988 0.952 0.148 

(p-value) (0.004) (0.000) (0.000) (0.000) 

Panel C: High stakes 

1 273 24.0 15.1 10.1 204 9.4 4.3 4.1 705 

2 272 20.6 14.7 9.1 176 -0.1 2.1 3.6 807 

3 273 13.5 9.7 5.9 185 -11.5 0.2 2.1 854 

4 272 8.8 6.8 4.6 169 -12.1 -0.6 3.1 863 

5 273 4.3 3.3 2.3 173 -5.8 2.0 5.7 832 

6 272 -0.1 -0.1 0.0 170 -16.4 0.3 2.1 863 

7 273 -5.7 -4.6 -3.6 155 -4.6 -2.6 1.2 868 

8 272 -11.1 -9.1 -6.9 159 -8.6 -4.0 -0.7 865 

9 273 -18.3 -15.1 -11.3 150 -35.9 -6.5 -2.1 920 

10 272 -34.6 -29.1 -22.6 155 -17.9 -10.1 -2.7 959 

Correlation 0.697 0.903 0.867 0.118 

(p-value) (0.031) (0.001) (0.003) (0.000) 
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Table 3 (continued) 

 
 Period 1 Period 2 

   bb/100    bb/100   

Decile N 
un-

weighted 

weighted 

by n 

weighted 
by n 

N 
un-

weighted 

weighted 

by n 

weighted 
by n 

Rank 

Panel D: All stakes 

1 3,657 23.6 15.6 10.2 2,324 -7.0 5.2 6.2 8,885 

2 3,657 19.8 15.1 10.4 2,112 -5.3 3.4 5.3 9,486 

3 3,657 14.8 11.7 8.4 2,076 -10.7 1.4 4.8 9,966 

4 3,657 10.3 8.4 6.2 2,038 -20.3 0.4 4.4 10,113 

5 3,657 6.0 5.0 3.7 2,006 -21.6 0.0 4.2 10,248 

6 3,657 1.5 1.3 1.0 2,005 -19.5 -1.4 2.9 10,398 

7 3,657 -3.3 -2.8 -2.3 1,970 -23.8 -2.7 2.7 10,654 

8 3,657 -9.0 -7.8 -6.3 2,002 -26.1 -4.5 1.5 10,902 

9 3,657 -16.7 -14.7 -12.1 2,017 -24.2 -5.1 1.2 10,892 

10 3,657 -33.5 -29.8 -24.8 2,082 -31.8 -12.2 -3.9 11,852 

Correlation 0.939 1.000 1.000 0.131 

(p-value) (0.000) (0.000) (0.000) (0.000) 
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Table 4: Transition Probabilities 

The table shows the transition probabilities across performance deciles for players who played 1,000 hands or 

more over the first six months of our sample period. Each probability indicates the empirical probability of 

transitioning from a given performance decile in the first half-year period (Period 1) to a given performance 

decile in the second half-year period (Period 2). In Panel A, the performance measure that is used to rank 

players in Period 1 and Period 2 is the standard performance measure, where performance is measured as the 

average number of big blinds won per hundred hands after correction for rake (bb/100). In Panel B, the 

performance measure that is used for Period 1 and Period 2 is the performance robustness measure, which is 

defined as the average number of big blinds won per hand after correction for rake divided by its estimated 

standard error. Players for whom we have no observations for Period 2 are not included in the Period 2 

ranking. 

 

Period 1 
decile 

Period 2 decile 

1 2 3 4 5 6 7 8 9 10 

Panel A: Ranking by Standard Performance Measure 

1 0.136 0.116 0.098 0.089 0.063 0.078 0.095 0.094 0.108 0.123 

2 0.108 0.108 0.131 0.097 0.094 0.086 0.099 0.096 0.089 0.091 

3 0.087 0.114 0.124 0.119 0.115 0.099 0.094 0.083 0.079 0.086 

4 0.083 0.103 0.124 0.143 0.140 0.103 0.093 0.090 0.069 0.053 

5 0.076 0.091 0.118 0.133 0.131 0.126 0.099 0.083 0.071 0.072 

6 0.100 0.087 0.093 0.119 0.143 0.119 0.100 0.087 0.079 0.072 

7 0.101 0.093 0.094 0.097 0.099 0.121 0.092 0.109 0.104 0.091 

8 0.094 0.105 0.079 0.079 0.088 0.109 0.118 0.120 0.105 0.103 

9 0.103 0.089 0.081 0.071 0.077 0.097 0.118 0.124 0.130 0.110 

10 0.112 0.092 0.056 0.051 0.051 0.065 0.094 0.116 0.166 0.196 

Panel B: Ranking by Performance Robustness Measure 

1 0.207 0.133 0.118 0.107 0.091 0.078 0.083 0.067 0.060 0.054 

2 0.126 0.117 0.107 0.105 0.108 0.108 0.102 0.091 0.076 0.060 

3 0.101 0.110 0.116 0.104 0.106 0.090 0.095 0.104 0.088 0.086 

4 0.105 0.104 0.110 0.099 0.093 0.099 0.095 0.112 0.094 0.090 

5 0.101 0.090 0.099 0.107 0.104 0.113 0.095 0.100 0.098 0.093 

6 0.087 0.092 0.092 0.103 0.112 0.101 0.105 0.102 0.111 0.095 

7 0.072 0.108 0.091 0.090 0.099 0.107 0.106 0.102 0.121 0.105 

8 0.067 0.089 0.093 0.094 0.106 0.103 0.101 0.111 0.119 0.115 

9 0.063 0.078 0.090 0.104 0.100 0.113 0.114 0.100 0.116 0.122 

10 0.052 0.074 0.080 0.087 0.081 0.091 0.107 0.116 0.125 0.185 
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Table 5: Regression Results 

The table displays the regression results for our subsample of players who played 1,000 hands or more over the 

first six months of our sample period (Period 1) and at least 1 hand over the second six months (Period 2). The 

dependent variable is either the standard performance measure (Panel A) or the performance robustness 

measure (Panel B). The standard performance measure is defined as the average number of big blinds won per 

hundred hands after correction for rake (bb/100). The performance robustness measure is the average number 

of big blinds won after correction for rake divided by its estimated standard error. All explanatory variables are 

calculated using data from Period 1 only. SPM is the player’s standard performance measure. PRM is her 

performance robustness measure. Hands (log) is the natural logarithm of the number of hands played. 

Tightness is one minus the proportion of hands in which the player voluntarily wagered money in the first 

betting round. Aggressiveness is the number of times the player led the betting as a proportion of the total 

number of times she voluntarily wagered money. Tournaments is the player’s tournament ability rating from 

the SharkScope database immediately before the start of Period 2. The results reported in Panel A are 

weighted least squares regression results with the ratio of a player’s number of hands and her sample variance 

of the number of big blinds won in Period 2 as weight. Panel B presents ordinary least squares results. The p-

values are in parentheses. 

 
 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

Panel A: Standard Performance Measure (WLS) 

 
Constant 3.225 -2.536 2.433 3.435 3.984 -0.057 -1.204 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.930) (0.031) 

SPM 0.167     0.141 0.148 

 (0.000)     (0.000) (0.000) 

Hands (log)  0.687    0.199 0.338 

  (0.000)    (0.004) (0.000) 

Tightness   2.048   1.594 1.368 

   (0.000)   (0.000) (0.000) 

Aggressiveness    1.101  0.668 0.532 

    (0.000)  (0.000) (0.000) 

Tournaments     0.412 0.509  

     (0.000) (0.000)  

R
2
 0.022 0.007 0.012 0.007 0.001 0.033 0.035 

N 20,632 20,632 20,632 20,632 16,368 16,368 20,632 

Panel B: Performance Robustness Measure (OLS) 

Constant -0.055 -2.267 0.010 0.010 0.009 -1.289 -1.333 
 (0.000) (0.000) (0.269) (0.273) (0.366) (0.000) (0.000) 

PRM 0.229     0.123 0.142 

 (0.000)     (0.000) (0.000) 

Hands (log)  0.281    0.155 0.161 

  (0.000)    (0.000) (0.000) 

Tightness   0.242   0.131 0.125 

   (0.000)   (0.000) (0.000) 

Aggressiveness    0.187  0.080 0.085 

    (0.000)  (0.000) (0.000) 

Tournaments     0.078 0.041  

     (0.000) (0.000)  

R
2
 0.049 0.049 0.035 0.021 0.004 0.081 0.086 

N 20,632 20,632 20,632 20,632 16,368 16,368 20,632 
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Table 6: Regression Results for Fixed Numbers of Hands 

The table displays the regression results for subsamples of players who played at least 2n hands during our 

entire sample period, with n = 1,000, 5,000 or 10,000. The dependent variable is the player’s performance over 

the second n hands, as measured by either the standard performance measure (Panel A) or the performance 

robustness measure (Panel B). The explanatory variables are calculated over the first n hands. Other definitions 

are as in Table 5. 

 
 Model 1 Model 2 Model 3 
 (n1 = n2 = 1,000) (n1 = n2 = 5,000) (n1 = n2 = 10,000) 

Panel A: Standard Performance Measure (WLS) 

 
Constant 2.348 3.656 3.798 
 (0.000) (0.000) (0.000) 

SPM 0.066 0.142 0.152 

 (0.000) (0.000) (0.000) 

R
2
 0.005 0.021 0.025 

N 31,991 7,340 3,464 

Panel B: Performance Robustness Measure (OLS) 

Constant 0.147 0.465 0.705 
 (0.000) (0.000) (0.000) 

PRM 0.074 0.136 0.125 

 (0.000) (0.000) (0.000) 

R
2
 0.006 0.018 0.016 

N 31,991 7,340 3,464 
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Figure 1: Simulation Results. The figure displays the proportion of times that a selection of h randomly 

drawn hand outcomes for players who were among the best performing players in the past do better than a 

similar-size selection of hand outcomes for players who were among the worst performing players in the past. 

Hand outcomes are randomly drawn from the subsample of hands from the second six months of our sample 

period for players who ranked among the best or worst performing percentiles (black lines) and for players 

who ranked among the best or worst performing deciles (grey lines) over the first six months of our sample 

period. Players are ranked according to the performance robustness measure (solid lines) or the standard 

performance measure (dashed lines). The lines are smoothed, with each point representing the moving 

average proportion across the simulation outcomes available for h-100 up to and including h+100. 
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Figure 2: Difference in Win Rate after 10, 100, 1,000 and 10,000 Hands. The histograms A-D display the 

simulated distributions of the difference in win rate (number of big blinds won per hundred hands) between 
players who were in the very best and players who were in the very worst performance percentile of the first 

six months of our sample period. Players are ranked according to the performance robustness measure. For 

each percentile, h hand outcomes are randomly drawn from their subsample of hands from the second six 

months of our sample period. In A, B, C and D, h = 10, 100, 1,000 and 10,000, respectively. 

 


