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Abstract

Background: The anabolic response of skeletal muscle to essential amino acids (EAAs) is dose dependent, maximal at

modest doses, and short lived, even with continued EAA availability, a phenomenon termed ‘‘muscle-full.’’ However, the

effect of EAA ingestion profile on muscle metabolism remains undefined.

Objective:We determined the effect of Bolus vs. Spread EAA feeding in young men and hypothesized that muscle-full is

regulated by a dose-, not delivery profile–, dependent mechanism.

Methods: We provided 16 young healthy men with 15 g mixed-EAA, either as a single dose (‘‘Bolus’’; n = 8) or in 4

fractions at 45-min intervals (‘‘Spread’’; n = 8). Plasma insulin and EAA concentrations were assayed by ELISA and ion-

exchange chromatography, respectively. Limb blood flow by was determined by Doppler ultrasound, muscle

microvascular flow by Sonovue (Bracco) contrast-enhanced ultrasound, and phosphorylation of mammalian target of

rapamycin complex 1 substrates by immunoblotting. Intermittent muscle biopsies were taken to quantify myofibrillar-

bound 13C6-phenylalanine to determine muscle protein synthesis (MPS).

Results: Bolus feeding achieved rapid insulinemia (13.6 mIU � mL21, 25 min after commencement of feeding), aminoacidemia

(;2500mMat 45min), and capillary recruitment (+45%at 45min),whereas Spread feeding achieved attenuated insulin responses,

gradual low-amplitude aminoacidemia (peak:;1500mMat 135min), and no detectable capillary recruitment (allP<0.01 vs. Bolus).

Despite these differences, identical anabolic responses were observed; fasting fractional synthetic rates of 0.054% � h21 (Bolus)

and 0.066% � h21 (Spread) increased to 0.095% and 0.104% � h21 (no difference in increment or final values between regimens).

With both Spread and Bolus feeding strategies, a latency of at least 90min was observed before an upswing inMPSwas evident.

Similarly with both feeding strategies, MPS returned to fasting rates by 180 min despite elevated circulating EAAs.

Conclusion: These data do not support EAA delivery profile as an important determinant of anabolism in young men at

rest, nor rapid aminoacidemia/leucinemia as being a key factor in maximizingMPS. This trial was registered at clinicaltrials.

gov as NCT01735539. J Nutr 2015;145:207–14.
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Introduction

Postprandial plasma aminoacidemia is a fundamentally anabolic
stimulus that switches whole-body protein balance from nega-

tive to positive. A major component of this is driven by increases
in skeletal muscle protein synthesis (MPS)6 (1–3). Increases in
MPS in response to essential amino acids (EAAs) are dose
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dependent up to EAA and protein intakes of ;10 and ;20 g,
respectively, approximately doubling postabsorptive MPS rates
in young adults (4–6). There is also a restricted temporal profile
by which EAAs achieve anabolism; after a latency of ;1 h after
intake of EAA/protein, MPS rates are elevated for;1.5 h before
returning to fasting levels. Because this occurs even in the face of
continued availability of circulating EAAs (7, 8), this has been
termed the ‘‘muscle-full’’ phenomenon (9).

Reaching a plateau in the EAA dose and MPS rate response
curve and a limited time-window for stimulatedMPS rates dictate
that provision of a single bolus of EAAs/high-quality digestible
protein must only possess finite anabolic efficacy. This is in keeping
with the observation that a meal containing a generous serving of
protein achieves no additional increase in MPS over and above
that derived from amoderate serving (i.e., a 113- vs. a 340-g steak)
(10). Rather, it could be speculated that the anabolic properties of
a specified amount of EAAs/protein may instead be dependent
on the profile of their delivery/appearance. For example, some
authors suggested that rapid aminoacidemia associated with the
digestion properties of certain protein sources (e.g., whey)
support greater anabolism even when approximately matched in
terms of amino acid composition (11–15). If such relations
between EAA delivery/appearance and ensuing anabolism could
be forged, this would be important for designing optimal
nutritional strategies for muscle maintenance (e.g., clinically) or
to maximize exercise-induced anabolism (12, 16–18).

Determination of such ‘‘optimal’’ feeding regimes also
demands knowledge of the significance, or otherwise, of key
elements of the postprandial nutritional/endocrine axis. This
includes establishing links between the profiles of plasma
aminoacidemia (12), plasma insulinemia, muscle microvascular
perfusion (19–21), and activity of intramuscular ‘‘anabolic
signaling,’’ all in the context of muscle anabolism. Therefore,
the aim of the present study was to determine each of these
responses in healthy young individuals provided with the same
volume of EAAs in 2 distinct fashions, either as 1) a single,
maximally effective (1 3 15 g) EAA bolus (‘‘Bolus’’) or 2) as
small (43 3.75 g), evenly spread amounts (‘‘Spread’’). The basis
of this design was to address our hypothesis that the onset of a
dose-dependent muscle-full state would dictate there being no
anabolic advantage to providing EAAs as Bolus vs. Spread,
despite marked differences in plasma aminoacidemia, insuline-
mia, and anabolic signaling profiles.

Methods

Study design. Ethical approval was obtained from the University of

Nottingham Medical School Ethics Committee (United Kingdom),

with all studies conducted in accordance with the Declaration of
Helsinki and preregistered (www.clinicaltrials.gov; registration

NCT01735539). Healthy young men were recruited by response to

poster advertisement/demographically targeted letters. All recruits (who

were recreationally active) were studied after an overnight fast and were
asked to refrain from heavy exercise for 48 h before the study. On the

morning of the study (0800 h), subjects had a 18-g cannula (Vygon)

inserted into the dorsum of the left hand for a primed (0.4 mg � kg21)

constant infusion (0.6 mg � kg21 � h21) of L-[ring-13C6]-phenylalanine
(Cambridge Isotopes) tracer. Blood samples and muscle biopsies were

taken according to the protocol (Figure 1). Arterialized venous blood was

sampled via a retrograde 16-g intravenous cannula placed in the dorsum

of the right hand, with the hand warmed to 55�C (22). Paired femoral
venous samples were taken from a single lumen 14-g catheter (Vygon)

sited in the right common femoral vein. Blood samples were drawn before

feeding and at 15, 25, 45, 65, 80, 115, 135, 155, 175, 195, 215, and 235min
after commencement of feeding. Muscle biopsies were taken intermit-

tently from Musculus Vastus lateralis using the conchotome technique

(23) after infiltration of 5 mL 1% lignocaine. Muscle was washed in ice-

cold saline, and visible fat and connective tissue removed before being
frozen in liquid nitrogen and stored at 280�C until analysis. Biopsies

were taken 1 and 3 h after commencement of the tracer to permit

assessment of basal (postabsorptive) MPS. Subjects were then provided

with 15 g mixed EAAs [L-histidine, 1.21 g; L-isoleucine, 1.73 g; L-leucine,
3.59 g; L-lysine, 3.07 g; L-methionine, 0.95 g; L-phenylalanine, 0.91 g;

L-tryptophan, 1.13 g; L-threonine, 0.48 g; and L-valine 1.86 g; proportions

were representative of muscle protein (24)] in aqueous solution (250mL),

provided in either a single dose (Bolus; n = 8) or in 4 equal fractions
ingested at 45-min intervals (Spread; n = 8). Subsequent biopsies at 90,

180, and 240 min after the first feeding allowed assessment ofMPS across

and within the intervening periods. After the study, cannulas were re-
moved and the subjects fed and monitored for 30 min before departure.

A schematic of the study protocol is shown in Figure 1. Subject

demographic characteristics are shown in Table 1. This was a parallel-

arm, 2-group superiority trial with a 1:1 allocation ratio achieved by
alternate allocation. All laboratory analyses were performed blinded to

allocation. Studies were undertaken at the Royal Derby Hospital, Derby,

United Kingdom, December 2011 to December 2012. The primary

outcome measure was fractional synthetic rate (FSR) of myofibrillar
protein synthesis (MPS) during the 6-h acute study assessed by stable

isotope incorporation. Secondary outcomes were femoral blood flow and

leg muscle microvascular changes as assessed by Dopper and contrast-
enhanced ultrasound (CEUS), respectively. Power calculation dictated that

the smallest number of subjects needed to detect (with 80% confidence,

5% significance level) a difference of 10% between groups was 8.

Measurement of plasma amino acid and insulin concentrations.

Venous plasma insulin concentrations were measured by using a high-

sensitivity human insulin ELISA assay (DRG Instruments GmbH). Incre-

mental AUC analysis estimated the total insulin response to feeding andwas
calculated for each individual with a baseline equal to the mean of fasting,

+155 min, and +195 min insulin concentrations. Arterialized plasma

amino acid concentrations were measured (Biochrom 30). Incremental

AUC analysis estimating postprandial EAA and leucine exposure was
calculated above a baseline of the mean of 2 postabsorptive measures.

Measurement of leg blood flow and muscle microvascular blood

flow. CEUS was used to measure microvascular blood volume (MBV) as

previously described in detail (21). Repeated high mechanical-index

flash/replenishment cycle recordings were made during intravenous infusion

of Sonovue microbubble contrast agent (Bracco) and used to estimate
changes in thigh MBV between recording periods indicated in Figure 1.

Leg blood flow (LBF) was measured by using Doppler ultrasound, with a

linear 9- to 3-MHz probe positioned over the origin of the left common

femoral artery. LBF was estimated as the product of vessel cross-

FIGURE 1 Acute study protocol. During a constant primed infusion

of 13C6-phenylalanine, 15 g EAAs were ingested as a single Bolus or

in 4 Spread fractions at 45-min intervals. Contrast-enhanced ultra-

sound, Doppler measurement of femoral flow, blood samples, and

muscle biopsies were taken as indicated. EAA, essential amino acid;

US, ultrasound.
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sectional area and mean velocity over 6 cardiac cycles. Mean LBF was

calculated at a time corresponding to each CEUS recording episode on
the basis of 3 such recordings made on each of 4 occasions distributed

across the study day, as indicated in Figure 1 (i.e., flow during 72 cardiac

cycles contributed to a mean leg flow measure). Each individual�s LBF
was standardized to his own fasting LBF and normalized to leg lean
tissue mass as assessed by DXA (Lunar Prodigy II; GEMedical Systems).

Immunoblotting. Immunoblotting was performed on ;30 mg of
muscle as previously described (25) by using primary antibodies against

ribosomal protein S6 Kinase 1 (p70S6K1)Thr389, protein kinase B

(AKT)Ser473, eukaryotic elongation factor 2 (eEF2)Thr56 (New England

Biolabs), and eukaryotic translation initiation factor 4E-binding protein
1 (4EBP1)Thr 65/70 (Santa Cruz Biotechnology), incubated inHRP-conjugated

secondary antibody (New England Biolabs). Membranes were exposed to

chemiluminescent HRP substrate (Millipore) and bands quantified by
Chemidoc XRS (BioRad). All signals were within the linear range of

detection (i.e., not saturated), and protein loading anomalies were

corrected to Coomassie-stained membranes—a proven robust method

for normalization in comparison to traditional loading controls (25).
Phospho-data were not normalized to pan-antibodies because this method

introduces more variation with poor stripping efficacy and the need to run

independent gels. Moreover, EAA feeding is not known to acutely regulate

the abundance of AKT–mammalian target of rapamycin complex
1 (mTORc1) signals. Blot data were analyzed by using peak density.

Muscle protein–bound and intramuscular free phenylalanine

enrichment. Myofibrillar proteins were separated, hydrolyzed, and

derivatized by using our standard techniques (9, 26). The labeling of

L-[ring-13C6] phenylalanine in myofibrillar protein was determined by

GC-combustion-isotope ratio MS (Delta plus XP; Thermo Fisher
Scientific), as previously described (27). Muscle intracellular phenylal-

anine enrichment was measured by GC-MS (MD 800; Thermo Fisher

Scientific) after precipitation of the sarcoplasmic fraction and purifica-
tion of the aqueous supernatant using Dowex H+ resin, as its tert-
butyldimethylsilyl derivative. 2H2 phenylalanine was added to the intact

muscle as an internal standard.

Rates of muscle protein synthesis (MPS). The FSR of myofibrillar

protein was calculated from the increase in incorporation of

L-[ring-13C6]-phenylalanine between subsequent muscle biopsies. Muscle
intracellular phenylalanine, the average of 2 biopsies, was used as a

surrogate of phenylalanyl-t-RNA labeling (i.e., the immediate precursor

for protein synthesis) (28). The FSR was calculated by using the standard

precursor-product method; fractional protein synthesis (% � h21):

FSR ¼
"
Ep22Ep1

Em � t

#
3603100 ð1Þ

where Ep1 and Ep2 are the enrichments of bound L-[ring-13C6]-
phenylalanine in 2 sequential biopsies, t is the time interval between

2 biopsies, and Em is the mean L-[ring-13C6]-free phenylalanine

enrichment in the intramuscular pool. To offset a potential decrease in

enrichment in plasma and thence intramuscular labeling with feeding,
6% of phenylalanine in the mixture was provided as L-[ring-13C6]-

phenylalanine to maintain steady state labeling.

Statistical analyses. Data are presented as means 6 SEMs after

D�Agostino and Pearson omnibus normality testing. Demographic and

anthropometric comparisons between groups were determined by un-
paired t tests. Differences for all analyses were detected by repeated-

measures ANOVA and located with Bonferroni post tests by using

GraphPad Prism version 5 and exact P values calculated by using

GraphPad Quickcalcs (both GraphPad Software). A P value of <0.05 was
considered significant. Normalization of EAA, insulin, and FSR data to

100% data span was performed by subtracting the group mean at the

nadir from every individual recording before dividing each by the group

mean at the maximal time point, permitting presentation on the same axis.

Results

Plasma concentrations of EAAs. After oral EAABolus feeding,
plasma EAA concentrations increased sharply, peaking between 45
and 65 min postfeeding (+240%; P < 0.001 vs. fasting). This was
in contrast to Spread feeding, which provided a gradual and low-
amplitude essential aminoacidemia (peak: +110% at 135 min;
P < 0.001 vs. fasting) (Figure 2A). Plasma non-EAA concentra-
tions changed little across the study period and at no time differed
between treatments (Figure 2B). Plasma leucine concentration
changes reflected the general EAA pool (Figure 2C). AUC analyses
showed greater total EAA (Bolus: 173 6 8 mmol � L21 � min;
Spread: 1326 10mmol � L21 �min; P = 0.004) and leucine (Bolus:
44.26 2.3mmol � L21 �min; Spread: 35.96 2.0mmol � L21 �min;
P = 0.0152) exposure, above baseline, during the feeding period
(Figure 2D).

Plasma concentrations of insulin. Fasting plasma insulin
concentrations were similar between groups (Bolus: 5.14 6
0.5 mIU �mL21; Spread: 3.546 0.6 mIU �mL21; P = 0.26). With
Bolus feeding, plasma insulin was elevated (+165% at 25 min
after feeding and +153% at 45 min; both P < 0.0001) but
returned to basal concentrations 80 min postfeeding and
remained at these concentrations for the rest of the study.
Spread feeding achieved an attenuated insulin response (+97%
at 25min; P = 0.002), returning to basal concentrations thereafter
(Figure 3A). Plasma insulin was thus different between groups at
25 and 45 min after the commencement of feeding (P < 0.001).
The area under the plasma insulin time curve, above baseline for
each individual, was 3.4 times greater with Bolus than with
Spread feeding (P = 0.0003; Figure 3B).

Oral EAAs induced changes in LBF and muscle MBV.

Fasting LBF was similar between groups (P = 0.7) and increased
during postprandial periods (approximately +40% at 195 min;
P < 0.001 vs. fasting for both) irrespective of feeding strategies
(Figure 4A). Fasting muscle MBV was also similar between
groups (Bolus: 0.90 6 0.16 units � mm23; Spread: 0.93 6 0.12
units � mm23; P = 0.85). Subsequent calculations were based on
each individual standardized to his own fasting MBV. Upon
Bolus feeding, MBV increased (+45% at 45 min; P = 0.0067
vs. fasting) and returned to fasted levels by 135 min postfeeding,
demonstrating transient capillary recruitment with feeding. No
change in MBV was seen after Spread feeding (Figure 4B). At
45 min postcommencement of feeding, the difference in MBV
between strategies was also significant (P < 0.001).

Oral EAAs induced changes in established signaling

pathways including mTORC1 substrates. The profile of
postprandialmTORC1 substrate phosphorylation differed between
feeding strategies. Phosphorylation at 4EBP1Thr65/70 was increased
at 90 min after Bolus feeding (+130%; P < 0.001 vs. fasting) but

TABLE 1 Characteristics of the young men enrolled in the
study1

Bolus (n = 8) Spread (n = 8) P

Age, y 19.7 6 0.5 21.5 6 1.1 0.14

Height, cm 180 6 1.5 180 6 2.4 0.84

Weight, kg 74.0 6 2.6 74.5 6 2.4 0.91

BMI, kg/m2 22.9 6 0.7 22.9 6 0.5 0.98

ASMI,2 kg/m2 8.13 6 0.10 8.44 6 0.27 0.30

1 Values are means 6 SEMs.
2 ASMI, appendicular skeletal muscle mass index (limb lean mass � height22).
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had returned to basal levels by 180min, whereas with Spread feed-
ing, the increase was smaller (+34% at 90 min; P = 0.021)
but sustained (+32% and +30% at 180 and 240 min, respectively;
P = 0.026 and 0.043, respectively; Figure 5A). A similar patternwas
apparent in phosphorylation at phosphorylated (p)-p70S6KThr389

(Bolus: +105%at 90min; P = 0.002 vs. fasting), although increased
noise-to-signal prevented detection of significant changes with
Spread feeding (Figure 5B). Significant changes from fasting were
not detected in p-AktThr473 or p-eEF2Thr72 (Figure 5C, D).

Oral EAAs induced changes in MPS and relations with

plasma insulin, EAAs, and anabolic signaling. The fasting
FSR, measured across 2 h, was similar between groups (Bolus:
0.0546 0.005% � h21; Spread: 0.0666 0.005% � h21; P = 0.34).
A similar postprandial increment in FSR, measured across 4 h, was
observed regardless of feeding strategy (Bolus: 0.025 6 0.006% �
h21; Spread: 0.028 6 0.012% � h21; P = 0.81) (Figure 6A).
Detailed temporal resolution of the postprandial period revealed no
group differences; neither Bolus nor Spread feeding altered FSRs
during the period 0–90 min postfeeding. During the period 90–180
min postfeeding, the FSR increased with Bolus feeding (to 0.0956
0.006% � h21; P = 0.0088 vs. fasting) as did Spread feeding (to
0.104 6 0.009% � h21; P = 0.013). In the period 180–240 min
postcommencement of feeding, FSRs in both Bolus and Spread
groups had returned to fasted rates (Figure 6B). To view temporal
relations, plasma concentrations of insulin and EAAs, phosphoryl-
ation of 4EBP1Thr65/70 and MPS, normalized to their own data-
spans, were placed on the same axis (Figure 6C, D).

Discussion

We present novel data quantifying the temporal muscle anabolic
response to a physiologically relevant oral EAA dose provided as
a Bolus or Spread feeding strategy and contextualized this in
terms of aminoacidemia/insulinemia, microvascular flow, and
intramuscular signaling response profiles. Despite distinct plasma
andmuscle profiles, Bolus feeding provided no anabolic advantage
over Spread feeding (or vice versa); these findings are in keeping
with our hypothesis of there being an intrinsic muscle-full state in
young men at rest.

FIGURE 2 Plasma EAA (A), NEAA (B), and leucine (C) concentra-

tions and total EAA and leucine AUCs (D) in young men after

consumption of 15 g of mixed-EAA doses by Bolus or Spread

treatment. The black arrows represent ingestion of 15 g EAAs once

and the gray arrows represent ingestion of 3.75 g EAAs 4 times.

Values are means 6 SEMs, n = 8, or individual data points (D).
y,yy,yyyDifferent from Spread at that time: yP , 0.05, yyP , 0.01,
yyyP , 0.001. EAA, essential amino acid; NEAA nonessential amino acid.

FIGURE 3 Plasma insulin concentrations (A) and total insulin

expose above basal by AUC (B) in young men after consuming 15 g

of mixed-EAA doses by Bolus or Spread treatment. The black arrow

represents ingestion of 15 g EAAs once, and the gray arrows

represent ingestion of 3.75 g EAAs 4 times. Values are means 6
SEMs, n = 8, and individual data points (B). yyyDifferent from Spread,

P , 0.001. EAA, essential amino acid.
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Bolus feeding led to rapid aminoacidemia with a brisk
upstroke and high peak plasma EAA and leucine concentrations.
Spread feeding, by comparison, resulted in lower, later peak
concentrations. Despite this, identical MPS responses were
observed, even with the same latency (of ;90 min) and
amplitude. Furthermore, with both feeding strategies, basalMPS
was observed 180 min after consumption of either Bolus or the
initial Spread doses. This preceded the peak Spread plasma
EAAs, in keeping with the onset of a muscle-full state. On this
basis, our data suggest that, in healthy young men, it is dose-
dependent mechanisms that regulate the size of the anabolic
response to feeding and that this response is not perturbed by
later arriving, lower-amplitude aminoacidemia. Because of the
stability of muscle mass from year to year in healthy younger
populations (29), it would seem vital to have such mechanisms
in place to ensure adequate nourishment, given the irregularity
of meals and variability in content, including slowly digested
proteins (e.g., micellar casein).

Although identical temporal MPS responses to such divergent
EAA availability profiles may be deemed unexpected, this can
perhaps be explained by considering the postprandial period in 3
distinct phases. After the onset of essential aminoacidemia, a
latent period exists when a significant negative arteriovenous
EAA balance is detectable (21) but incorporation of EAAs into
newly synthesized myofibrillar proteins is not. The existence of a
similar latent period in response to Bolus and Spread EAA
ingestion suggests that providing time for adequate intracellular
EAA accumulation, even with rapid aminoacidemia with Bolus,
is crucial before MPS can be ‘‘switched on.’’

After this latent period, a transient stimulation in MPS,
lasting ;90 min (7), occurs before the onset of the muscle-full

state restores basal MPS despite sustained, near-peak postpran-
dial EAA availability (7–9). Should dose-dependent mechanisms
underlie the onset of the muscle-full state (i.e., sufficient MPS

FIGURE 4 LBF (A) and MBV (B) in young men after consumption of

15 g of mixed-EAA doses by Bolus or Spread treatment. The black

arrows represent ingestion of 15 g EAAs once, and the gray arrows

represent ingestion of 3.75 g EAAs 4 times. Values are means 6
SEMs, n = 8. *,**,***Different from fasted: *P , 0.05, **P , 0.01,

***P , 0.001. EAA, essential amino acid; LBF, leg blood flow; MBV,

microvascular blood volume.

FIGURE 5 Phosphorylation of 4EBP1Thr65/70 (A), P70S6KThr389 (B),

eEF2Thr56 (C), and AktThr473 (D) in young men after consumption of 15 g of

mixed-EAA doses by Bolus or Spread treatment. Values are means 6
SEMs, n = 8. *,**,***Different from fasted: *P , 0.05, **P , 0.01,

***P , 0.001. Akt, protein kinase B; AU, arbitrary units; eEF2, eukaryotic

elongation factor 2; p-, phosphorylated; P70S6K1, ribosomal protein S6

kinase 1; 4EBP1, eukaryotic translation initiation factor 4E-binding protein 1.

Bolus vs. Spread amino acid feeding in young men 211

 by guest on July 31, 2017
jn.nutrition.org

D
ow

nloaded from
 

http://jn.nutrition.org/


was achieved with both ingestion strategies by 180 min), this
would constrain stimulated MPS to the period 90–180 min post
commencement of EAA ingestion and result in identical tempo-
ral patterns of anabolism. Indeed, our observation that both
groups enter the muscle-full state while achieving an identical
amount of MPS, despite markedly different patterns of EAA
exposure highlights that ‘‘dose-dependent’’ mechanisms underlie
the muscle-full effect (i.e., MPS responses are dependent on the
amount of newly translated myofibrillar proteins rather than
time-dependent mechanisms, triggered by EAA availability). We
can be confident in these conclusions because repeated biopsies
taken across the postprandial period provided us temporal
resolution whereby only subtle and physiologically inconse-
quential differences in the relative duration of each phase of
MPS after Spread and Bolus could be missed. A dose-dependent
muscle-full mechanism that limits postprandial MPSmay support
the distribution of dietary protein across meals as a beneficial
strategy (30).

The provision of free EAAs did not achieve a more rapid
plasma appearance of EAAs or leucine than that previously
observed with whey ingestion (9). Indeed, although one may
intuitively expect free amino acids to be more rapidly absorbed,
the rapidity of enzymatic peptide hydrolysis and H+-dependent
di- and tripeptide transporters in the duodenum and proximal
jejunum allow polypeptides such as leucine to acheive plasma
aminoacidaemia after the same latency as monomeric amino
acid ingestion. The period between plasma EAA appearance and
MPS stimulation also varies with mode of provision; with
primed-constant intravenous EAAs this was at least 30–45 min
(7), whereas this period was 45–60 min after whey protein
ingestion (9). Thus, stimulated MPS is observed 60–90 min
postfeeding with an EAA bolus and 45–60 min with whey. Given
the similarity in plasma EAA and leucine profiles between these
different treatments, it would seem that an explanation for this
difference may reside with pathways initiated in the gut rather
than just at the myocyte andmay be because of factors other than
amino acid composition differences, which cannot be accounted

for without identically matching and comparing the anabolic
effects of whey with equivalent free amino acids. In addition, in
studies so far, a lack in frequency of muscle sampling and/or a
matching in timing of sampling has hampered identification of
the specific reasons behind latency duration (4, 6, 12, 16, 31).

We observed a subtle increase in plasma insulin with Bolus
feeding, reflecting the moderate insulin secretagogue properties
of EAAs (32), an effect attenuated with Spread feeding. Identical
MPS between groups further supports the hypothesis that
postabsorptive insulin concentrations are compatible with
maximal MPS (i.e., there is no additive effect of insulin over and
above aminoacidemia alone) (26, 33–35). In terms of muscle
microvascular blood flow, early (45 min after feeding) post-
prandial capillary recruitment (increases in MBV) was present
only with Bolus feeding, in keeping with this being insulin
mediated (19, 36). This phenomenon is thought to facilitate
nutrient delivery by increasing the microvascular exchange
surface area and decreasing the distancing from capillary to
myocyte (21, 37). Thus, the difference between Bolus and
Spread feeding in actual availability of EAAs to myocytes is
underestimated by simple consideration of differences in plasma
concentration. This points toward, at least in healthy young
individuals, a redundancy in delivery of EAAs whereby post-
prandial muscle microvascular responses are not vital in
achieving optimal MPS (38). In contrast to MBV, LBF increased
similarly in both Spread and Bolus groups, suggesting that
insulin-independent, EAA-mediated mechanisms affect bulk
flow through the limb. This is supported by our previous
observation of similar changes in LBF in response to EAA
infusion across a wide range of clamped insulin concentrations
(26). Divergent profiles of MBV and LBF highlight the inade-
quacy of measures of large vessel or whole-limb flow indepen-
dently in assessing muscle microvascular changes (21).

Greater phosphorylation of mTOR substrates 4EPB1 and
p70S6K in Bolus vs. Spread feeding confirms that rapid amino-
acidemia enhances intramuscular anabolic signaling (12, 39),
although this does not necessitate enhancement of MPS as there

FIGURE 6 Absolute changes in FSR

from fasted (2120 to 0 min) to fed (0 to

240 min) (A), actual FSRs (B) and plasma

EAA and insulin concentrations, phospho-

4EBP1Thr65/70 and muscle protein syn-

thetic rates, normalized to their own data

spans shown on the same axis (C and D)

in young men after consumption of 15 g

of mixed-EAA meals by Bolus or Spread

treatment. The black arrows represent

ingestion of 15 g EAAs once, and the gray

arrows represent ingestion of 3.75 g

EAAs 4 times. Values are means 6
SEMs, n = 8. *,**Different from fasted:

*P , 0.05, **P , 0.01. EAA, essential

amino acid; FSR, fractional synthetic rate;

4EBP1, eukaryotic translation initiation

factor 4E-binding protein 1.
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is an established dissociation between anabolic signaling and
MPS (26). Although the stimulation of MPS by EAA feeding is
blocked by rapamycin, showing that the effect requires mTORC1
activation (40), our data argue against phospho-activity of these
pathways being proportional to increases in MPS. Interestingly,
phosphorylation of 4EBP1Thr65/70 reflected substrate availability
(Figure 6C, D).

In terms of possible limitations to this study, our conclusions
may apply selectively to a young healthy population at rest and
who receive an adequate, or maximal, high-quality diet. The
delivery profile may affect the ability of a smaller feed, or one
less abundant in leucine, to stimulate MPS. Divergence between
young and old may depend on the ingested dose of EAAs (4, 35,
41, 42), highlighting the importance of separate consideration
of feeding profile in elderly or sarcopenic individuals. The
invasive nature of this study, with multiple biopsies, precluded a
‘‘crossover’’ design and necessitated termination before Spread
plasma EAA and leucine returned to basal concentrations,
contributing to apparently reduced incremental AUCs in that
group. Historic studies that pointed toward rate of EAA
appearance affecting anabolism were confounded by differing
compositions, e.g., whey vs. casein or soy (11, 13, 14, 43).
Perhaps significantly, recent studies supporting the notion that
delivery profile affects MPS measured anabolism of nutrition in
combination with resistance exercise (12, 16) or rapid growth
(44). As such, different regulators of the size of the protein
synthetic response to feeding are brought to bear in such periods
of net muscle mass accretion.

To conclude, our data do not support the notion that rates of
plasma aminoacidemia are a key driver of anabolism when
young individuals (at rest) consume the same quantity of EAAs.
Instead, the onset of the muscle-full state acts to limit MPS
despite ongoing nutrient availability, further positioning this
phenomenon as a key regulator of muscle protein homeostasis.
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