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 1 

Abstract 2 

Life cycle environmental performance of lignocellulosic ethanol produced through different 3 

production pathways and having different co-products has rarely been reported in the literature, 4 

with most studies focusing on a single pre-treatment and single co-product (electricity).  The aim of 5 

this paper is to understand the life cycle energy use and greenhouse gas (GHG) emissions 6 

implications of alternative pre-treatment technologies (dilute acid hydrolysis, ammonia fiber 7 

expansion and autohydrolysis) and co-products (electricity, pellet, protein and xylitol) through 8 

developing a consistent life cycle framework for ethanol production from corn stover. Results show 9 

that the choices of pre-treatment technology and co-product(s) can impact ethanol yield, life cycle 10 

energy use and GHG emissions. Dilute acid pathways generally exhibit higher ethanol yields (20 to 11 

25%) and lower net total energy use (15 to 25%) than the autohydrolysis and ammonia fiber 12 

expansion pathways. Similar GHG emissions are found for the pre-treatment technologies when 13 

producing the same co-product. Xylitol co-production diverts xylose from ethanol production and 14 

results in the lowest ethanol yield (200 litres per dry t of stover).  Compared to producing only 15 

electricity as a co-product, the co-production of pellets and xylitol decreases life cycle GHG 16 

emissions associated with the ethanol, while protein production increases emissions. The life cycle 17 

GHG emissions of blended ethanol fuel (85% denatured ethanol by volume) range from -38.5 to 18 

37.2 g CO2eq/MJ of fuel produced, reducing emissions by 61% to 141% relative to gasoline. All 19 

ethanol pathways result in major reductions of fossil and petroleum energy use relative to gasoline, 20 

at least 47% and 67%, respectively.  Pathways with electricity as the sole co-product use the least 21 

fossil energy  All ethanol pathways studied meet the USA Energy Information and Security Act 22 

requirement of a 60% reduction in GHG emissions compared to gasoline for classification as a 23 

cellulosic biofuel; however, greater reductions are achievable through strategic selection of co-24 

products. 25 

Keyword: bioethanol, corn stover, life cycle assessment, biorefinery, co-products, pre-treatment 26 
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 1 

1. Introduction 2 

Interest in alternatives to fossil fuels for the transportation sector has motivated research, 3 

development and deployment of biofuels.  In particular, ethanol produced from lignocellulosic 4 

feedstock has seen increasing attention as a light-duty vehicle fuel, giving rise to a large number of 5 

production pathways that have been examined in technological reviews (Chen and Qui 2010; Mabee 6 

and Saddler 2010). While there are “semi-mature” technologies that produce ethanol from corn and 7 

sugarcane, ethanol produced from lignocellulosic feedstock remains on the verge of 8 

commercialization due to higher capital and operating costs (Stephen et al. 2011).  9 

The potential contributions of lignocellulosic ethanol to reducing petroleum energy use and 10 

greenhouse gas (GHG) emissions have been identified in numerous life cycle studies (e.g., von 11 

Blottnitz and Curran 2007) and are sensitive to impacts of different life cycle stages (Mullins et al. 12 

2011; Spatari et al., 2010). However, most LCA studies examine a single biomass pre-treatment 13 

process and a single co-product. A broader approach utilizing a consistent analysis framework 14 

capable of considering co-product compatibility with a range of pre-treatment processes or 15 

comparing the relative benefits and disadvantages of potential pre-treatment technologies and co-16 

product opportunities provides additional valuable insights. 17 

Due to the relatively low market value of ethanol as a fuel, financially-viable ethanol production 18 

pathways are expected to involve co-product production following a biorefinery concept 19 

(FitzPatrick et al. 2010). The co-production of value-added products with lignocellulosic ethanol is 20 

an emerging opportunity, due to the wide variety of possible products and their potential 21 

environmental and economic benefits. Biorefinery concepts in the literature have considered various 22 

biomass feedstocks and evaluated a variety of co-products, including electricity (e.g., Delivand et al. 23 

2012), isolated lignin (Pan et al. 2006), acetic acid and hydrogen (Zhang, 2008), protein (Laser et al. 24 

2009a), and antioxidants (Ekman et al. 2013). However, life cycle environmental impacts have only 25 

been quantified in a subset of the studies. 26 

A smaller set of studies compared the environmental implications of multiple co-products. Uihlein 27 

and Schebek (2009) examined the life cycle of ethanol from wheat straw using dilute acid pre-28 

treatment, with electricity, isolated lignin and xylitol as potential co-products. The study reported 29 

results in terms of human health, resource use and eco-system quality, and showed beneficial 30 
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impacts for lignocellulosic biorefineries. Laser et al. (2009a) studied the environmental impact of the 1 

ammonia fiber expansion (AFEX) process considering various co-products (protein, electricity, 2 

Fischer-Tropsch liquids and hydrogen). Laser et al. (2009a) found that the choice of co-product has 3 

a significant impact on the environmental performance of the AFEX process. Cherubini and Ulgiati 4 

(2010) studied ethanol from corn stover and wheat straw using an autohydrolysis pre-treatment with 5 

electricity and lignin-derived phenols as co-products.  Ethanol production from both feedstock was 6 

reported to have lower life cycle GHG emissions than gasoline; however, corn stover showed better 7 

performance than wheat straw in terms of GHG savings, ozone depletion, photochemical oxidation 8 

and human toxicity. McKechnie et al. (2011) studied steam explosion (autohydrolysis) with different 9 

co-products (steam, electricity and pellet). Pelletizing lignin remaining following fermentation was 10 

found to have clear environmental advantage over using lignin for electricity generation. The scope 11 

of the above studies, however, is limited to evaluating a single pre-treatment process. 12 

Biomass pre-treatment processes differ in terms of chemical and energy inputs, as well as 13 

effectiveness in liberating cellulosic material for subsequent hydrolysis to sugars. These factors 14 

impact the life cycle GHG emissions and energy use of lignocellulosic ethanol. As some co-products 15 

may be incompatible with some pre-treatment processes (Chiesa and Gnansounou, 2011), pre-16 

treatment technology selection may affect co-product options, with potential consequences for life 17 

cycle GHG emissions and energy use. Among the most promising pre-treatments under 18 

development are dilute acid hydrolysis, AFEX and autohydrolysis (steam explosion) (Cherubini and 19 

Stromman 2011). Prior studies have typically considered a single pre-treatment technology when 20 

assessing lignocellulosic ethanol production, including: rice straw ethanol production via dilute acid 21 

pre-treatment (Delivand et al. 2012); switchgrass ethanol production via AFEX pre-treatment (Bai et 22 

al. 2010); poplar ethanol production via autohydrolysis (McKechnie et al. 2011). Based on our 23 

knowledge, there are also a limited number of studies (Spatari et al., 2010; Wang et al. 2013) that 24 

considered different pre-treatments and a single co-product (electricity). Wang et al. (2013) found 25 

ethanol production using steam explosion (autohydrolysis) to provide greater reductions in GHG 26 

emissions compared to ethanol production employing dilute acid as a pre-treatment process. Spatari 27 

et al. (2010) concluded that AFEX pre-treatment showed more promise than dilute acid for reducing 28 

life cycle GHG emissions. Our literature survey was unable to locate a published study that 29 

considered both a range of pre-treatment technologies and a range of different co-products within a 30 

consistent life cycle framework.  31 
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Understanding the energy use and GHG emissions implications of lignocellulosic ethanol requires 1 

evaluation of alternative pre-treatment technologies and co-products within a consistent life cycle 2 

framework. In this study, we compare three conversion pathways that are strong candidates for 3 

commercialization (dilute acid, AFEX and autohydrolysis) and four potential co-products 4 

(electricity, lignin pellets, xylitol and protein). A single lignocellulosic feedstock, corn stover, is 5 

considered to facilitate comparison of the pre-treatment technologies and potential co-products. We 6 

evaluate the energy and environmental consequences of these production decisions using a 7 

consistent life cycle-based (“well-to-wheel”) framework. Results of the evaluations can inform 8 

energy sector stakeholders and government as to how cellulosic ethanol production decisions may 9 

impact eligibility under relevant renewable energy policies (e.g., Energy Independence and Security 10 

Act (2007)). 11 

2. Methods 12 

2.1 Life Cycle Assessment 13 

Life cycle inventory analysis models are developed for the set of ethanol pathways described in 14 

Table 1. In each pathway, ethanol is the primary product and potential co-products include 15 

electricity, lignin pellets, protein, and xylitol.  The ethanol product of each pathway is blended with 16 

gasoline to produce E85 (83%v/v of ethanol). The E85 pathways include activities associated with 17 

corn stover collection and transportation to a biorefinery, conversion of corn stover to ethanol in 18 

the biorefinery, blending of the ethanol with gasoline and its distribution, combustion of E85 in a 19 

flexible fuel light-duty vehicle and finally, utilizing biorefinery co-products (Figure 1).  Cradle-to-gate 20 

modules for energy and material inputs into the main life cycle stages are included in the boundaries 21 

(e.g., recovery and processing of petroleum, generation of regional electricity, production of process 22 

chemicals). The E85 pathways are compared with those of the gasoline vehicle reference pathway. 23 

The life cycle inventory of the reference pathway includes oil recovery, refining, transportation of 24 

gasoline and the combustion of gasoline in a light-duty vehicle.   25 

 26 

Energy use in terms of total, fossil, and petroleum, as well as GHG emissions are examined.  Total 27 

energy use includes energy from both renewable (e.g., solar, wind, hydro) and non-renewable (e.g., 28 

coal, petroleum, nuclear) sources in addition to the renewable energy in the corn stover feedstock 29 

itself. For GHG emissions, CO2, CH4 and N2O emissions are reported as well as CO2 equivalent 30 

(CO2eq) emissions based on Intergovernmental Panel on Climate Change 100-year global warming 31 
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potentials (IPCC, 2006). The functional unit is 1 MJ of fuel produced (E85 or gasoline) and used in a 1 

light-duty vehicle.  The biorefinery is assumed to be located in the Midwest USA, due to the large 2 

amount of corn stover potentially available in the region.  3 

The system expansion approach for dealing with co-products of the biorefinery is utilized due to its 4 

recommendation by ISO 14044 (2006) as well as its adoption as a standard method by the US 5 

Environmental Protection Agency for the Renewable Fuel Standard (Environmental Protection 6 

Agency, 2007). Considering system expansion, E85 is selected as the primary product and all other 7 

products (electricity, pellets, protein and xylitol) are treated as co-products. GHG emissions 8 

associated with feedstock transportation, the biorefinery processes, blended gasoline, E85 9 

distribution and use are attributed entirely to the E85, and emissions credits from co-products 10 

(electricity, lignin, protein and xylitol) displacing reference products (electricity from Midwest U.S.A. 11 

grid, coal, soymeal and sugar from sugar beet, respectively) are assigned to the E85. See Section 2.4 12 

for additional detail on co-product displacement. 13 

2.2 Feedstock Production and Transportation 14 

Corn stover is selected as the feedstock due to its commercial interest in the USA and the 15 

development of near term ethanol production processes using this feedstock (Aden et al. 2002). A 16 

common biorefinery capacity (2,000 t/day dry corn stover) is assumed for all ethanol production 17 

pathways. Energy and emissions associated with corn stover collection, fertilizer supplementation 18 

due to residue removal, and transportation activities are obtained from GREET 1.8d.1 (Argonne 19 

National Laboratory, 2011). In line with prior life cycle studies (e.g., Hsu et al., 2010), in our base 20 

case analysis corn stover is considered a by-product of corn production, and therefore impacts 21 

associated with corn farming are not attributed to the stover. In sensitivity scenario analysis (Section 22 

3.3), we consider implications of allocating, on a mass basis, a portion of the GHG emissions 23 

associated with corn cultivation to stover. Land use change (direct and indirect) GHG emissions are 24 

assumed to be negligible due to selection of corn stover as feedstock (Dunn et al. 2013).  25 

Corn stover removal has been found in prior studies to reduce soil organic carbon (SOC) (e.g., 26 

Koschsiek and Knops, 2012); however, stover removal also has a counteracting effect of reducing 27 

field N2O emissions (Kim and Dale, 2009). SOC and N2O impacts of stover removal are location-28 

specific and their detailed quantification falls outside the scope of the present study. The base case 29 

analysis assumes that the removal of corn stover from fields avoids any net field GHG emission 30 
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(balance of SOC and N2O emissions). To examine the potential impact of field emissions on life 1 

cycle results, we develop a scenario where an emission factor of 35 kg CO2eq/dry t stover, based on 2 

relevant literature (Kim and Dale 2009; Cherubini and Ulgiati 2010), is applied to all pathways to 3 

account for SOC and N2O emissions (Section 3.3).  4 

2.3 Biorefinery 5 

Three pre-treatment methods, dilute acid (DA), ammonia fiber expansion (AFEX) and 6 

autohydrolysis (AH), are selected due to their compatibility with selected co-product production and 7 

data availability. Aspen Plus® models from NREL (Aden et al. 2002) (dilute acid-electricity (DAEL)-8 

pathway) and Laser et al. (2009a) (ammonia fiber expansion-electricity (AFEL) pathway) and a 9 

proprietary model adapted from SunOpta Bioprocess Inc. (auto hydrolysis-electricity (AHEL)-10 

pathway) are used to model the gate-to-gate (conversion facility) stage of the corn stover-to-ethanol 11 

pathways. Since these models only consider electricity as a co-product, they are modified to 12 

incorporate production of other co-products, including protein, pellets and xylitol. Technical data 13 

for the modeling of protein concentrate extraction and pelletization are sourced from Laser at al. 14 

(2009b) and Thek and Obernberger (2004), respectively.  Based on mass and energy balances from 15 

the Aspen Plus® models, the energy requirement (steam and electricity) of each pathway and the co-16 

product and ethanol production capacities are calculated. Life cycle inventory data for process 17 

chemicals and enzyme required for each pathway are obtained from MacLean and Spatari (2009) and 18 

Hsu et al. (2010), respectively.  A detailed description of pre-treatment technologies and downstream 19 

process stages including hydrolysis, fermentation, purification, lignin pellet production, xylitol 20 

production, electricity generation and protein extraction can be found in the Supplementary 21 

Information (SI). 22 

 23 

Three pre-treatment technologies and four co-products are combined to create nine pathways (Table 24 

1); separate Aspen Plus® models were developed and optimized for each pathway. Co-product and 25 

pre-treatment combinations are selected due to their compatibility. Electricity and lignin pellet co-26 

product production are investigated for all three pre-treatment technologies. Protein concentrate co-27 

production is only investigated for AFEX pre-treatment. Combining AFEX pre-treatment with a 28 

high pH protein extraction process has the beneficial effect of allowing ammonia to be recycled. 29 

Dilute acid pre-treatment would degrade proteins while the milder conditions of AFEX are able to 30 

preserve them (Dale et al. 2009; Chiesa and Gnansounou 2011). Autohydrolysis pre-treatment 31 
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conditions may also be able to preserve protein; however, recovery of protein would require 1 

ammonia. Due to the high GHG emissions and petroleum energy use associated with ammonia 2 

production, we do not consider protein extraction as a viable option for autohydrolysis pre-3 

treatment pathways. Xylitol production is likewise only investigated in the autohydrolysis pathways, 4 

where xylose can be separated from glucose using proprietary technology, such as that employed by 5 

Xylitol Canada Inc.   6 

Table 1 presents energy sources used in each pathway. For pathways with electricity as a co-product, 7 

the biorefinery energy requirement (steam and electricity) is provided by utilizing lignin residues in 8 

an on-site combined heat and power plant. For pathways with pellets as a co-product, the electricity 9 

required by the biorefinery is imported from the grid and the steam is provided by utilizing natural 10 

gas.   11 

2.4 Product transportation, distribution and use 12 

Ethanol is assumed to be blended with gasoline to produce E85 (83% (v/v) ethanol), which is 13 

consumed in a flexible-fuel light-duty vehicle. The E85 and baseline gasoline (35% conventional and 14 

65% reformulated gasoline) vehicles have fuel economies of 10.1 L gasoline equivalent/100 km 15 

(Argonne National Laboratory 2011).  For the system expansion approach, the products assumed to 16 

be displaced by the co-products are as follows:  17 

 Co-produced electricity displaces electricity generated by the average USA Midwest grid mix  18 

 Lignin pellets displace coal in biomass co-fired power plants on an energy equivalent basis 19 

 Corn stover-derived protein concentrate displaces soy meal on an equivalent mass basis, and, 20 

 Xylitol replaces sugar derived from sugar beet on an equivalent mass basis. 21 

   22 

Fuel cycle energy use and emissions associated with electricity generation for the Midwest grid mix 23 

are obtained from GREET 1.8d.1 (Argonne National Laboratory 2011). Lignin pellets are assumed 24 

to displace coal in biomass co-fired power plants as in prior work (McKechnie et al. 2011) and as is 25 

common practice; credits associated with replacing coal with lignin pellets are likewise sourced from 26 

GREET 1.8d.1. The substitution of soymeal with co-produced protein is assessed based on previous 27 

studies (Tzeng et al.1990; Dalgaard et al. 2008). For the xylitol credit calculation, life cycle 28 

information for the displacement of sugar beet-derived sugar is sourced from Renouf et al. (2008). 29 
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3. Results and Discussion 1 

Ethanol and co-product outputs produced from corn stover via each of the pathways are quantified 2 

in Table 2. Ethanol yield differs among the pre-treatment technologies due to differences in C6/C5 3 

sugar conversion.  The highest ethanol yield is achieved with pathways involving dilute acid (DA) 4 

pre-treatment, producing approximately 23% more ethanol than the AFEX pathways (374 L per dry 5 

t corn stover vs. 304 L/dry t corn stover) and 21% more ethanol than the autohydrolysis (AH) 6 

pathways (308 L per dry t corn stover) when C6 and C5 sugars are utilized for ethanol fermentation.  7 

The process ethanol yield is determined by the efficiency by which each technology converts 8 

cellulose and hemicellulose into glucose and xylose, and the efficiency of the corresponding 9 

fermentation process that converts these monomers into ethanol. Certain co-products may reduce 10 

the amount of sugars available for fermentation, and lead to a corresponding reduction in ethanol 11 

yield.  The only co-product in this study that considerably affects ethanol yield is xylitol, as C5 sugars 12 

recovered for xylitol production are no longer available for ethanol production.  Autohydrolysis 13 

pathways with xylitol co-production produced the least ethanol (140 million L/y), reducing ethanol 14 

yield by approximately 35% relative to co-production of electricity and pellets.    15 

Electricity, lignin pellets, and protein are produced from non-fermentable components of 16 

lignocellulosic biomass. Protein is extracted in sufficient purity to be used as animal feed, whereas 17 

unconverted cellulose, hemicellulose and carbohydrates may supplement the lignin used to generate 18 

electricity or “lignin” pellets. 19 

Electricity and pellet production are thus generally dependent on ethanol yield. Lower ethanol yield 20 

corresponds to a greater amount of “residual” biomass being available for on-site electricity 21 

generation or pellet production. The amount of net electricity co-product is reduced as the 22 

biorefinery’s electricity requirements increase. In other words, if the biorefinery process is more 23 

energy intensive, it will consume a higher proportion of the electricity (or thermal energy) that is 24 

generated from the biomass residues. Among the cases studied, the biorefinery consumes 37% to 25 

56% of the total electricity generated. The co-product electricity is assumed to be exported to the 26 

local grid. The largest amount of net electricity co-product output (218 GWh/y) is produced via the 27 

AFEX pathway with electricity as its sole co-product (AXEL), due to the relatively low ethanol yield 28 

of the AFEX process, the absence of any other co-production processes, and lower energy demands 29 

for pre-treatment compared to autohydrolysis and dilute acid pathways. In contrast, the smallest 30 
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amount of net electricity co-product is produced by the AFEX-protein and electricity (AXPR) 1 

pathway (53 GWh/y), due primarily to additional electricity/energy requirements of protein co-2 

production. Yields of lignin pellets in general are inversely correlated with ethanol yield: AFEX-3 

pellet AXPE pathway produces 4% more lignin pellet than dilute acid-pellet (DAPE) pathway. The 4 

autohydrolysis-pellet (AHPE) pathway has the lowest pellet yield since stillage is not recovered from 5 

the distillation column for pellet production. Pellet co-product yields are similar between the AHPE 6 

and autohydrolysis-xylitol and pellet (AHXP) pathways (although ethanol production is considerably 7 

different), mainly because use of xylose, whether for producing xylitol or ethanol, has little effect on 8 

the amount of leftover residues available for pellets. Protein concentrate is only produced via the 9 

AFEX process (AXPR), whereas xylitol is only a co-product from authohydrolysis pre-treatment 10 

(AHXE, AHXP), and so, for these co-products, comparisons between technologies are not possible. 11 

Protein recovery (34 kg/dry t corn stover) sacrifices electricity co-product output (75% reduction in 12 

electricity export) but does not impact ethanol yield. The autohydrolysis pathways with xylitol as a 13 

co-product (AHXE, AHXP) produce 0.77 kg xylitol per kg isolated xylose at 96% purity.    14 

3.1 Greenhouse Gas Emissions Results 15 

Figure 2 illustrates well-to-wheel GHG emissions for E85 and gasoline vehicle pathways. Net GHG 16 

emissions range from -38.5 to 37.2 g CO2eq/MJ for the E85 pathways, a reduction of 61 to 141% 17 

relative to the reference gasoline vehicle pathway, which has emissions of 95.4 g CO2eq/MJ. 18 

Negative net values indicate that overall, GHGs are sequestered rather than emitted, and implies that 19 

the co-product credit is larger in magnitude than the sum of the well-to-pump and pump-to-wheel 20 

emissions. All E85 pathways meet the eligibility requirement for cellulosic biofuels under the 2007 21 

Energy Independence and Security Act (EISA) (60% reduction in GHG emissions compared to 22 

gasoline).  23 

A comparison of pathways with different pre-treatment technologies reveals similar GHG emissions 24 

when producing the same set of co-products (e.g., electricity or pellets as the sole co-product). These 25 

results are highly dependent on chemical use in the dilute acid process, ammonia recovery in the 26 

AFEX process, and ethanol yields in each pathway, parameters that still have some uncertainty and 27 

need to be validated at commercial scale. As variations in these parameters may impact any ‘ranking’ 28 

of pre-treatment technologies, it is not possible to identify a particular technology as preferred in 29 

terms of minimizing well-to-wheel GHG emissions or energy use.  30 
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A comparison of pathways with common co-products provides some valuable insights. Pathways 1 

with pellet co-production have lower GHG emissions than pathways with only electricity co-2 

production.  This results from the assumption that pellets specifically displace GHG-intensive coal 3 

use in electricity generation, leading to a large co-product credit. Co-product electricity is assumed to 4 

displace the US Midwest grid-average mix, consisting of coal, natural gas, nuclear, and other 5 

generation sources, and providing a relatively smaller co-product credit. Alternate displacement 6 

scenarios (e.g., alternate uses of pellets, displaced electricity sources) would impact GHG results for 7 

pathways producing these co-products, but these pathways would still be expected to result in 8 

substantial GHG emissions reductions relative to the gasoline pathway. 9 

Based on well-to-wheel results for the six pathways with either only electricity or only pellet as a co-10 

product, it is found that pathways with lower ethanol yields have lower GHG emissions. A similar 11 

result was reported in our prior work (McKechnie et al. 2011). A lower ethanol yield results in more 12 

residual biomass for co-product production, thereby providing a larger co-product GHG credit 13 

when these co-products are used in place of alternatives (electricity co-product displacing grid 14 

electricity; pellet co-product displacing coal). 15 

The AFEX-protein pathway (AXPR) has higher GHG emissions compared to the other AFEX 16 

pathways, although it still reduces GHG emissions relative to gasoline by 61% as required under 17 

EISA for classification as a cellulosic biofuel. Protein co-production reduces N2O emissions 18 

associated with soybean production. However, protein co-production substantially reduces the 19 

electricity co-product. Higher life cycle GHG emissions for ethanol produced through the AXPR 20 

pathway (37.2 g CO2eq/MJ) compared to the AFEX pathway with electricity co-product (AXEL) 21 

(16.9 g CO2eq/MJ) result from the relatively larger co-product credit for electricity compared to that 22 

for biomass-based protein.  23 

Among the studied pathways, the autohydrolysis-xylitol-pellet (AHXP) pathway is associated with 24 

the lowest GHG emissions (141% reduction compared to gasoline), due to the large total GHG 25 

credit received for lignin pellets displacing coal and and xylitol displacing sugar beet. The 26 

autohydrolysis pathway with xylitol and electricity as co-products (AHXE) has lower GHG 27 

emissions (83% reduction in emissions relative to gasoline) compared to the autohydrolysis pathway 28 

with solely electricity as the co-product (AHEL)  (66% reduction in emissions relative to gasoline). 29 

Xylitol co-production alongside electricity or pellets increases the GHG emissions co-product credit, 30 
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and reduces the overall GHG emissions. The co-product credit is allocated over a relatively smaller 1 

output of ethanol, due to the diversion of xylose to xylitol co-production. This result, however, does 2 

not indicate a GHG advantage to producing xylitol as a co-product at the expense of ethanol yield. 3 

Taking into account both the well-to-wheel GHG emissions intensity of E85 relative to gasoline 4 

(g/MJ) and the total E85 output (MJ E85/y) reveals that the autohydrolysis pathway with co-5 

product electricity (AHEL) reduces total GHG emissions by 0.30 million t CO2eq/y, compared to 6 

0.24 million t CO2eq/y for the same amount of biomass processed using the autohydrolysis pathway 7 

with xylitol and electricity as co-products (AHXE).  8 

3.2 Energy Use Results 9 

Figure 3 illustrates the well-to-wheel total, petroleum and fossil energy use. Co-product credits are 10 

also shown in the figure. Net total energy use (per MJ of E85) for the dilute acid pathways is 11 

generally 15-25% lower than for the autohydrolysis and AFEX pathways producing similar co-12 

products, due to the dilute acid pathways producing more ethanol than the other pathways.  Net 13 

total energy use in the dilute acid and AFEX pathways differs by only 8-10%.  14 

 15 

Pathways co-producing lignin pellets have the largest net total energy use of all E85 pathways, due to 16 

considerable energy (natural gas) required to dry and pelletize lignin residues.  The autohydrolysis 17 

pathway with xylose and pellet co-products (AHXP) have the highest net total energy use, due to 18 

considerable energy required for xylose purification and xylose hydrogenation to xylitol, and energy 19 

required to dry and pelletize lignin residues. 20 

  21 

Production of xylitol demands more input energy to the process than production of protein (Figure 22 

3). To produce xylitol and electricity as co-products of the autohydrolysis pathway (AHXE), a 22% 23 

increase in net total energy is required compared to autohydrolysis with electricity as the sole co-24 

product (AHEL). In contrast, to produce protein and electricity as co-products of the AFEX 25 

pathway (AXPR), only a 9% increase in net total energy is required compared to that required for 26 

AFEX with electricity as the sole co-product (AXEL). 27 

 28 

All E85 pathways have higher well-to-wheel net total energy use when compared to the reference 29 

gasoline pathway.  However, a large portion of well-to-wheel total energy is renewable (biomass-30 

based), and therefore net fossil energy use is much lower for E85 pathways compared to the gasoline 31 
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pathway. All E85 pathways have at least a 47% lower net fossil energy requirement relative to the 1 

gasoline reference pathway.  The AFEX pathway with electricity (AXEL) has the lowest net fossil 2 

energy use (approximately 80% lower than gasoline).  Net petroleum energy use for all E85 3 

pathways is at least 67% lower than net petroleum use for the gasoline pathway, as petroleum energy 4 

use associated with these biofuel pathways is mainly attributable to energy for feedstock and E85 5 

transport, and the gasoline blended with ethanol to produce E85.  Net petroleum energy use 6 

associated with the E85 production pathways is essentially the same despite variations in pre-7 

treatment technology and co-production scenarios because the same volume of gasoline (17% v/v) 8 

is blended with the ethanol produced in each pathway to make E85.  9 

Differences among fossil energy inputs for the E85 pathways are due primarily to process energy 10 

sources assumed to be utilized at the biorefinery.  All biorefinery scenarios with electricity as a co-11 

product are energy self-sufficient due to the electricity and steam generated from combustion of 12 

lignin residues (Table 2).  In contrast, pathways with pellet production utilize natural gas for heating 13 

purposes and import electricity from the USA Midwest grid mix, which is dominated by fossil fuel 14 

generation sources. Therefore, pathways with pellet co-production have higher fossil energy inputs 15 

compared to pathways with electricity co-production. However, pellet co-production is also 16 

associated with a large fossil energy credit related to the substitution of coal (1:1 displacement ratio 17 

on an energy basis). As a result, net fossil energy use of pathways with a pellet co-product is only 18 

slightly higher than that of pathways with electricity as a co-product (Figure 3).  19 

The value-added co-products considered in this study (pellets, protein, xylitol) typically require 20 

additional energy “investment”. Both pellets and protein production result in an increase in net fossil 21 

energy use. However, the autohydrolysis pathway with xylitol and electricity as co-products (AHXE) 22 

has 14% lower fossil energy use than the authohydrolysis pathway solely producing electricity 23 

(AHEL), despite a higher plant energy demand.  This outcome arises from the fossil energy credit 24 

from displacement of sugar beet-derived sugar by xylitol. This credit is larger than the additional 25 

energy required for xylitol production, compared to a process with only electricity co-production.  In 26 

addition, less ethanol production in the xylitol co-production pathways reduces the distillation 27 

energy demand.  28 

3.3 Scenario Analysis 29 
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Scenarios were developed to examine the impact on the life cycle results of two parameters related 1 

to the corn stover feedstock: 1) allocation of a portion of corn cultivation GHG emissions to stover; 2 

and 2) field emissions (SOC, N2O) implications of stover removal. Allocating a portion of emissions 3 

associated with corn cultivation based on relative mass of corn grain and stover (mass allocation) 4 

increases stover-related emissions to 218 kg CO2eq/dry t stover, compared to 54 kg CO2eq/dry t 5 

stover when only stover collection and fertilizer replacement for stover removal are included (the 6 

base case). Under the mass allocation scenario, the GHG emissions of all pathways increase, with 7 

the increase depending on ethanol yield. The increase in GHG emission ranges from 15 to 30 g 8 

CO2eq/MJ E85. While most pathways still qualify as a cellulosic biofuel under EISA rules, the 9 

AHXE pathway would reduce emissions by 58% relative to gasoline and thereby qualify only as an 10 

advanced biofuel (minimum 50% GHG emission reduction compared to gasoline). The AXPR 11 

pathway achieves a GHG emission reduction of 45% relative to gasoline and so would no longer 12 

qualify as a cellulosic or advanced biofuel.  13 

Compared to the base case, applying a field emission factor of 35 kg CO2eq/dry t stover increases 14 

stover-related emissions to 89 kg CO2eq/dry t stover. GHG emissions for the dilute acid pathways 15 

increase by 3 g CO2eq/MJ E85; for the AFEX ,AHEL and AHPE pathways increase by 4 g 16 

CO2eq/MJ E85; and for the AHXE and AHXP pathways increase by 6 g CO2eq/MJ E85. The 17 

inclusion of field emissions alone, at the level investigated, does not prevent any pathway from 18 

meeting the EISA GHG reduction requirement.  19 

 20 

Conclusion 21 

Potential future USA Midwest lignocellulosic corn stover-to-ethanol systems, employing three 22 

different pre-treatment technologies (dilute acid, ammonia fiber expansion and autohydrolysis), with 23 

four different co-product options (electricity, lignin pellets, protein concentrate, xylitol) are 24 

examined using well-to-wheel analyses.  Different combinations of the various technologies and 25 

products are assessed.  Based on the data currently available, there is little difference in GHG 26 

emissions of the processes using the three pre-treatments. As these technologies are developed and 27 

optimized, differences in chemical, energy and enzyme use may ultimately lead to a differentiation 28 

among these technology pathways. However, it is likely that the primary differentiation will be based 29 
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on process performance metrics, and additionally financial performance, given the comparable level 1 

of GHG reduction observed for all of the pre-treatments.   2 

All of the E85 pathways examined meet EISA’s GHG reduction requirement for categorization as a 3 

cellulosic biofuel in our base case. The sensitivity analysis is meant to represent a first step in 4 

exploring the potential impacts of the corn stover-related parameters on the life cycle results. The 5 

primary message from the simplified analysis undertaken is that these parameters are potentially 6 

important and additional detailed analysis of these issues should be undertaken in future studies.  7 

The fossil energy use and GHG emissions reductions possible with each pathway are dependent on 8 

co-product choice. The pathways with electricity as a co-product have lower fossil energy use 9 

compared to the other pathways, whereas pathways with pellets generally provide the greatest GHG 10 

emissions reductions. Greater emissions reductions were found for pathways with xylitol and pellet 11 

production compared with other E85 pathways. It should be noted that the ranking of co-products 12 

in term of GHG implications is dependent on assumed reference (displaced) products, and changing 13 

these products (or their sources) may alter this ranking. The choice of a co-product can also affect 14 

the yield of the primary product (ethanol) or other co-products in some situations. Therefore, an 15 

analysis of financial-environmental trade-offs is required to inform decisions about co-product 16 

production. 17 

5. Acknowledgments 18 

We thank Genome Canada and the Ontario Genomics Institute (2009-OGI-ABC-1405) and the 19 

Government of Ontario through the ORF-GL2 program, the Natural Sciences and Engineering 20 

Research Council, AUTO21 Network Centre of Excellence, BioFuelNet Network Centre of 21 

Excellence, as well as Mark Laser, SunOpta Bioprocess Inc. and Xylitol Canada Inc. for providing 22 

initial models used as the basis for this work. 23 

6. References 24 

Aden A., Ruth M., Ibsen K., Jechura J., Neeves K., Sheehan J., Wallace B., 2002. Lignocellulosic 25 

biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and 26 

enzymatic hydrolysis for corn stover. National Renewable Energy Laboratory, Golden, CO, Tech. 27 

Rep. TP-510-32438. 28 

Argonne National Laboratory, 2011. The Greenhouse Gases, Regulated Emissions, and Energy Use 29 

in Transportation (GREET) Model Version 1.8d, Argonne, IL. 30 



   

16 
 

 1 

Bai Y., Luo L., Ester van der V., 2010. Life cycle assessment of switchgrass-derived ethanol as 2 

transport fuel. Int. J. Life Cycle Assess., 15, 468-477. 3 

 4 

Chen W., Qui W., 2010. Key technologies for bioethanol production from lignocellulose. 5 

Biotechnol. Adv., 28, 556-562. 6 

  7 

Cherubini F., Stromman A.H., 2011. Life cycle assessment of bioenergy systems: state of the art and 8 

future challenges. Bioresour. Technol., 102, 437-451. 9 

Cherubini F., Ulgiati S., 2010. Crop residues as raw materials for biorefinery systems. Appl. Energy, 10 

87, 47-57. 11 

Chiesa S., Gnansounou E., 2011. Protein extraction from biomass in a bioethanol refinery – possible 12 

dietary applications: use as animal feed and potential extension to human consumption. Bioresour. 13 

Technol., 102, 427-436. 14 

Curran M. A., 2010. Life cycle assessment principles and practice. Scientific Applications 15 

International Corporation (SAIC), Cincinnati, OH, EPA/600/R-06/060. 16 

Dale B.E., Allen M., Laser M., Lynd L., 2009. Protein feeds co-production in biomass conversion to 17 

fuels and chemicals. Biofuels Bioprod. Biorefin., 3, 219-230.  18 

Dalgaard R., Schmidt J., Halberg N., Christensen P., Thrane M., Pengue W.A., 2008. LCA of 19 

soybean meal. Int. J. Life Cycle Assess., 13, 240-254.  20 

Delivand K.M., Barz M., Gheewala H.G., Sajjakulnukit B., 2012.Environmental and socio-economic 21 

feasibility assessment of rice straw conversion to power and ethanol in Thailand. J. Clean. Prod., 37, 22 

29-41. 23 

 24 

Dunn B.J., Mueller S., Kwon H., Wang Q.M., 2013. Land use change and greenhouse gas emissions 25 

from corn and cellulosic ethanol. Biotechnol. Biofuels, 6, 51. 26 

 27 



   

17 
 

Ekman A., Campos M., Lindahl S., Co M., Börjesson P., Karlsson N.E., Turner C., 2013. 1 

Bioresource utilization by sustainable technologies in new value added biorefinery concepts - two 2 

case studies from food and forest industry. J. Clean. Prod., 57, 46-58. 3 

 4 
Energy Independence and Security Act of 2007. Public Law 110-140. 5 

http://www.gpo.gov/fdsys/pkg/PLAW-110publ140/html/PLAW-110publ140.htm  (Accessed 16  6 

July 2013). 7 

 8 

Environmental Protection Agency, 2007. Regulation of fuels and fuel additives: renewable fuel 9 

standard program: final rule part II. Federal Register, 72, 23900-24014.  10 

FitzPatrick M., Champagne P., Cunningham M.F., Whitney R.A., 2010. A biorefinery processing 11 

perspective: Treatment of lignocellulosic materials for the production of value-added products. 12 

Bioresour. Technol., 101, 8915-8922. 13 

Guinée J.B., 2002. Handbook on life cycle assessment: operational guide to the ISO standards. 14 

Kluwer Academic Publisher. Dordrecht. 15 

 16 

Hsu D.D., Inman D., Heath G.A., Wolfrum E., Mann M., Aden A., 2010. Life cycle environmental 17 

impacts of selected us ethanol production and use pathways in 2022. Environ. Sci. Technol., 44, 18 

5289–5297. 19 

Kochsiek A.E., Knops M.H., 2012. Maize cellulosic biofuels: Soil carbon loss can be a hidden cost 20 

of residue removal. GCB Bioenergy, 4, 229-233. 21 

Laser M., Larsen E., Dale B.E., Wang M., Greene N., Lynd R.L., 2009a. Comparative analysis of 22 

efficiency, environmental impact and process economics for mature biomass refining 23 

scenarios. Biofuels, Bioprod. Biorefin., 3, 247-270.  24 

Laser M., Jin H., Jayawardhana K., Lynd L.R., 2009b. Coproduction of ethanol and power from 25 

switchgrass. Biofuels Bioprod. Biorefin., 3, 195-218.  26 

Mabee W.E., Saddler J.N., 2010. Bioethanol from lignocellulosics: status and perspectives in 27 

Canada. Bioresour. Technol., 101, 4806-4813.  28 

file:///C:/Users/Brad/Documents/LCA%20Research/Mohammad%20Pour%20Bafrani/Tim%20project%20LCA%20Paper/%20(Accessed


   

18 
 

MacLean H.L., Spatari S., 2009. The contribution of enzymes and process chemicals to the life cycle 1 

of ethanol. Environ. Res. Lett., 4, 014001.  2 

McKechnie J., Zhang Y.,  Akifumi O.,  Saville B.,  Sleep S., Turner M., Pontius R. and MacLean 3 

H.L., 2011. Impacts of co-location, co-production and process energy source on life cycle energy use 4 

and greenhouse gas emissions of lignocellulosic ethanol, Biofuels Bioprod. Biorefin., 5, 279-292. 5 

Mullins K. A., Griffin, W. M., Matthews H. S., 2011.Policy Implications of Uncertainty in Modeled 6 

Life-Cycle Greenhouse Gas Emissions of Biofuels. Environ. Sci. Technol., 45, 132-138.  7 

 8 

IPCC (Intergovernmental Panel on Climate Change) 2006.Guidelines for National Greenhouse Gas 9 

Inventories ed. S Egglestton et al. (Hayama: Institute for Global Environmental Strategies) 10 

 11 
ISO 14044 (International Organisation for Standardisation) 2006. Environmental Management-Life 12 

Cycle Assessment-Requirement and Guidelines. 13 

 14 
Pan X., Gilkes N., Kadla J., Pye K., Saka S., Gregg D., Ehara K., Xie D., Lam D., Saddler J., 2006. 15 

Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation 16 

process: Optimization of process yields. Biotechnol. Bioeng., 94, 851-861. 17 

Renouf M.A., Wegener M.K., Nielsen L.K., 2008. An environmental life cycle assessment comparing 18 

Australian sugarcane with US corn and UK sugar beet as producers of sugars for fermentation. 19 

Biomass Bioenergy, 32, 1144-1155. 20 

Spatari S., Bagley D.M., MacLean H.L., 2010. Life cycle evaluation of emerging lignocellulosic 21 

ethanol conversion technologies. Bioresour. Technol., 101, 654-667.  22 

Stephen D.J., Mabee E.W., Saddler N.J., 2011. Will second-generation ethanol be able to compete 23 

with first-generation ethanol? Opportunities for cost reduction. Biofuels Bioprod. Biorefin., 6, 159-24 

176. 25 

Thek G., Obernberger I., 2004. Wood pellet production costs under Austrian and in comparison to 26 

Swedish framework conditions. Biomass Bioenergy, 27, 671-693.  27 

Tzeng Y.M., Diosady L.L., Rubin L.J., 1990. Production of canola protein materials by alkaline 28 

extraction, precipitation, and membrane processing. J. Food Sci., 55, 1147-1156.  29 



   

19 
 

Uihlein A., Schebek L., 2009. Environmental impacts of a lignocellulosic feedstock biorefinery 1 

system: An assessment. Biomass Bioenergy, 33, 793-802. 2 

von Blottnitz  H., Curran A.M., 2007. A review of assessment conduced on bioethanol as a 3 

transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective. J. 4 

Clean. Prod., 15, 607-619. 5 

 6 

Wang L., Littlewood J., Murphy J.R., 2013. Environmental sustainability of bioethanol production 7 

from wheat straw in the UK. Renew. Sust. Energ. Rev., 28, 715-725. 8 

Zhang Y.H., 2008. Reviving the carbohydrate economy via multi-product lignocellulose 9 

biorefineries. J. Ind. Microbiol. Biotechnol., 35, 367-375.   10 



   

20 
 

Table 1 
  

  

Corn Stover-to-Ethanol Pathway Designations, Characteristics, and Energy Sources 

Pathway 

Name 

Pretreatment 

Technology 
Co-Product(s)                          Electricity Steam 

DAEL Dilute Acid (DA) Electricity (EL) Onsite Onsite 

DAPE Dilute Acid (DA) Lignin Pellets (PE) 
US Midwest 

Average Mix 
Natural Gas 

AXEL 
Ammonia Fiber 

Expansion (AFEX) 
Electricity (EL ) Onsite Onsite 

AXPE AFEX  Lignin Pellets (PE) 
US Midwest 

Average Mix 
Natural Gas 

AXPR AFEX  
Electricity, Protein 

concentrate (PR) 
Onsite Onsite 

AHEL Autohydrolysis(AH) Electricity (EL) Onsite Onsite 

AHPE Autohydrolysis(AH) Lignin Pellets (PE) 
US Midwest 

Average Mix 
Natural Gas 

AHXE Autohydrolysis(AH) 
Xylitol and 

Electricity (XE) 
Onsite Onsite 

AHXP Autohydrolysis(AH) 
Xylitol and Lignin 

Pellets (XP) 

US Midwest 

Average Mix 
Natural Gas 

     

 1 

 2 

 3 

 4 

 5 

 6 

 7 

  8 
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Table 2. Annual Ethanol Production, Ethanol Yield and Co-product Production for each Pathway  1 

Product 
 

Unit DAEL DAPE AXEL AXPE AXPR AHEL AHPE AHXE AHXP 

Ethanol  106 L 273 273 220 220 220 225 225 146 146 

Ethanol 
Yield 

L per 
dry t 

374 374 304 304 304 308 308 200 200 

Electricity 
 

GWh 
181  218  53 186  151  

Lignin 
Pellets 

TJa 
 5711  5965   5258  5241 

Xylitol 
 

103 t 
       111 111 

Protein 
Concentrate 

103 t 
    25     

aTJ: terajoule 2 

           
  3 
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Figure Captions 1 

Figure 1. Production of E85, Lignin Pellets, Electricity, Protein and Xylitol from Corn Stover 2 

 3 

Figure 2.Well-to-Wheel GHG Emissions of Gasoline and Corn Stover-to-E85 Pathways 4 

DAEL = DA + Electricity, DAPE = DA + Pellets, AXEL = AFEX + Electricity, AXPE = AFEX 5 

+ Pellets, AXPR = AFEX + protein & electricity, AHEL = AH + Electricity, AHPE = AH + 6 

Pellets, AHXE = AH + Xylitol & Electricity, AHXP = AH + Xylitol & Pellets.  7 
1Pump-to-wheel (PTW) emissions are those associated with combustion of fuel during vehicle 8 

operation.  9 
2Well-to-pump (WTP) emissions.  10 
3Net refers to the net WTW emissions with the co-product emissions credit included in each 11 

pathway 12 

 13 

Figure 3. Well-to-Wheel Energy Use of Gasoline and Corn Stover-to-E85 Pathways 14 

DAEL = DA + Electricity, DAPE = DA + Pellets, AXEL = AFEX + Electricity, AXPE = AFEX 15 

+ Pellets, AXPR = AFEX + protein & electricity, AHEL = AH + Electricity, AHPE = AH + 16 

Pellets, AHXE = AH 17 

+Xylitol & Electricity, AHXP = AH + Xylitol & Pellets. 18 
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