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1 Introduction

Expressing theories in a manner that is manifestly covariant under spacetime co-ordinate

transformations ensures a degree of robustness; physical results will not depend upon the

users choice of co-ordinates, which is generally regarded as a good thing. However, the

spacetime that a field theory lives on is not necessarily the only manifold in a model,

if one has nϕ scalar fields then we must also consider the manifold parametrized by the

scalars, and ensure that our results do not depend upon our choice of parametrization. For

example, if we have a complex field ϕ we should be able to use ϕ = u+ iv or ϕ = ρeiθ as

parametrizations without altering physical results. This is something that is well accepted

in many areas of particle theory, but has not penetrated all areas of cosmology, with many

papers on perturbation theory quoting ”general” formulae in a manner that depends upon
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the choice of field parametrization. For some expressions, such as derivatives of the amount

of expansion N [1],

∑
α,β

∂2N

∂ϕα∂ϕβ
∂N

∂ϕα
∂N

∂ϕβ
, (1.1)

it is fairly straightforward to guess what the covariant expression is - simply replace partial

with covariant derivatives. However, even here we have to take care of how the expression is

derived, as this follows from a Taylor expansion of the local number of e-folds - which does

involve partial rather than covariant derivatives. Other expressions such as the correlation

functions of the perturbations δϕα of the scalar fields [2–5]

〈δϕαδϕβ〉 ∼ Gαβ, (1.2)

where Gαβ are the scalar-manifold metric components, are more subtle as the left and

right hand sides transform differently under field redefinitions. Such complications are

necessary in models where the field-metric is not flat, such as typical supergravity models

with non-canonical kinetic terms, but it does not end there. Simply saying that a particular

calculation is for flat field-space may not be enough, especially when it is desirable to change

co-ordinates away from Cartesian type, in order to more naturally describe entropy and

adiabatic perturbations. Indeed, such ”co-ordinate” transformations have been done in the

literature but, as shown in appendix D, can lead to erroneous conclusions.

In this paper we shall examine a method of perturbing scalar fields proposed in [6] that

expresses the scalar perturbations themselves as vectors in field-space, this then allows one

to write expressions that are manifestly covariant under field redefinitions. This method

is then applied to the cosmological setting, and we present results for the evolution of the

scalar perturbations. Such scalar perturbations are often described in terms of adiabatic

and entropic perturbations, where the adiabatic perturbations desrcibe departures of the

scalar along the direction of the background trajectory in field-space, and the entropy

perturbations take one off the background trajectory. Therefore we propose a covariant

definition of entropy and adiabatic perturbations, and give expressions for their evolution,

commenting upon the current definitions in the literature. We also introduce the notion

of a pseudo superpotential for multiple scalars in a cosmological setting. This is analagous

to the superpotentials familiar in the supersymmetry literature, and has similar benefits

to cosmology by simplifying key expressions.

In order to put the formalism to use we calculate some quantities that are of interest

in cosmology: the slow-roll parameters are calculated using a Hamilton-Jacobi framework,

extending previous work from single to multiple fields without the need of the slow-roll

approximations; the spectral index is evaluated; and the non-Gaussianity parameter fNL

is presented in a manifestly covariant form. These are then given for the cases where the

scalar potential is derived from a pseudo superpotential, allowing one to write closed-form

expressions for various quantities without using the slow-roll approximation.

The paper is organized by describing the problem of scalar field perturbations in section

2, which are then connected to cosmological perturbations in 3. Covariant definitions of
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entropy and adiabatic perturbations are given in 3.1 with pseudo supersymmetry being

described in section 4 and applied to the slow-roll parameters in 4.1. The δN formalism

is reviewed in section 5, and we use this to calculate the curvature perturbation within

pseudo-susy, using the field-space-covariant perturbation formulation. Various technical

details are contained in the appendices.

2 Defining the scalar-field perturbations

The essence of the problem is to find some set of quantities, χα, that will represent the

perturbations ϕα → ϕα + δϕα. A natural question to ask is, why not just use δϕα as is

done in various other formulations of the problem [3, 4, 7–14]? The answer is that the

perturbations δϕα do not transform in a convenient way under field redefinitions ϕ→ ϕ′ =

ϕ′
(
ϕ
)
, with the transformation law being

δϕ′α =
∂ϕ′α

∂ϕβ
δϕβ +

1

2

∂2ϕ′α

∂ϕβ∂ϕγ
δϕβδϕγ + ... (2.1)

So despite the use of differential geometry in some other formalisms, the base quantity is

not covariant. An expression such as (2.1) makes it difficult to keep track of how objects

transform under field redefinitions, as well as confusing the ”order” of perturbation expan-

sions, with terms being first order in one choice of variables, but containing higher orders

when written using other variables.

The key to resolving this is to use a method put forward in [6], and look for objects

that describe the perturbation, but that transform covariantly as

χ′α =
∂ϕ′α

∂ϕβ
χβ. (2.2)

Such transformation rules are of course familiar for spacetime quantities, but the same

rules of covariance also apply to scalar-field manifolds. By expressing the perturbation

theory in terms of tensors on the scalar-field manifold we are guaranteed to end up with

physical results that are independent of how we choose to parametrize that manifold.

The basic observation is that two nearby points on the scalar-field manifold are con-

nected by a unique geodesic γ (using the Christoffel connection), so we may use the tangent

vector, ξ, of such a geodesic to describe δϕ, see Fig. 1. In this way we essentially replace

δϕ by ξ
0
, the tangent vector of γ evaluated at the background value of the scalars, and we

parametrize γ such that ξ
0

has norm equal to the proper length between ϕ
(0)

and ϕ
(0)

+δϕ

along γ. So, our perturbation variable is now a scalar-manifold tensor, ξ
0
, which is what

we were aiming for. We shall now describe how this works in practise.

Suppose that the scalar-field manifold has metric Gαβ(ϕ)1, which we take to be Eu-

clidean to avoid ghosts, and Christoffel symbols Γαβγ(ϕ), and the scalars have potential

V (ϕ), i.e. the Lagrangian density is given by

L = −1

2
Gαβ(ϕ)∂µϕ

α∂µϕβ − V (ϕ), (2.3)

1We use Greek indices α, β,... to represent the scalar field components, and µ, ν,.. to represent spacetime

indices.
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then the geodesic connecting ϕα(0) to ϕα(0) + δϕα satisfies

d2ϕα

dλ2
+ Γαβγ

dϕβ

dλ

dϕγ

dλ
= 0, (2.4)

for some affine parameter λ describing the journey along the path; for close enough points,

as measued along the geodesic, such geodesics are unique. The tangent vector to the

geodesic has components

ξα =
dϕα

dλ
. (2.5)

If we were to use the proper distance in field-space to parametrize the curve,

dσ =
√
Gαβ(ϕ)dϕαdϕβ, (2.6)

then the tangent vector, which has components Tα = dϕα

dσ , would be of unit norm, (T, T ) =

GαβT
αT β = 1. However, it is actually more convenient to choose the affine parameter λ

such that

ϕα(λ = 0) = ϕα(0), (2.7)

ϕα(λ = 1) = ϕα(0) + δϕα. (2.8)

The reason for this, as we shall see, is that then the norm of the perturbation variable will

just be given by the proper distance in field-space between ϕα(0) and ϕα(0) + δϕα.

We now define the Riemann co-ordinates of some point near ϕα(0) to be ϕ̃α, given by

ϕ̃α = σTα(0) = λξα(0), (2.9)

where σ is the proper distance to the point from ϕα(0) along the connecting geodesic. This

implies2

σ2(T(0), T(0)) = λ2(ξ(0), ξ(0), (2.10)

and so if we recall that the Tα describe a unit norm tangent vector, then at λ = 1 we have

(ξ(0), ξ(0)) = σ2. (2.11)

For this reason we define our perturbation variable, χα, to be

χα = ξα(0). (2.12)

It is these variables that play the role of the δϕα; they transform covariantly as they

are the components of a tangent vector, and they have a norm equal to the proper distance

between the background field and the perturbed field. Simply put, if we want to go from

ϕα(0) to ϕα(0) + δϕα, just go along the geodesic associated to the tangent vector ξα(0), Fig. 1.

2We use ( , ) to denote the inner product, using the metric components Gαβ , (A,B) = GαβA
αBβ .
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φ +δφ

φ
0

0

χ

γ

Figure 1: This is a plot indicating the definition of the perturbation variable χ(= ξ
0
), as

the tangent vector of the geodesic connecting the points ϕα(0) and ϕα(0) + δϕα, evaluated at

ϕα(0); the dashed line represents the geodesic γ, and the norm of χ is just the length of the

geodesic.

Combining everything together, the perturbations of ϕ, Gαβ(ϕ) and V (ϕ), from ap-

pendix A we find the action for the scalar field perturbations χα to be3

S[ϕ+ δϕ] (2.13)

=

∫
d4x
√
−g
[(
−1

2
Gαβ∂µϕ

α∂µϕβ − V
)

+
(
−Gαβ∂µϕαDµχβ − ∂αV χα

)
−1

2

(
GαβDµχ

αDµχβ +Rβα1α2γχ
α1χα2∂µϕ

β∂µϕγ +Dα∂βV χ
αχβ

)
− 1

3!

(
Dα1Rβα2α3γχ

α1χα2χα3∂µϕ
β∂µϕγ + 4Rβα1α2α3χ

α1χα2Dµχ
α3∂µϕβ +Dα1Dα2∂α3V χ

α1χα2χα3

)
− 1

4!

([
Dα1Dα2Rβα3α4γ + 4R βα1α2δR

δ
α3α4γ

]
χα1χα2χα3χα4∂µϕ

β∂µϕγ

+6Dα1Rβα2α3α4χ
α1χα2χα3Dµχ

α4∂µϕβ + 4Rα1α2α3α4Dµχ
α1χα2χα3Dµχα4

+Dα1Dα2Dα3∂α4V χ
α1χα2χα3χα4) + ...] ,

where Dα is the covariant derivative on the scalar manifold, using the Christoffel connec-

tion, and Rαβγδ is its Riemann curvature. In this expression we are now conforming to the

notation of [6] by dropping the zero subscript on ϕ, which is now used to denote the back-

ground field. This is now a fully covariant expression, both in spacetime, and field-space,

with the χ being spacetime scalars, and field-space vectors.

3This corrects some typos in [6].
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3 Cosmological scalar perturbations

In this section we shall revisit some earlier calculations of multi-field scalar perturbations

[2, 4, 5, 7–9, 15, 16] with an emphasis on writing expressions that are manifestly covariant

in field-space.

The energy momentum tensor and equations of motion following from (2.3) allows

us to determine the background quantities of energy density, pressure and total adiabatic

sound speed

ρ̄ =
1

2
(ϕ̇, ϕ̇) + V, (3.1)

P̄ =
1

2
(ϕ̇, ϕ̇)− V, (3.2)

c2s = ˙̄P/ ˙̄ρ = 1 +
2(∂V, ϕ̇)

3H(ϕ̇, ϕ̇)
, (3.3)

where a bar over a quantity indicates it is a background quantity, and H is the Hubble

parameter H = 1
a
da
dt .

We may also, using (B.2, B.3), evaluate the perturbation of the energy density, pressure

and fluid three-velocity

δρ = (ϕ̇,Dtχ)− φ(ϕ̇, ϕ̇) + (∂V, χ), (3.4)

δP = (ϕ̇,Dtχ)− φ(ϕ̇, ϕ̇)− (∂V, χ), (3.5)

(ρ̄+ P̄ )av = −(ϕ̇, χ), (3.6)

Then, using (3.6, B.8, B.11) we find a relation between the metric potentials and our scalar

field perturbation

Hφ+ ψ̇ +
Kσs
a2

= 4πG(ϕ̇, χ). (3.7)

The action (2.3) leads to the equation of motion for the background scalar-field

Dµ∂µϕα −Gαβ∂βV = 0, (3.8)

where we remind the reader that ∂µϕ
α transforms as the components of a spacetime vector,

and a field-space vector, so its derivative must be covariant both in spacetime (∇) and field-

space (D), which together we write as D (A.24). On an FRW background this becomes

Dtϕ̇
α + 3Hϕ̇α +Gαβ∂βV = 0. (3.9)

The action for the scalar-field perturbation (2.13), at quadratic order, leads to

DtDtχ
α + 3HDtχ

α − 1

a2
∆χα −Rαβγδϕ̇βϕ̇γχδ +Dα∂βV χ

β

= (κ+ φ̇)ϕ̇α + [2Dtϕ̇
α + 3Hϕ̇α]φ (3.10)
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which, using (B.7,3.1,B.6,3.7) and taking K = 0, may be written in the form analogous to

that in [7]

DtDtχ
α + 3HDtχ

α
(ψ) −

1

a2
∆χα −Rαβγδϕ̇βϕ̇γχδ +Dα∂βV χ

β

=
8πG

a3
Dt

(
a3

H
Gβγϕ̇

αϕ̇β
)
χγ . (3.11)

In deriving this it is simplest to use the gauge ψ = 0 (B.1), but it is a simple matter to

express it in gauge invariant variables, simply replace χα with χα(ψ) as defined in App. C.

3.1 Consistent entropy and adiabatic perturbations

In order to picture the perturbations it is sometimes convenient to split them into those

parallel to the background evolution of ϕ (adiabatic perturbations), and those normal to

it (entropy perturbations); as such, we need to define the split. Our first observation is

that a common definition for the entropy perturbations [9][10] ∼ δϕα

ϕ̇β
− δϕβ

ϕ̇α will not do,

they are very non-covariant objects. Nor can one split up the components of ϕ and define

density perturbations for each component of the form ϕ̇αδϕ̇α − (ϕ̇α)2φ, ∂Vαδϕ
α (no sum

over α)[10], as this is not covariant either. In the two-field case Gordon et al [4] avoided this

issue by explicitly working with the components, however, that introduces a problem of its

own (see App. D). Here we propose the following covariant definitions for the adiabatic

perturbation δσ and the entropy perturbations δSαβ,

δσ =
(ϕ̇, χ)

σ̇
, (3.12)

δSαβ = 2
ϕ̇[αχβ]

σ̇
, (3.13)

where the antisymmetrization is defined by [xy] = 1
2(xy − yx). As ϕ̇ is the tangent vector

of the background trajectory then δσ is just the component of the perturbation along the

direction of the background evolution, with δS representing those orthogonal to it. Note

that we may invert these relations to recover the χ perturbation from the entropy and

adiabatic perturbations using

χα =
1

σ̇
ϕ̇αδσ − 1

σ̇
δSαβϕ̇β. (3.14)

If we were to use δϕα instead of χα then these would agree with the two-field case examined

in [4], however, it is important to note that (ϕ1, ϕ2)→ (σ, S) does not in general constitute

a field redefinition, and assuming it does leads to incorrect equations for the evolution

of perturbations [4] (App.D). After some work one finds that these new variables evolve

according to

δ̈σ + 3Hδ̇σ − 1

a2
∆δσ +

1

σ̇2
[
(V,σ)2 − (∂V, ∂V )

]
δσ +

1

σ̇2
Dα∂βV ϕ̇

αϕ̇βδσ (3.15)

=
2

σ̇3
V,σδS

αβ∂αV ϕ̇β +
2

σ̇2
δSαβDγ∂αV ϕ̇

γϕ̇β +
2

σ̇2
DtδS

αβ∂αV ϕ̇β

+
8πG

H

[
2

σ̇2
(σ̇2 + V )δSαβ∂αV ϕ̇β − 2σ̇V,σδσ −

8πG

H
σ̇2V δσ

]
,
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and4

DtDtδS
αβ + 3HDtδS

αβ − 1

a2
∆δSαβ (3.16)

=
2

σ̇
V,σ

(
DtδS

αβ + 3HδSαβ
)

+
4

σ̇2
∂[αV

(
DtδS

β]γ + 3HδSβ]γ
)
ϕ̇γ

+
4

σ̇3
V,σ∂

[αV δSβ]γϕ̇γ −
4

σ̇2
∂[αV δSβ]γ∂γV

+
2

σ̇2
Dδ∂

[αV δSβ]γϕ̇δϕ̇γ +
2

σ̇2
ϕ̇[αDβ]∂γV δS

γδϕ̇δ + V,σσδS
αβ

− 2

σ̇2
ϕ̇[αR

β]
γδεϕ̇

γϕ̇δδSεηϕ̇η

− 4

σ̇3
(3Hσ̇ + V,σ)∂[αV ϕ̇β]δσ +

16πG

H
∂[αV ϕ̇β]δσ − 4

σ̇2
∂[αV ϕ̇β]δσ̇

In practise it may be easier to evolve the system of perturbations with (3.11) and simply use

(3.12), (3.13) to evaluate the entropy and adiabatic components, with (3.14) allowing us to

set initial conditions for perturbations in terms of adiabatic and entropy modes. However

there may be situations where one must evolve the entropy and adiabatic perturbations

due to the finite precision of numerical methods[17].

4 Pseudo-susy and multi-field slow-roll parameters

In order to use some of this formalism we are going to extend an idea that was used to study

dark energy with a single scalar field [18], and is also useful in understanding the similarity

between the equations describing a gravitating domain wall, and the cosmology of evolving

scalar fields [19–21]. It has also been extended to multiple scalars [22] to examine the role of

geodesics in field-space and cosmological evolution[23]. Pseudo-supersymmetry will allow

us to make exact statements about the slow-roll parameters, as well as exact relations in

the δN formalism for curvature perturbations that lead to the the spectral index and the

non-Gaussianity parameter fNL. The basic observation is that the background system of

equations (3.1,3.2,3.9,B.5,B.6)

3H2 = 8πG

(
1

2
(ϕ̇, ϕ̇) + V

)
, (4.1)

Ḣ = −4πG(ϕ̇, ϕ̇), (4.2)

Dtϕ̇
α = −3Hϕ̇α − ∂αV, (4.3)

where we have set the spatial curvature K to zero, may be solved by the following system

ϕ̇α = ±∂αW, (4.4)

H = ∓4πGW, (4.5)

if we impose a special form on the potential, namely5

V (ϕ) = 6πGW 2 − 1

2
(∂W, ∂W ). (4.6)

4 Here we define V,σ = ϕ̇α∂αV and V,σσ = V̇,σ/σ̇ = Dα∂βV ϕ
αϕ̇β/σ̇2 + [V 2

,σ − (∂V, ∂V )]/σ̇2.
5It is worth pointing out that the calculation of [24] can be recast using this framework.

– 8 –



This is rather like the BPS-system one finds for certain domain-walls [25] and, in line with

that setup, we shall refer to W (ϕ) as the pseudo superpotential6. This requirement has a

remarkable simplification for the slow-roll parameters, defined in terms of the Hamilton-

Jacobi system, as we shall now demonstrate.

The Hamilton-Jacobi formalism has been examined for single scalars [26][27], see also

[28], and comes about by thinking of the Hubble parameter as a function of the single

scalar field, Φ. The first two slow-roll parameters are then defined by

εH =
1

4πG

(
H ′(Φ)

H(Φ)

)2

, (4.7)

ηH =
1

4πG

(
H ′′(Φ)

H(Φ)

)
, (4.8)

where ′ denotes differentiation with respect to Φ; higher order parameters are given in [26].

The case of multi-scalar fields is more complicated and there are a number of different

ways to generalize the slow-roll parameters [11–14, 29–31], here we propose slow-roll pa-

rameters that are rooted in the Hamilton-Jacobi formalism. The essential point to note is

that the background evolution picks out a particular path in field space, and it is really only

that path that plays any role in background evolution. As such, what we are interested in

is how H varies as σ (the proper distance along the path in field-space) increases. A few

important relations coming from (4.1), (4.2), (4.3) are

H,σ = −4πGσ̇, (4.9)

(H,σ)2 − 12πGH2 = −2(4πG)2V, (4.10)

σ̈ + 3Hσ̇ + V,σ = 0, (4.11)

with the σ derivative being defined by

H,σ =
∂αHϕ̇

α

σ̇
. (4.12)

In the multi-field case we therefore define

εH =
1

4πG

(
H,σ

H

)2

, (4.13)

ηH =
1

4πG

(
H,σσ

H

)
, (4.14)

and we note that, just as in the single-field case, (4.1), (4.2) and (4.9) lead to7

ä

a
= H2(1− εH), (4.15)

showing that inflationary solutions have εH < 1.

6In the supergravity literature W is usually reserved for the superpotential and V the potential, whereas

W is often used in the cosmology literature to denote the potential; we shall use the supergravity-style

convention.
7Recall that (ϕ̇, ϕ̇) = σ̇2 (2.6).
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4.1 Slow-roll parameters in the slow-roll limit

In the slow-roll approximation we neglect Dtϕ̇
α compared to Hϕ̇α in the scalar equation

of motion (4.3), and we drop (ϕ̇, ϕ̇) when compared to V in the Friedmann equation (4.1),

giving that

εH '
1

16πG

(∂V, ∂V )

V 2
, (4.16)

which is a standard result, and

ηH ' εH −
1

8πG

Dα∂βV

V

∂αV ∂βV

(∂V, ∂V )
, (4.17)

which reduces to the standard expression for the single-field case, and recovers the expres-

sion in [28] when we take the field-metric to be flat and written in Cartesian co-ordinates.

We may also reduce the expression for the number of e-folds of inflation to the standard

approximate integral expression

N =

∫
dtH =

∫
dt
H2

H
' 8πG

3

∫
dt
V

H
' 8πG

∫
dϕα

V

3Hϕ̇α
(4.18)

' −8πG

∫
dϕα

V

∂αV
,

where there is no sum over the α8.

4.2 Slow-roll parameters without the slow-roll

The remarkable thing about pseudo-susy (4.6) is that we now get expressions for the slow-

roll parameters in terms of the pseudo superpotential without the need for making the

slow-roll approximation,

εH =
1

4πG

(∂W, ∂W )

W 2
, (4.19)

ηH =
1

4πG

Dα∂βW

W

∂αW∂βW

(∂W, ∂W )
, (4.20)

and the expression for the number of e-folds is now an integral expression that does not

require the slow-roll approximation

N =

∫
dt H = ∓4πG

∫
dt W = ∓4πG

∫
dt (W −Q)∓ 4πG

∫
dt Q

= −4πG

∫
dϕα

W −Q
∂αW

− 4πG

∫
dϕβ

Q

∂βW
, (4.21)

where Q is some function that has been added and subtracted in order to make the integrals

solvable - in some cases.

With an eye on systems that we are able to solve we now give some examples of pseudo

superpotentials

8The apparent non-covariant nature of this expression is removed by requiring it to be evaluated on-

slow-roll-shell, 3Hϕ̇α + ∂αV = 0.

– 10 –



• CLASS I: generalized sum-separable

W =
[
w(1)(ϕ

1) + w(2)(ϕ
2) + w(3)(ϕ

3) + ...
]m

, (4.22)

N

4πG
= −

∑
β

∫
dϕβ

w(β)

mw′(β)
. (4.23)

• CLASS II: product-separable

W = w1(ϕ
1)w2(ϕ

2)w3(ϕ
3)..., (4.24)

N (β)

4πG
= −

∫
dϕβ

w(β)

w′(β)
. (4.25)

The form of these stems from the analogous systems in the slow-roll limit using the potential

rather than our pseudo superpotentials [2, 16, 32–34]. The slow-roll approximation using

V yields similar expressions for N [16], but in the following we shall be using pseudo-susy

allowing us to derive expressions without the need for such an approximation.

5 δN , nζ and fNL

In this section we shall combine our field-space covariant approach to scalar perturbations

with pseudo-susy to give expressions for the spectral index and the non-Gaussianity pa-

rameter, which does not rely on making the slow-roll approximation. First we give a recap

of the δN formalism [7, 8, 35–37].

The important idea is that the curvature perturbation on uniform energy density

hypersurfaces, ζ, is, on large scales, just given by the perturbation in the number of e-

folds,

ζ(tc, x) ' δN (tc, t?, x) ≡ N (tc, t?, x)−N(tc, t?), (5.1)

where

N(tc, t?) =

∫ c

?
H dt, (5.2)

is the unperturbed version of N , which itself is the integral of the volume expansion rate [7].

The initial hypersurface, at t = t?, is taken to be spatially flat, and the final hypersurface,

at t = tc, is a considered to be a uniform density hypersurface. Now we view the number

of e-foldings, N (tc, t?, x) as depending upon the value of the scalar fields at the initial

hypersurface, ϕ(t?, x), and also depending upon tc. The variations δN may now be given

in terms of the variations of ϕ
?
. However, the standard expression [1, 2]

δN (tc, t?, x) = ∂αNδϕ
α
? + ∂α∂βNδϕ

α
? δϕ

β
? + ..., (5.3)

although correct, does not fit our ethos of writing expressions that are covariant under field

redefinition - due to the non-covariant transformation properties of partial derivatives and

δϕα. In fact, the partial derivatives appearing in expressions of the form (1.1) have this
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Taylor expansion as their origin, and it is the non-trivial transformation properties of δϕα

and ∂α that lead to inconsistent expressions such as (1.1). Following the procedure that

led to (A.25) we find that in our perturbation variables

δN (tc, t?, x) = ∂αNχ
α
? +Dα∂βNχ

α
?χ

β
? + ... (5.4)

which is manifestly covariant, now all we need to do is calculate it.

5.1 nζ and fNL

Following [2] we have that the curvature perturbation power spectrum Pζ is defined by

〈ζ(k1)ζ(k2)〉 = (2π)3δ3(k1 + k2)
2π2

k31
Pζ(k1), (5.5)

and we want to relate this to the two-point correlator of the scalar field perturbations.

Again, we see that the standard expression 〈δϕα(k1)δϕ
β(k2)〉 ∼ Gαβ [2–5] cannot be true

because the left and right hand sides transform differently under field redefinition. Instead

we have that

〈χα(k1)χ
β(k2)〉 = (2π)3Gαβδ3(k1 + k2)

2π2

k31
P?(k1), (5.6)

P?(k1) =
H2
?

4π2
, (5.7)

where H? is evaluated at k = aH 9. Now we combine these with (5.3)(5.4) to find [2]

Pζ = (∂N, ∂N)P?. (5.8)

From these ingredients we may now derive the spectral index, nζ , defined by

nζ − 1 =
d lnPζ
d ln k

. (5.9)

For inflation, this is simplified by noting that at Hubble exit, k = aH, and H is approxi-

mately constant so [38]

nζ − 1 ' 1

H

d lnPζ
dt

, (5.10)

which we evaluate to

nζ − 1 ' −2εH +
2

H

ϕ̇αDα∂βN∂
βN

(∂N, ∂N)
, (5.11)

and this is just the covariant version of what appears in [2]. To get the covariant version

of fnl we may follow the proceedure in [2] using our variables to find

− 6

5
f
(4)
nl =

∂αNDα∂βN∂
βN

(∂N, ∂N)2
. (5.12)

9see [6] for the flat spacetime version of (5.6).
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φ

φ+δφ

∗

∗ ∗

φ

φ+δφ

c

c c

fiducial surface E=const surface

Figure 2: Flow lines following (4.4) are specified purely in terms of the gradient of the

superpotential and so do not cross, except at critical point of W . As such they may be

specified by their intersection with some fiducial co-dimension one surface. These flow lines

then proceed to the constant energy density surface at tc.

5.2 Derivatives of N

In the preceding sections we saw that the various formulae required derivatives of N with

respect to the scalar fields. We shall follow the method of Vernizzi and Wands [2], but

instead of applying the slow-roll approximations using V , we shall apply pseudo-susy using

W to avoid those approximations.

We may picture the evolution of the background scalar fields as some curve in field-

space. Moreover, if we work with the gradient-flow solutions of pseudo-susy (4.4) then these

flow lines do not intersect. In that case we have that the curves are parametrized by nϕ−1

constants, which may be thought of as the location of the intersection of the curves with

some fiducial co-dimension one surface in field-space, Fig. 2. In practise there is a more

convenient way to parametrize the curves, which we see by noting that the gradient-flow

evolution of (4.4) leads to

∂αW dϕβ − ∂βW dϕα = 0 (5.13)

which may, in principle, be integrated along the curves, so allowing one to assign a set of

constants to the curves. At this point we restrict ourselves to the two classes of superpo-

tential given in section 4.2, as this will enable us to integrate (5.13)

Now we pick some pair (α, β) of components and suppose that we can write

∂αW = F(α,β)(ϕ)f(β)(ϕ
β), (5.14)

∂βW = F(α,β)(ϕ)f(α)(ϕ
α), (5.15)
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such that

F(α,β)

(
f(β)(ϕ

β) dϕβ − f(α)(ϕα) dϕα
)

= 0, (5.16)

i.e. we extract a common function from each of the terms in (5.13) and ensure that the dϕα

differential is multiplied by a function of ϕα, whilst the dϕβ differential is multiplied by a

function of ϕβ. This includes (for flat moduli metric in Cartesian field-space co-ordinates)

our CLASS I, II pseudo superpotentials given above. Given this restriction we may now

introduce a set of constants that specify a given trajectory

Ĉα,β =

∫
f(α)(ϕ

α)dϕα −
∫
f(β)(ϕ

β)dϕβ. (5.17)

We also note that this does indeed just give nϕ− 1 independent constants as, for example,

Ĉ1,5 = Ĉ1,2 + Ĉ2,3 + Ĉ3,4 + Ĉ4,5. Indeed, we may take Ĉ1,2, Ĉ2,3, Ĉ3,4,...Ĉnϕ−1,nϕ , as

our independent constants and it is then convenient, at times, to denote the independent

constants by

Cα = Ĉα,α+1, α = 1...nϕ − 1. (5.18)

Now let us recall what we need to do. Equations coming from the δN formalism,

such as (5.11,5.12), require us to differentiate N with respect to ϕα? , taking into account

that as we vary ϕα? , ϕαc will also change as we will have moved onto another trajectory.

Schematically then, we have from (4.21) that

N ∼
∫ c

?
dϕ

W

W ′
, (5.19)

dN ∼ W

W ′

∣∣∣∣
?

dϕ? −
W

W ′

∣∣∣∣
c

∂ϕ?
∂ϕc

dϕ?, (5.20)

with all the hard work coming from calculating the ∂ϕ?
∂ϕc

, which we do by following the

method of [2]. The idea is to write ∂ϕ?
∂ϕc

= ∂ϕ?
∂C

∂C
∂ϕc

, where C are the nϕ − 1 constants that

define which trajectory we are on. Given that, we establish from (5.17)

∂Ĉα,β

∂ϕα?
= f(α)(ϕ

α
? ), (5.21)

∂Ĉα,β

∂ϕβ?
= −f(β)(ϕβ? ),

in which case we see

∂Cα

∂ϕα?
= f(α)(ϕ

α
? ), (5.22)

∂Cα

∂ϕα+1
?

= −f(α+1)(ϕ
α+1
? ),

for α = 1...nϕ − 1. Moreover, we have that (5.17) yields

δαβ =
dCα

dCβ
= f(α)(ϕ

α
c )

dϕα

dCβ

∣∣∣∣
c

− f(α+1)(ϕ
α+1
c )

dϕα+1

dCβ

∣∣∣∣
c

, α, β = 1...nϕ − 1, (5.23)
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which, for a given β, gives nϕ − 1 relations for the dϕα

dCβ
. Now note that the final surface is

defined to be a uniform energy density surface, and that from (3.1), (4.6) energy density

is given by

E =
1

2
(ϕ̇, ϕ̇) + V = 6πGW 2, (5.24)

so the surface at tc is defined by

Wc = const, (5.25)

which implies that

dϕγ

dĈβ

∣∣∣∣
c

∂γW |c = 0. (5.26)

We may now combine this single relation, for a given β, with the nϕ− 1 relations (5.23) to

give the following evaluated at tc.


∂1W ∂2W ∂3W ...

f(1) −f(2) 0 ...

0 f(2) −f(3) ...
...




dϕ1

dCβ
dϕ2

dCβ
dϕ3

dCβ
...

 =



0
...

1

0
...


, (5.27)

where the non-zero element of the column vector on the right-hand-side is at row β + 1.

These matrix equations are then solved to yield exact expressions for dϕαc
dCβ

, and we combine

this with (5.22) allowing us to calculate

∂ϕαc
∂ϕγ?

=
dϕαc
dCβ

∂Cβ

∂ϕγ?
. (5.28)

For the classes of superpotential identified earlier we find the following for the variation of

N .

• CLASS I.

1

4πG

∂N

∂ϕα?
=

1

m

 w(α)

w′(α)

∣∣∣∣∣
?

−
∑
β

w(β)

w′(β)

∣∣∣∣∣
c

∂ϕβc
∂ϕα?

 (5.29)

• CLASS II.

1

4πG

∂N (β)

∂ϕα?
=

w(β)

w′(β)

∣∣∣∣∣
?

δβα −
w(β)

w′(β)

∣∣∣∣∣
c

∂ϕβc
∂ϕα?

(5.30)

The higher order derivatives of N follow from these expressions by differentiation, and may

be substituted into (5.11) to find the spectral index, and (5.12) to find the non-Gaussianity

parameter.
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6 Conclusions

In this paper we have presented arguments in favour of using a perturbation variable for

the scalar fields that transforms covariantly under field-space redefinitions, replacing the

δϕα that is currently used, and allowing one to more easily write expressions for physical

quantities that are manifestly invariant under ϕα → ϕ′α(ϕ). These variables resolve a

number of inconsistent expressions that have appeared in the literature, and may be used

to define a natural set of adiabatic and entropy perturbations along, and normal to, the

background evolution of the scalar. In introducing this covariant picture we also see that a

common definition of adiabatic and entropy perturbation are not defined covariantly, and

so we identify definitions of such perturbations that are manifestly field-space covariant.

Thinking about the evolution of the scalar in terms of paths in field space also led to

a natural definition of slow-roll parameters in terms of the Hamilton-Jacobi formulation,

which itself is intimately connected to the notion of pseudo-supersymmetry. This pseudo-

supersymmetry turned out to be a useful tool in calculating physical observables related

to the perturbations of the scalars, allowing us to calculate expressions for the derivatives

of N (the number of e-folds) with respect to the scalars, and this is done without relying

on the slow-roll approximation.

There are a number of avenues that remain to be explored. While we have presented

two classes of superpotential that allow for explicit expressions of observables it is far from

clear that this is the full set, it would be useful to know the general class of superpotential

that can be solved analytically. An exploration of the physical implication of pseudo-susy

is also required, and here the technique should be fruitful as we are able to have analytic

control over the evolution of the fields for longer; pseudo-susy does not need the slow-roll

approximation and so the evolution may be explored even after the end of inflation.
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A Scalar-field perturbations

Now we shall follow [39, 40] in setting up the Riemann co-ordinates for our problem,

which specifies a co-ordinate system using geodesics. The first step is to solve the geodesic

equation, which we do as a power series expansion in σ, the proper distance along a curve,

ϕα(σ) = ϕα(0) + σ
dϕα

dσ

∣∣∣∣
0

+
1

2
σ2

d2ϕα

dσ2

∣∣∣∣
0

+ ..., (A.1)

upon substitution of this into the geodesic equation (2.4) we find

ϕα(σ) = ϕα(0) + σξα(0) −
1

2
σ2Γαβγξ

β
(0)ξ

γ
(0) −

1

3!
σ3Γαβγδξ

β
(0)ξ

γ
(0)ξ

δ
(0) + ..., (A.2)
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where

Γαβγδ = “∇δ”Γαβγ , Γαβγδε = “∇ε”Γαβγδ, ..., (A.3)

and “∇α” is the ”covariant” derivative that only sees the lower indices, e.g. “∇δ”Γαβγ =

∂δΓ
α
βγ − ΓεδβΓαmγ − ΓmδγΓαβε.

Our new co-ordinates, ϕ̃α, are related to the original ones by (A.2)

ϕα = ϕα(0) + ϕ̃α − 1

2
Γαβγϕ̃

βϕ̃γ + ..., (A.4)

yielding

∂ϕα

∂ϕ̃β

∣∣∣∣
0

= δαβ , (A.5)

and so the co-ordinate transformation is invertible. We also note that the components of

the tangent vector in these new co-ordinates are ξ̃α = dϕ̃α

dσ = ξα(0) so if we were to solve the

geodesic equation as a series expansion for ϕ̃α co-ordinates rather than ϕα we would find

the analogue of (A.2) to be

ϕ̃α(σ) = σξα(0) −
1

2
σ2Γ̃αβγξ

β
(0)ξ

γ
(0) + ..., (A.6)

where the Γ̃αβγ are the Christoffel symbols in the ϕ̃ co-ordinates. However, we know that

the geodesics are given by ϕ̃α(σ) = σξα(0), because that is what solve the geodesic equation

(A.4, A.2), which tells us that Γ̃α(βγ) = Γ̃α(βγδ) = ... = 0. This reduces to

∂(α1
∂α2 ...∂αn−2Γ̃βαn−1αn)

= 0, (A.7)

which may be rewritten as

∂β∂(α1
∂α2 ...Γ̃

γ
αn−2αn−1)

= − 2

n− 2
∂(α1

∂α2 ...αn−2Γ̃
γ
αn−1)β

. (A.8)

It is these explicit relations of the Christoffel symbols that make the perturbation analysis

tractible, for example, in Riemann co-ordinates the Riemann curvature of the field-space

is given by

R̃αβγδ = ∂γΓ̃αβδ − ∂δΓ̃αβγ , (A.9)

which may be used to derive

∂γΓ̃αβδ =
1

3

[
R̃αβγδ + R̃αδγβ

]
, (A.10)

One also finds that

∂(α1
∂α2Γ̃βα3)γ

= −1

2
D(α1

R̃βα2|γ|α3)
, (A.11)

∂(α1
∂α2∂α3Γ̃βα4)γ

= −3

5

[
D(α1

Dα2R̃
β
α3|γ|i4) +

2

9
R̃β(α1α2|δ|R̃

δ
α3α4)γ

]
, (A.12)
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which corrects a typo in [6].

Having introduced our perturbation variable, we now need to expand the various quan-

tites that appear in the scalar-field sector of the Lagrangian density (2.3). To do this we

note that the expansion of a general covariant tensor on the scalar manifold, in terms of

our perturbation variable is [6]

Tα1α2...αm(ϕ(0) + δϕ) =

∞∑
n=0

1

n!

[
∂

∂ϕ̃β1
...

∂

∂ϕ̃βn
Tα1α2...αm

]
0

χβ1 ...χβn , (A.13)

and we may use the properties of the Riemann co-ordinate system to derive, for example,

∂(α1
∂α2)T̃γδ = D(α1

Dα2)T̃γδ −
1

3

(
R̃β(α1|γ|α2)

T̃βδ + R̃β(α1|δ|α2
T̃γβ

)
, (A.14)

∂(α1
∂α2∂α3)T̃γδ = D(α1

Dα2Dα3)T̃γδ −
(
R̃j(α1|γ|α2

Dα3)T̃βδ + R̃β(α1|δ|α2
Dα3)T̃γβ

)
−1

2

(
D(α1

R̃βα2|γ|α3)
T̃βδ +D(α1

R̃βα2|δ|α3)
T̃γβ

)
, (A.15)

∂(α1
∂α2∂α3∂α4)T̃γδ = D(α1

Dα2Dα3Dα4)T̃γδ (A.16)

+2
(
R̃β(α1α2|γ|Dα3Dα4 T̃βδ + R̃β(α1α2|δ|Dα3Dα4 T̃γβ

)
−2
(
D(α1

R̃βα2|γ|α3
Dα4)T̃βδ +D(α1

R̃βα2|δ|α3
Dα4)T̃γβ

)
+

3

5

(
D(α1

Dα2R̃
β
α3α4)γ

T̃βδ +D(α1
Dα2R̃

β
α3α4)δ

T̃γβ

)
+

1

5

(
R̃βα1α2|ε|R̃

ε
α3α4)γ

T̃βδ + R̃βα1α2|ε|R̃
ε
α3α4)δ

T̃γβ

)
+

1

3
R̃ε(α1α2|γ|R̃

β
α3α4)δ

(
T̃εβ + T̃βε

)
.

Now we notice that the right-hand-side of equations (A.14-A.16) are composed of tensor

quantities, and so when substituted into the Taylor expansion (A.13) we have a fully

covariant expression form the terms of the perturbation expansion. These expressions allow

us to compute Gαβ(ϕ(0) + δϕ), and V (ϕ(0) + δϕ), but we still need to find the expansion

for ∂µ(ϕ(0) + δϕ) of the kinetic term. This is achieved by noting that the perturbation is

at σ = 1, and so (2.12), (A.6) give

ϕβ(0) + δϕβ = ϕβ(σ = 1) = ϕβ(0) + χβ − 1

2

(
Γ̃βα1α2

)
0
χα1χα2 + ..., (A.17)

⇒ ∂µ(ϕβ(0) + δϕβ) = ∂µϕ
β
(0) + ∂µχ

β − 1

2

(
∂γΓ̃βα1α2

)
0
χα1χα2∂µϕ

γ
(0) + ...,

in Riemann co-ordinates, where we have used (A.5). Now we use our relations for the

Christoffel symbols in Riemann co-ordinates to show

∂γΓ̃β(i1i2) = −2

3
R̃β(i1i2)γ , (A.18)

∂γΓ̃β(i1i2i3) =
1

2
D(i1R̃

β
i2i3)γ

, (A.19)

∂γΓ̃β(α1α2α3α4)
= −4!

(
1

60
D(α1

Dα2R
β
α3α4)γ

− 1

45
Rβ(α1α2|δ|R

δ
α3α4)γ

)
, (A.20)
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leading to a covariant expression that does not rely on Riemann co-ordinates

∂µ(ϕβ(0) + δϕβ) = ∂µϕ
β
(0) +Dµχ

β +
1

3
Rβα1α2γχ

α1χα2∂µϕ
γ
(0) (A.21)

+
1

12
Dα1R

β
α2α3γχ

α1χα2χα3∂µϕ
γ
(0)

+

(
1

60
Dα1Dα2R

β
α3α4γ −

1

45
Rβα1α2δ

Rδα3α4γ

)
χα1χα2χα3χα4∂µϕ

γ
(0) + ...,

where we have introduced the covariant derivative

Dµχ
α = ∂µχ

α + Γαβγ∂µϕ
βχγ . (A.22)

In the main section of the paper we shall meet objects with spacetime indices, whos co-

variant derivatives are given in terms of the Christoffel symbols of the spacetime,
{
ν
µ ρ

}
∇µXν = ∂µX

ν +
{
ν
µ ρ

}
Xρ, (A.23)

we shall also have objects with both spacetime and scalar-field manifold indices, in which

case the covariant derivatives are given by

Dµχα = ∂µχ
α + Γαβγ∂µϕ

βχγ +
{
ν
µ ρ

}
Xρ. (A.24)

We also need the expansion of the potential, which turns out to be

V (ϕ(0) + δϕ) = V (ϕ(0)) + ∂αV0χ
α +

1

2
Dα1∂α2V0χ

α1χα2 +
1

3!
Dα1Dα2∂α3V0χ

α1χα2χα3 + ...

(A.25)

B Cosmological perturbations

Following the conventions in [41], except for a change of spacetime metric signature, the

line element for the perturbed FRW cosmological spacetime and fluid four-velocity are

ds2 = a2(η)
{
−(1 + 2φ)dη2 + 2∂iB dxidη +

[
(1− 2ψ)γij + 2E|ij

]
dxidxj

}
, (B.1)

Uµ = a(η) (−1− φ, ∂iv) , (B.2)

where γij are the components of the spatial metric, with curvature constant K; the verical

bar in E|ij denotes the covariant derivative with respect to the spatial metric γij ; and we

are considering only scalar perturbations. Writing the energy momentum tensor in the

form

Tµν = (ρ+ P )UµUν + Pδµν , (B.3)

and using Einstein’s equations

Gµν = 8πGTµν , (B.4)
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allows us to derive the background relations

H2 =
8πG

3
ρ̄− K

a2
, (B.5)

Ḣ = −4πG(ρ̄+ P̄ ) +
K

a2
, (B.6)

and the perturbed relations

Hκ− ∆ψ + 3Kψ

a2
= −4πGδρ, (B.7)

κ+
∆σs + 3Kσs

a2
= −12πG(ρ̄+ P̄ )av, (B.8)

σ̇s +Hσs − φ+ ψ = 0, (B.9)

where we have introduced [9]

σs = −a(B − E′), (B.10)

κ =
1

a

[
3(Hφ+ ψ′) + ∆(B − E′)

]
, (B.11)

H = a′/a, H = ȧ/a, (B.12)

a(η)dη = dt, (B.13)

and an overdot denotes differentiation with respect to t (dt = a(η)dη), a prime corresponds

to differentation with η, and ∆ is the Laplacian associated to γij .

C Gauge invariant variables

It is often convenient to use variables that are explicitly invariant under the choice of

spacetime gauge, rather than making a specific gauge choice, so knowing how the various

quantities transform is useful. Here we have that under a small co-ordinate transformation

x̃µ = xµ + ξµ, (C.1)

then

φ̃ = φ−Hξ0 − ξ′0, (C.2)

ψ̃ = ψ +Hξ0, (C.3)

σ̃s = σs − aξ0, (C.4)

χ̃α = χα − ϕ̄′αξ0, (C.5)

in which case one finds the following gauge invariant variables

χα(ψ) = χα − ϕ′α

H
ψ, (C.6)

ψ(σ) = ψ +
H
a
σs. (C.7)
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D Adiabatic and entropy perturbations in the two-field case

If we consider the two-field limit of (3.12) and (3.13) (using δϕ instead of χ to match [4])

we find

δσ =
ϕ̇1

σ̇
δϕ1 +

ϕ̇2

σ̇
δϕ2 (D.1)

δS = − ϕ̇
2

σ̇
δϕ1 +

ϕ̇1

σ̇
δϕ2 (D.2)

(D.3)

then define [4]

ϕ̇1

σ̇
= cos θ,

ϕ̇2

σ̇
= sin θ. (D.4)

Now we try to construct a field redefinition from (ϕ1, ϕ2) to (σ, S). The infinitesimal limit

of the above relations tell us that

∂σ

∂ϕ1
= cos θ,

∂σ

∂ϕ2
= sin θ, (D.5)

∂S

∂ϕ1
= − sin θ,

∂S

∂ϕ2
= cos θ. (D.6)

Now, for these to be a well-defined transformation we must have ∂2σ
∂ϕ2∂ϕ1 = ∂2σ

∂ϕ1∂ϕ2 and
∂2S

∂ϕ2∂ϕ1 = ∂2S
∂ϕ1∂ϕ2 , implying that

− tan θ
∂θ

∂ϕ2
=

∂θ

∂ϕ1
,

∂θ

∂ϕ2
= tan θ

∂θ

∂ϕ1
, (D.7)

which combine to show that θ = const is the only solution that leads to a well-defined field

redefinition, i.e. if we want to use (σ, S) as field variables then we can only do so if the

background evolution is trivial, otherwise one will find incorrect evolution equations for

the entropy and adiabatic perturbations. This is simply because the evolution equations

require partial derivatives with respect to (σ, S), but these variables cannot in general be

used as co-ordinates, due to the above integrability conditions being violated, and so such

derivatives are not well defined, meaning that the evolution equations for δσ and δS of [4]

are not correct.
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