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Abstract

We introduce reflexive polytopes of index l as a natural generalisation of the
notion of a reflexive polytope of index 1. These l-reflexive polytopes also appear as
dual pairs. In dimension two we show that they arise from reflexive polygons via a
change of the underlying lattice. This allows us to efficiently classify all isomorphism
classes of l-reflexive polygons up to index 200. As another application, we show that
any reflexive polygon of arbitrary index satisfies the famous “number 12” property.
This is a new, infinite class of lattice polygons possessing this property, and extends
the previously known sixteen instances. The number 12 property also holds more
generally for l-reflexive non-convex or self-intersecting polygonal loops. We conclude
by discussing higher-dimensional examples and open questions.

Dedicated to the memory of Maximilian Kreuzer.

1 Introduction and main results

1.1 Motivation

Reflexive polytopes were first introduced by Batyrev in [4] in the context of Mirror Sym-
metry. In subsequent years they were intensively studied and classified as important
examples of Fano varieties in toric geometry, and used in the construction of Calabi-Yau
varieties (e.g., [6, 5, 27, 28, 31, 13, 32]). They are also intimately connected to commuta-
tive algebra and combinatorics via the study of Gorenstein polytopes [7, 2, 12, 3]. Here we
present a natural generalisation of reflexive polytopes and illustrate many combinatorial
properties which parallel the reflexive case.
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1.2 Notation

We begin by recalling some basic definitions, and by fixing our notation.
Let N ∼= Zn be a lattice, and let P ⊂ NQ := N ⊗Z Q be an n-dimensional lattice

polytope; i.e., the set of vertices of P , denoted by V(P ), is contained in the lattice N . We
denote the interior of P by int(P ) and its boundary by ∂P . The set of facets (codimension-
one faces) of P is referred to by F(P ). The volume of P will always mean the normalised
volume Vol(P ) with respect to the ambient lattice N . Two lattice polytopes P ⊆ NQ and
P ′ ⊆ N ′

Q are isomorphic (or unimodular equivalent) if there exists a lattice isomorphism
N ∼= N ′ mapping V(P ) onto V(P ′).

A lattice point x in N \{0} is primitive if the line segment joining x and 0 contains no
other lattice points. We denote by M the dual lattice Hom(N, Z) of N . Given a facet F
of P we define its primitive outer normal to be the unique primitive lattice point uF ∈M
such that F = {x ∈ P | 〈uF , x〉 = lF} for some (uniquely determined) lF ∈ Z>0. We call
lF the local index of F ; it is equal to the integral distance of 0 from the affine hyperplane
spanned by F . The index (or Gorenstein index ) of P is defined as the least common
multiple of the local indices of its facets.

1.3 Reflexive polytopes of higher index

Definition 1. A lattice polytope P is called l-reflexive if, for some l ∈ Z>0, the following
conditions hold:

i. P contains the origin in its (strict) interior;

ii. The vertices of P are primitive;

iii. For any facet F of P the local index lF equals l.

We also refer to P as a reflexive polytope of index l.

The 1-reflexive polytopes are precisely the reflexive polytopes of [4]. Note that the
requirement that the vertices are primitive prevents multiples of 1-reflexive polytopes from
being l-reflexive.

1.4 Duality

Let P ⊆ NQ be a full-dimensional lattice polytope. The dual polyhedron

P ∗ := {y ∈MQ | 〈y, x〉 6 1}

is a (not necessarily lattice) polytope if and only if 0 lies in the interior of P . It is a
well-known characterisation of reflexive polytopes that P is reflexive if and only if P ∗ is
a lattice polytope (see [4]). In this case P ∗ is also a reflexive polytope.

This characterisation has a natural reformulation for l-reflexive polytopes:
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Proposition 2. Let P be a lattice polytope with primitive vertices, such that P contains
the origin in its interior. Then P is l-reflexive if and only if lP ∗ is a lattice polytope
having only primitive vertices. In this case, lP ∗ is also l-reflexive. This induces a natural
duality for l-reflexive polytopes:

P ←→ lP ∗. (1)

Proof. Note that the vertices of P ∗ are precisely the points uF /lF , for each facet F of P .
Analogously, the facets of P ∗ are in one-to-one correspondence with the vertices of P .

If P is l-reflexive then lP ∗ = {uF | F ∈ F(P )}, so any vertex of lP ∗ is primitive.
Moreover, any facet of lP ∗ is given as {x ∈ lP ∗ | 〈v, x〉 = l} for some v ∈ V(P ). Since the
vertices of P are primitive, it follows that any facet of lP ∗ has local index l. Hence lP ∗ is
also l-reflexive.

Conversely, suppose that lP ∗ is a lattice polytope having only primitive vertices. Then
for any facet F ∈ F(P ) we see that l(uF /lF ) is a primitive lattice point. Hence lF = l
and P is l-reflexive.

Finally, since

l(lP ∗)∗ = l(
1

l
P ) = P,

the duality (1) follows by symmetry.

Notice that when l = 1 we recover the usual duality of reflexive polytopes.

1.5 Finiteness, examples, and classification

A reflexive polytope (of index 1) contains only one interior lattice point, which is nec-
essarily the origin. More generally, an l-reflexive polytope P ⊆ NQ may contain several
interior points, however it follows from the definition that

int(P/l) ∩N = {0} ,

or, equivalently, that |int(P ) ∩ lN | = 1. A result of Lagarias and Ziegler [29] implies
that, for fixed dimension n and index l, there are only finitely many isomorphism classes
of n-dimensional l-reflexive polytopes (two polytopes are said to be isomorphic if there
exists a unimodular transformation mapping one polytope to the other).

In dimension one there are no l-reflexive polytopes when l > 1, and only one when
l = 1: the line segment [−1, 1] corresponding to P1. In dimension two the l-reflexive
polygons form a subset of the LDP-polygons studied in [26]. The reader is invited to try
to find some l-reflexive polygons before proceeding. Whilst it is not too difficult to find
all sixteen isomorphism classes of 1-reflexive polygons (draw any convex lattice polygon
with no interior lattice points other than the origin), it is actually quite challenging to
find examples of higher index. For instance, one quickly suspects that there is no reflexive
polygon of index 2. Even more is true, as will be explained in Section 2.

Proposition 3. There is no l-reflexive polygon of even index.
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Up to isomorphism there is precisely one 3-reflexive polygon, which we denote by
P3 and is illustrated in Figure 1. This example generalises to a family of l-reflexive
polygons, one for each odd index. Let Pl be the polygon defined by the convex hull
of {±(0, 1),±(l, 2),±(l, 1)}. This is a centrally-symmetric hexagon and, since l is odd,
Pl is an l-reflexive polygon. To see this note that the vertices of P ∗

l are given by{
±(1

l
, 0),±(2

l
,−1),±(1

l
,−1)

}
. Hence Pl is actually self-dual in the sense that it is iso-

morphic to lP ∗
l .

Figure 1: The unique 3-reflexive polygon P3.

Notice that P := conv{±(0, 1),±(1, 1),±(1, 0)} is, up to isomorphism, the unique 1-
reflexive polygon which is also a centrally-symmetric hexagon, and that Pl = ϕ(P ), where
the map ϕ is given by right multiplication with the matrix(

l 1
0 1

)
.

In Corollary 12 we will generalise this observation to any l-reflexive polygon. This gives
a fast classification algorithm, which we implemented in Magma (see Appendix A).

Theorem 4. For each positive odd integer l let n(l) be the number of isomorphism classes
of l-reflexive polygons. Then, for 1 6 l < 60:

l 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
n(l) 16 1 12 29 1 61 81 1 113 131 2 163 50 2 215

l 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59
n(l) 233 2 34 285 3 317 335 2 367 182 3 419 72 4 469

A complete classification of the l-reflexive polygons up to index 200 is available online
via the Graded Ring Database:

http://grdb.lboro.ac.uk/forms/toriclr2

Corollary 13 in Section 2 implies the following upper bound on the growth of l-reflexive
polygons:

Corollary 5. There are at most 16(φ(l)− 1) isomorphism classes of l-reflexive polygons,
where φ is Euler’s totient function.
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It is an interesting phenomenon that lattice polygons with primitive vertices exhibit
peculiar behaviours which have a number-theoretic flavour [15]. In particular, notice
the astonishingly slow growth in the number of non-isomorphic 3k-reflexive polygons.
Proposition 19 states that these are of a special form: they are self-dual hexagons. By
inspecting the database, we also see that the number of isomorphism classes of self-dual l-
reflexive polygons grows very slowly, although we do not know of a satisfactory explanation
for this observation.

1.6 The “number 12”

Recall that the famous “number 12” property [17, 33, 23, 19] states that the sum of the
number of boundary lattice points on a 1-reflexive polygon and the number of boundary
lattice points on its dual always equals twelve. In Section 2 we extend this property to the
class of reflexive polygons of higher index. While there are only sixteen reflexive polygons
of index 1 up to isomorphism [33], there are infinitely many reflexive polygons of higher
index.

Theorem 6. Let P be a l-reflexive polygon. Then

|∂P ∩N |+ |∂(lP ∗) ∩M | = 12.

Note that P and lP ∗ have the same number of vertices.

Corollary 7. Any reflexive polygon of arbitrary index has at most nine boundary points
and six vertices.

Corollary 8. Any (possibly singular) toric del Pezzo surface whose automorphism group
acts transitively on the set of torus-invariant points has at most six torus-invariant points.

Our proof of Theorem 6 involves a purely combinatorial argument which reduces the
statement to the “number 12” property for 1-reflexive polygons. This classical statement
has a very elegant algebro-geometric proof (see [33]). We wonder whether there is also a
direct argument arising from algebraic geometry in the case of l-reflexive polygons. We
note that the toric surface associated with the fan spanned by the faces of an l-reflexive
polygon is a log del Pezzo surface, i.e., a normal complex surface with ample Q-Cartier
anticanonical divisor −KX and at worst log terminal singularities (see [1, 26, 30]).

1.7 Organisation of the paper

In Section 2 we investigate l-reflexive polygons and consider a non-convex generalisation.
We also prove the results given in Section 1. In Section 3 we describe higher-dimensional
examples and state some open questions.
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2 Dimension two

2.1 l-reflexive loops

There is a generalisation of reflexive polygons due to Poonen and Rodriguez-Villegas [33].
We give the analogous definition for higher index.

Definition 9. Let x1, . . . , xt ∈ N = Z2 be non-zero lattice points, and define x0 := xt,
xt+1 := x1. We say {x1, . . . , xt} is the set of boundary lattice points ∂P∩N of an l-reflexive
loop P of length t if the following three conditions are satisfied for each i = 1, . . . , t:

i. The lattice point xi+1 − xi is primitive;

ii. The determinant of the 2× 2-matrix Ai formed by xi, xi+1 equals ±l;

iii. If xi is a vertex (i.e., xi 6∈ conv{xi−1, xi+1}) then it is primitive.

The length of P is defined as
∑t

i=1 det(Ai)/l. The set of facets of P is naturally given as
the set of line segments between successive vertices. Note that an l-reflexive loop may be
a non-convex or self-intersecting polygonal loop (see Figure 2).

For i = 1, . . . , t, let ui be the primitive outer normal to the segment conv{xi, xi+1}.
Then

t⋃
i=1

conv{ui, ui+1} ∩M

is the set of boundary lattice points of the dual l-reflexive loop lP ∗ (see Figure 2). We leave
it to the reader to check that this is well-defined, and that the duality of Proposition 2
generalises to this setting.

x1

x2
x3 x4

x5

x6x7
x8

u1

u2

u4

u5
u6 u8

u7

u3

Figure 2: A 3-reflexive loop of length 0 and its dual of length 12.

2.2 Change of lattice

Throughout, let P be an l-reflexive loop.

Definition 10. Let ΛP be the lattice generated by the boundary lattice points of P .

Here is our main technical result.
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Proposition 11. Let P be an l-reflexive loop. Then

ΛlP ∗ = lΛ∗
P .

Moreover, ΛP ⊆ N and lΛ∗
P ⊆M are both lattices of index l.

Proof. Let us first show that if x ∈ ∂P ∩ N and uF ∈ V(lP ∗) then 〈uF , x〉 ∈ lZ. We
prove this by inductively showing that if F1, . . . , Fs is a successive sequence of facets of
P (in either clockwise or counter-clockwise order) such that Fi is adjacent to Fi−1 (for
i = 2, . . . , s), and if Fs+1 is the other facet adjacent to Fs, then 〈uF1 , x〉 ∈ lZ for any point
x ∈ Fs+1 ∩N .

By definition we only have to consider s > 1. We may assume by a unimodular
transformation that uF1 = (0, 1). Let uFs+1 = (a, b), x = (c, d) ∈ Fs+1 ∩ N , and v =
(k, l) ∈ V(F1 ∩ F2). Applying the induction hypothesis to Fs+1, Fs, . . . , F2, yields that l
divides 〈uFs+1 , v〉 = ak + bl. Therefore, l divides ak. Since v is primitive, gcd{k, l} = 1,
hence, l divides a. We know that 〈uFs+1 , x〉 = ac + bd = l. Therefore, l divides bd. Since,
uFs+1 is primitive, gcd{a, b} = 1, so gcd{l, b} = 1, hence l divides d = 〈uF1 , x〉 as desired.

By symmetry we may assume x ∈ int(F ) ∩N and y ∈ int(G) ∩M , where F ∈ F(P )
and G ∈ F(lP ∗). Let uF ∈ V(lP ∗) and vG ∈ V(P ) be the corresponding primitive outer
normals. We may again assume that vG = (0, 1). Let uF = (a, b), x = (c, d), y = (k, l).
As we have seen, l divides 〈vG, uF 〉 = b. On the other hand, l = 〈uF , x〉 = ac + bd, so l
divides ac. Since gcd{a, b} = 1, so gcd{a, l} = 1, hence l divides c. Therefore, l divides
ck + dl = 〈x, y〉.

This shows ΛlP ∗ ⊆ lΛ∗
P . To show the converse direction, let F be a facet of P . We

denote by ΛF the lattice generated by the lattice points in F . We may assume that
uF = (0, 1) and hence ΛF is generated by (1, 0), (0, l). For any boundary lattice point x
in P , we have shown that l divides 〈uF , x〉, hence x ∈ ΛF . This proves ΛP = ΛF . In
particular, ΛP ⊆ N has index l. By symmetry, ΛlP ∗ ⊆ M also has index l, and we have
that Λ∗

P is generated by (1, 0) and (0, 1/l). Therefore lΛ∗
P ⊆ M is also a lattice of index

l. Since ΛlP ∗ ⊆ lΛ∗
P are sublattices of M of the same index, they are equal.

2.3 Applications and proofs of results in Section 1

We describe several corollaries to Proposition 11.

Corollary 12. Let P be an l-reflexive loop. Then P is a 1-reflexive loop with respect
to the lattice ΛP , which we call the 1-reflexive loop associated to P . Moreover, its dual
1-reflexive loop is isomorphic to the 1-reflexive loop associated to lP ∗.

Proof. By Proposition 11, ΛlP ∗/l = Λ∗
P . Since any vertex of P ∗ is of the form u/l for some

(primitive) vertex u of lP ∗, the vertices of P ∗ lie in Λ∗
P . They are necessarily primitive,

since for any vertex w ∈ V(P ∗) there is a vertex v ∈ V(P ) such that 〈w, v〉 = 1. Therefore
by Proposition 2 P ∗ is a 1-reflexive loop, say Q∗, with respect to Λ∗

P . Moreover, via
multiplication by l, Q∗ is isomorphic to lP ∗ with respect to the lattice ΛlP ∗ .
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Using this we can derive an efficient classification algorithm for l-reflexive polygons
analogous to an approach by Conrads [14], see Appendix A.

Corollary 13. Let R be a set of representatives of all isomorphism classes of 1-reflexive
polygons (respectively, loops). We may choose any Q ∈ R such that (0, 1) ∈ N is a vertex
of Q and (0, 1) ∈M is a vertex of Q∗. If P is an l-reflexive polygon (respectively, loop) of
index l > 2, then there exists Q ∈ R such that P is isomorphic to the image of Q under
the map (

l i
0 1

)
for 0 < i < l coprime to l.

Proof. By Proposition 11 there is an isomorphism Z2 → ΛP ⊆ Z2 given by right-
multiplying an integer 2×2-matrix H ′ of determinant l. Corollary 12 yields that P = Q′H ′

for some 1-reflexive polygon (equiv. loop) Q′. Thus, by our assumption, there exists Q ∈ R
and a unimodular 2× 2-matrix U ′ such that Q′ = QU ′, hence, U ′H ′ maps Q onto P . The
Hermite normal form theorem yields that there exists a unimodular 2× 2-matrix U such
that H := U ′H ′U is in upper triangular Hermite normal form(

d i
0 l/d

)
for d a divisor of l, and 0 6 i < d. Therefore Q maps via H onto the image P ′ of P
under U . Since (0, 1) is a vertex of Q, the row vector (0, l/d) is a vertex of the l-reflexive
polygon (equiv. loop) P ′ and hence is primitive. Therefore l/d = 1.

Let us consider the dual picture. One checks that l(P ′)∗ is equal to the image of Q∗

under the matrix

M := l(HT )−1 =

(
1 0
−i l

)
.

Define g := gcd{l, i} 6= 0. There exist unique integers j, k with 0 6 j < l/g such that

− ji + kl = g. (2)

Therefore, we can define an integer matrix J with det(J) = 1 by setting

J :=

( l
g

j
i
g

k

)
.

Hence

M · J =

(
l
g

j

0 g

)
=: K

is in Hermite normal form. Therefore l(P ′)∗ is isomorphic to the image of Q∗ under the
matrix K. As above, our assumption that (0, 1) is a vertex of Q∗ implies that g = 1, as
desired.
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Remark 14. Notice that if

H :=

(
l i
0 1

)
and K :=

(
l j
0 1

)
are the matrices in Corollary 13 yielding P and lP ∗ then, by equation (2), ij ≡ −1 (mod l).

Since there are only sixteen non-isomorphic reflexive polygons (see, e.g., [33]), this
gives a very rapid algorithm for classifying l-reflexive polygons. It also explains why
Corollary 5 holds.

Let us prove Theorem 6 in the more general setting of l-reflexive loops. Note that
l-reflexive loops have a well-defined winding number w(P ) ∈ Z (see [33] in the case of
1-reflexive loops; then apply Corollary 12).

Corollary 15. Let P be an l-reflexive loop. Then the sum of the length of P and the
length of lP ∗ equals 12 w(P ).

Proof. Let Q be the associated 1-reflexive loop with respect to the lattice L := ΛP . By [33]
we know that the desired statement holds for the pair Q, Q∗. Let bN(P ) denote the number
of boundary lattice points of an l-reflexive loop P . By definition bL(Q) = bN(P ), and by
Proposition 11 and Corollary 12, bL∗(Q∗) = blL∗(lQ∗) = bΛlP∗ (lP

∗) = bM(lP ∗).

It would be interesting to prove Corollary 15 directly by generalising the proof for
1-reflexive loops as given in [33].

Finally, we prove Proposition 3, which states that there are no l-reflexive polygons
of even index l. Experimental evidence suggests that this statement should also hold
for l-reflexive loops, however we do not yet know how to generalise it to the non-convex
setting.

Proof of Proposition 3. Assume l is even. Let F be a facet of P . We may assume that
its vertices are given as (a, l) and (b, l). Since the vertices of P are primitive, a and b are

odd. Therefore, the midpoint (a,l)+(b,l)
2

of the facet F is a lattice point.
By symmetry, this shows that any facet of P and of lP ∗ contains an interior lattice

point. By Corollary 12, this property also holds for Q and Q∗, where Q is the associated
1-reflexive polygon. However, by inspecting the list of sixteen isomorphism classes of
1-reflexive polygons we see that this is not possible.

2.4 Roots of Ehrhart polynomials of l-reflexive polygons

In this section we shall discuss roots of Ehrhart polynomials and generalise some results
concerning reflexive polygons.

By Corollary 12 any statement about boundary lattice points or vertices of a 1-reflexive
polygon also holds for l-reflexive polygons. For instance, it is clear that l-reflexive polygons
have at most 6 vertices. In any dimension, the normalised volume of an l-reflexive polytope
is related to the boundary volume via Vol(P ) = lVol(∂P ). In the two dimensional case,
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the normalised volume can be easily computed as Vol(P ) = lb, where b is the number of
boundary lattice points of P (and, in particular, 3 6 b 6 9).

Let LP (m) := |mP ∩N | denote the number of lattice points in P dilated by a factor
of m ∈ Z>0. This is known to be a polynomial of degree d := dim P , called the Ehrhart
polynomial. The roots of LP (regarded as a polynomial over C) have been the subject of
much study, e.g., [8, 22]. In particular, it is known that if all roots z ∈ C of LP (m) satisfy
Re(z) = −1/2, then P is a reflexive polytope [11, Proposition 1.8]. In dimension two we
can generalise this result:

Proposition 16. Let P be an LDP-polygon of index l such that for all roots z ∈ C of
LP (m), Re(z) = −1/(2l). Then P is an l-reflexive polygon.

Proof. Let −1/(2l)± αi be the two roots of LP (m). Then

LP (m) = β

(
m +

1

2l
+ αi

) (
m +

1

2l
− αi

)
= βm2 +

β

l
m + β

(
1

4l2
+ α2

)
,

hence β = (1/2)Vol(P ), β (1/(4l2) + α2) = 1, and

Vol(P ) = lVol(∂P ) .

Let F ∈ F(P ) be an edge, and let lF be the corresponding local index. The above result
tells us that ∑

F∈F(P )

(l − lF )Vol(F ) = 0.

But lF 6 l for all F ∈ F(P ), hence lF = l and so P is l-reflexive.

While the converse is not true even for 1-reflexive polygons (see [11, 20]) we can give
the following more precise statement:

Proposition 17. Let P be an l-reflexive polygon not isomorphic to the convex hull of
{(−1,−1), (−1, 2), (2,−1)} (see Figure 3). If z ∈ C is a root of LP (m), then Re(z) =
−1/(2l).

Proof. It follows from Pick’s theorem (e.g., [10, Thm.2.9]) that

LP (m) =
lb

2
m2 +

b

2
m + 1.

Let z ∈ C be a root of LP . We get

z = − 1

2l
±
√

b2 − 8lb

2lb
.

Since b2−8lb 6 0 for all 3 6 b 6 9 and l > 1 with the exception of b = 9, l = 1, the result
follows.
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Figure 3: The unique exception to Proposition 17.

Remark 18. Using Pick’s theorem it is also straightforward to compute the generating
function EhrP of the Ehrhart polynomial LP :

EhrP (t) :=
∑
m>0

LP (m)tm =
h∗P (t)

(1− t)3
,

where

h∗P (t) = 1 + (|P ∩N | − 3)t + it2 = 1 +

(
l + 1

2
b− 2

)
t +

(
l − 1

2
b + 1

)
t2.

The coefficients of the numerator h∗P are palindromic if and only if l = 1.
In general, for any l-reflexive polytope P of dimension n, the (rational) polytope P/l

has Ehrhart generating function

EhrP/l(t) =
h∗P/l(t)

(1− tl)n+1
,

where h∗P/l is a polynomial of degree l(n+1)−1 with palindromic coefficients. This holds

by [16], since the dual polytope lP ∗ is a lattice polytope by Proposition 2. When l = 1
we recover the well-known result by Hibi [21].

2.5 3k-reflexive polygons

As observed in the introduction, there are only very few l-reflexive polygons for l divisible
by 3. Here, we give a partial explanation of this surprising phenomenon.

Proposition 19. Let P be a 3k-reflexive polygon, where k is an odd positive integer.
Then P can be obtained from the 1-reflexive hexagon Q := conv{±(0, 1), ±(1, 1), ±(1, 0)}
(in the sense of Corollary 13). Furthermore, P ∼= 3kP ∗.

Proof. Let P := QH be a 3k-reflexive polygon, where

H :=

(
3k i
0 1

)
, gcd{3k, i} = 1.
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On the dual side, by Remark 14 we have that 3kP ∗ ∼= Q∗K where

K :=

(
3k j
0 1

)
, gcd{3k, j} = 1, ij ≡ −1 (mod 3k).

Hence if i ≡ 1 (mod 3) then j ≡ 2 (mod 3), and if i ≡ 2 (mod 3) then j ≡ 1 (mod 3). We
shall consider the sixteen possible choices for Q, and exclude all but the self-dual hexagon.

i. Suppose (after possible change of basis) that the vertices of Q include the points
(0, 1), (2, 1), and (−1,−1) (i.e., Q contains the triangle associated with P(1, 1, 2)).
Then (6k, 2i + 1) and (−3k,−i− 1) are vertices of P . But one of these points must
be divisible by 3, and hence is not primitive. This allows us to exclude the first six
polygons in Figure 4(a), along with their duals. Up to isomorphism, this excludes
all eight polygons depicted in Figure 4(a).

ii. Now suppose that V(Q) contains (0, 1), (1, 1), and (−1,−2) (i.e., the triangle asso-
ciated with P2). Then (3k, i + 1) and (−3k,−i − 2) are vertices of P . Once again
we see that these cannot both be primitive, excluding the first two polygons in
Figure 4(b) and their duals. This excludes the four polygons shown in Figure 4(b).

iii. Let Q := conv{(0, 1), (3, 1), (−1,−1)} be the triangle associated with P(1, 2, 3).
Then (−3k,−i − 1) is a vertex of P , forcing i ≡ 1 (mod 3). The dual Q∗ has
vertices {(−2, 1), (0, 1), (1,−2)}; in particular (3k, j− 2) is a vertex of Q∗K, giving
j ≡ 1 (mod 3). This is a contradiction.

iv. Consider Q := conv{±(0, 1),±(1, 1)} (the polygon associated with P1 × P1). We
see that QH has vertex (3k, i + 1), giving i ≡ 1 (mod 3). On the dual side, Q∗ has
vertices {±(0, 1), ±(−2, 1)}. This gives (−6k,−2j + 1) ∈ V(Q∗K), again forcing
j ≡ 1 (mod 3). This excludes the final two cases.

The only remaining possibility is that Q is the self-dual hexagon with vertices {±(0, 1),
±(1, 1), ±(1, 0)}. We show by direct calculation that P = QH is also self-dual. The
vertices of P are given by {±(0, 1), ±(l, i+1), ±(l, i)}, and the vertices of lP ∗ = Q∗l(H t)−1

are {±(i,−l), ±(i + 1,−l), ±(1, 0)}. These are clearly isomorphic.

Note that any i such that gcd{3k, i} = gcd{3k, i + 1} = 1 will give a 3k-reflexive
hexagon, however these need not be distinct. With more care, it is possible to give precise
number-theoretic conditions for this to happen. This allows a very rapid enumeration of
the possible i that give non-isomorphic 3k-reflexive hexagons.

3 Examples and open questions in higher dimensions

3.1 Motivational questions

Motivated by the positive results in dimension two, there are many natural questions one
may ask about l-reflexive polytopes in higher dimensions. Which of the results in dimen-
sion two extend to higher dimensions? What other properties of 1-reflexive polytopes
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(a) Case (i)

(b) Case (ii)

Figure 4: The polygons excluded in cases (i) and (ii) of the proof of Proposition 19.

can be generalised to higher index? Do the corresponding hypersurfaces have interesting
properties – at least, if the we assume that the ambient space has mild (say, isolated) sin-
gularities? What about possible relations to Mirror Symmetry and Calabi-Yau varieties,
which spurred the initial interest in 1-reflexive polytopes [4]? We remark that Gorenstein
polytopes (lattice polytopes where some rth-multiple is reflexive) may be regarded as being
“1

r
-reflexive”; they also satisfy a beautiful duality and are related to the construction of

mirror-symmetric Calabi-Yau complete intersections [7, 3]. Can we say something similar
about “ l

r
-reflexive polytopes”?

As we will illustrate below in the three-dimensional situation, we cannot expect direct
generalisations of most results given in this paper. However, we are nevertheless convinced
that there are many interesting results about (possibly subclasses of) l-reflexive polytopes
in higher dimensions, and that their study is worthwhile.

3.2 Any index is possible in dimension three

In dimension two, l-reflexive polygons only exist for odd l. This is not true in dimension
three. Let P be the tetrahedron with vertices {(−l,−1, 0), (l, 0,−1), (0, 1, 0), (0, 0, 1)}.
Then P ∗ is the convex hull of {(−2/l,−1,−1), (2/l,−1,−1), (−2/l, 3,−1), (2/l,−1, 3)}.
Therefore P is l-reflexive if l is odd, and l/2-reflexive if l is even. In particular, there exist
three-dimensional l-reflexive polytopes for any index.

3.3 Two examples in dimension three

The main results in Section 2 fail to hold in dimension three. Perhaps the simplest coun-
terexample is the tetrahedron P with vertices {(1, 0, 0), (3, 4, 0), (5, 0, 8), (−9,−4,−8)}.
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This is a 2-reflexive polytope with ΛP = N , hence neither Proposition 11 nor Corollary 12
generalise to higher dimensions.

The toric variety corresponding to P is a fake weighted projective space, P3/(Z/4 ×
Z/8). By definition we have that P restricted to ΛV(P ) is the 1-reflexive simplex associated
with P3. The dual polytope 2P ∗ is also 2-reflexive. In this case the corresponding toric
variety is P3/(Z/4), which has canonical singularities1. Interestingly, 2P ∗ has only the
origin as an interior lattice point, whilst its index is 2. Such behaviour is not possible
in dimension two. Notice that P is 1-reflexive with respect to the index-four sublattice
generated by its edges; we denote this lattice by ΛE(P ). This restriction gives the polytope
P ′ with vertices {(−9,−2,−4), (1, 0, 0), (3, 2, 0), (5, 0, 4)}. Similarly, restricting 2P ∗ to
the index-two sublattice ΛE(2P ∗) yields a 1-reflexive polytope Q with vertices {(−1, 1, 1),
(−1, 1, 2), (−1, 3, 1), (3,−5,−4)}. Furthermore, P ′∗ ∼= Q.

Unfortunately, three-dimensional l-reflexive polytopes are not necessarily 1-reflexive
with respect to the sublattice generated by the edges. For consider the simplex T associ-
ated with P(1, 2, 3, 6), namely the convex hull of {(−2,−3,−6), (1, 0, 0), (0, 1, 0), (0, 0, 1)}.
Let

H :=

4 0 1
0 4 3
0 0 1

 .

The resulting polytope S := TH with vertices {(−8,−12,−17), (4, 0, 1), (0, 4, 3), (0, 0, 1)}
is 2-reflexive. If we restrict S to the index-two sublattice ΛE(S), the resulting simplex is not
a reflexive polytope (it corresponds to fake weighted projective space P(1, 2, 3, 6)/(Z/2×
Z/4)).

3.4 Classification algorithms in higher dimensions?

Our classification algorithm in dimension two relies on the fact that for any l-reflexive
polygon P there exists a 1-reflexive polygon Q such that P is the image of an integer
2× 2-matrix of determinant l (Corollary 12). This motivates our main question:

Question: Is an l-reflexive polytope P 1-reflexive with respect to the vertex lattice
ΛV(P )?

We do not know of a counterexample. However, even if this question has a positive
answer, it does not immediately yield a general classification algorithm. Notice that the
2-reflexive polytope S in Subsection 3.3 is the image under multiplication by a matrix of
determinant 16 > 2. This shows that it would be necessary to have an upper bound on
the index of the vertex lattice of l-reflexive polytopes in dimension n, perhaps something
analogous to Corollary 2.11 in [24]. This is not clear even for l = 1.

1ID 547364 in the classification of toric canonical Fano threefolds [25]; see the online Graded Ring
Database.
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3.5 The edge lattice and the number 24

Analogous to the “number 12”-property in dimension two, there is a well-known property
of three-dimensional 1-reflexive polytopes refered to as the “number 24”-property:

Theorem 20 ([9, Theorem 4.3]). Let P ⊂ NQ be a three-dimensional reflexive polytope.
Then: ∑

E∈E(P )

Vol(E) · Vol(E∗) = 24,

where E∗ is the edge in P ∗ corresponding to E, and Vol(E) := |E ∩N | − 1.

Let us again consider the first example of a 2-reflexive tetrahedron P in Subsection 3.3.
Since P ′∗ ∼= Q, we observe that a reformulation of Theorem 20 holds for the 2-reflexive
polytope P and its dual 2P ∗, where we understand E∗ to mean the edge in 2P ∗ corre-
sponding to E.

On the other hand, in the second example of a 2-reflexive tetrahedron S in Subsec-
tion 3.3, one computes that this generalised 24-property does not hold; the sum is 28.
These observations motivate the following conjecture:

Conjecture 21. If P is a three-dimensional l-reflexive polytope such that P restricted to
ΛE(P ) is isomorphic to a 1-reflexive polytope Q, then lP ∗ restricted to ΛE(lP ∗) is isomorphic
to Q∗. In particular P satisfies the 24-property.

We checked this conjecture for all l-reflexive polytopes contained in the classification
of all three-dimensional canonical Fano polytopes [25].

Remark 22. For a higher-dimensional version of the previous conjecture, we would expect
to restrict to the sublattice generated by the codimension-two faces. Motivation for this
comes from the main result in [18]: in dimension three or higher, the sublattice generated
by all lattice points in a 1-reflexive polytope P equals the sublattice generated by all
lattice points in codimension-two faces of P .
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A Magma source code

The following basic Magma code can be used to regenerate the classification of l-reflexive
polygons.
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// Returns true iff P is l-reflexive for some index l. Also returns l.

function is_l_reflexive(P)

if not IsFano(P) then return false,_; end if;

l:=GorensteinIndex(P);

if &and[Denominator(v) eq l : v in Vertices(Dual(P))] then

return true,l;

else

return false,_;

end if;

end function;

// Compute all non-isomorphic l-reflexive polygons generated by

// the Hermite normal forms with determinant l.

procedure generate_polys(l,~polys)

if l eq 1 then

polys[1]:=[PolytopeReflexiveFanoDim2(id) : id in [1..16]];

return;

end if;

polys[l]:=[];

Hs:=[Matrix(2,2,[l, i, 0, 1]) : i in [1..l-1] | GCD(l,i) eq 1];

for id in [1..16] do

P:=PolytopeReflexiveFanoDim2(id);

for H in Hs do

Q:=P * H;

bool,k:=is_l_reflexive(Q);

if bool and not &or[IsIsomorphic(Q,R) : R in polys[k]] then

Append(~polys[k],Q);

end if;

end for;

end for;

end procedure;

// The main loop (runs from index 1 to 29, takes approx. 1 minute)

polys:=AssociativeArray(Integers());

for l in [1..29 by 2] do generate_polys(l,~polys); end for;
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