A note on palindromic δ-vectors for certain rational polytopes

Matthew H. J. Fiset and Alexander M. Kasprzyk*
Department of Mathematics and Statistics
University of New Brunswick
Fredericton, NB, Canada
u0a35@unb.ca, kasprzyk@unb.ca

Submitted: May 19, 2008; Accepted: Jun 1, 2008; Published: Jun 6, 2008
Mathematics Subject Classifications: 05A15, 11H06

Abstract

Let P be a convex polytope containing the origin, whose dual is a lattice polytope. Hibi's Palindromic Theorem tells us that if P is also a lattice polytope then the Ehrhart δ-vector of P is palindromic. Perhaps less well-known is that a similar result holds when P is rational. We present an elementary lattice-point proof of this fact.

1 Introduction

A rational polytope $P \subset \mathbb{R}^{n}$ is the convex hull of finitely many points in \mathbb{Q}^{n}. We shall assume that P is of maximum dimension, so that $\operatorname{dim} P=n$. Throughout let k denote the smallest positive integer for which the dilation $k P$ of P is a lattice polytope (i.e. the vertices of $k P$ lie in \mathbb{Z}^{n}).

A quasi-polynomial is a function defined on \mathbb{Z} of the form:

$$
q(m)=c_{n}(m) m^{n}+c_{n-1}(m) m^{n-1}+\ldots+c_{0}(m),
$$

where the c_{i} are periodic coefficient functions in m. It is known ([Ehr62]) that for a rational polytope P, the number of lattice points in $m P$, where $m \in \mathbb{Z}_{\geq 0}$, is given by a quasi-polynomial of degree $n=\operatorname{dim} P$ called the Ehrhart quasi-polynomial; we denote this by $L_{P}(m):=\left|m P \cap \mathbb{Z}^{n}\right|$. The minimum period common to the cyclic coefficients c_{i} of L_{P} divides k (for further details see [BSW08]).

[^0]Stanley proved in Sta80 that the generating function for L_{P} can be written as a rational function:

$$
\operatorname{Ehr}_{P}(t):=\sum_{m \geq 0} L_{P}(m) t^{m}=\frac{\delta_{0}+\delta_{1} t+\ldots+\delta_{k(n+1)-1} t^{k(n+1)-1}}{\left(1-t^{k}\right)^{n+1}}
$$

whose coefficients δ_{i} are non-negative. For an elementary proof of this and other relevant results, see [BS07] and BR07]. We call $\left(\delta_{0}, \delta_{1}, \ldots, \delta_{k(n+1)-1}\right)$ the (Ehrhart) δ-vector of P.

The dual polyhedron of P is given by $P^{\vee}:=\left\{u \in \mathbb{R}^{n} \mid\langle u, v\rangle \leq 1\right.$ for all $\left.v \in P\right\}$. If the origin lies in the interior of P then P^{\vee} is a rational polytope containing the origin, and $P=\left(P^{\vee}\right)^{\vee}$. We restrict our attention to those P containing the origin for which P^{\vee} is a lattice polytope.

We give an elementary lattice-point proof that, with the above restriction, the δ vector is palindromic (i.e. $\delta_{i}=\delta_{k(n+1)-1-i}$). When P is reflexive, meaning that P is also a lattice polytope (equivalently, $k=1$), this result is known as Hibi's Palindromic Theorem Hib91. It can be regarded as a consequence of a theorem of Stanley's concerning the more general theory of Gorenstein rings; see [Sta78].

2 The main result

Let P be a rational polytope and consider the Ehrhart quasi-polynomial L_{P}. There exist k polynomials $L_{P, r}$ of degree n in l such that when $m=l k+r$ (where $l, r \in \mathbb{Z}_{\geq 0}$ and $0 \leq r<k)$ we have that $L_{P}(m)=L_{P, r}(l)$. The generating function for each $L_{P, r}$ is given by:

$$
\begin{equation*}
\operatorname{Ehr}_{P, r}(t):=\sum_{l \geq 0} L_{P, r}(l) t^{l}=\frac{\delta_{0, r}+\delta_{1, r} t+\ldots+\delta_{n, r} t^{n}}{(1-t)^{n+1}} \tag{2.1}
\end{equation*}
$$

for some $\delta_{i, r} \in \mathbb{Z}$.
Theorem 2.1. Let P be a rational n-tope containing the origin, whose dual P^{\vee} is a lattice polytope. Let k be the smallest positive integer such that $k P$ is a lattice polytope. Then:

$$
\delta_{i, r}=\delta_{n-i, k-r-1}
$$

Proof. By Ehrhart-Macdonald reciprocity ([Ehr67, Mac71]) we have that:

$$
L_{P}(-l k-r)=(-1)^{n} L_{P^{\circ}}(l k+r),
$$

where L_{P} 。 enumerates lattice points in the strict interior of dilations of P. The lefthand side equals $L_{P}(-(l+1) k+(k-r))=L_{P, k-r}(-(l+1))$. We shall show that the right-hand side is equal to $(-1)^{n} L_{P}(l k+r-1)=(-1)^{n} L_{P, r-1}(l)$.

Let $H_{u}:=\left\{v \in \mathbb{R}^{n} \mid\langle u, v\rangle=1\right\}$ be a bounding hyperplane of P, where $u \in \operatorname{vert} P^{\vee}$. By assumption, $u \in \mathbb{Z}^{n}$ and so the lattice points in \mathbb{Z}^{n} lie at integer heights relative to
H_{u}; i.e. given $u^{\prime} \in \mathbb{Z}^{n}$ there exists some $c \in \mathbb{Z}$ such that $u^{\prime} \in\left\{v \in \mathbb{R}^{n} \mid\langle u, v\rangle=c\right\}$. In particular, there do not exist lattice points at non-integral heights. Since:

$$
P=\bigcap_{u \in \operatorname{vert} P^{\vee}} H_{u}^{-},
$$

where H_{u}^{-}is the half-space defined by H_{u} and the origin, we see that $\left(m P^{\circ}\right) \cap \mathbb{Z}^{n}=$ $((m-1) P) \cap \mathbb{Z}^{n}$. This gives us the desired equality.

We have that $L_{P, k-r}(-(l+1))=(-1)^{n} L_{P, r-1}(l)$. By considering the expansion of (2.1) we obtain:

$$
\begin{aligned}
\sum_{i=0}^{n} \delta_{i, k-r}\binom{-(l+1)+n-i}{n} & =L_{P, k-r}(-(l+1)) \\
& =(-1)^{n} L_{P, r-1}(l)=(-1)^{n} \sum_{i=0}^{n} \delta_{i, r-1}\binom{l+n-i}{n}
\end{aligned}
$$

But $\binom{-(l+1)+n-i}{n}=(-1)^{n}\binom{l+n-i}{n}$, and since $\binom{l}{n},\binom{l+1}{n}, \ldots,\binom{l+n}{n}$ form a basis for the vector space of polynomials in l of degree at most n, we have that $\delta_{i, k-r}=\delta_{n-i, r-1}$.

Corollary 2.2. The δ-vector of P is palindromic.
Proof. This is immediate once we observe that:

$$
\operatorname{Ehr}_{P}(t)=\operatorname{Ehr}_{P, 0}\left(t^{k}\right)+t \operatorname{Ehr}_{P, 1}\left(t^{k}\right)+\ldots+t^{k-1} \operatorname{Ehr}_{P, k-1}\left(t^{k}\right)
$$

3 Concluding remarks

The crucial observation in the proof of Theorem 2.1] is that $\left(m P^{\circ}\right) \cap \mathbb{Z}^{n}=((m-1) P) \cap \mathbb{Z}^{n}$. In fact, a consequence of Ehrhart-Macdonald reciprocity and a result of Hibi Hib92 tells us that this property holds if and only if P^{\vee} is a lattice polytope. Hence rational convex polytopes whose duals are lattice polytopes are characterised by having palindromic δ vectors. This can also be derived from Stanley's work [Sta78] on Gorenstein rings.

References

[BR07] Matthias Beck and Sinai Robins, Computing the continuous discretely, Undergraduate Texts in Mathematics, Springer, New York, 2007, Integer-point enumeration in polyhedra.
[BS07] Matthias Beck and Frank Sottile, Irrational proofs for three theorems of Stanley, European J. Combin. 28 (2007), no. 1, 403-409.
[BSW08] Matthias Beck, Steven V. Sam, and Kevin M. Woods, Maximal periods of (Ehrhart) quasi-polynomials, J. Combin. Theory Ser. A 115 (2008), no. 3, 517525.
[Ehr62] Eugène Ehrhart, Sur les polyèdres homothétiques bordés à n dimensions, C. R. Acad. Sci. Paris 254 (1962), 988-990.
[Ehr67] __ Sur un problème de géométrie diophantienne linéaire. II. Systèmes diophantiens linéaires, J. Reine Angew. Math. 227 (1967), 25-49.
[Hib91] Takayuki Hibi, Ehrhart polynomials of convex polytopes, h-vectors of simplicial complexes, and nonsingular projective toric varieties, Discrete and computational geometry (New Brunswick, NJ, 1989/1990), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 6, Amer. Math. Soc., Providence, RI, 1991, pp. 165-177.
[Hib92] , Dual polytopes of rational convex polytopes, Combinatorica 12 (1992), no. 2, 237-240.
[Mac71] I. G. Macdonald, Polynomials associated with finite cell-complexes, J. London Math. Soc. (2) 4 (1971), 181-192.
[Sta78] Richard P. Stanley, Hilbert functions of graded algebras, Advances in Math. 28 (1978), no. 1, 57-83.
[Sta80] , Decompositions of rational convex polytopes, Ann. Discrete Math. 6 (1980), 333-342, Combinatorial mathematics, optimal designs and their applications (Proc. Sympos. Combin. Math. and Optimal Design, Colorado State Univ., Fort Collins, Colo., 1978).

[^0]: *The first author was funded by an NSERC USRA grant. The second author is funded by an ACEnet research fellowship.

