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Abstract: 

The need to protect underwater cultural heritage from biodegradation is paramount, however 

with many sites needing funding and support, it is hard to prioritise, thus the ability to 

identify high risk sites is crucial to ensure resources are best placed. In doing so a clear 

understanding of environmental conditions acting upon a site and abundance and composition 

of species present is essential to this identification. Therefore, the aim of this study was to 

assess the rate of biodegradation on four underwater cultural heritage sites in different marine 

environments by placing a series of wooden test panels in direct contact with the exposed 

structure on the sites. Upon recovery, test panels were photographed, X-rayed, and wood 

boring and sessile fouling species were identified and counted. The damage attributed to each 

species was recorded with CAD software. Results indicated a significant difference between 

sites, with HMS Invincible having the highest abundance of marine wood borers and the 

highest rate of surface area and volume degradation; whilst vestigial evidence of marine 

wood borers was found on the London, it would appear the environmental conditions had 

significantly impeded their survival. The study indicated further factors such as sediment type 

and coverage, availability of wood and the proximity of other colonised sites were also 

determining factors controlling the abundance of marine wood borers and the rate of 

biodegradation. 
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1.0 Introduction 

For centuries, timber has been a focal material for shipbuilding, with its wide spread 

availability, natural hardiness and workable qualities (Eaton & Hale 1993); furthermore, 

numerous timber species are available, dependant on region, with elm, oak and pine most 

commonly used in European shipbuilding until mid-19
th

 century (Couper 2000, McGrail 

2001). England has derived a prominent relationship with the sea, building global trade 

networks and developing a strong naval force (Smith 2009, Vego 2016); as such, the English 

Channel has an extensive history of trade, transport and warfare reflected in the many 

underwater cultural heritage (UCH) sites along the coastline (Pater 2007). However, many of 

these wooden UCH sites are at risk of degradation by marine wood borers within the 

Amphipoda, Isopoda and Myodia (Borges 2014).  

Teredinidae (Mollusca:Bivalvia), consist of 68 species (Voight 2015), with Teredo navalis 

and Lyrodus pedicellatus commonly found within English waters. Both are protandrous 

hermaphrodites; born as males, they later transition into females, and spawn free swimming 

larvae into the water column (Coe 1943, Lane 1959, Appelqvist & Havenhand 2016). 

T.navalis remains in the water column for 17-34 days before settlement, and are capable of 

travelling large distances and inhabiting a range of sites (Appelqvist et al 2015, Lippert et al 

2017). L.pedicellatus retains their eggs until they are further along in their developmental 

stage (Wurzinger-Mayer et al 2014); due to this, L.pedicellatus remain in the water column 

for 24-48 hours, making them more likely to recolonise the same site compared to T.navalis 

(Borges et al 2010). This method aids in minimising larval mortality and the risk of being 

carried to unfavourable environments. After settlement, Teredinidae larvae metamorphose, 

and the development of a shell covered in serrated teeth enables them to bore, and tunnel 

formation begins (Quayle 1992, Lippert et al 2017). Within these tunnels, Teredinidae grow 

and consume wood for the duration of their lives, however, survival and growth of 

Teredinidae is linked to the availability of wood, thus rapid settlement and growth are vital to 

survival (Cragg et al 2009, Macintosh et al 2014) but detrimental to the wood they live 

within.  

Limnoria (Crustacea: Isopoda) have a worldwide distribution with L.lignorum, 

L.quadripunctata and L.tripunctata abundant in English waters (Jones 1963). Limnoria give 

birth to a small number of live young (Eltringham & Hockley 1961, Quayle 1992), providing 

extended parental care, and enabling a low mortality rate (Mohr 1959, Thiel 2003). The 

young rapidly mature and begin to bore secondary burrows away from the maternal burrow, 

forming interconnecting burrows under the surface of the wood (Mohr 1959, Thiel 2003). 

Due to their limited swimming capabilities Limnoria can only migrate over short distances, 

and as a result develop large, rapidly growing aggregations that aggressively attack wood 

until depletion (Mohr 1959, Thiel 2003). The burrows destroy the wood’s original surface 

area, and as weakened wood breaks away, Limnoria burrow deeper, eventually depleting the 

wood volume.  

The marine amphipod, Chelura terebans, is found in association with Limnoria and has a 

preference for pre-softened wood, in which they bore to enlarge Limnoria burrows (Poore et 



al 2002, Green Etxabe 2013). Independently, C.terebans is not a major concern, mainly 

because they rely on wood for shelter rather than nutrition (Green Etxabe 2013); however the 

concerning factor is C.terebans’ ability to worsen the damage made by Limnoria. 

Teredinidae, Limnoria and C.terebans are affected by differences in the marine environment, 

thus varying environmental conditions can affect the rate of biodegradation (Florian et al 

1977). Temperature and salinity are dominant factors affecting distribution, growth and 

reproduction of marine wood borers (Eltringham & Hockley 1961, Nair & Saraswathy 1971, 

Appelqvist et al 2015). T.navalis has a broad tolerance to temperature and salinity, allowing a 

long spawning season in English waters and the ability to settle in diverse habitats; whilst 

L.pedicellatus shares similar temperature tolerances, their salinity tolerance limits them to 

marine sites (Table 1), (Nair & Saraswathy 1971, Borges et al 2010, Paalvast and Van de 

Velde 2011, Borges 2014, Borges et al 2014 a, Appelqvist et al 2015, Appelqvist & 

Havenhand 2016, Lippert et al 2017, Fofonoff et al 2018 a). L.lignorum are suited to 

salinities in brackish and marine waters, and a preference for cooler temperatures allows them 

to reproduce throughout most of the year, with a wide distribution across the UK; 

L.quadripunctata and L.tripunctata are restricted to warmer marine waters, and thus limited 

to the south of England (Table 1), (Jones 1963, Borges et al 2010, Borges et al 2014 b, 

Fofonoff et al 2018 b). Temperature preferences may also affect depth distribution; Limnoria 

are abundant in shallow waters, living in the intertidal range to 30 m (Cookson 1991, 

Shalaeva 2012), however, the depth distribution for C.terebans is unknown, but it is active in 

warmer shallow waters down to at least 12 m (unpublished results). Similarly, T.navalis has a 

depth range down to 150 m but is more abundant and destructive in shallower waters down to 

20 m (Bernard et al 1993, Elam 2009). Thus, most shallow sites lying within optimum 

temperature ranges, such as the majority of wooden protected wreck sites along the south 

coast of England (Historic England 2018), are at risk of biodegradation.  

Dissolved oxygen is a dominant factor controlling the distribution and survival of marine 

wood borers (Menzies et al 1963, Anderson & Reish 1967, Eriksen et al 2014), and should be 

considered alongside sediment type and coverage, which can create anoxic conditions and 

affect larval settlement; hence, studies have successfully trialled various reburial methods of 

wooden UCH, aiming to produce anoxic conditions for in situ preservation (Gregory 1998, 

Palma 2005, Curci 2006,  Manders 2006, Bjordal & Nilsson 2008, Palma & Parham 2009, 

Eriksen et al 2014). Other factors for consideration are the availability of wood and 

competition for space, particularly with sessile fouling species (Weiss 1948, Quayle 1992), 

water movements, which although may aid larval settlement and burrow oxygenation, can 

also have opposing effects (Doochin & Smith 1951), and the wood type and direction of cut 

(Eriksen et al 2016). Marine wood borers have a preference to non-durable wood (Sivrikaya 

et al 2009) , but studies have shown Teredinidae prefer wood cut on the radial plane, which is 

common on clinker built boats such as the Skuldelev ships, Bremen cog and Grace Deiu, 

where timber was radially split for construction (Crumlin-Pedersen 1984, Litwin 1998, 

Childs 2009, Eriksen et al 2016). 

New UCH sites are found each year, and with minimal funds and resources for excavation, 

there has been a shift in the way UCH is managed (Manders et al 2009, 180, Eriksen et al 



2015), hence European and international conventions (Valetta Treaty 1992, ICOMOS Charter 

1996, UNESCO Convention 2001) now recommend that long term in situ preservation of 

UCH should be considered the first option over excavation. In line with these policies, a 

number of projects (MoSS 2003, Wreck Protect (Manders 2011), SASMAP (Manders & 

Gregory 2015 a, b) have developed methods for monitoring and in situ preservation in 

different environments; additionally, some of these projects have highlighted that severity of 

attack by marine wood borers is dependent on environmental conditions. Thus, for in situ 

protection to work, an understanding of the behaviour of marine boring species in different 

environments is needed, with a strong understanding of site conditions to ensure conducive 

recommendations for the most constructive and cost effective methods. Furthermore, with 

numerous UCH sites requiring support, and limited time and funding, this information could 

allow for easy identification of high risk sites, so support and funding can be prioritised 

without risking further degradation. Therefore, the aim of this study was to assess the rate of 

biodegradation in relation to species abundance across four sites with varying environmental 

conditions; this would allow for the identification of key conditions which affect the rate of 

biodegradation and the identification of potentially high risk sites in comparison to low risk 

sites.  

2.0 Method 

Three test panels of elm (Ulmus.sp.), oak (Quercus.sp.) and pine (P.sylvestris) (timber 

identification pers comm), (total nine panels) sized 200x75x25 mm, in accordance with 

EN275 (1992) standards, were placed across four shipwreck sites in the English Channel 

(Fig.1). Test panels were cut tangentially using a band saw; however, archaeological wood 

would have been prepared differently with axes, adzes and hand saws and would be radially 

split for clinker built boats or tangentially sawn for carvel built boats (Crumlin-Pedersen 

1984, Childs 2009). Nonetheless, deployment of these test panels has given an indication into 

biodegradation on these sites and the species present.  

2.1 Test Panel Deployment  

Test panels were deployed on the London and HMS Invincible for six months throughout the 

summer of 2016; there was a limited window for deployment and retrieval on the other sites, 

thus test panels were deployed for four months on Poole Cannon Site and five months on the 

West Bay Wreck (Table 2). To ensure the test panels were faced with the same environmental 

conditions as the archaeological timber on the sites, they were tied in direct contact with the 

wreck’s exposed timber structure, on the seabed, with polypropylene rope and cable ties. 

Where possible a handheld YSI Pro 30 conductivity and salinity meter was used to collect 

temperature and salinity data at seabed level, where not possible, temperatures were recorded 

using the diver’s computer (Table 2).  

2.2 Laboratory Analysis 

Each test panel was observed using a Brunel BMDZ Stereomicroscope with a magnification 

of x 7.5 to x 45, and every specimen on the surface of the test panel was recorded. Although 

fouling species were not the primary focus of the study, some sessile fouling species reduce 

available space and damage the timber surface (Bowens 2009); thus, species that posed these 



issues were recorded. Limnoria were identified using identification keys and illustrations 

provided by Menzies (1957) and Castello (2011), and sex and maturity level were observed. 

Teredinidae were identified by the number of boreholes; it was recorded if the borehole was a 

result of a failed larval settlement through the presence of an empty, spherical depression or if 

the specimen had been successful and a calcareous structure or tunnel present; from this a 

percentage of successful settlement was calculated. On completion of X-Radiography, 

Teredinidae pallets were collected and identified using identification keys and illustrations 

created by Turner (1966 & 1971). When pallets were identified, the tunnel length of the 

individual was recorded by pushing flexi wire through the tunnel. 

2.2.1 Surface Area Analysis  

Surface area loss attributed to Limnoria, C.terebans and fouling species was assessed using a 

CAD software programme, Rhino 3D 5.0, developed by Robert McNeel & Associates. The 

Rhino 3D 5.0 software contains multiple functions which records 2D and 3D measurements 

with high accuracy. Test panels were photographed on each face using a quadropod; the 

images were then uploaded to the software and scaled. Using the ‘interpolated curve’ 

command function, the outline of each ventilation hole, individual tunnel, group of tunnels or 

fouling species could be traced (Fig.2); by applying the ‘patch’ command function, the 

software fits a patch surface between the traced outline made by the ‘interpolated curve’ and 

calculates the surface area (Fig.2). Percentage of surface area loss attributed to Limnoria and 

C.terebans was aligned with the EN275 grading system (1992), (Fig.3), allowing results to be 

comparable to other studies (Camidge 2009, Palma & Parham 2009, Borges 2014, Palanti et 

al 2015). Teredinidae damage that could be identified by the X-Ray image, was graded using 

EN275 (1992), (Fig.3), however, as heavy colonisation on the test panels made it hard to 

identify individual tunnels and determine an accurate percentage using Rhino 3D 5.0, a visual 

estimate was given using a 1 cm
2
 Perspex grid. The grid was placed over the X-ray image, 

and areas of colonisation could be shaded and an estimated percentage of surface area 

calculated.  

 

2.2.2 X-Radiography and Volume Analysis 

To confirm the abundance of Teredinidae and calculate the volume of wood lost, test panels 

were X-rayed using a Gulmay HS 225kV Hi Stability X-ray system for the London and HMS 

Invincible test panels and a Faxitron 43804N for the Poole Cannon Site and West Bay test 

panels. Each X-ray was completed at 50–70 kV over 90 –120 seconds, depending on the test 

panel density; 180x240 mm AGFA Structurix D4 film was used with a Fe filter plate on one 

side. Teredinidae specimens were identified on the X-ray by the presence of its shell and 

calcareous lining, both of which are highly apparent via X-ray (Fig.4). Where possible the 

length and volume of each specimen were determined using Rhino 3D 5.0; by using the 

‘interpolated curve’ command function, a line could be placed lengthways down the centre of 

each specimen’s tunnel, from which the software calculates the tunnel length (Fig.4), (Knight 

2018). Using the ‘pipe’ command function, several radiuses were extended from the central 

line; this allows the software to create a 3D mesh replica of the shipworm tunnel and 

calculates the tunnel volume (Fig.4), (Knight 2018). Due to difficulties in the identification of 



individual tunnels on HMS Invincible, this method was only employed on X-rays from Poole 

Cannon Site. 

 

2.2.3 Statistical Analysis 

Statistical analysis was completed using the statistical software programme, SPSS, through 

which, one-way ANOVA tests were completed to identify if a significant difference was 

present between two or more independent groups. The level of significance was set at p=0.05. 

The use of one way ANOVA tests allows for multiple variables such as mean abundance of 

Limnoria on pine test panels across all 4 sites to be compared. When these factors were tested 

using one way ANOVA, a result of statistical significance was produced; if the result was 

p=<0.05, a statistically significant difference was present. When a statistically significant 

difference was identified, the null hypothesis was rejected and Tukey HSD post hoc 

comparison tests were completed to identify which groups within the sample group were 

significantly different. For example, the Tukey HSD post hoc results highlighted that, when 

testing the difference in mean abundance of Limnoria on pine test panels, a highly significant 

difference was evident between the London and HMS Invincible, with a result less than 

p=0.05 (Table 3), suggesting the abundance of Limnoria between these sites is very different; 

whilst no significant difference was identified between the London and West Bay wreck with 

a result greater than p=0.05, suggesting little to no variation in mean abundance of Limnoria 

between these sites (Table 3). 

 

3.0 Results 

Upon recovery test panels from the London were covered in silt sediment, with some shallow, 

singular Limnoria burrows (Fig. 4) and very minimal surface coverage from fouling species. 

Test panels from HMS Invincible and Poole Cannon Site were recovered with no sediment 

coverage and varying levels of biodegradation, with the presence of Limnoria, C.terebans 

and Teredinidae in large numbers, and some surface coverage from fouling species (Fig.5). 

Unfortunately, oak test panels from Poole Cannon Site were lost during the study and no 

results are reflected below. Test panels from the West Bay Wreck were covered in a thin 

layer of sediment, however, no damage from wood borers was evident and the presence of 

fouling species was pronounced (Fig.5).  

3.1 Limnoria and C.terebans 

Whilst no evidence of Limnoria or C.terebans was found on West Bay, vestigial evidence of 

Limnoria was found on the London (Table 4). During one way ANOVA tests the mean 

abundance of Limnoria and C.terebans across all sites produced highly significant results 

(with the exception of the mean abundance of C.terebans on elm test panels, from which no 

specimens were collected) (Table 4); thus Tukey HSD post hoc comparisons were completed 

to identify which sites were significantly different from each other (Table 3). Tukey HSD 

post hoc comparison results comparing mean abundance of Limnoria and C.terebans on the 

London and West Bay sites produced a p value >0.05 (Table 3), indicating no significant 

differences between the London and West Bay, hence mean abundance of Limnoria and 

C.terebans on these sites shows little to no variation.  Similar results showing no significant 



differences or little to no variation were observed when analysing mean abundance of 

C.terebans on pine test panels, between Poole Cannon Site, and the London and West Bay 

sites (Table 3). However, relationships between the remaining sites were significant with a p 

value <0.05, suggesting the abundance of Limnoria and C.terebans on test panels across 

these sites varies significantly (Table 3), with the highest mean abundance of Limnoria and 

C.terebans identified on HMS Invincible for all test panels (Table 4). L.quadripunctata was 

identified on every test panel on HMS Invincible however, no C.terebans was collected from 

elm test panels and a clear preference to pine was observed (Table 4, Fig.6). On Poole 

Cannon Site, L.quadripunctata were the dominant species found on all test panels, whilst 

L.lignorum, were only found on pine making up 9% of the species composition (Fig.6). 

Further comparisons between test panel material and mean abundance of Limnoria and 

C.terebans using one way ANOVA tests indicated another highly significant difference with 

a p value <0.05 (Table 5); Tukey HSD Post hoc comparisons identified a significant 

difference in species abundance between pine and elm test panels, with both Limnoria 

(p=0.035) and C.terebans (p=0.002) showing a clear preference for pine.  

 

3.2 Teredinidae 

No Teredinidae presence was identified on any of the test panels from West Bay, and whilst 

boreholes were identified on all test panels from the London, these appeared to be failed 

larval attempts (Table 4). One way ANOVA tests were completed to understand if the mean 

total number of boreholes or mean number of successful boreholes varied based on test panel 

material, however no significant differences were observed (Table 5) and so the null 

hypothesis was accepted and no further analysis completed. However, one way ANOVA tests 

did highlight a significant difference when comparing the mean number of total boreholes 

and mean number of successful boreholes between the different sites, on pine test panels 

(Table 4). As a result Tukey HSD post hoc comparisons were completed and identified a 

significant difference in both the mean number of total boreholes and mean number of 

successful boreholes on pine test panels between HMS Invincible and the other sites, with p 

values less than 0.05 (Table 3); thus indicating the mean number of total boreholes and mean 

number of successful boreholes on HMS Invincible was greatly different to the other sites. 

HMS Invincible had the highest mean number of total boreholes and mean number of 

successful specimens, with a settlement success rate of 61% on pine test panels, 55% on oak 

and 13% on elm (Table 4). Both L.pedicellatus and T.navalis were identified on HMS 

Invincible, however, the T.navalis specimens identified were less than 5 mm in length, and 

although they were far from a rare occurrence, L.pedicellatus were the dominant species in 

size and abundance. All Teredinidae specimens identified on Poole Cannon Site were 

T.navalis and a mean settlement success of 56% was observed on pine test panels and 77% 

on elm (Table 4).  

3.3 Severity of degradation 

One way ANOVA tests were completed to analyse the relationship between mean total 

surface area loss on the different test panel materials over the different sites, with results 

showing a significant difference between the sites on pine and oak test panels with a result 

p=<0.05 (Table 6). Tukey HSD post hoc comparisons were completed and indicated a 



significant difference in mean total surface area loss on pine test panels between HMS 

Invincible and the remaining sites, however no significant differences at p=<0.05 were 

observed for oak test panels across any of the sites (Table 7).  

Further one way ANOVA tests were completed to analyse the relationship between mean 

surface area loss attributed to Limnoria and C.terebans, on the different test panel materials, 

over the different sites, with results showing a significant difference on oak and pine test 

panels between sites (Table 6). Tukey HSD post hoc comparison tests indicated a significant 

difference on pine test panels between HMS Invincible and the remaining sites (Table 7); a 

further difference was observed on oak test panels between HMS Invincible, and the London 

and West Bay sites (Table 7), hence, mean surface area loss on HMS Invincible due to 

Limnoria and C.terebans is dissimilar when compared to the other sites, and likely due to the 

significant differences observed in the mean abundance of Limnoria and C.terebans. Finally, 

one way ANOVA tests were completed to analyse the relationship between mean surface 

area loss attributed to fouling species, on the different test panel materials, over the different 

sites, with results showing a significant difference on pine test panels between the sites 

(Table 6). Tukey HSD post hoc comparisons were completed and identified a significant 

difference between the London and West Bay sites (Table 7).  

Test panels recovered from the London had the lowest mean total surface area loss, with 

fouling species responsible for less than 1%, and Limnoria responsible for 0.05% of the mean 

surface area loss on pine test panels (Table 6), (Fig.7). In contrast, HMS Invincible had the 

highest mean total surface area loss, with fouling species responsible for under 2% of mean 

surface area loss across all test panels; Limnoria and C.terebans were responsible for 8.02% 

loss on elm test panels, 13.62% on oak and 17.26% on pine (Table 6), (Fig.7). Whilst 

Limnoria and C.terebans were responsible for the highest percentage of mean surface area 

loss on pine test panels across all sites (excluding West Bay), fouling species showed a 

preference towards hardwoods and were responsible for the highest percentage of mean 

surface area loss on elm test panels across all sites (Table 6).  

An average monthly rate of degradation was assigned for fair comparison due to the varying 

lengths of deployment between the sites. Nonetheless, results continued to follow a similar 

trend, though some differences were noted in that, mean surface area loss caused by fouling 

species on Poole Cannon Site was more prominent, with fouling coverage on elm test panels 

being higher than HMS Invincible, and surface area loss due to fouling on pine test panels 

was closer to HMS Invincible than previously recorded (Fig.8). These results were to be 

expected as the protruding structure and crevices on the Poole Cannon Site traps drift 

material, allowing rapid colonisation of fouling species and the development of a growing 

reef structure, whilst a large structure of this sort is less evident on HMS Invincible. 

Likewise, it was expected the West Bay results would maintain the highest fouling cover due 

to its location next to a well-developed rocky reef with an abundance of fouling species.  

Tunnel lengths and volumes of T.navalis were recorded using Rhino 3D 5.0 on the Poole 

Cannon Site; however the method could not be accurately used on HMS Invincible due to 

heavy colonisation. Analysis of the tunnel lengths and volumes of the T.navalis specimens on 



the Poole Cannon Site showed that T.navalis had a longer tunnel length and volume in elm 

test panels when compared to pine test panels, with an average tunnel length of 3.98 mm SD 

0.81 mm, and a total mean volume loss calculated at 174.46 mm
3
 SD 82.79 mm

3
 (0.05%) on 

pine test panels, and an average tunnel length of 4.56 mm SD 0.03 mm and a total mean 

volume loss calculated at 736.01 mm
3
 SD 213.31 mm

3
 (0.2%) on elm test panels.  Although 

the analysis of individual tunnels was unsuccessful on HMS Invincible, it was possible to 

identify the longest tunnel lengths for each species, with L.pedicellatus reaching 30.79 mm 

on HMS Invincible, and T.navalis reaching 14.62 mm on Poole Cannon Site.  

To quantify the damage caused by Limnoria, C.terebans and Teredinidae, and to simplify 

comparisons with other studies, mean surface area loss percentage was correlated to the 

grading system under EN275 (1992), (Fig.3). Results suggested, on Poole Cannon Site, 

T.navalis, Limnoria and C.terebans were equally responsible for the degradation, and all test 

panels were recorded at a grade 1; similarly, the damage caused by Limnoria was graded 1 

across all test panels on the London, though the statistical analysis clarifies the differences 

here. Whilst the degradation level attributed to L.quadripunctata and C.terebans on oak and 

elm test panels from HMS Invincible were similar to other sites at grade 1, the mean 

degradation level on pine test panels was pronounced at 2.33; furthermore, T.navalis and 

L.pedicellatus were responsible for the majority of the degradation compared to 

L.quadripunctata and C.terebans on HMS Invincible. 

4.0 Discussion 

There are many environmental forces which lead to physical and biological degradation of 

wooden UCH, and as conditions vary between sites, so does the rate of degradation, thus it is 

paramount to identify and understand the environmental conditions on individual sites. 

Furthermore, the effect of physical forces such as currents and swell can lead to changes in 

the seabed, creating scour and sediment erosion; in turn this can destabilise a site leaving 

areas exposed to physical abrasion and biological attack (Muckelroy 1978, Stewart 1999, 

Gregory et al 2012, Manders 2017). Other factors of consideration are depth and sediment; 

whilst physical forces on shallow sites are more intense, leading to a greater risk of exposure 

and abrasion (Muckelroy 1978, Stewart 1999, Manders 2017), Muckelroy (1978) identified 

that the type of sediment was the “main determining factor in the survival of archaeological 

material”. Consequently, results from this study indicated sediment type was a key 

determining factor affecting the rate of biodegradation. Temperature, salinity and dissolved 

oxygen are significant parameters involved in the survival of wood borers (Eltringham & 

Hockley 1961, Nair & Saraswathy 1971, Appelqvist et al 2015, Appelvist & Havenhand 

2016), however profiles within this study remained within optimum ranges for the survival 

and reproduction of these species (Table 1 & 2); thus it was evident other factors were 

involved in the differing rates of biodegradation and species compositions. 

HMS Invincible lies in c.7 m on a mobile sand and shingle seabed which periodically expose 

areas of the wreck, however with strong water currents and sediment reduction, large areas of 

the wreck are becoming permanently exposed (Pascoe 2013, Pascoe & Cowan 2017, Pascoe 

et al 2017). Poole Cannon Site, lies at c.6 m on sand, shell and shingle sediment, but despite 



strong water currents and a large section of permanently exposed structure, the site appears 

stable and the formation of a reef occurs rapidly. In contrast, the London lies at c.20 m on a 

silt seabed, however scour pockets are increasingly evident and exposure is occurring; whilst 

elements of the wreck at seabed level are well preserved, elements protruding from the 

seabed such as the gun carriage raised in 2015, rapidly degrade from biological attack (Evans 

2017). All of the above sites have an oak built structure, hence is it unlikely that any 

significant differences in degradation, observed on the structural timbers, is due to wood type, 

although in some cases, pine and elm have been used for elements such as the keel and 

cladding (pers comms, Pascoe et al 2017). The West Bay site lays c.12 m of water next to a 

rocky reef on a sand, shell, shingle and silt sediment (Palma 2010); the site has no remaining 

wooden structure, and instead is composed of metal remains heavily fouled with sessile 

fouling species (Palma 2010).  Results indicated the biggest differences in species abundance 

and the level of degradation were often between HMS Invincible and Poole Cannon Site in 

comparison to the London and the West Bay site; of which depth, wood availability and 

sediment were among the differing factors.  

4.1 Depth 

The sites were located within known depth ranges for Limnoria and Teredinidae, who have 

been observed causing extensive damage to other sites within the English Channel at similar 

depths (Bernard et al 1993, Merrett Jones 2000, Camidge 2009, Elam 2009, Shalaeva 2012). 

Results from this study indicated a divide between deeper and shallower sites, however no 

correlation with depth was observed when other studies were considered (Merrett Jones 2000, 

Camidge 2009); studies completed on Mary Rose (18 m), HMS Hazardous (7 m) and HMS 

Invincible (7 m) showed extensive wood borer abundance and biodegradation; however, 

damage was more extensive on Mary Rose and HMS Invincible with results indicating the 

differences in biodegradation and species composition were due to the water quality 

surrounding these sites, not depth (Merrett Jones 2000). Results from HMS Colossus (15 m) 

were comparable to Poole Cannon Site and graded 1 after 5 months of exposure (Camidge 

2009). Thus depth is unlikely to be a key factor controlling species abundance and 

biodegradation; nonetheless, due to dynamic conditions on shallow sites, depth should be 

considered when assessing the risk of physical factors which lead to exposure and 

biodegradation (Muckelroy 1978, Stewart 1999, Manders 2017).  

 

4.2 Availability of wood and local populations 

The survival of wood boring species is linked to the availability of wood hence; sites with 

exposed wooden remains are at risk (Cragg et al 2009, Macintosh et al 2014). However, 

consideration should be given to wooden UCH sites which are at risk of colonisation due to 

its ‘proximity’ to a colonised site, although, in this case, the term ‘proximity’ should be used 

rather loosely. Put simply, does the speed and direction of the tidal current allow the species 

on a colonised site, to travel with the current to reach and colonise another site within a 

limited time window. All marine wood borers have limitations in terms of the distance they 

are able to cover in a certain time, for example Lyrodus pedicellatus spends 24-48 hours in 

the water column before it needs to settle and metamorphose, whilst Teredo navalis spends 

up to 34 days in the water column (Borges et al 2010, Appelqvist et al 2015), hence the tidal 



speed and distance they cover in this time is important to understanding if other sites lie 

within this ‘proximity’ and therefore at risk. Furthermore, as the survival of wood borers is 

linked to the availability of wood, the migration to new sites allows their continued survival 

even once their original wood source has been depleted. The West Bay wreck was chosen as 

it contains no remaining wooden structure for wood borers to inhabit, and no known wooden 

sites were present in the direction of the tidal stream around the site, within a 24 hour 

window. In comparison the remaining sites have vast amounts of exposed wooden structure, 

and multiple colonised sites lie in the direction of several overlapping tidal streams, within a 

24 hour window, making the colonisation of large populations more likely. Results indicated 

the availability of wood and a local infestation source was a determining factor in the 

abundance of marine wood borers; no evidence of wood borers were found on the West Bay 

wreck but a large population of Limnoria, C.terbans and Teredinidae were present on HMS 

Invincible and Poole Cannon Site (Table 4). On both HMS Invincible and Poole Cannon Site 

the spread of wood borers to local sites is facilitated through currents and drift material, and 

with the use of environmental cues and chemoreception, they detect the presence of wood 

and conspecifics, allowing them to establish new populations rapidly (Cragg et al 1999, Toth 

et al 2015). Hence the risk of high population abundances and rapid biodegradation is high in 

areas with multiple colonised sites and available exposed wood. Despite a vast wooden 

structure and the locality of other colonised sites, only vestigial evidence of marine wood 

borers were found on the London, thus it is likely that although they were active in the 

vicinity, a further factor has impeded their survival (Table 5).  

 

4.3 Wood Type 

Whilst Limnoria and C.terebans preferred pine test panels, results indicated Teredinidae were 

less selective and no relationships were observed between the total number of boreholes or 

successful boreholes in relation to wood type (Table 5). This is likely due to their life history 

strategies; Teredinidae are opportunistic with a limited window to locate a suitable substrate 

in their larval form (Appelqvist et al 2015, Lippert et al 2017), thus they cannot be overly 

selective and using chemical cues to determine a suitable location near conspecifics with 

available space is likely prioritised (Toth et al 2015); this behaviour may explain results seen 

on Poole Cannon Site where a higher number of total boreholes were identified on elm test 

panels (Table 4). On the other hand, Limnoria and C.terebans are born into a protective 

environment and have the ability to migrate in search of substrate material and, move at will 

when conditions become unfavourable (Mohr 1959, Cragg et al 1999, Poore et al 2002, Thiel 

2003, Green Etxabe 2013); this is evident on the London where borings were present but no 

abundance of Limnoria was found, thus Limnoria likely migrated when sediment coverage 

occurred. Fouling species showed a preference to hardwoods and were responsible for the 

highest mean surface area loss on elm test panels across all sites (Fig.7), this is potentially 

due to the need for a hard substrate with a stable base to adhere to; this would appear to be a 

sensible choice due to Limnoria and C.terebans’ preference to the pine test panels which lost 

46% more surface area compared to the elm test panels. Hence, UCH sites with exposed pine 

elements such as the pine clad orlop deck found on HMS Invincible (Pascoe et al 2017) 

should be considered high risk.  

 



4.4 Sediment  

Sediment type appeared to be a key factor controlling biodegradation and the abundance of 

marine wood boring and fouling species. Muckelroy (1978), Ward et al (1999) and Wheeler 

(2002), hypothesised that fine, soft sediments such as silt, compact tightly together creating 

anoxic conditions, even with minimal sediment coverage; whilst coarse sediments such as 

gravel cannot, and so dissolved oxygen moves between the sediment particles, enriching 

deeper layers. Thus, minimal or shallow sediment coverage provides little to no protection on 

sites with coarse sediments and only articles buried far deeper in these environments have a 

chance of survival. Dissolved oxygen is a dominant factor in the survival of marine wood 

boring and fouling species and subsequently, the survival of archaeological material. As a 

result, the reburial of UCH is considered an effective means of in situ protection, with studies 

indicating a minimum coverage depth of 50 cm is needed to reduce dissolved oxygen enough 

to impede the survival of wood degrading species (Gregory 1998, Palma 2005, Curci 2006, 

Manders 2006, Bjordal & Nilsson 2008, Palma & Parham 2009). The London had the lowest 

species abundance and biodegradation of all sites (Fig.7), (Table 6) with only vestigial 

evidence of Limnoria and Teredinidae identified. Hence, it is highly likely the silt sediment 

covering the test panels reduced the dissolved oxygen levels, which consequently, impeded 

the survival of the wood boring and fouling species. In comparison with other sites, the 

relationship between sediment type and its ability to effect dissolved oxygen is commonly 

observed; the Mary Rose (Quinn et al 1997), (prior to excavations) and the Vasa (Cederlund 

& Hocker 2006), buried in soft sediments like the London (Evans 2017), have produced 

incredibly well preserved remains, whilst sites such as HMS Colossus (Camidge 2009), 

Swash Channel Wreck (Palma & Parham 2006), and HMS Invincible are offered little 

protection from coarse sediments, and biodegradation is extensive.  

 

5.0 Conclusion 

 

5.1 Future Site Management 

Despite limitations, the results provide an insight into the biodegradation occurring on each 

of the sites which can be applied to future management plans. HMS Invincible and the 

London are both on the Heritage at Risk Register due to highly dynamic and unstable site 

conditions, leading to the loss of historically important. As a result, both sites have undergone 

several excavations to retrieve at risk artefacts and regular monitoring is undertaken. Whilst 

UNESCO’s (2001) recommendation is that in situ preservation should be considered the first 

option over excavation, it is simply not a viable option for these sites, and despite in situ 

protection, scour, erosion and the loss of material is highly evident (pers comm). Results 

from this study highlight a stark difference in the rate biodegradation occurring on the sites, 

and whilst it is fair to argue HMS Invincible is the higher priority site, this does not mean  the 

London should not be considered high priority. Whilst it is clear HMS Invincible is at high 

risk of biodegradation, the environmental conditions which act upon the site are 

uncontrollable and expose the site to further biological and physical degradation. Whilst in 

situ protection may slow the rate of degradation, exposure of the ship’s structure will 

continue to occur, losing about 2% of its surface area per month. Hence, the recording and 

survey work produced as a result of the excavation  allowed for the structure and construction 



method of HMS Invincible, which has made her so historically important; to be recorded and 

understood before it is lost. The London, despite a lack of evidence in this study to suggest it 

is at risk of biological degradation, is at risk due to other elements, namely the dynamic 

physical conditions acting upon the site; the passing of large ships and dredging activities, 

alongside strong water movements result in sporadic exposure and the mobilisation and 

dispersal of sediment and artefacts. Although results from this study indicated that the 

sediment offers protection from wood boring species, the wood borer damage to the exposed 

gun carriage raised in 2015 is a stark reminder of what can occur on this site when sediment 

movement produces long term exposure and allows for wood borer settlement. Hence, 

funding should be prioritised for both these sites to enable continued monitoring, recovery 

and conservation for at risk artefacts and in situ protection where possible. The Poole Cannon 

Site is not protected; however it does highlight the need for continued monitoring and in situ 

preservation on stable sites, and illustrates the potential for oxygen to penetrate coarse 

sediments, allowing for biodegradation. As a result, sites in similar conditions to Poole 

Cannon Site should be regularly monitored especially as being shallow with coarse 

sediments, puts them at risk during events such as storms, which can lead to exposure and 

biodegradation. Additionally, the West Bay site gave promise that wood borers are not active 

everywhere and, in areas with a lack of wooden material, populations have declined, thus the 

continued use of in situ preservation to limit exposed wooden material is recommended. 

Nonetheless, it was clear the presence of fouling species ultimately results in a heavy loss of 

original surface area. Currently, the West Bay wreck is protected due to the presence of a 

bronze gun, however, regular monitoring is confirming the surface detail on the gun is being 

lost due to the colonisation of fouling species; and so, aside from recording and survey, 

recovery or in situ protection may be the only way to protect the information (pers comm).  

 

5.2 Further research 

The study highlighted key factors for consideration in regard to the rate of biodegradation on 

wooden UCH caused by marine wood borers; however, in light of the short deployment 

period, small number of test panels, and small number of sites and environments, further 

work should be completed to ascertain a more comprehensive dataset where a variety of 

variables can be tested.  

To develop upon the key limitations, a larger selection of wreck sites and environments need 

to be utilised, with a wider coverage along the south coast of England. Furthermore, the 

number of test panels needs to be increased, and the deployment time should be extended 

over 12, 18 and 24 months; not only should this help to encase a wider variety of 

environments and conditions for comparison, a larger number of test panels should provide a 

larger data set for stronger statistical analysis. Additionally, a longer study should allow for 

seasonal comparison and better understanding of wood borer behaviours.  

Further research should be completed in regard to some of the factors highlighted throughout 

the study. Although it was interesting to note that depth did not appear to be a key factor 

controlling biodegradation, all sites within the study, and those identified as case studies were 

located within the preferred depth range of wood boring species, and therefore may account 



for the lack of significant differences observed; hence, a study incorporating a larger variety 

of depths, including those deeper than 30 m, should provide clarification on the role of depth 

in species abundance and biodegradation.  

Whilst it was evident Limnoria and C.terebans had a preference to pine test panels, results 

indicated Teredinidae were less selective when it came to wood type and no significant 

differences were noticed between the soft and hardwoods. Although this may be due to their 

life history strategy, laboratory research using a variety of wood types and cuts could identify 

if a preference is present and would expand upon research completed by Eriksen et al (2016). 

Sediment type and coverage proved to be a significant factor for the survival of wooden 

material, and highlighted sites with compact soft sediment coverage were considered low risk 

to biodegradation, whilst sites with coarse, shallow, mobile sediments, which leave the site 

exposed to physical and biological degradation were considered high risk, hence measures for 

in situ protection should be applied immediately to prevent the loss of original material. 

Nonetheless, further research should aid in emulating a stronger understanding of sediment 

conditions on sites, and research should focus towards testing a wider range of sites with 

varying sediments. It may prove worthwhile placing control panels in the water column to 

provide comparison between those at seabed and those buried at selected depths to better 

understand the effect and level of protection the sediment is able to offer.  

Finally, amendments to the method could be made if sufficient funding could be obtained; the 

use of X-ray is an inherently easy method of observing the presence and damage caused by 

Teredinids. However, as a 2D image, X-ray has its limitations, and whilst CAD software 

programmes can be utilised to create 3D structures from this image with impressive accuracy, 

the use of CT scanning may provide far more accurate results. Ultimately, the use of X-ray 

and CAD failed during this study when the level of colonisation became so heavy that 

individual tunnels could not be separated from a 2D image alone, and as such, CT scans may 

be more apt at separating individual tunnels and calculating more accurate 3D measurements, 

even when colonisation is high.  

Results produced throughout this study have not only highlighted the need for continued 

monitoring of all historically important sites, regardless of environmental conditions and 

stability, but have also determined sediment type and coverage as a significant factor for the 

survival of wooden material. Thus sites with compact soft sediment coverage should be 

considered low risk to biodegradation, whilst sites with coarse, shallow, mobile sediments, 

which leave the site exposed to physical and biological degradation should considered high 

risk, and measures for in situ protection should be applied immediately to prevent the loss of 

original material, although in many cases, the recovery of at risk artefacts and excavation 

may be the only option for preservation. Furthermore, in light of some of the limitations to 

the study, further research focusing on single variables can aid in formulating a more 

comprehensive dataset which can aid in the protection of our UCH. 
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