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1 Introduction

After rendering, fluid simulation remains the most computa-
tionally expensive task in Visual Effects production. However
turbulent and photorealistic fluids are arguably some of the
most visually exciting dynamic physical phenomena used in
film and are ubiquitous in new films. These effects are typ-
ically the result of multiple interacting visual components,
the combination of which delivers a seemingly complex vi-
sual effect. Components (display in Fig. 1 may include

e Ocean waves populating the background of the shot,

e Main or "hero” waves in the foreground with potentially
more complex behaviour,

e Droplets and splashes on the peak of the wave and
against the rocks,

e Mist and vapour,
e Foam and churn in front of the wave near the short, and

e Bubbles entrained in the liquid creating lighter areas
beneath the surface.

Common practice for artists in all areas of Visual Effects is
layering: the more physically plausible components that can
be compiled into a shot the less likely the viewer will observe
something implausible. This “bells and whistles” principle is
demonstrated in [14], with an example shot from American
Assassin (2017) requiring at least 78 different layers which
are composited in the final rendered image. An example is
included in Fig. 2 visually illustrate the process.

What is noteworthy is that many of these components are
simulated using different approaches — the general ocean
state is often modelled based on 2D heightfields (using a
method like that of Tessendorf [21], developed while working
at Rhythm and Hues) while spray and droplets may be mod-
elled using ballistic methods. However the industry standard
for foreground, high quality fluid simulation and associated
effects is the Particle-In-Cell method, which | will describe
here in some detail. Note that | will avoid discussion of the
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extremely important boundary conditions (the reader is re-
ferred to Bridson [5] for more details) and will only address
implementation details at a high level.

2 Particle-In-Cell Methods

Francis Harlow is widely credited
as being responsible for the estab-
lishment of computational fluid
dynamics (CFD) as an impor-
tant discipline. His work while
at the Los Alamos National Lab-
oratory, where he served as group
leader for 14 years, has produced
some of the most fundamen-
tal contributions to the area of
CFD for computer simulation of
fluids, including the Particle-In-
Cell (PIC) and Marker-and-Cell
(MAC) grid methods, which un-
derpin the methods used in Visual
Effects today.

The Particle-In-Cell (PIC) method was first introduced by
Harlow and Welch [11]: their approach was one of the first
proposed for numerical fluid dynamics, and was applied to
the simulation of supersonic flows with obstacles [10]. In his
words:

Francis Harlow, Jan. 22,
1928 — July 1, 2016

One of the things about supersonic flows that |
soon learned was that there were at that time two
main ways to think about zoning space for resolv-
ing the behavior of a fluid. One of them we call
the Lagrangian approach, which means having a
mesh of computational cells that follow the mo-
tion of a fluid through its contortions and what-
ever processes that take place. The mesh could
follow interfaces beautifully. The other, the Eule-
rian viewpoint, has a fixed mesh of cells that stay
in one place in the laboratory frame and the fluid
flows through it. This second approach is great for
looking at large distortions; there is no movable
computational mesh to get tangled. But on the
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Figure 1: Wave phenomena consist of interactions between many different states of liquid and air mixtures including
droplets, sprays, foam and bubbles, as well as larger scale liquid behaviours such as breaking waves and ocean wave

dynamics. Image courtesy of Richard Jones [14].

Figure 2. Typically a Visual Effects artist will simulate and
partially control multiple different layers to construct the final
shot. Image from FXGuide [9] from the film Battleship.

other hand, it has problems if you want to follow a
sharp interface between two fluids. Eulerian tech-
niques tend to diffuse the interface and to smear
out sharp shocks. (In those days we had only begun
to experiment with very primitive interface recon-
struction techniques.) Harlow

[10]

Many contemporary advances in fluid simulation applied
to the domain of Visual Effects are attributed to Robert Brid-
son, and the crucial theory which underpins much of this talk
is contained within his book [5]. The contemporary context
and examples of usage are derived from conversations with
and reference to Jones [14].

The central premise of PIC methods is to represent fluid
as a hybrid representation (see Fig. 3), with particles and
associated information where advection is computed, and a
grid which computes everything else. The finite differencing
approach to solving the Navier-Stokes equations has been
updated since Harlow and Welch [11] and Brackbill et al.
[4] to enforce stable incompressability based on the Poisson
method of Stam [19], but contemporary methods differ in the
manner in which particles are transfered to and from the un-

derlying grid representation, and what information is stored
with the particles. For the implementation, most methods
still employ the original Marker—and—Cell (MAC) data struc-
ture of Harlow and Welch [11], but the scale of contemporary
simulations require more sophisticated volumetric databases
such as the Volumetric Database introduced by Museth [16].
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Figure 3: Particle-In-Cell methods are hybrid representations
of fluid, with particles embedded in a grid representation.
Advection is resolved on the particle representation, every-
thing else is evaluated on the grid. From Jones [14].



3 Solving the Navier-Stokes Equa-
tions with PIC

The Navier-Stokes equation is typically defined as

Ou

v
EJru-Vu:f?erngquu (1)

V.-u=0

where u is the fluid velocity vector, p is the fluid pressure, p is
the fluid density, v is the kinematic viscosity coefficient, and
V and V? represent the gradient differential and Laplacian
operators respectively.

Standard practice in VFX is to simply drop viscosity and
use the Euler equations:

Ou Vp

— Vu=--"- 2
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V-u=0

In some situations, viscosity forces are extremely
important: e.g., simulating honey or very small-
scale fluid flows. But in most other cases that
we wish to animate, viscosity plays a minor role,
and thus we often drop it: the simpler the equa-
tions are, the better. In fact, most numerical meth-
ods for simulating fluids unavoidably introduce er-
rors that can be physically reinterpreted as viscosity
(more on this later) — so even if we drop viscosity
in the equations, we will still get something that
looks like it. In fact, one of the big challenges in
computational fluid dynamics is avoiding this spu-
rious viscous error as much as possible.

Bridson [5]

For completeness, methods to evaluate viscosity for particle-
in-cell methods are included in Appendix B.
Note also that

Ou Du

— +u-Vu= —

ot Dt
is the material derivative, which allows the Euler equation to
be written in a more compact form.

3.1 PDE Splitting

The first step is to define a simple forward Euler integration
by splitting Eq. 2 into separate components. This method is
inspired by the approach proposed by Stam [19] and is crucial
to enforcing stability. For a separable differential equation

dq
24 f
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we can split this with Euler integration to read:
G=q"+ Atf(q") 3)
q"" =G + Atg(g) (4)

which can be shown to be first—order accurate (see Ap-
pendix C).

The Euler equations can now be divided into three effective
steps using the method of splitting described above, and are
typically applied in the following order:

1. The application of body forces:
Ou

Eri
This is the most straightforward step, which is solved
according to the forward Euler method &t = u + Atg,
and this is typically computed on the projected positions
of the Marker-and-Cell (MAC) grid (see below).

2. Solving for the pressure projection while preserving
incompressibility:

Ou 1

— =—-ZA 5
r P (5)
subject to V -u = 0. This is somewhat harder to solve,
and is covered in Section 3.3.

3. Advecting’ the properties due to the velocity field:

Du

Dt 0 (6)
Advection is performed on the particles, and the method
of advection is dependent on the integration scheme.
This can be written out as a PDE and solved using one
of any number of integration methods. For example, a
simple forward Euler advection step to update particle
positions would be computed by

+1 _
X' =X, + Atu, (7)
where the subscript p is used to indicate that these
properties are updated on the particle representation.

Note that the crucial step of transfering particle properties
to and from the grid representation is discussed later in Sec-
tion 3.4.

3.2 Discretization

Properties from the particles are transfered to points on a
grid in order to solve Eq. 24 using partial differencing. For
the method in [8] this entails the projection of pressure to cell
centres (e.g. pj;) and particle velocities are projected to the
centre of cell faces (e.g. wujy1/2,j) such that neighbouring
cells shared points (e.g. Vjj_1/2k = Vi(j—1)+1/2,k). This
requires a staggered grid representation, as shown in Fig. 4.

Most methods use the fastest approach to determining
weights for transfering propeprties from particles to the grid

INote that while any properties may be advected by the velocity
field, generally this is the particle positions x.
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Figure 4: The Marker-In-Cell (MAC) grid in R? on the left (from [14]) and in R3 on the right (from [8]). This structure

was first introduced by Harlow and Welch [11].

— which is to use trilinear interpolation (or bilinear interpo-
lation in R?), a fast area weighting interpolation scheme?.
The main advantage of the grid representation is that is al-
lows the use of finite differencing to estimate quantities via
second order accurate differences, e.g. at grid cell (7, ) with
width Ax in R?:

v.ouo v Oy
Ox Oy
Uit1/2,j — Uj-172,j = Vij+1/2 = Vij-1/2
~ 8
Ax + Ax (8)
and similarly at the centre of face (i — 1/2,j),

ax Ax

3.3 Pressure Projection

At the heart of PIC and the derived methods is the approach
to subtract the pressure gradient from the intermediate ve-
locity field u to ensuring incompressibility and enforce bound-
ary conditions. Note that the approach presented here is the
method commonly applied in Computer Graphics but differs
from the original approaches from Harlow and Welch [11],
Brackbill et al. [4] and Foster and Metaxas [8]. The pressure
projection step in Eq. 5 can be expressed as:

nt1 At

u =u— —Vp 10
; (10)

(11)

https://en.wikipedia.org/
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2S0 common, it's on Wikipedia:
wiki/Trilinear_interpolation.

In the discrete sense, Eq. 10 can be written as:
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while Eq. 11 can be written as
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Substituting Eq. 12 into Eq. 13 and simplifying yields:

At (4pij = Pit1j = Pij+1 = Pi-1j — Pij-1) _
0 Ax?
Uiy1/2,j — Uj—1/2,j Vij+1/2 — Vij—-1/2
- 14
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The system above is essentially the Poisson problem, and
can be reformulated as the system Ap = b where A is a 5
(in R?) or 7 (in R®) point Laplacian matrix, p is the solution
vector of pressures, and b is the negative vector of divergence
values at each cell.

The matrix A is sparse, symmetric and positive definite,
meaning that it is easily solved using Preconditioned Conju-
gate Gradient or Multi-Grid approaches.

The solution to the above equation is then used to remove
the divergence from the velocity field:

i=10-—

Vp. (15)



3.4 Property transfer to and from the grid

At each time step, the mass and momentum from each par-
ticle is transfered to the centre of faces on the MAC grid. In
the original method of Harlow and Welch [11] the transfer
from particles to the MAC grid is

n __ n
m; = E Wime
P
_ n n
= E Wip,Mpup,
p

where the subscript p indicates a particle property and /
indicates a particular grid cell. m" is mass at time step n
(although for mass conservation this never changes), u” is
velocity at time step n, and w/, is the interpolation weights
associating the particle posmon Xp with the grid point Xx;,
deduced using bilinear (2D) or trilinear (3D) interpolation.

Transfering the updated velocities to the particles is
achieved with

(16)

(17)

n+1

U, pic = E

The principle improvement offered by [4] was to change
the backwards transfer by updating the original particle ve-
locity by the difference rather than overwriting the velocity
stored at particles, e.g.

n+1 n
pFLIP_u +ZW,p u?).

n+1
Ip i

(18)

(19)

This relatively minor adjustment to the algorithm greatly im-
proves the quality of simulation results by almost eliminating
the energy dissipation resulting from transfering to and from
the grid representation.

FLIP simulations alone tend to be too “splashy”, while PIC
simulations tend not to be splashy enough due to the energy
dissipation. Zhu and Bridson [23] proposed the linear of the
results of both methods, e.g.

n+1 __

u,

=(1- a)UZHc + O‘UZ,JF}_IP (20)
exposing a simple user parameter a which controls the
“splashiness” of the fluid, although with little physical jus-
tification3.

While linear momentum is conserved by both forward and
backward transfers when using either FLIP or PIC, the an-

gular momentum, quantified on either the grid or particles
as
Ltot = ZX X mu
i

is not preserved when transfering properties from the grid to
the particles (Eq. 18) and is lost.

(21)

3Bridson [5] derives an explicit value for o from the numerical dis-
sipation implied by PIC, based on the kinematic viscosity of fluid v:

6At,
A1)

a:min(

Figure 5: A comparison if APIC and FLIP/PIC (from [7]).
APIC appears considerably smoother, with the FLIP/PIC so-
lution generates noise — which may not be unwanted de-
pending on the example.

The solution offered by Jiang et al. [13] (working with
Disney) is to store an additional two (2D) or three (3D)
vectors at the particles c,,, where a represents the x,y, z
direction. The transfer from particles to the grid for the
mass is as in Eq. 16, but to the faces is then achieved using:

mal ai Zmp Waip (e u, +( pa) (Xal _Xp)) (22)
P
where e] is the basis vector for axis a, and x,; is the a-

position of the grid node /. This process ensures that the
component of angular momentum is incorporated in the grid
velocity. The transfer of velocity from faces to particles is
achieved using Eq. 18, but the vectors ¢, are updated using:

Zv

Note that this approach requires very little additional storage,
and the performance overhead is minimal. The qualitative
improvements are demonstrated in Fig 5.

While APIC significantly improves on the smoothness of
the results by preserving the angular momentum and to
date is incorporated into nearly every content creation tool,
FLIP/PIC is still used in some circumstances by VFX artists
due to the additional control they have over damping (the
parameter o in Eq.20) and the splashy, noisy effect that
emerges naturally (see, for example Fig. 5). There “swirly”
effects arising from APIC as a result of the preservation of
angular momentum may also be undersirable.

n+1 n+1

alp ai

(23)

4 Implementation

The Volumetric Database (VDB) was first introduced by
Museth [16] for use within DreamWorks Animation. This
tool has proven to be exceptionally versatile for a number
of applications in film production and computer graphics,
winning the Sci-Tech Academy Award in 2014. The VDB
stores near infinite volumes of 3D data in cache—coherent,
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Figure 6: Some performance metrics for large scale FLIP
simulation in VFX production using OpenVDB. From Bailey

[1].

rapid access structure with O(1) random access for insertion,
retrieval and deletion. This is supported through an adap-
tive hierarchical structure, with a quantized representation
of local data allowing for orders of magnitude reductions in
storage overhead.

Amongst the many application domains within Computer
Graphics that this technology has been used, Museth [16]
specifically discusses the use of this approach in the context
of PIC methods:

In the more practical context of surface tracking in
fluid simulation, level set advection often involves
velocity fields represented on MAC grids. These
“staggered grids” conceptually store the Cartesian
components of the velocities at cell faces rather
than co-located at cell centers. This is a popular
technique to suppress so-called checkerboard fre-
quencies in the pressure projection step of most
Navier-Stokes solvers. However, instead of devis-
ing specialized data structures for MAC grids, it
is customary to use standard collocated grids, and
simply move the staggered interpretations of the
grid indexing and values to client code. In other
words, VDB fully supports MAC grids, and we use
special interpolation schemes to convert from stag-
gered to co-located velocities required for level set
advection.

Museth [16]

An extension was developed and maintained by DNEG [6]
to specialise the VDB representation to store points and im-
plement fast routines for MAC-grid projection, which has
been widely adopted and used in the context of Visual Ef-
fects production. An example of the memory overhead for
large simulations is shown in Fig. 6, with billion particle sim-
ulations possible on a standard workstation. A significant
advantage of this representation (and FLIP in general) are
the use of fast surfacing techniques which are able to gener-

Figure 7: An example of distributed FLIP, as implemented
in Houdini 15. Image from SideFX [18].

ate signed distance field representations which are necessary
for fast rendering of fluid volumes.

Distributed simulations are crucial for high performance
simulation, and typical implementations exploit CPU (rather
than GPU) parallelism due to the significant memory require-
ments. The most expensive operation of the FLIP solve is
the pressure projection step (outlined in Section 3.3) which
requires the solution of a sparse linear system. This is solved
in a distributed fashion through the use of a highly spe-
cialised solver which takes advantage of the spatial organisa-
tion and the small size of the Laplacian stencil. A distributed
framework for solving FLIP in a production environment is
discussed briefly in Bailey et al. [2]. In the toy example in
Fig. 7 it is clear that distributed simulations do not suffer
from artefacts across boundaries between cells.

5 FLIP in Content Creation Tools

Insights on PIC methods used in VFX are provided by Jones
[14]:

e Whilst simulations are comparatively fast, they are dom-
inated by the time to perform the pressure projection
(Section 3.3).

e Interaction and fluid behaviour happens on the scale of
the background grid, so whilst particles are present in
the model they do not represent any particular liquid
mass.

e As the particles do not interact with each other directly,
they are not guaranteed to be well-distributed.

e The simulations require manipulation of both point and
volumetric data, and so artists may require ways to in-
teract with both of these representations.

As well as the computational benefits of this
method, there are workflow implications that have
made it so successful. Firstly, particle systems are



a very familiar concept to FX artists and so having
particles as the input and output of the simulation
makes it very easy to work with in a VFX envi-
ronment. Building on this, FLIP/PIC in particular
facilitates particle workflows that are much more
forgiving than purely Lagrangian methods such as
SPH.

This method allows the user to arbitrarily reseed
the particle set under the fluid surface and in-
troduce additional particles without destabilising
the simulation whilst retaining benefits of particles
such as fine details at the surface (at sub-grid res-
olution) and handling of splashes that would be
difficult to resolve on a grid representation. From
this it is not difficult to see why it has become a

favourite of visual effects artists.
Jones [14]

Realflow implements FLIP as part of it's Hybrido toolset:

Like PBD methods, FLIP solvers do not need a high
number of substeps. Low substeps makes these
solvers very fast, but this can also be a problem
in terms of fluid-object interaction. RealFlow pro-
vides a wide variety of solution to fix these inter-
action problems. In FLIP solvers, the particles are
used to carry the fluid's velocity information. Dur-
ing the simulation, velocity is transferred to the
grid, where the physics is done. This transfer can
be seen as the core that keeps the simulation sta-
ble. The main advantage of the hybrid approach
is, aside from speed, that it is possible to add sec-
ondary fluids like splashes, foam, or mist.
RealFlow [17]

Houdini has support for both FLIP/PIC and SPH and pro-
vides the following description for the comparison of the two
methods:

FLIP fluids are faster than SPH fluids, if you don't
need to substep the FLIP fluid. If you need to
substep the FLIP fluid because of fast moving col-
liders, you may find SPH just as a fast or faster.
FLIP fluids are also useful because particles can be
placed on top of each other without destabilizing
the system. SPH tends to blow up if you move
particles too close.

The advantage of the FLIP Solver is that you run
with only a few time steps per frame while SPH
requires anywhere from 7 to 20 time steps or more
per frame to stabilize. FLIP utilizes a few grids
(volume fields) to help tame the instantaneous im-
pulses that can arise in a fluid sim.

Various fields are used to tame the FLIP Solver so
that you can run far fewer points at far fewer time

steps and the inter-spacing between particles can
be random. You can introduce new particles at any
time with little to no consequence. This opens up
so many new work flows in POPs that were simply
not possible with SPH. For example, introducing
splash particles with their own property attributes
is now possible. Houdini [12]

Houdini refers to FLIP as “splashy” and APIC as “swirly”
to assist artists in identifying the appropriate tool. It is also
commonly observed that due to the conservation of inertial
properties APIC surfaces appear considerably smoother than
FLIP (see Fig 5). The noisiness of FLIP could (counter-
intuitively) be considered a strength: artists often find it
more suitable for generating agitated fluid than applying a
noisy vector field to an APIC solution.

A perceptual evaluation of the quality of fluid simulation
techniques was performed by Um et al. [22], which demon-
strated that, although incompressible SPH produced in gen-
eral better results than PIC methods, this was not the case
when taking into account equivalent computation time, in
which APIC was considerably preferred in comparison to SPH
approaches. This suggests that performance of SPH remains
an outstanding issue for in visual effects.

6 Fluid Problems in Visual Effects

DNeg is the multi-award winning visual effects studio be-
hind Oscar winning films like Inception, Interstellar and Ex
Machina. | asked them to identify some of the open chal-
lenges that they are encountering in fluid simulation for Vi-
sual Effects. They are listed below in priority order.

1. Coupling of fluid solver with 2D ocean surface sim-
ulation: Example given: a tiny dingy is being simulated
in an open ocean. It is impractical (and uncontrollable)
to simulate the entire ocean with a full fluid solver. The
wider ocean is solved using a 2D (height field) simula-
tion of the ocean surface, while the area about the boat
is simulated using a full particle based fluid solver. Link-
ing these two so that the resulting simulation is seamless
remains an open problem. This links closely to the ex-
isting SPH grand challenge of coupling between existing
fluid methods.

2. Fluid authoring tools: A very challenging open prob-
lem is how to provide artistic control for fluid in visual
effects. There is fundamentally a tradeoff between a
simulation that is entirely physically plausible and one
that is largely artistically controlled, and typically the
amount of control varies depending on the specific shot.
Artists tend to prefer drawn images, so the ability to
map a fluid state from a sketch would be a powerful
and popular tool. The ability to determine the condi-
tions necessary to transition between explicitly defined



[1] Dan Bailey.

keyframes is also an open problem. From MW's per-
spective, he is sceptical that a unifying general purpose
tool can be created that satisfies all artistic requirements
on all shots required in VFX.

. Adaptibility / multiresolution: There is no dispute
that more particles leads to generally more believable
physical simulations of fluid. DNeg, one of the lead-
ers in fluid simulation in Visual Effects, can currently
simulate systems of about 3 billion particles using their
distributed FLIP solver (which was needed for the mas-
sive wave in Interstellar). Demand for more particles
will continue to grow, but processing and storage re-
quirements will increase exponentially. Currently there
is a requirement that fluid data can be visualised on a
high end workstation, which limits the maximum resolu-
tion of any resulting fluid simulation. Multi-resolution
solutions (already one of the grand challenges) which
allow resolution to be adaptively refined based on re-
gions of interest would reduce hardware requirements
significantly.

. Multiphase simulation: Multiphase fluid simulation is
a widely relevant problem, and also crops up sometimes
in visual effects. A particularly common problem is the
simulation of foam on ocean waves, but there are other
examples of miscible and immiscible multi-phase fluid
behaviours which do occasionally need to be simulated.

Current solutions to these problems are inaccurate, expensive
to compute, or do not offer sufficient artistic control, and
would benefit from research.

7 Concluding Remarks

The widespread use of Particle—In—Cell methods in Visual Ef-
fects is a testament to the ingenuity of early works by Harlow
and coworkers so many decades ago. The performance, sta-
bility and distributable nature make it the tool of choice for
use in the Visual Effects industries. It should also be noted
that the PIC approach has been applied to other simulation
problems, such as the Material Point Method — most no-
tably used in Disney’s Frozen [20], and research continues in
this area to simulate more complex material behaviours.
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A Older method resolve FLIP/PIC
pressure projection

The method described by [8] uses a relaxation method to
eliminate velocity diffusion, which | include here for com-

pleteness. Eq. 1 can be decomposed into it’s partial deriva-
tives in each of the component dimensions (in R?):

Ou Ou? OQu _ 0Op (0% 0O
ot " ox 8y  ox & ax2 | By2
dv  Ovu O? op v v
SART AL =22 2422, (24
ot T ox oy ay+gy+”<ax2+ay2>' (24)

where u, v are velocities in the x, y directions respectively,
p is the local pressure, g is gravity and v is the kinematic
viscosity of the fluid. Terms on the left hand side of the
equations account for changes in velocity due to local fluid
acceleration and convection. The right hand terms take ac-
count of acceleration due to the force of gravity (or any body
force g), acceleration due to the local pressure gradient (Vp)
and drag due to kinematic viscosity () or thickness of the
fluid [8].

In Harlow and Welch [11], Brackbill et al. [4] and Foster
and Metaxas [8], Eq.24 is solved by finite differencing on the
discretization in Fig 4:

U,Tll/zj =Uit1/2; + At{(l/Ax)[ufJ - ui2+1,j]
+ (1/Ay)[(uv)itrj2j-172 = (Uv)is1/2,it1/2] + 8x
+ (1/Ax)(pij = pit+1,)

+ (v/ DX (Uig3/2) — 2uip1/2) + Ui—1/2;)

+( )

Vuit1/2j41 — 2uit1/2) + Uir12j-1),
(25)

yielding an explicit approximation of the updated velocity
u,fffl in terms of the projected pressure at cell centres and
the projected velocities at staggered grid points.

The result is not divergence free / incompressible — Fos-
ter and Metaxas [8] determine the updated pressure field by
solving the mass conservation equation Vu = 0 by defin-
ing the fluid divergence (or “missing mass”) for a cell (/,)
according to:

D= — <Ui+1/2,jAXUi1/2,j

uj ;i — Uji_
n ,J+1/2Ay J 1/2) (26)

with the change in pressure given by:

Bo 1 1
Apij=2 (= 4+ =)D,
Pii = ont \Bx2 T By ) i

where By is a relaxation coefficient within the range [1,2].
The cell face velocities and cell pressure properties are then
updated (see Foster and Metaxas [8] for the specifics), and
the process is repeated. This iterative process converges in
3-6 iterations according to the paper.

(27)



B Viscosity

As stated previously, fluids are considered by default in VFX
to be inviscid, but solutions to this are available. Batty and
Bridson [3] solve viscosity as a separate step by the following
PDE:

0= %v (v (Vu+ (Vu)")) (28)
which is discretized to give the following form:
~ At * T
u:u+7v-(u(Vu +(Vuh)")) (29)

where u* and u! are used to denote whether the old or
current version of u are used depending on the integration
scheme. Once discretised this solution adds an additional
linear solve to the system described above.

Figure 8: Collapsed piles of viscous armadillos. Boundary
conditions of the method of Batty and Bridson [3] (left)
reduce surface detail in comparison with the method of Lar-
ionov et al. [15]. Reproduced from Larionov et al. [15].

Larionov et al. [15] combine the viscous and pressure force
solve into a single coupled system, and are able to address
limitations in the decoupled approach of Batty and Bridson
[3] (see Fig. 8. However the additional computational cost is
not currently considered worth the qualitative improvement.

C On the splitting of Ordinary Dif-
ferential Equations

[5] demonstrate that ODE splitting is first order accurate
using Taylor series expansion. Substituting Eq. 3 into Eq. 4
yields:
g™ =(q" + Atf(q")) + Atg(q" + Atf(q"))
=q" + Atf(q") + At(g(q") + O(At))
=q" + At(f(q") + &(q")) + O(Ar%)

d
=q" + d—ZAt +0(At?).
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