
OpenGL|D - An Alternative Approach to
Multi-user Architecture

Karsten Pedersen, Christos Gatzidis, and Wen Tang

Department of Creative Technology, Faculty of Science and Technology,
Bournemouth University, UK

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bournemouth University Research Online

https://core.ac.uk/display/162654574?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract. Synchronising state between multiple connected clients can
be a challenging task. However, the need to carry this out is becoming
much greater as a larger number of software packages are becoming col-
laborative across a network. Online multiplayer games in particular are
already extremely popular but the synchronisation methods and archi-
tecture have largely remained the same. OpenGL|Distributed, presented
here, aims to provide not only an alternative to this architecture allowing
for a greatly simplified development pipeline, but also the opportunity
for a number of additional features and design patterns. The architec-
ture provided by OpenGL|D is such that no state information needs to be
transferred between clients. Instead, the OpenGL API has been utilised
as a platform agnostic protocol. This means that graphical calls can be
streamed to each client rather than relying on for manual synchronisa-
tion of application domain specific data. Initial test results are discussed,
including performance evaluation using data from a number of small pro-
totypes developed within a constrained 48-hour timeframe. These results
are compared and evaluated against a more traditional approach to net-
work multiplayer by id Software’s QuakeWorld client. It should be noted
that this article is an extended version of the work we published in the
proceedings of the Cyberworlds 2017 conference[1].

1 Introduction

One could argue that online multiplayer games are amongst the most popular
entertainment media of the last few years. However, the software infrastruc-
ture to support these multiplayer games is very large and complex [2]. Issues
regarding real-time performance of user interactions and graphics rendering re-
main challenging, even with today’s state of the art software technology [3] [4].
Common to multiplayer games are problems associated with server workload la-
tency, scalable communication costs plus real-time localisation and replication of
player interaction. Specifically, large-scale games involving tens and thousands
of players require a range of solutions to address the problem from design and
implementation to evaluation.

The most popular contemporary game engines such as Unreal Engine 4 [5]
and Unity [6] are employing the centralized client/server architecture. Whilst
providing efficient state updates via players sending control messages to a central
server, multiplayer games developed using this approach present some inherited
problems in terms of robustness and scalability. With the increasing complexity
of contemporary multiplayer games, the client-server architecture can potentially
become a computation and communication bottleneck.

Further to the scalability issue, the centralized design enforces the game
developers to rely on infrastructures provided by game engine manufacturers,
which can prevent software preservation and reusability, an important topic that
has been overlooked until now [7].

The rapid development and evolution of computer architecture often fails to
provide an infrastructure in order to ensure that older software can continue to
run on recent platforms. For example, the recent developments in Windows 10
S [8], to allow only Microsoft Store apps from being run, effectively fail to cater
for many previous standard, well-implemented Win32 programs, which are still
valid for many industry standard applications. Thus, the lack of infrastructure in
place to cater for these sometimes mission critical software packages may cause
a failure in the uptake of a new platform. Being able to run existing or legacy
applications has the benefits of saving costs and reducing the risk of introducing
bugs during the development of the replacement software [9].

In this paper, we introduce a novel distributed architecture for multiplayer
games; OpenGL|D (OpenGL Distributed), which is an evolving attempt at ad-
dressing the aforementioned challenging issues. In addition to this, OpenGL|D is
also aimed at improving the lifespan of software. In particular, through OpenGL|D,
3D software applications such as Virtual Reality (VR) and Augmented Reality
(AR) applications are allowed to be run from inside a virtual machine (VM),
whilst still benefiting from hardware accelerated performance from the graphical
processing unit (GPU). This is achieved by forwarding the graphical calls from
the virtual environment into a WebGL enabled web browser via websockets.

VMs today can be seen as one of the few solutions to running old software
without needing to port it to a modern platform, and together with OpenGL|D,
older 3D software can be guaranteed to run because of their use.

OpenGL|D can offer more beyond potential success in the area of digital
preservation, as it can also open up new possibilities for the architecture of
multi-user, collaborative tools and gaming software. Of particular interest is the
fact that even though the graphics are processed on the GPU of the individual
connected client machines, the software itself and the logic contained within is
running on a single machine, the server. This means that each client implic-
itly shares a single application state which completely eliminates the need to
synchronise the clients. This not only simplifies the development of multi-user
network software but can also potentially reduce bandwidth [10] [11].

Our contributions in this paper can be summarised to the following:

– A new architecture design and implementation of medium-scale multiplayer
games, VR and AR applications.

– A framework to allow games to be developed in a simple intuitive manner
without needing to consider the complexity of multiplayer system design

– A platform agnostic approach allowing multiplayer software to be written
and executed on any computer platform

– An innovative re-implementation of one of the industry standard graphics
APIs, OpenGL, allowing a drop-in replacement to help integration with ex-
isting projects

In the following sections we first describe the existing solutions to the syn-
chronisation of multiplayer games. We then provide further details and exam-
ples of the complexities involved in client side synchronisation, which illustrate
a number of scenarios that developers will be faced with during the develop-
ment process of multi-user/multiplayer software, and, subsequently, how a new
approach will improve upon the ways of traditional architectures. We then de-
scribe the design of OpenGL|D in Section 4. Performance evaluation is presented
in Section 5. Finally, we point out some future developments for the extended
use of OpenGL|D in both research and development projects.

2 Related Work in Client Synchronisation

Existing online multiplayer games utilize a client-server model which not only
introduces latency but also a single point of failure to a game. Distributed ar-
chitectures eliminate these issues but add additional complexity in the synchro-
nisation and robustness of the shared data. The work carried out by Cronin
et al [12] introduces an alternative synchronisation mechanism (called Trailing
State Synchronisation) which offers a hybrid approach between the traditional
client-server model and a distributed approach. It allows clients to share data
in a peer to peer manner whilst periodically checking with the central server to
confirm their state is correct. The results in this work appear promising but, in
the worst case scenario, this system can result in multiple inconsistencies and
delays due to the rollback mechanism.

Inconsistencies can manifest into flaws which can be exploited by users to
create cheats for a game. By reducing the client side inconsistencies, these flaws

can be prevented. However, maintaining consistency also means the restriction
on the amount of data that a client can input into the game world or, at the
very least, a hybrid design introducing a complex and inflexible protocol for
game programmers to work around. Baughman et al [13] proposed a protocol
for multiplayer game communication that has anti-cheating guarantees. One par-
ticular module of the proposed Lockstep protocol works as a transaction based
system which has the guarantee that no host ever receives the state of another
host before the game rules permit. This work then improves upon this relatively
expensive new protocol with the author’s faster Asynchronous Synchronization
protocol which relaxes the requirements of Lockstep by decentralizing the game
clock. The results have suggested that cheating is effectively eliminated whilst
also maintaining a good performance. However, in the examples demonstrated,
integrating this technology into a project is non trivial and significant expertise
will almost certainly be required.

We have previously undertaken research work in the similar area of multi-
player synchronisation but with a very different approach to what we propose in
this paper [14]. In order to create a protocol which reduces cheating, we proposed
the idea of using a node based approach to lay out shared data in memory. Each
of these nodes then had an owner attached and respective permissions. This al-
lowed for a flexible protocol to be built, which was potentially trivial to maintain
and extend. It also performed efficiently where players could interact with the
world and make changes to any object or data they owned, whilst also preventing
others from modifying unauthorised objects. Thus, this achieves protecting the
server and other players from any potential cheating. The technology performed
well and, as part of a prototype, was integrated with three existing games of an
independent games development studio developed for LEGO. The fact that it
could easily integrate with existing software, as opposed to software being built
from scratch, demonstrated that this approach was very easy to maintain and
extend.

However, we discovered a number of complexities with the protocol, described
in Section 3, so our solution started to become hard to manage. The node own-
ership system works well for a number of scenarios but transferring ownership
(i.e. as part of a trade) still felt overly complex. This very fact is what prompted
us to look into new ways to reduce the need to synchronise the state entirely and
move towards streaming technologies, such as the one we propose in this paper.

3 Complexities Involved in Client Synchronisation

Developing a multi user application is a more complicated and expensive process
than single user software [15]. The main reason for this is because there are more
entry points for the incorrect handling of data. Since there is effectively more
than one unit of execution operating at a time, in a similar way to a multi-
threaded application, it opens up the possibilities of race conditions and other
time dependent bugs. This can cost time and effort to debug.

Fig. 1. A small internal tool which allowed for the debugging of the Distributed
DeepThought node based hierarchy. This tool was invaluable in simulating and testing
any potential damage that a malicious user could make.

In a game scenario, for example, if a client opens up a door in the game
world, the following steps need to follow:

1. The client notifies the server that they are attempting to open the door
2. The server decides whether they have the correct authorisation to do so
3. The server tells the client that the door is opened
4. The server then notifies all other clients that the door is open
5. The clients change the state in their copy of the game state so that the door

is now open

With the increasingly complex network interactions evident in games to-
day, including all the underlying data that need to be synchronised, it soon
becomes evident that without an effective design, performing this process for
similar events would quickly become unwieldy. This stands true especially if we
now add the additional requirement that a new client is connecting and needs
to be synchronised to the existing state on the server. The following steps would
then be necessary:

1. A client connects to the server and requests a state synchronisation

2. The server needs to scan through its copy of the game state and serialize all
the changeable states into a data stream and send to the client

3. The client receives this stream and processes it, updating and adding to its
state as necessary

4. The server notifies all other clients that a new client has joined
5. Existing clients update their game state to include this new client

This synchronisation of data, depending on the size of the game world, could
become very large and, without a good design, could potentially cause latency
issues on other clients whilst the new client is being handled.

The next level of complexity is how clients interact with one another directly.
For example, let us assume a scenario where they need to perform a trade of
virtual items. Then, the following steps would need to be performed:

1. Client one informs the server they are trading an item with a specified ID
with a client of specified ID.

2. Client two informs the server they are trading their item with specified ID
with a client of specified ID.

3. Server matches the IDs to create an idea of a trade instance.
4. Server checks that both items are valid and there is no cheating such as

memory editing happening (see Section 4.4 for more details)
5. Server accepts the trade and sends success to each client
6. Each client now removes their traded item and creates a new object repre-

senting the item they received

The entire process provides a large number of potential entry points for bugs
and synchronisation issues in the above scenarios. For example, let us assume
that one of the clients disconnects at around step 4. Scanning the state and
fixing failed trade instances could be one possible solution but this alone is a
complex task. A suitably complex server could have many of these processes
for a wide range of functionality which will all need care whilst implementing.
Whilst this can certainly yield an acceptable and secure system, as seen in suc-
cessful commercial games such as Quake 3, it still requires very experienced and
disciplined programming [16]. However, the idea is that with a technology such
as OpenGL|Distributed, all of these steps needed to synchronise client states can
be avoided.

4 Inner Workings of OpenGL|D

OpenGL|D implements a client/server architecture where rather than having
the running 3D program calling the OpenGL API to communicate with the
GPU to rasterize a scene on the local machine, it, instead, creates a server for
clients to connect to via a web browser. Once connected, the OpenGL calls are
translated to a protocol and back to the client to finally be executed by the
WebGL equivalents. Technically this creates a partition in the technology stack
which is almost entirely independent from the hardware it runs on. This can be

seen in Figure 2. From a technical viewpoint this architecture has the benefit
that complexity can be encapsulated. For example, results from memory checking
tools such as Valgrind[17] can often be affected from details of the lower level
layers of an operating system. With OpenGL|D, the boundary is limited to data
being sent through a socket and, as such, the complex workings of the graphics
driver stack can have no influence on the memory allocated by the program being
tested.

Fig. 2. Diagram describing the layers that OpenGL is built upon compared to
OpenGL|D. Notice that OpenGL|D has additional layers of abstraction.

From a digital preservation viewpoint, this architecture is useful because the
3D software can be run in a VM running an old operating system as a guest. The
host can then run a web browser and simply connect to the server through the
virtual machine boundary. However, from a multi-user collaboration viewpoint
the additional benefit is that multiple clients can connect to this server and
render out the same scene. This provides the foundation for OpenGL|D’s use as
a multi-user solution.

4.1 Protocol Overview

The OpenGL|D protocol is fairly straightforward. This is largely due to the
fact that it can mimic how the computer’s CPU and GPU communicate in a
largely faithful manner. This also allows for traditional graphics programming
optimisations to remain valid. When an OpenGL command is called, the server
library encodes the command and data into a smaller message and forwards it
onto the client. The client then decodes this message and executes it on the
underlying platform, whether that is OpenGL, OpenGL|ES, WebGL or even
other graphics APIs such as DirectX. Any necessary response is then sent back
to the awaiting server. This is demonstrated in Figure 3.

Fig. 3. Diagram demonstrating a typical yet simplified communication between the
client and server components of OpenGL|D in order to upload a texture.

Due to the fact that OpenGL|D is designed to support a large number of
connected clients, it is important that no specific operation blocks execution of
the server whilst waiting for a response. This means that work undertaken to
handle a client request must cause minimal delay for the other connected clients.
In practice, this means that the example given in Figure 3, which demonstrates
synchronous requests, utilizes the OpenGL|D request buffer so that every mes-
sage for that client after the required synchronous request is stored in a buffer,
rather than executed until the dependent request is complete. It then processes
the existing request buffer until it is empty or until another synchronous request
is required. This works largely well and threads can be avoided which aids with
portability. However, this architecture does increase memory usage. This may
not be an issue when streaming graphics via OpenGL|D on a server but on a low-
powered mobile device this becomes much more important if needing to stream
to a large number of clients.

One important example of not blocking communication between clients is
when the server handles a new client connection. The new client is updated with
a snapshot of the entire current OpenGL state. Even though the state driven
architecture of OpenGL works well here, there is still potentially a considerable
amount of data to be sent, including textures, buffer objects, etc. However, a
similar system to the one described previously is utilized. Whilst the client is

being synchronised, new messages are stored in a buffer and processed when
ready, whereas other clients remain unaffected (unless we run into bandwidth
limitations). See Section 5.4 for an overview of planned optimization techniques.

4.2 How Clients Share a Single State

As described in the previous section, clients connect to a server and simply
receive rendering commands whilst sending back key presses or mouse motion
events. This means that clients themselves retain almost no state other than the
OpenGL|D graphics state such as glEnable(), glEnableClientState() etc. This
has the benefit of almost no complexity when syncing a new client. Once vertex
buffers and textures are uploaded, the newly connected client is ready for future
frames. If a potentially complex action occurs (as described earlier in the paper),
such as opening a door or a trade, it happens only in one place, the server.
Nothing will need to be synced to the clients to handle this event. They will
receive their rendering commands as usual and continue. This behavior was
demonstrated in a simple multiplayer football game (Figure 4) where players
would knock each other away from the ball whilst applying forces or "grabbing"
the ball. Typically, this ownership of the ball would be complex to synchronise
between clients but, with OpenGL|D, this was not required at all. Applying forces
between players can also be complex due to position snapshots often lagging
behind in traditional synchronisation approaches. Again, with OpenGL|D, this
complexity could be avoided.

4.3 Unique Client Specific Rendering

Other than perhaps some of the more basic collaboration software, it is important
that even though clients share the same state with OpenGL|D, it is still possible
for them to display different outputs. For example, in a 3D game, the clients
would likely require a view of the game world from different camera angles,
have different information on their heads up display (HUD) and perhaps even
have GUI elements displayed just for them. This functionality is expressed very
naturally with OpenGL|D in that whilst the update function is called just once
per frame in OpenGL|D, the display callback is called multiple times for each
connected client. This means that during the display function path, it is very
easy to query which client ID is the current active one (via gldCurrentClientId())
and then either use the view matrix from its assigned camera to get a unique
view port or go down a path of logic that displays the GUI for that client.
The whole process could even be described akin to an extension to rendering
to a texture, which is a common technique that developers have been using for
years. A simple example can be seen in Figure 5, where a player selection dialog
is shown to a newly connected client without obstructing the view of existing
players.

Fig. 4. Screenshot of Fantasy Football; a basic prototype multi-player football game
demonstrating fast action and complex interaction between knocking other players
away and "ownership" of the ball.

4.4 Cheat Prevention

Perhaps one of the more interesting features of using OpenGL|D as a solution for
multi-user applications and games is that cheating can be eliminated. The clients
themselves are akin to dumb terminals [18] and do no processing themselves.
All they do is executing OpenGL commands and responding to key presses or
mouse motion commands. This means that any modifications to the client cannot
adversely affect the server because all it reads back from the client is a key press.
The types of cheats this avoids include memory editors which can, among other
things, freeze memory locations so data such as health cannot be decremented
when a player is hurt. Other cheats involve the modification of the client and, if
dealing with native C/C++ programs, entire functions dealing with player health
could be patched out and replaced with null operations (NOPS) to, again, avoid
the decreasing of values such as health. This is even more likely if a client is
written in an interpreted language (such as Javascript) or JIT bytecode (i.e.
JVM or .NET) since even if this is obfuscated, it is still relatively easy to patch
or completely decompile these programs compared to native machine code.

5 Results and Discussion

5.1 Performance Evaluation

Compared to existing solutions involving manually syncing the client state [19] [20],
there is virtually no network overhead when using OpenGL|D because, as dis-

Fig. 5. Screenshot of Cloud Office 95; a basic prototype multi-player game developed
during a games jam. One player has the character select menu open whereas it is hidden
for other clients, demonstrating client specific rendering paths.

cussed previously, there is no actual game state to synchronise. However, there
certainly is a cost on bandwidth because we are effectively dealing with stream-
ing technology and this means we must send enough data to generate a new
image each frame. An additional overhead also needs to be considered when
dealing with Websockets so that the output can be rendered in a web browser.
Websockets have a much larger header than standard packets so require more
data to be sent across the network. Websockets also do not support UDP tech-
nology so TCP is enforced even though, as with other streaming technology, the
occasional dropped packet can be easily handled.

That said, compared to other streaming technology such as VNC which deals
with rasterized images, OpenGL|D has the potential to be a much faster solution
because it uses an intelligent protocol which sends the commands which can
generate the output image on the destination hardware, rather than send over
a pre-rendered image each frame. This can be seen in Figure 6. If there are
few models in the scene much less data needs to be transferred through to the
client, whereas with VNC a map of the rasterized pixels is sent regardless. The
bandwidth requirements when using OpenGL|D only start to match that of VNC
when dealing with a large number of shapes (almost 10K). This is rarely the case
in games due to optimization techniques used to reduce the number of draw calls.

In general, network synchronisation via OpenGL|D will have the best per-
formance compared to other solutions when only dealing with a small number
of OpenGL draw calls and a large complex game state. Such examples could
potentially include software with complex inventory systems that need to be in-

Fig. 6. Graph comparing the bandwidth requirements between OpenGL|D and VNC
with a varying number of objects in the scene.

teracted with via simple GUI systems in the client. It will also perform better
than most rasterized streaming solutions at higher resolutions. OpenGL|D does
not need to send through each pixel to the client, the clients do the actual ras-
terization, therefore there is no additional costs to bandwidth using OpenGL|D
at higher resolutions. This is demonstrated in Figure 7.

Fig. 7. Graph comparing the bandwidth requirements between OpenGL|D and VNC
with an increasing image resolution.

Network synchronisation via OpenGL|D will compare worse against other
solutions when dealing with simple states to share (such as just synchronising
projectiles and player positions) or large complex game worlds with many objects

to render. Such examples could include real-time strategy (RTS) games or open
world shooters.

5.2 Bandwidth Comparison with QuakeWorld

Whilst id’s Quake is now regarded as a fairly antiquated game and certainly no
longer cutting edge in any way, there have been a large number of improvements
to its codebase (largely due to its open-source nature) such as FTE QuakeWorld
which is still in active development[21]. The QuakeWorld client in particular
still, int our view, provides an adequate test bed for comparison with OpenGL|D.
What makes the QuakeWorld client very convenient to test against is that it em-
ploys an older implementation of OpenGL and so is fairly straightforward to port
to using OpenGL|D. Whilst OpenGL|D does not yet provide a full covarage of an
OpenGL API, the majority of functionality is there and, most importantly, the
data is still being sent across the network so will still provide valid (albeit early)
test results. One important limitation is that in our implementation, the different
clients only see the same image rather than a unique image from their player’s
viewport. However, given the way that OpenGL|D works, this was deemed satis-
factory and would not alter results in any way. Further work is certainly planned
in this area.

Our initial tests agree with the work carried out by Cordeiro et al[22] and Ab-
delkhalek et al[23][24] and show that the QuakeWorld client has a generally low
bandwidth requirement of 2-3KB for both incoming and outgoing traffic. This is
with the official maximum of 32 players. However, this number does occasionally
spike when an interesting event happens, such as a player death or teleportation.
This suggests that the additional synchronisation messages required for such an
event are in place and sent through the network so that the clients can keep up to
date with the world state. In OpenGL|D it was predicted that these spikes would
never exist. In the tests performed, whilst our prediction remained true, the base
bandwidth required was consistently higher at around 6-7KB. Again, this points
to OpenGL|D’s scalability being most effective in intricate and complex state
updates rather than synchronising a large number of clients.

To demonstrate this view, a small modification (written in QuakeC) was
made to the client to artificially produce a need for a large number of state
changes. What this modification provided was the creation of a constant trade
based system so that on each frame a virtual item was passed around the clients
until one of the clients matched a set criteria. The additional bandwidth re-
quired for the locking and synchronisation involved in the trade of these items
did start to increase. If around 50 of these trades happened at once, the band-
width required matched that of the OpenGL|D client, whereas with the same
trade mechanism, the OpenGL|D client showed no increase in bandwidth. Al-
though rather artificial in nature, this very basic experiment demonstrates that
for certain tasks, the synchronisation system provided by OpenGL|D can poten-
tially scale in a more favorable way compared to traditional approaches.

5.3 Network Protocol Optimization Mirrors GPU

The overhead discussed previously can be greatly reduced using a variety of tech-
niques. Most of these are techniques that are also evident in standard OpenGL
software. In general, reducing the amount of data being sent to and from the
graphics card translates almost exactly to reducing the amount of data being
sent to and from the client and the server. A basic example is reducing the
number of draw calls by batching mesh data together into vertex buffer objects
(VBOs) and vertex array objects (VAOs). Grouping mesh data together based
on material and texture can also avoid the need for binding a texture sampler
between each mesh or changing light data.

Generally, once mesh and texture data has been uploaded to the client and
the client state has been prepared, the only calls that need to be made are
updating the model view matrix and initiating the drawing of a number of
triangles (via glDrawArrays()). This means that much less data is sent through
the network compared to other streaming technologies such as VNC. This is
almost comparable to the manual synchronisation system found in existing games
(yet retaining all the benefits of having a single program state).

Fig. 8. Screenshot of an example OpenGL|D output. An application with this rotating
3D model takes less than 10 bytes each frame. Even with maximum compression, VNC
takes over 20 times that in bandwidth for a similar (but lower quality, lossy compressed)
image.

5.4 Planned Optimisations

There are a number of optimization techniques we plan to introduce to OpenGL|D
as and when required. The first priority is likely to be in the initial synchroni-
sation of the OpenGL state. In preliminary tests on mobile devices, we deemed
it too expensive to compress every message before it is sent. However, as with
most streaming technology the payload size sent for each frame is quite small
anyway thus the effectiveness of most compression schemes is greatly reduced for
this task. However, since the initial synchronisation of the client is likely to be
much larger and can be delivered as a contiguous block of data, compression is
likely to yield more positive results, making this a worthwhile avenue to explore
for decreasing the initial load time.

The next priority is likely to lie in the sending of buffer objects and textures.
Not only can these large blocks of data be compressed, but in the case of 2D
textures, lossless encoding (such as with PNG) should produce even better re-
sults. Research into 3D image compression schemes will need to be undertaken
in case sending an array of PNG images is suboptimal.

Finally, we realize that UDP is likely to be a more optimal solution than
our existing TCP based system [25] and in the main draw routines, unreliable
packet transmission can be handled effectively therefore, this faster but less
reliable protocol is a feasible optimization. Only in transferring permanent state
changes or uploading data objects is reliable transmission (either via TCP or a
reliable UDP scheme) desired. However, our current priority is to support the
transmission of data to a HTML5 web browser via WebSockets, which not only
produce a larger overhead to raw sockets but also restrict our protocol to TCP
based technology. In the future, if the web browser environment proves to be too
volatile or too restrictive, a standalone OpenGL|D viewer is planned where the
use of UDP can be explored in a more thorough fashion.

6 Summary of Discussion

The process of developing a multi-user project can be greatly simplified by us-
ing OpenGL|D. Not only is the developer released from the error-prone task
of manually synchronising objects within the game but also new development
architectures are made available. Rather than build up hierarchies of objects in
a manner ready to be serialized and shared, the development process can now
invest a greater focus on the logic to carry out tasks in a natural manner. A
reduced number of callbacks and rules needs to be applied because the logic
is effectively developed in exactly the same way as a single user experience.
Arguably, this new flexibility in design also allows for greater support for log-
ical distribution on clusters. This is because without needing to focus on the
synchronisation of hierarchies between computers, this additional time can be
spent solving the problems provided by traditional clustering complexities. The
task of comparing OpenGL|D against VNC has been valuable. This is because
in terms of portability, other solutions such as NoMachine’s NX server[26] or
GameStream[27], NVIDIA’s commercial streaming technology, are not available

on all but the most common platforms. This would greatly limit their ability to
be used to facilitate digital preservation and perform on older platforms such as
DOS or Plan 9 and newer platforms such as Tizen or Jolla/Sailfish. All of these
platforms are supported by OpenGL|D and VNC however.

7 Conclusion and Future Work

Allowing users to share a single state provides some interesting avenues for an-
alytical data. For example, most software will record an event when a specific
action occurs. This happens in isolation from other users. However, if the same
state is shared, it should be possible to obtain analytics data for choices the users
have made at that exact second alongside one another. We can then compare the
choices made knowing that all users have experienced exactly the same stimulus,
distractions and context at the time the event triggered. This should ensure a
more robust correlation between analytical results.

Fig. 9. Screenshot of the Zombie Maths Game. This early prototype has been trialled
by a large number of participants and the results, which have been uploaded to our
internal analytics server platform, have shown promise in terms of engagement and
improvement for all age ranges.

A future multi-user project involving OpenGL|D is a game to help learn and
practice maths (Figure 9). It is modeled after traditional light gun games such
as House of the Dead or Time Crisis. Instead of aiming and pulling a trigger,
a series of correct answers from the players will clear the enemies. With this in
place, event data such as a user encountering a certain task and subsequently

interacting and performing with it can be obtained and compared with the other
players logged in at that time, dynamically changing the rules of the game. The
main aim of this game is to encourage users to practice their maths by allowing
them to play together and which will result in repeat plays and thus hopefully
increase the lifespan of the game itself. From a technical viewpoint, synchronising
the enemies with maths questions on each client would potentially be non-trivial,
however, OpenGL|D is very likely to simplify this process by virtue of each client
implicitly sharing the same game state.

References

1. K. Pedersen, C. gatzidis, and W. Tang, in OpenGL|D - A Multi-user Single State
Architecture for Multiplayer Game Development. International Conference on Cy-
berworlds 2017. Chester, UK, Sep 2017.

2. P. Laurens, R. F. Paige, P. J. Brooke, and H. Chivers, “A novel approach to the de-
tection of cheating in multiplayer online games,” in 12th IEEE International Con-
ference on Engineering Complex Computer Systems (ICECCS 2007), July 2007,
pp. 97–106.

3. D. Wu, Z. Xue, and J. He, “icloudaccess: Cost-effective streaming of video games
from the cloud with low latency,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 24, no. 8, pp. 1405–1416, Aug 2014.

4. T. Karachristos, D. Apostolatos, and D. Metafas, “A real-time streaming
games-on-demand system,” in Proceedings of the 3rd International Conference
on Digital Interactive Media in Entertainment and Arts, ser. DIMEA
’08. New York, NY, USA: ACM, 2008, pp. 51–56. [Online]. Available:
http://doi.acm.org/10.1145/1413634.1413648

5. J. Färber, “Traffic modelling for fast action network games,” Multimedia
Tools and Applications, vol. 23, no. 1, pp. 31–46, 2004. [Online]. Available:
http://dx.doi.org/10.1023/B:MTAP.0000026840.45588.64

6. A. R. Stagner, Unity multiplayer games. Packt Publishing Ltd, 2013.
7. B. Matthews, A. Shaon, J. Bicarregui, and C. Jones, “A framework for software

preservation,” International Journal of Digital Curation, vol. 5, no. 1, pp. 91–105,
2010.

8. Microsoft, “Introducing windows 10 s,” https://www.microsoft.com/en-us/
windows/windows-10-s, 2017, [Online; accessed 20-January-2017].

9. K. Bassin and P. Santhanam, “Managing the maintenance of ported, outsourced,
and legacy software via orthogonal defect classification,” in Proceedings IEEE In-
ternational Conference on Software Maintenance. ICSM 2001, 2001, pp. 726–734.

10. J. D. Pellegrino and C. Dovrolis, “Bandwidth requirement and state consistency
in three multiplayer game architectures,” in Proceedings of the 2nd workshop on
Network and system support for games. ACM, 2003, pp. 52–59.

11. A. I. Wang, M. Jarrett, and E. Sorteberg, “Experiences from implementing a mo-
bile multiplayer real-time game for wireless networks with high latency,” Int. J.
Comput. Games Technol., vol. 2009, pp. 6:1–6:14, Jan. 2009.

12. E. Cronin, B. Filstrup, A. R. Kurc, and S. Jamin, “An efficient synchronization
mechanism for mirrored game architectures,” in Proceedings of the 1st workshop
on Network and system support for games. ACM, 2002, pp. 67–73.

13. N. E. Baughman and B. N. Levine, “Cheat-proof playout for centralized and dis-
tributed online games,” in INFOCOM 2001. Twentieth Annual Joint Conference
of the IEEE Computer and Communications Societies. Proceedings. IEEE, vol. 1.
IEEE, 2001, pp. 104–113.

14. K. Pedersen, C. Gatzidis, and B. Northern, “Distributed deepthought:
Synchronising complex network multi-player games in a scalable and flexible
manner,” in Proceedings of the 3rd International Workshop on Games and Software
Engineering: Engineering Computer Games to Enable Positive, Progressive
Change, ser. GAS ’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 40–43.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2662593.2662601

15. S. R. James and B. D. Gillam, “Network multiplayer game,” Oct. 12 1999, uS
Patent 5,964,660.

16. F. Sanglard, “Fabien sanglard’s website,” http://fabiensanglard.net/quake3/
network.php, 2012, [Online; accessed 20-January-2017].

17. V. Developers, “Valgrind memory debugger,” http://valgrind.org, 2017, [Online;
accessed 20-January-2017].

18. D. C. Bulterman and R. Van Liere, “Multimedia synchronization and unix,” in In-
ternational Workshop on Network and Operating System Support for Digital Audio
and Video. Springer, 1991, pp. 105–119.

19. J. Smed, T. Kaukoranta, and H. Hakonen, “A review on networking and multiplayer
computer games,” Turku Centre for Computer Science, 2002.

20. J. Smed, T. Kaukoranta, and H. Hakonen, “Aspects of networking in multiplayer
computer games,” The Electronic Library, vol. 20, no. 2, pp. 87–97, 2002.

21. id Software, “Fte quake world,” https://sourceforge.net/p/fteqw/code/HEAD/
tree/trunk, 2017, [Online; accessed 20-October-2017].

22. D. Cordeiro, A. Goldman, and D. da Silva, in Euro-Par 2007 Parallel Processing,
13th International Euro-Par Conference, Rennes, France, 2007. Springer, 2007.

23. A. Abdelkhalek, A. Bilas, and A. Moshovos, “Behavior and performance of
interactive multi-player game servers,” Cluster Computing, vol. 6, no. 4, pp.
355–366, Oct 2003. [Online]. Available: https://doi.org/10.1023/A:1025718026938

24. A. Abdelkhalek and A. Bilas, “Parallelization and performance of interactive mul-
tiplayer game servers,” in 18th International Parallel and Distributed Processing
Symposium, 2004. Proceedings., April 2004, pp. 72–.

25. G. Xylomenos and G. C. Polyzos, “Tcp and udp performance over a wireless lan,”
in INFOCOM ’99. Eighteenth Annual Join Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, vol. 2, Mar 1999, pp. 439–446 vol.2.

26. NoMachine, “Nomachine nx server,” http://www.nomachine.com, 2017, [Online;
accessed 20-January-2017].

27. NVIDIA, “Nvidia gamestream: Play pc games on nvidia shield,” http://www.
nvidia.co.uk/shield/games/gamestream, 2017, [Online; accessed 20-January-2017].

