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Dendritic spines are major sites of excitatory synaptic transmission and changes in their numbers and
morphology have been associated with neurodevelopmental and neurodegenerative disorders. Brain-derived
Neurotrophic Factor (BDNF) is a secreted growth factor that influences hippocampal, striatal and neocortical
pyramidal neuron dendritic spine density. However, the mechanisms by which BDNF regulates dendritic spines
and how BDNF interacts with other regulators of spines remain unclear. We propose that one mechanism by
Keywords: which BDNF promotes dendritic spine formation is through an interaction with Wnt signaling. Here, we show
Wt signaling that Wnt signaling inhibition in cultured cortical neurons disrupts dendritic spine development, reduces
BDNF dendritic arbor size and complexity, and blocks BDNF-induced dendritic spine formation and maturation.
Additionally, we show that BDNF regulates expression of Wnt2, and that Wnt2 is sufficient to promote cortical
dendrite growth and dendritic spine formation. Together, these data suggest that BDNF and Wnt signaling coop-
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Synapse eratively regulate dendritic spine formation.
© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Introduction The neurotrophin family of secreted signaling molecules regulates

Dendritic spines, specialized protrusions emanating from neuronal
dendritic shafts, are the postsynaptic sites of most excitatory synapses
in the central nervous system (Harris and Kater, 1994). Dendritic
spines first develop as dynamic filopodia that can then undergo
expansion of the spine head in a process central to the establishment
of excitatory neural synapses (Arellano et al., 2007; Fiala et al., 1998;
Ziv and Smith, 1996). Formation, loss, and structural plasticity of den-
dritic spines have been proposed to underlie experience-dependent
changes in brain circuitry during development and in the adult
(Alvarez and Sabatini, 2007; Yuste and Bonhoeffer, 2001). Related,
perturbations in the regulation of dendritic spines may contribute to
the pathophysiology of neurodevelopmental and neurodegenerative
disorders, many of which are accompanied by dendritic spine abnor-
malities (Chapleau et al., 2009; Penzes et al., 2011). Although many
different molecular signals have been identified that regulate the
formation of dendritic spines (Lin and Koleske, 2010), our under-
standing of the mechanisms underlying dendritic spine formation is
incomplete.
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synapse and dendritic spine formation (Huang and Reichardt, 2001;
Waterhouse and Xu, 2009). In particular, Brain-derived Neurotrophic
Factor (BDNF) signaling is required for dendritic spine formation in
several brain regions including the cortex (Chakravarthy et al,
2006; English et al., 2012; Kaneko et al., 2012; Vigers et al., 2012),
hippocampus (Luikart et al., 2005; Tyler and Pozzo-Miller, 2003; von
Bohlen und Halbach et al., 2008) and striatum (Baquet et al., 2004;
Rauskolb et al., 2010). BDNF specifically promotes the maturation of
dendritic spines, and has been shown to increase dendritic spine
head width in hippocampal neurons (Chapleau et al., 2009; Tyler
and Pozzo-Miller, 2003; Verpelli et al.,, 2010). Interestingly, BDNF
signaling is required for activity-induced dendritic spine head
enlargement (Tanaka et al., 2008).

Recent research has begun to elucidate some of the molecular
mechanisms by which BDNF regulates dendritic spine formation
and stability. BDNF-induced dendritic spine formation is dependent
on BDNF-mediated regulation of surface expression of TRPC3 voltage-
gated calcium channels (Amaral and Pozzo-Miller, 2007) and BDNF-
mediated activation of ERK1/2 signaling cascades (Alonso et al.,, 2004).
BDNF-induced spine remodeling also requires Ryanodine receptor-
mediated calcium release (Adasme et al., 2011). Additionally, BDNF
regulates the trafficking and synaptic localization of PSD95 (Yoshii and
Constantine-Paton, 2007), which is a major postsynaptic scaffolding
protein that is sufficient to promote dendritic spine formation
(El-Husseini et al., 2000). Furthermore, BDNF increases dendritic spine
head width through mechanism that requires the Vav family of guanine
nucleotide exchange factors (Hale et al., 2011). However, it is likely
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that additional downstream effectors mediate BDNF-induced dendritic
spine formation and stability.

One potential mechanism by which BDNF may regulate dendritic
spine formation is through the regulation of other secreted signaling
molecules, initiating a dialog between neurons that leads to synapse
formation. In addition to the neurotrophins, other secreted growth
factors, including TGF-3, FGFs and Wnts, are known to regulate
synapse formation (Packard et al., 2003; Salinas, 2005). How these
different secreted signals interact and are coordinated is unclear. To
identify targets of BDNF regulation, we performed a microarray analysis
of forebrain-specific BDNF conditional knockout mouse striatum
(Strand et al., 2007), where dendritic spine formation is dependent on
BDNF (Baquet et al., 2004), and found that the expression of several
Whnt genes is dysregulated. Interestingly, Nerve Growth Factor (NGF),
a neurotrophin related to BDNF, stimulates Wnt5a expression, which
in turn stimulates axon branching in developing sympathetic neurons
(Bodmer et al., 2009). Additionally, BDNF upregulates Wnt signaling
in neural stem cells (Chen et al., 2013), and Wnt signaling has been
reported to regulate BDNF expression in retinal glial cells (Yi et al.,
2012). Together, these observations indicate that there are multiple
regulatory connections between neurotrophin and Wnt signaling
pathways.

The Whnts are a family of secreted signaling proteins that regulate
numerous aspects of nervous system development (Ciani and Salinas,
2005) including neural patterning, neural precursor proliferation and
differentiation, and cell migration (Freese et al., 2010). Importantly,
studies have shown that Wnts function as key synaptic organizing
factors in the vertebrate and invertebrate nervous systems (Budnik
and Salinas, 2011; Lu and Van Vactor, 2007). In the mammalian
CNS, Wnts promote the presynaptic assembly of cerebellar synapses
by signaling in a retrograde manner (Ahmad-Annuar et al., 2006). In
addition, Wnt signaling enhances hippocampal excitatory neuro-
transmission (Cerpa et al.,, 2008, 2011; Varela-Nallar et al., 2010) by
regulating presynaptic (Davis et al., 2008; Farias et al., 2007; Varela-
Nallar et al., 2009) and postsynaptic (Ciani et al., 2011; Farias et al.,
2009) assembly, and inhibiting Wnt signaling induces hippocampal
excitatory synapse disassembly (Davis et al., 2008; Purro et al., 2012).
Furthermore, Wnt signaling is a critical component of activity-
mediated synapse formation in the hippocampus (Chen et al., 2006;
Gogolla et al., 2009; Sahores et al.,, 2010). Most recently, Wnt signaling
has been shown to promote hippocampal dendritic spine formation.
Two individual Wnts, Wnt5a and Wnt7a, increase dendritic spine
density in cultured hippocampal neurons (Ciani et al,, 2011; Farias et al,
2009). Additionally, cultured hippocampal neurons from DvI1 knockout
mice form fewer dendritic spines (Ciani et al., 2011). Despite the growing
appreciation for the role of Wnt signaling in regulating synapse and
dendritic spine formation in the cerebellum and hippocampus, a function
for Wnt signaling during cortical synapse or dendritic spine formation has
not been described.

We hypothesized that one mechanism by which BDNF regulates
cortical dendritic spine formation is by specifically regulating members
of the Wnt family of secreted signaling proteins. Here, we describe
evidence suggesting that Wnt signaling is needed for a subset of
BDNF-induced effects on cortical dendrites, particularly the formation
and maturation of dendritic spines. Additionally, we present evidence
indicating that one specific target of BDNF regulation is Wnt2, and we
show that Wnt2 can induce dendritic spine formation in cortical
neurons.

Results

Whnt inhibition impairs cortical dendritic spine formation and decreases
dendrite growth

To investigate whether Wnt signaling is required for dendrite
development in cortical neurons, we used four different Wnt inhibitors,

Wif1, Sfrp1, mFzd8CRD-IgG and mDvI1APDZ. Whnts signal through both
canonical and non-canonical signaling cascades (Logan and Nusse,
2004), and these inhibitors can interfere with both types of Wnt signaling
cascades. Wnt-inhibitory Factor-1 (Wif1) and Secreted Frizzled-Related
Protein-1 (Sfrp1) are endogenous secreted proteins that can bind to
Wnt ligands in the extracellular space and prevent them from binding
their receptor (Malinauskas et al, 2011; Rattner et al, 1997).
mFzd8CRD-IgG is a secreted fusion protein consisting of the extracellular
domain of the murine Wnt receptor Frizzled-8 fused to the human
immunoglobulin light chain. mFzd8CRD-IgG also binds to Wnt ligands
in the extracellular space and prevents them from binding their receptor
(Hsieh et al., 1999). mDvI1APDZ is a deletion mutant of the murine
Dishevelled-1 protein, an essential intracellular component of both
canonical and non-canonical Wnt signaling cascades (Gao and Chen,
2010). mDvI1APDZ lacks the PDZ domain that is required for DvI1 to pro-
mote hippocampal dendrite growth (Rosso et al., 2005).

Cultured cortical neurons were co-transfected on DIV10 with a
plasmid expressing one of the four different Wnt inhibitors and with
a plasmid expressing cytoplasmic GFP in order to visualize neuron
morphology. Neurons were then fixed and imaged on DIV14. Represen-
tative segments from empty vector (EV) control and Wnt-inhibited
neurons are shown in Fig. 1A. Quantitation of total dendritic protrusion
density revealed that only Sfrpl caused a significant decrease
(Fig. 1B).

Although total protrusion density was relatively unaffected by
Wnt inhibition, morphological classification of dendritic protrusions
revealed that all four Wnt inhibitors decreased the percentage of den-
dritic protrusions classified as spines and increased the percentage of
filopodial protrusions (Fig. 1C), suggesting that Wnt inhibition blocks
dendritic spine maturation. Dendritic spines are highly plastic struc-
tures that undergo dramatic changes in morphology after they emerge
and as they mature. New dendritic spines emerge as long filopodia,
which, throughout the course of spine maturation increase in spine
head width and retract toward the dendritic shaft as the nascent
synapse develops (Fiala et al., 1998; Knott et al., 2006; Lohmann and
Bonhoeffer, 2008; Maletic-Savatic et al., 1999; Zito et al., 2009). Impor-
tantly, increased dendritic spine head volume is associated with
increased synaptic strength (Matsuzaki et al., 2004; Yang et al., 2008;
Zito et al., 2009), while decreased spine head volume correlates with
decreased synaptic strength (Zhou et al., 2004). To further determine
whether dendritic spine development was impaired by Wnt inhibition,
we measured the length of all dendritic protrusions and the spine head
width of dendritic spines. Both Wif1 and DvI1APDZ caused a significant
increase in average protrusion length (Fig. 1D), and relative frequency
distribution plots of spine lengths indicate that all four Wnt inhibitors
caused a significant decrease in the fraction of short protrusions and
a significant increase in the fraction of long protrusions when compared
to control (Fig. S4A-D). Importantly, Wif1, Sfrp1 and Fzd8CRD caused
significant decreases in dendritic spine head width (Fig. 1E). Together,
these data suggest that inhibiting Wnt signaling in cortical neurons
impairs dendritic spine formation by inhibiting their maturation.

Substantial evidence suggests that synaptic activity stabilizes newly
formed dendritic branches (Cline and Haas, 2008; Lohmann et al., 2002;
Rajan etal., 1999; Vaughn et al., 1988). Both Sfrp1 and DvI1APDZ inhibit
dendritic growth in hippocampal neurons (Rosso et al., 2005), and Wif1
specifically prevents activity-induced hippocampal dendrite growth
(Wayman et al., 2006). In order to determine if the defects that we
observed in dendritic spine formation due to Wnt inhibition were asso-
ciated with decreased cortical dendrite arbor size, we measured several
aspects of dendrite elaboration: dendrite length, number of dendrite
endpoints and total dendritic complexity as determined using a Sholl
analysis (Sholl, 1953). Wif1 expression was not sufficient to inhibit
any measured aspect of dendrite arborization. However, both Sfrp1
and DvI1APDZ caused a significant decrease in total dendrite length
(Fig. 2B). Additionally, expression of Sfrp1, Fzd8CRD and DvI1APDZ
decreased the number of dendrite endpoints per neuron, suggesting a
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Fig. 1. Wnt inhibition results in altered dendritic spine development. (A) Representative dendritic segments of cortical neurons expressing empty vector (EV), Wif1, Sfrp1, Fzd8CRD
or DVI1APDZ. (B) Quantification of dendritic protrusion density. (C) Percent of all dendritic protrusions classified as either spines or filopodia. Quantification of average protrusion
length (D) and average spine head width (E) for each treatment. ***p < 0.001, **p < 0.01, *p < 0.05. n = number of neurons: EV n = 31, Wifl n = 34 Sfrp1 n = 23, Fzd8CRD

n = 25, DVIIAPDZ n = 25. Scale bar: 5 pm.

reduction in total dendritic branching (Fig. 2C). Indeed, Sholl analysis
revealed a significant decrease in dendritic complexity for these three
treatments (Fig. 2D-F). None of the four Wnt inhibitors caused a
decrease in the number of primary dendrites (Fig. S2). Together, these
data indicate that some Wnt signaling inhibitors can reduce dendritic
arborization in cortical neurons.

Whnt signaling inhibitors interfere with BDNF-induced cortical dendritic
spine formation

We next sought to determine the effects of the Wnt signaling
inhibitors on BDNF-induced dendritic spine formation. A low level of
BDNF expression is present in our cultures, rising during the culture
period, reminiscent of the normal in vivo postnatal rise of BDNF expres-
sion in the cortex, although levels in vitro at DIV14 appear lower than
present in vivo at P14 (Fig. S1A). Notably, expression rises markedly
after P14 in vivo (Bracken and Turrigiano, 2009; Schoups et al., 1995).
Thus, BDNF levels in the cultures even at DIV14 appear substantially
lower than those present in the adult cortex, where we have demon-
strated that loss of BDNF leads to a loss of dendritic spines (English
et al,, 2012; Vigers et al,, 2012). Against this low background of BDNF,
overexpression by transfection of a BDNF-expressing plasmid led to
a significant increase in dendritic protrusion density (Fig. 3A). Impor-
tantly, each of the four Wnt inhibitors blocked the increase in

protrusion density caused by BDNF overexpression (Fig. 3A). Quantifi-
cation showed that BDNF overexpression increased dendritic protru-
sion density 27 + 3%, whereas co-expression of any of the four Wnt
inhibitors blocked this increase (Fig. 3B). These data suggest that Wnt
signaling is necessary for BDNF-induced dendritic protrusion formation
or stabilization.

We next assessed the morphology of protrusions remaining on
neurons overexpressing BDNF with each Wnt inhibitor in order to as-
sess how BDNF and Wnt signaling interactions may affect dendritic
spine maturation. BDNF overexpression did not affect the fraction of
filopodial dendritic protrusions (Fig. 3C) or protrusion length (Fig. 3D).
However, BDNF overexpression significantly increased dendritic spine
head width, suggesting an enhancement of spine maturation (Fig. 3E).
Importantly, this increase was blocked by each of the four Wnt inhibitors
(Fig. 3E). Thus, as described above for protrusion density, Wnt inhibitors
blocked a significant effect of BDNF on spine maturation.

BDNF overexpression appeared to further interact with the Wnt
inhibitors in shaping spine morphology. BDNF co-expression appeared
to accentuate the increased protrusion length caused by Sfrp1 and
Fzd8CRD (compare Figs. 3D and 1D). Further, BDNF co-expression
appeared to accentuate the decrease in spine head width caused by
DvI1APDZ (compare Figs. 3E and 1E). Lastly, BDNF co-expression with
each of the Wnt inhibitors was not sufficient to rescue the increased
percentage of filopodial spines due to Wnt inhibition (Fig. 3B).
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Fig. 2. Wnt inhibition results in decreased dendrite elaboration. (A) Representative cortical neurons expressing EV, Wif1, Sfrp1, Fzd8CRD or DvI1APDZ. (B) Quantification of
the total dendrite length per neuron for each treatment. (C) Quantification of the number of dendritic endpoints per neuron for each treatment. (D-G) Sholl analysis of dendritic
complexity comparing neurons treated with each Wnt inhibitor to control neurons. ***p < 0.001, **p < 0.01, *p < 0.05. n = number of neurons: EV n = 56, Wifl n = 49, Sfrp1

n = 39, Fzd8CRD n = 39, DVI1APDZ n = 39. Scale bar: 50 pm.
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Scale bar: 5 um.

Collectively, these results suggest that Wnt inhibition impairs dendritic
spine maturation both in the presence and absence of increased BDNF
expression.

BDNF overexpression rapidly and robustly increases primary dendrite
formation in cortical neurons (Horch et al., 1999; McAllister et al., 1997;
Wirth et al,, 2003). We reproduced this finding, and found that this
increase was not blocked by overexpression of the Wnt inhibitors
(Fig. S2), indicating that some aspects of BDNF modulation of dendrites
remain intact in the presence of Wnt inhibitors. To further assess
whether expression of the Wnt inhibitors impaired the signaling ability
of BDNF, we analyzed autocrine induction of c-Fos expression by BDNF
overexpression. c-Fos is an immediate early gene whose transcription is
rapidly upregulated by BDNF (Calella et al., 2007; Gaiddon et al., 1996).
We found that BDNF induced c-Fos expression was not reduced in
neurons overexpressing any of the four Wnt inhibitors, suggesting
that the ability of the inhibitors to interfere with BDNF-induced spine
formation and spine head width expansion was not a result of
decreased levels of BDNF signaling (Fig. S3).

BDNF regulation of Wnt2 expression

Our microarray analysis indicated that Wnt2 expression is
decreased in the striatum of forebrain-specific BDNF conditional null
mice (Strand et al., 2007), suggesting that it could also be a target of
BDNF regulation in the cortex. We chose to more carefully examine
Wnt2 as a candidate BDNF-regulated Wnt gene for several additional
reasons. First, Wnt2 expression is increased by neural activity in hippo-
campal neurons (Wayman et al., 2006) and BDNF expression is known
to mediate some activity-dependent neuronal processes (Ghosh et al.,
1994; Kuczewski et al,, 2010). Second, Wnt2 is sufficient to increase
dendrite length in developing hippocampal neurons (Wayman et al.,
2006) and, similarly, BDNF influences dendrite growth in cortical
neurons (Gorski et al,, 2003; McAllister et al., 1997; Xu et al., 2000).
Third, antidepressant drug treatment can increase Wnt2 expression
(Okamoto et al., 2010) and BDNF has been shown to be a crucial
mediator of these antidepressants (Adachi et al, 2008; Shirayama
et al,, 2002). Thus, a variety of functional similarities between BDNF
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and Wnt2 have been previously described, supporting the possibility of
a functional relationship.

We first analyzed the expression pattern of Wnt2 in the brain
during periods of increased dendritic spine formation using the Allen
Developing Mouse Brain Atlas, a genome-wide mouse brain in situ
hybridization library (Allen Developing Mouse Brain Atlas, 2009).
Wnt2 is expressed in cortex, hippocampus and striatum at P14
(Figs. 4A-C, S1B), when dendritic spine and synapse addition occurs
at a high rate in vivo. Notably, dendritic spine formation on neurons in
each of these brain regions is influenced by BDNF (Baquet et al., 2004;
Chakravarthy et al,, 2006; English et al,, 2012; Kaneko et al, 2012;
Rauskolb et al., 2010; Vigers et al., 2012).

To determine whether BDNF regulates Wnt2 expression, we treated
DIV10 cultured cortical neurons with recombinant BDNF and used
qRT-PCR to determine Wnt2 mRNA abundance (Fig. 4E). Application
of recombinant BDNF resulted in an approximate 3-fold increase in
the level of Wnt2 mRNA (Fig. 4E). Additionally, co-treatment with
tetrodotoxin (TTX), which blocks voltage-gated sodium channels, dem-
onstrated that the BDNF-induced increase of Wnt2 mRNA abundance
occurs in the absence of evoked neural activity (Fig. 4E). Together,
these data are consistent with the possibility that Wnt2 is a target of
BDNF regulation in several brain regions including the cortex, and that
BDNF can regulate Wnt2 expression independently of neural activity.

Wnt2 promotes cortical dendrite growth and dendritic spine formation

We next sought to determine whether Wnt2 overexpression by
cortical neurons influences their dendritic morphology. Similar to
our findings with BDNF, there is less Wnt2 mRNA in our DIV14 primary
cortical cultures than in vivo at P14 (Fig. S1B). Wnt2 overexpression
resulted in a small but significant increase in total dendrite length
(Fig. 5A, B), consistent with what has been shown previously for
Wnt2 in hippocampal neurons (Wayman et al., 2006). Additionally,
Wnt2 expression resulted in a small but significant increase in the

number of dendrite endpoints (Fig. 5C). However, Wnt2 did not signif-
icantly increase overall dendritic complexity as measured by Sholl anal-
ysis, and did not increase the number of primary dendrites (Fig. 5D, E).
Images of representative dendrite segments overexpressing Wnt2 are
shown in Fig. 6A. Quantification revealed that Wnt2 caused a 17 + 4%
increase in dendritic spine density (Fig. 6B). Additionally, Wnt2 caused
a significant decrease in average protrusion length (Fig. 6D) and in-
creased the fraction of short protrusions (Fig. S4E). Further, while
Wnt2 expression did not alter the percentage of filopodial spines
(Fig. 6F), it did cause a significant increase in dendritic spine head
width (Fig. 6C). Together, these data indicate that Wnt2 is sufficient to
increase cortical dendritic spine formation and/or stabilization, and
may play an important role in promoting dendritic spine maturation.

Discussion

Our studies indicate that Wnt signaling modulates cortical dendrite
growth and dendritic spine formation. In addition, our observations
argue that the Wnt signaling system cooperates with the neurotrophin
BDNF to regulate dendritic spine formation and maturation. We present
evidence indicating that at least one specific Wnt, Wnt2, is regulated by
BDNF, and its overexpression in cortical neurons is sufficient to increase
dendrite growth and promote dendritic spine formation.

Whnt inhibition and dendritic spine maturation

We found that a series of different Wnt signaling inhibitors were
able to block BDNF-induced increases in dendritic spine density and
dendritic spine head width. Additionally, in the absence of BDNF
overexpression, these same Wnt inhibitors increased the fraction of
immature filopodial protrusions and significantly reduced the size of
dendritic spine heads, while only one inhibitor affected dendritic pro-
trusion density. The lack of effects on spine density in the absence of
BDNF overexpression is consistent with relatively low levels of BDNF
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expression in our cultures at the time studied, and with a role for Wnt
signaling in promoting maturation of many cortical dendritic spines,
only some of which require BDNF for their formation. Our results
support a model in which increased BDNF expression stimulates den-
dritic spine formation, which requires increased Wnt signaling in
order for newly formed dendritic spines to mature and stabilize.
Alternatively, it is possible that the secreted Wnt inhibitors used in
our studies do not completely inhibit signaling by all of the Wnts
present in cortical cultures. Previous studies have indicated that
endogenous and non-endogenous secreted Wnt inhibitors vary in
the affinity with which they bind and inhibit the activity of Wnt pro-
teins (Carmon and Loose, 2010; Galli et al., 2006). To date, six of the
19 different mammalian Wnt proteins have been shown to be active
on neurons (Salinas and Zou, 2008), and three Wnt proteins have
specifically been identified as modulators of dendritic spine formation
(Ciani et al., 2011; Farias et al., 2009). Because the majority of Wnts
and their Frizzled receptors appear to be expressed in the mouse

neocortex at P14 (Allen Developing Mouse Brain Atlas), it is possible
that multiple Wnts regulate cortical dendritic spine formation. The
large repertoire of Wnts and their receptors seems well suited to con-
tribute to complexity in cortical circuit development and plasticity.

Wnt and neurotrophin signaling interaction during dendritic spine
formation

Prior studies have identified intracellular effectors of BDNF that
modulate dendrites and synapses. In contrast, our studies support a
requirement for secreted Wnt signaling proteins during BDNF-
induced dendritic spine formation. This mechanism could rely upon
BDNF regulating Wnt expression, or other aspects of Wnt signaling,
in order to regulate dendritic spine formation. We report here that
BDNF increases the abundance of at least one Wnt mRNA, Wnt2.
However, the mechanism by which the abundance of Wnt2 mRNA
is regulated remains unclear. Increased Wnt2 mRNA levels could
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Fig. 6. Wnt2 overexpression increases dendritic protrusion density and influences spine shape on cortical neurons. (A) Representative dendritic segments of cortical neurons
expressing either EV or Wnt2. (B) Quantification of dendritic protrusion density. (C) Percent of all dendritic protrusions classified as either spines or filopodia. Quantification of
average protrusion length (D) and average spine head width (E) for each treatment. ***p < 0.001, **p < 0.01. n = number of neurons: EV n = 29, Wnt2 n = 25. Scale bar: 5 pm.

reflect regulation of transcription or mRNA stability. BDNF is known
to regulate mRNA translation in neurons (Schratt et al., 2004), and
translation can influence mRNA stability. Intriguingly, Wnt2 mRNA
is highly translated in striatal neurons (Doyle et al., 2008), perhaps
suggesting that the necessity for BDNF in formation of many striatal
dendritic spines (Baquet et al., 2004) reflects regulation of Wnt2
translation by BDNF in striatal neurons.

Neural activity is a key regulator of dendritic spine formation
(Alvarez and Sabatini, 2007), and it also regulates Wnt gene expression
transcriptionally (Wayman et al., 2006), translationally (Gogolla et al.,
2009), and post-translationally (Ataman et al., 2008; Chen et al., 2006;
Tabatadze et al., 2011). Importantly, activity-mediated regulation of
Whnt signaling is required for activity-mediated synapse formation
(Chen et al., 2006; Gogolla et al., 2009; Sahores et al., 2010). Further,
neural activity increases the secretion of BDNF (Kuczewski et al.,
2010) and, in a reciprocal manner, BDNF signaling increases neural ac-
tivity (Madara and Levine, 2008; Pozzo-Miller, 2006). Interestingly,

BDNF signaling is required to induce long-lasting structural dendritic
spine plasticity in a paradigm that pairs glutamate uncaging with
post-synaptic neural activity (Tanaka et al., 2008), suggesting that neu-
ral activity and BDNF coordinately regulate dendritic spine formation.
Together with our results, these previous observations suggest an
intertwined regulatory relationship between BDNF, neural activity and
Whnt signaling in regulation of dendritic spines.

Directionality of Wnt signaling during BDNF-induced dendritic spine
formation

The data we describe here suggest insight into the directionality of
Whnt signaling during BDNF-induced cortical dendritic spine formation.
We found that the cytoplasmic Wnt inhibitor, Dvl1APDZ, inhibits BDNF-
induced increases in dendritic spine formation to a similar degree as the
three secreted Wnt inhibitors, Wif1, Sfrp1 and Fzd8CRD (Fig. 3B). This
implies that the isolated transfected cells overexpressing BDNF must
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receive and transduce a Wnt signal in order to add the BDNF-induced
dendritic spines. Interestingly, Wnt7a has been suggested to promote
hippocampal dendritic spine growth by regulating postsynaptic CamKII
signaling (Ciani et al., 2011) while Wnt5a is thought to promote hippo-
campal dendritic spine formation by regulating postsynaptic clustering
of PSD-95 (Farias et al., 2009). Therefore, it is possible that Wnts regu-
late cortical dendritic spine formation through similar postsynaptic
mechanisms. However, this does not preclude the possibility that Wnt
signaling also regulates cortical dendritic spines through a presynaptic
mechanism.

Wht signaling and the relationship between dendritic spines and dendrite
arbors

We also found that a series of different Wnt inhibitors can affect
elaboration of cortical dendritic arbors, reminiscent of findings
with hippocampal neurons (Rosso et al., 2005). Previous work has
established that there is a correlation between dendritic spine size
and synaptic strength (Matsuzaki et al., 2001; Zito et al., 2009), and
studies have shown that blocking Wnt signaling impairs excitatory
neurotransmission (Cerpa et al., 2011; Varela-Nallar et al., 2010).
We speculate that reduced excitatory synaptic input onto neurons as
a result of impaired dendritic spine formation and maturation due to
inhibition of Wnt signaling may lead to the reduction in cortical den-
dritic arbor size and complexity as predicted by the synaptotrophic
hypothesis.

Connections between BDNF and Wnt2 in dendritic spine-associated
neuropathologies

Our finding that Wnt2 overexpression in cortical neurons promotes
dendritic spine formation, increases dendritic spine head width and
decreases dendritic spine length, is similar to the effects of other Wnt
proteins on hippocampal dendritic spine formation (Ciani et al., 2011;
Farias et al,, 2009; Varela-Nallar et al., 2010). Several different anti-
depressant drugs increase the expression of Wnt2, and viral-mediated
overexpression of Wnt2 in the hippocampus alleviates depressive-like
symptoms in some animal models of depression (Okamoto et al.,
2010). Loss of hippocampal dendritic spines has been reported in the
learned helplessness model of depression (Hajszan et al., 2009), and
anti-depressant drug treatment has been shown to increase dendritic
spine formation in the hippocampus (Norrholm and Ouimet, 2001)
and cortex (Ampuero et al., 2010). Our results suggest that Wnt2 may
alleviate depressive-like symptoms by promoting dendritic spine
formation. Moreover, multiple studies have shown that BDNF is both
necessary and sufficient for anti-depressant drug action (Banasr and
Duman, 2008; Castren and Rantamaki, 2010; Duman and Monteggia,
2006; Schmidt et al.,, 2008; Yu and Chen, 2011), which leads to the
interesting possibility that BDNF-mediated regulation of Wnt2 expres-
sion may be an important mechanistic link in the alleviation of symp-
toms during depression.

Wnt2 expression is reduced in the hippocampus and cortex of FMR1
knockout mice, a mouse model for Fragile-X syndrome (Zhang et al.,
2009). Fragile-X syndrome is a neurodevelopmental disorder character-
ized by an overabundance of immature cortical dendritic spines (Antar
et al., 2006; Irwin et al., 2001; Nimchinsky et al., 2001). Furthermore, it
has been suggested that the specific dendritic spine defect seen in
Fragile-X syndrome results from decreased stability of dendritic spine
contacts (Cruz-Martin et al., 2010; Pan et al., 2010). Our results showing
that Wnt2 increases spine number, increases spine head width and
decreases spine length in cortical neurons imply that Wnt2 functions
to promote dendritic spine maturation. This finding implicates Wnt2
deficiency as potentially critical in the etiology of the dendritic spine
pathology seen in Fragile-X syndrome.

Evolution and interrelationships between Wnt and neurotrophin
signaling

Neural synapses are an evolutionarily ancient structure thought to
have evolved in early metazoans (Ryan and Grant, 2009). Similarly,
the emergence of the Wnt signaling pathway coincides with the
emergence of metazoan life (Croce and McClay, 2008), consistent
with the possibility that Wnt signaling plays a fundamental role during
synapse formation. In contrast, neurotrophin signaling pathways
evolved more recently, with the ancestral neurotrophin believed to
have arisen early in vertebrate evolution (Hallbook, 1999). The later
evolution of neurotrophins is entirely consistent with the possibility
that the newly evolved neurotrophin signaling system was able to
recruit the pre-existing Wnt signaling system to regulate interactions
at synapses. Indeed, NGF regulates Wnt5 expression during sympathetic
neuron axon development (Bodmer et al.,, 2009). Interestingly, there is
also evidence for reciprocal regulation of neurotrophins by Wnts; several
Wnts regulate Neurotrophin-3 expression during sensory nervous
system development (Patapoutian et al., 1999), and Wnt3a regulates
BDNF expression in retinal glial cells (Yi et al., 2012). We suggest that
the neurotrophin and Wnt signaling systems mediate a communication
dialog between neurons and their innervation targets that shapes the
development and plasticity of neural circuitry in the cerebral cortex
and elsewhere in the nervous system.

Experimental methods
Cortical neuron cultures

Cortices were dissected from postnatal day 0-1 CD1 mouse pups
and incubated in papain (Worthington, Lakewood, NJ) for 45 min at
room temperature. The tissue was triturated to obtain a single-cell
suspension, and 2.5 x 10° cells/cm? were plated into 12-well cell-
culture dishes coated with poly-p-lysine (Sigma-Aldrich, St. Louis, MO).
Cells were grown initially in DMEM (Life Technologies Corporation,
Carlsbad, CA) supplemented with 10% Fetal Bovine Serum (Atlanta
Biologicals, Lawrenceville, GA) and Penicillin-Streptomycin (Life
Technologies). After 24 h, the culture medium was changed to
Neurobasal-A medium (Life Technologies) supplemented with B27 (Life
Technologies), Glutamax (Life Technologies), Penicillin-Streptomycin
(Life Technologies), and 5-Fluorodeoxyuridine (Sigma-Aldrich) to
prevent glial cell proliferation. Cultures were maintained at 5% CO- for
10 days in vitro (DIV) before beginning experimental procedures, with
half of the medium changed on DIV9. For all experiments, neuron
cultures were fixed with HEPES-buffered (Thermo Scientific, Waltham,
MA) 4% paraformaldehyde (Sigma-Aldrich), 4% Sucrose (Thermo
Scientific) solution in PBS (pH 7.4). After fixation, neuron cultures
were mounted in Fluoromount-G (Southern Biotech, Birmingham, AL)
for subsequent analysis.

Neuron transfection

Neuron cultures were transfected on DIV10 using Lipofectamine
2000 (Life Technologies) according to manufacturer's instruction.
Briefly, plasmid DNA was prepared for transfection at a DNA (ug):
Lipofectamine (pL) ratio of 1:3 in serum-free Neurobasal-A (Life
Technologies). In all experiments, 1.5 g of total plasmid DNA was
transfected per well of a 12-well cell-culture dish, and all plasmids
used the CMV promoter to drive gene expression. For each transfection,
500 ng of plasmid encoding each protein of interest was used, with the
exception of experiments utilizing the tet-inducible expression system,
in which case 400 ng of pCMV-TRE-tight-GFP and 100 ng of pCMV-rtTA
were used. This strategy of using consistent plasmid amounts in trans-
fection mixes has been previously used to achieve consistent levels of
expression of a plasmid-encoded gene across transfections (Margolis
et al., 2010). An empty vector plasmid containing the CMV promoter
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was used in each transfection to bring the total amount of plasmid DNA
in each transfection to 1.5 pg. Cultures were transfected for 2 h and
then the transfection medium was replaced with fresh culture
medium. Transfection efficiency was approximately 5-10% using this
method.

Expression plasmids

pCMV-BDNF was constructed by inserting the open reading frame
for murine BDNF into the pEGFP-N1 backbone (Clontech, Mountain
View, CA). pBR22-Wif1 expresses murine Wifl and was a generous
gift from Dr. Ken Iwatsuki (Ajinomoto Co., Tokyo, Japan). pCS2 +-Sfrp1
(Addgene plasmid 16693, Cambridge, MA) expresses murine Sfrp1
(Randall Moon Lab). pRK5-mFzd8CRD-IgG (Addgene plasmid 16689)
expresses a fusion protein consisting of the extracellular domain of
the murine Frizzled-8 protein fused with the human immunoglobulin
heavy chain (Semenov et al,, 2001). pCS2 4+-mDvI1APDZ-HA expresses
a C-terminally HA tagged murine Dishevelled-1 with a deletion of
amino acids 276-336 (Rosso et al., 2005). pTRE-tight-BDNF and pTRE-
tight-Wnt2 were constructed by inserting the ORFs for murine BDNF
and murine Wnt2, respectively, into the pTRE-tight backbone (Clontech).
PTRE-tight-EGFP was constructed by inserting the EGFP ORF from
PEGFP-N1 (Clontech) into the pTRE-tight backbone. pCMV-rtTA was
constructed by inserting the ORF for the reverse-tet-Transactivator
protein from pTRIPZ (Thermo Scientific) into the pEGFP-N1 backbone
from which the EGFP coding region was deleted. BDNF, GFP and Wnt2
expression was induced from pTRE-tight plasmids by adding 1 pg/mL
doxycycline (BD Biosciences, San Diego, CA) to the culture medium.
PEGFP-N1 was used to express cytoplasmic GFP.

Image acquisition and analysis

Dendritic protrusion, primary dendrite and nuclear c-Fos images were
collected using Metamorph software (Molecular Devices, Downington,
PA) and a Nikon Eclipse TE2000-U microscope (Nikon, Melville, NY)
fitted with a spinning disk confocal system (Solamere Technology
Group, Salt Lake City, UT) and a Cascade II 16-bit EMCCD camera
(Photometrics, Tucson, AZ). Dendritic arbor images were collected
using Zen software (Carl Zeiss, Germany) and a Zeiss LSM 510 Meta
confocal system (Carl Zeiss, Germany).

To quantify dendritic protrusion density and length, 8-10 neurons
per coverslip from a total of 3-4 coverslips per treatment were
imaged using a 1.40NA 100x objective (Nikon). Neurons that had a
pyramidal-shaped cell body and a clear apical dendrite were chosen
for analysis. 5 dendritic segments (3 apical segments and 2 basal
segments) per neuron were imaged in 0.2 pm Z-steps. Z-stacks were
then loaded into Image] (National Institutes of Health, http://rsb.info.
nih.gov/ij) for analysis. Total dendritic protrusion density was mea-
sured using uncompressed Z-stacks. All dendritic protrusions less than
5 um in length were counted and then quantified as the number of
dendritic protrusions per um of dendrite length. Average apical and
basal protrusion densities for each neuron were calculated from the
apical and basal segments, respectively. The total protrusion density
per neuron was calculated as the average of the apical and basal protru-
sion density.

In order to quantify the percentage of spine and filopodial protru-
sions, and to measure dendritic protrusion length and dendritic spine
head width, Z-stacks were flattened using the stack focuser plugin
for ImageJ (n x n Kernel = 11). To group dendritic protrusions into
categories, they were classified as either “spines” or “filopodia.”
“Spines” were defined as dendritic protrusions that possessed a
discernable spine head distinct from the dendritic spine neck. The
exception was spines that were less than 0.5 um in length that were
at least 0.5 um wide. Using these criteria, the “spine” category of all
protrusions encompassed three spine morphologies (thin, mushroom
and stubby). “Filopodia” were defined as dendritic protrusions that

lacked a discernable spine head as distinct from the dendritic spine
neck. Protrusions less than 0.5 pm in length and 0.5 pm in width were
classified as “filopodia” in order to distinguish short filopodia from
stubby spines.

Protrusion length was measured from protrusions emanating in a
perpendicular direction from the dendrite shaft in the X/Y plane using
the freehand line drawing tool in Image]. Protrusion length was
defined as the distance between the dendrite shaft and the tip of
the protrusion. Protrusions emerging either above or below the
dendrite were not measured in order to minimize the effects of the
Z-projection on length. The length of all protrusions was measured in
this manner, including both dendritic spines and filopodia. Spine head
width was measured for protrusions classified as “spines,” and was
defined as the widest portion of the dendritic spine head.

To measure the number of primary dendrites, the cell body of the
neurons used each to measure dendritic protrusions was imaged in
0.5 um Z-steps. Uncompressed Z-stacks were analyzed in Image]. Pri-
mary dendrites were defined as all neurites that emerged directly
from the cell body of the neuron.

To quantify dendritic arbors, 10-20 neurons per coverslip from a
total of 3-4 coverslips per treatment were imaged using a 0.8NA
20x objective (Carl Zeiss) in 1.0 pm Z-steps. Using Image], Z-stacks
were flattened using a Max-point Z-projection. Dendritic arbors were
traced using the Neuron] plugin for Image]J (Eric Meijering, Biomedical
Imaging Group, Erasmus MC, University Medical Center, Rotterdam,
Netherlands). Neuron] settings were as follows: Neurite appearance:
Dark; Hessian smoothing scale: 2.0; Cost-weight factor: 0.7; Snap
window size: 5 x 5; Path search window: 2500 x 2500; Tracing
smoothing range: 5; Tracing subsampling factor: 5; Line width: 1.
Dendritic arbor traces were skeletonized to a pixel width of 1.0
and then converted into a binary image. Total dendrite length was
calculated by measuring the total pixel count for each tracing and
then converting the pixel count into a length measurement (1.0 pm
dendrite length per 2.27 pixels) for each neuron that was traced. Sholl
analysis was performed on the skeletonized dendritic arbor traces
using the automated Sholl analysis plugin for Image] (Ghosh Lab,
University of California, San Diego). Sholl analysis settings were as
follows: Starting Radius: 20 um; Ending Radius: 200 um; Radius Step
Size: 20 pum; Radius Span: 0.00; Span Type: median. Dendrite endpoints
were also measured in Image] and were defined as any time a dendrite
branch terminates. All imaging and analysis was performed in a blinded
fashion with respect to neuron treatment.

Quantitative reverse transcriptase PCR

To test for the regulation of Wnt2 mRNA expression by BDNF,
DIV10 cultured neurons were treated for 4 h with either 50 ng/mL
recombinant BDNF (Millipore, Billerica, MA), 4 pm tetrodotoxin (TTX,
Sigma Aldrich), or both BDNF and TTX in combination. For experiments
investigating the temporal expression profile of BDNF and Wnt2 mRNA,
cultured neurons were harvested on DIVO, DIV10 and DIV14. Addition-
ally, neocortex was dissected from P14 mouse brain. Total RNA for
all qRT-PCR experiments was prepared using Trizol reagent (Life
Technologies) according to the manufacturer's instructions. RNA was
converted to cDNA using the iScript cDNA synthesis kit (BIO-RAD,
Hercules, CA) according to the manufacturer's instructions. Quantitative
real-time PCR analysis was performed using an Applied Biosystems
7500 Fast Real-Time PCR System (Life Technologies). BDNF and Wnt2
mRNA abundances were normalized to 18S RNA. Reactions were
performed in triplicate, in two separate experiments.

Measurement of c-Fos induction by BDNF
To measure the induction of c-Fos expression by BDNF, cortical

neurons were co-transfected on DIV10 with pTRE-tight-BDNF, pTRE-
tight-EGFP and pCMV-rtTA. To test the effects of Wnt inhibition
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on BDNF-induced c-Fos expression, neurons were additionally co-
transfected with plasmids expressing one of the four Wnt inhibitors
or an empty vector control. Neurons were allowed to express the
inhibitors for 2DIV, and then 1 ug/mL doxycycline was added to the
culture medium to induce BDNF expression. 12 h after induction
of BDNF, neurons were fixed and immunostained for c-Fos. c-Fos im-
munostaining was performed using Rabbit polyclonal SC-52
anti-c-Fos primary antibody (Santa Cruz Biotechnology, Santa Cruz,
CA), and Alexa Fluor Goat-anti-Rabbit 555 secondary antibody (Life
Technologies). Neuronal nuclei were stained using DAPI.

To quantify c-Fos induction, 10 neural cell bodies per treatment were
imaged in 0.5 pm Z-steps using a 1.40NA 100 x objective (Nikon). Laser
settings were kept consistent throughout image acquisition to allow for
subsequent quantitation of nuclear c-Fos intensity. In order to eliminate
sample bias and to ensure that neurons were not selected for imaging
based on observed c-Fos immunoreactivity during image acquisition,
neurons were selected for imaging using only their morphology as
indicated by GFP fluorescence. The first 10 neuronal cell bodies meeting
our morphological criteria (pyramidal-shaped body, one distinct apical
dendrite) were imaged in this manner. c-Fos expression was quantified
by loading uncompressed Z-stacks into Image]. The DAPI fluorescence
was used to outline a region of interest around the nucleus in a single
image plane in which the nucleus was at maximum size. The integrated
density within this region was measured in the corresponding image
plane displaying c-Fos immunoreactivity. Normalized nuclear c-Fos
intensity was calculated by dividing the integrated density by the area
of the ROL

Statistical analysis

Statistical significance for experiments comparing two populations
was determined using a two-tailed unpaired Student's t-test. For exper-
iments comparing three or more populations, a One-way ANOVA with
Tukey's post-hoc test was used. For spine length frequency distributions
and Sholl analysis distributions, statistical significance was determined
using a Two-way ANOVA with a Bonferroni post-test to compare means
at individual data points. All statistical analyses were performed using
Graphpad Prism (Graphpad Software, Inc., La Jolla, CA). All data are
presented as the mean £ SEM with n = number of neurons. Data
presented here are representative of results from at least two separate
experiments.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.mcn.2013.04.006.
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