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Abstract 

In this article we present FACSGen 2.0, new animation software for creating static and dynamic 

3-dimensional facial expressions on the basis of the Facial Action Coding System (FACS; 

Ekman, Friesen, & Hager, 2002). FACSGen permits total control over the Action Units (AUs), 

which can be animated at all levels of intensity and applied alone or in combination to an infinite 

number of faces. In 2 studies, we tested the validity of the software for the AU appearance 

defined in the FACS manual and the conveyed emotionality of FACSGen expressions. In 

Experiment 1, 4 FACS-certified coders evaluated the complete set of 35 single AUs and 54 AU 

combinations for AU presence/absence, appearance quality, intensity, and asymmetry. In 

Experiment 2, lay participants performed a recognition task on emotional expressions created 

with FACSGen software and rated the similarity of expressions displayed by human and 

FACSGen faces. Results showed good to excellent classification levels for all AUs by the 4 

FACS coders, suggesting that the AUs are valid exemplars of FACS specifications. Lay 

participants’ recognition rates for 9 emotions were high and comparisons of human and 

FACSGen expressions were very similar. The findings demonstrate the effectiveness of the 

software in producing reliable and emotionally valid expressions and suggest its application in 

numerous scientific areas, including perception, emotion, and clinical and neuroscientific 

research. 

Keywords: emotion, facial expression, Facial Action Coding System, FACSGen, 

animation 
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FACSGen 2.0 Animation Software: Generating 3D FACS-Valid Facial Expressions for Emotion 

Research 

The use of facial expressive stimuli has contributed much to our knowledge of the 

perception and recognition of emotions. Over the last years, several databases of emotion-

specific expressions (MSFDE: Beaupré & Hess, 2005; JACFEE: Biehl et al., 1997; POFA: 

Ekman & Friesen, 1976; KDEF: Goeleven, de Raedt, Leyman, & Verschuere, 2008; RaFD: 

Langner et al., 2010; UCDSEE: Tracy, Robins, & Schriber, 2009; ADFES: Van der Schalk, 

Hawk, & Fischer, 2009; GEMEP: Bänziger & Scherer, 2010; Bänziger, Mortillaro, & Scherer, 

2011) have been developed with the aim of providing standardized sets of emotional displays. 

These sets commonly show between six and nine distinct emotions (i.e., anger, fear, happiness, 

and sadness) expressed by Caucasian faces or those of other races. In addition, different versions 

of gaze and head orientation are often available, allowing variations of several characteristics. 

Although such facial displays are representative exemplars of emotion expressions and achieve 

good recognition rates, control over the type and number of variables is limited. For example, 

facial expressions generally differ between posers in intensity and underlying facial actions even 

when performed at high levels of skill (see Scherer & Ellgring, 2007). Opportunity is also 

limited for manipulating combinations of features and general properties of the face (i.e., age, 

ethnicity, gender). Moreover, most databases consist of emotional expressions presented as still 

photographs. Given the importance of motion in expression perception (i.e., Ambadar, Schooler, 

& Cohn, 2005; Bould, Morris, & Wink, 2008), the capacity to produce dynamic facial stimuli 

that can be systematically varied and controlled without sacrificing overall validity is urgently 

needed. The present article introduces FACSGen 2.0, new animation software for creating 
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realistic three-dimensional (3D) facial expressions, both static and dynamic, in experimental 

research. 

 FACSGen permits total control over the stimulus material and corresponding 

informational cues (i.e., facial appearance), including lighting and observer’s vantage point. 

Facial stimuli can be parametrically manipulated according to the experimenter’s needs, opening 

possibilities for the systematic testing of specific hypotheses. FACSGen 2.0 is built on top of 

FaceGen Modeller (2007), an existing commercial tool for creating an infinite number of facial 

identities of any age, gender, and ethnicity. Photorealistic skin texture can be mapped onto the 

face, thereby simulating a unique, human-like appearance. In addition, we included different 

texture layers (i.e., diffuse color, ambient occlusion, and gloss and normal maps), which are 

combined during the rendering stage to achieve the final appearance. Specifically, the application 

of normal maps enables the simulation of small-scale wrinkles, bumps, and crevices and 

represents an extension of the original FaceGen system. Whereas FaceGen provides only limited 

control over the manipulation of facial expressions and offers a small number of inbuilt 

emotional expressions, the new FACSGen animation software allows the creation of facial 

expressions on the basis of objective descriptors, as provided by the Facial Action Coding 

System (FACS; Ekman & Friesen, 1978; Ekman et al., 2002). 

 FACS describes all possible visually distinguishable facial movements in terms of Action 

Units (AUs). An AU lists the appearance changes (i.e., shape alterations, motion direction, 

wrinkles, bulges, etc.) occurring with the contraction of a facial muscle group that can be 

controlled independently from all other facial muscle groups. In total, FACS contains 58 such 

AUs, of which 44 are commonly used to describe most facial expressions of emotion. The 

advantage of FACS is that the constituent AUs of any expression are analyzed separately, and 
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their intensity (3-point scale), time course (onset, apex, offset), and asymmetry (L, R) can be 

objectively determined. In a first version of the software, we implemented a preliminary set of 16 

AUs (see Roesch et al., 2011, for validation data of the general FACSGen approach). To refine 

the AU appearance quality and wrinkle detail, we redesigned all AUs in FACSGen 2.0 in 

collaboration with a professional computer graphics company.1 Moreover, a large number of 

additional AUs were sculpted from descriptions of facial surface changes at maximum 

contraction by the FACS manual. The modeling process was closely monitored and rechecked by 

a FACS-certified coder (E.K.), who requested several revisions per AU, until the defined 

appearance changes were satisfactorily addressed. On the whole, we implemented 35 AUs, 

consisting of all upper and lower face AUs (except AU28), including several head and eye 

movements. 

 In FACSGen 2.0, each AU is represented by a software slider that provides control over 

the magnitude of the morph target in a value range from 0 to 100% (see Appendix A). AUs can 

be activated alone or in combination to create complex expressions. The intensity levels can be 

precisely defined, allowing the creation of identical expressions with equivalent parameter 

settings. In addition, AUs at different intensities can be combined to form new composite 

expressions that can then be used as separate morph targets. This enables the user to generate 

almost any emotionally expressive or nonemotional-specific facial expression. Besides the static 

manipulation, a separate window allows the nonlinear manipulation of activation curves of single 

AUs and AU combinations, offering the representation of detailed dynamic time courses (see 

Appendix B). Specifically, the duration and form of AUs can be systematically varied for onset, 

apex, and offset phase. The time profile and intensity of each phase is changeable and allows for 

the sophisticated simulation of facial movements. FACSGen 2.0 outputs both static and dynamic 
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expressions, with a multitude of parameter (size, viewpoint, texture resolution, and background 

color) and lighting (azimuth, elevation, and intensity) options, as specified by the user. An 

advantage of the software is that it does not require any prior technical knowledge or expertise 

for producing high-quality animations. With a limited amount of training, interested research 

groups from any discipline can use it on a standard working platform (Windows OS). FACSGen 

2.0 is available for noncommercial use by qualified research groups. 

Overview of Validation Studies 

 In the following sections, we present two studies that aimed to test the validity of the full 

version of the FACSGen software for the AU appearances defined in FACS and the emotional 

meaning conveyed by FACSGen-generated expressions. Experiment 1 focused on the evaluation 

of the AUs for FACS rules and examined whether the AUs as synthesized in FACSGen 2.0 

correspond to the detailed description in the FACS manual. In this evaluation phase, only FACS-

certified coders participated and scored the complete set of 35 AUs for AU presence/absence, 

appearance quality, intensity, and asymmetry. Furthermore, to validate the single AUs in 

combination, the coders scored 46 AU combinations2 that are listed in the FACS manual, as well 

as 8 emotion-specific AU combinations. All single AUs and AU combinations were displayed by 

four stimulus faces, representing both genders and two ethnicities. No emotion-inferential 

evaluations were made by any of the FACS coders in the first study.  

Experiment 2 focused on the perceived emotionality of FACSGen expressions and 

investigated whether these expressions convey similar emotional meaning as that of human 

expressions. In this evaluation phase, lay participants first performed a recognition task on the 

emotion-specific AU combinations and rated the perceived intensity and believability for nine 

emotions portrayed by photofit FACSGen faces. To manipulate the perceived emotional 
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magnitude, we displayed all expressions at high and medium intensity. If the FACSGen 

expressions were sufficiently realistic, we would expect to find ratings of accuracy, intensity, and 

believability that were similar to those previously reported with facial expression databases. To 

provide a stringent test of the appearance quality of FACSGen expressions, we asked participants 

to further perform a comparison task in which they viewed emotional expressions displayed by 

human faces and photofit FACSGen faces side by side. If perceived resemblances were high, this 

would suggest that FACSGen expressions reproduce the emotional signaling value of human 

expressions in a satisfactory fashion. 

Experiment 1 

The aim of the first study was to provide an exhaustive FACS validation of the software 

for all upper and lower face AUs (except AU28) and AU combinations, including several head 

and eye movements described in the FACS manual (Ekman et al., 2002). In addition, we also 

validated prototypical AU combinations of several basic and social emotions. 

Method 

Stimulus material and design. In total, 35 single AUs and 54 AU combinations were 

subject to validation (see Appendix C). AU combinations consisted of 46 nonemotional and 8 

emotion-specific combinations (anger, disgust, embarrassment, fear, happiness, pride, sadness, 

and surprise). The targeted expressions of basic emotions were based on prototypes defined by 

Ekman and colleagues (Ekman & Friesen, 1978; Ekman et al., 2002). For social emotions 

(embarrassment and pride), we relied on descriptions provided by Keltner (1995), Tracy and 

Robins (2008), and Van der Schalk et al. (2009).  

White and Black faces were used as stimulus targets to test for the generalization of AU 

appearance across different ethnicities. Two White and Black male and female faces expressed 
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all single AUs and AU combinations. For validation purposes, every AU was presented to each 

FACS coder in a different face. The representation of the four target faces was counter-balanced 

across the different AUs. To obtain measures of interrater reliability, FACS coders used the same 

face to code 12% of the stimulus material (six single AUs and AU combinations).  

For every stimulus face, we generated video clips in which the single AU or AU 

combination linearly unfolded (onset duration = 1,000 ms) until reaching its peak (apex duration 

= 1,000 ms) and returning to a neutral baseline. Dynamic expressions were synthesized at a 

frame rate of 25 images per second and lasted a total of 3 s. In addition, static images that have 

been extracted from the video clips were used. For single AUs, these images showed the AU at 

three different levels of intensity of the morph target: 30% (low), 60% (medium), and 90% 

(high). The intensity levels were chosen in such a way as to correspond as closely as possible to 

the 3-point intensity scoring in FACS (x, y, z). For AU combinations, static images showed the 

expression at the peak level of morph targets with 70% magnitude (nonemotional) or varying 

magnitude (emotion-specific) of the AUs. All video clips and images were rendered in color with 

the same viewpoint, camera focal length, and lighting. The resulting set of stimuli measured 600 

× 1,000 pixels and was displayed on a black background in random order. Video examples of the 

single AUs (Video 1) and AU combinations (Video 2) can be viewed at http://www.affective-

sciences.org/facsgen-2010. 

Procedure. Four certified FACS coders participated in the validation phase. Each coder 

received two coding sets. The first set contained video clips of single AUs and pictures that 

showed the AU at 30%, 60%, and 90% intensity. The second set contained video clips of AU 

combinations and pictures of the AU combinations at the peak of the expression. In addition, 

neutral pictures of the four stimulus faces were provided. FACS coders were free to watch all 
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video clips and pictures before they started with the scoring. However, they were blind to the 

type and number of AUs that were part of an expression in both coding sets. Overall, the FACS 

scoring procedure required about 12-15 hr of work per coder. 

Dependent measures. For the first coding set of single AUs, FACS coders were 

instructed to score: (a) the presence of the AU; (b) AU asymmetry (if applicable); (c) AU quality 

on a 7-point scale (“How well does the AU match the appearance changes described in the FACS 

manual?”, ranging from 1 [very poor match] to 7 [very good match]); and (d) AU intensity on a 

3-point scale (x, y, z) of the 30%, 60%, and 90% pictures. For the second coding set of AU 

combinations, FACS coders had to score (a) the presence of the AU and (b) AU asymmetry (if 

applicable). No intensity ratings were made for AU combinations.  

Results and Discussion 

For all single AUs and AU combinations, we calculated the number of cases in which the 

scoring of the four FACS coders corresponded to the target AU formula. If the coding deviated 

from the target formula (i.e., by coding an additional AU or failing to code a target AU), it was 

counted as incorrect. Note that this high degree of required accuracy constituted an extremely 

stringent test for AU validity (including AU combinations). Table 1 shows the mean 

classification and interrater reliability results of the 35 single AUs and 54 AU combinations.  

Overall, the validation data showed good to excellent classification results for all AUs. 

Ninety-eight percent of all single AUs matched the target AU formula. Except in two cases in 

which one of the four FACS coders provided an AU score that was different from that of the 

target formula, all AUs were coded accurately. For all single AUs, quality of AU appearance was 

scored highly (M = 6.37, SE = 0.06) and classification results of AU intensity showed sufficient 

accuracy at the three levels of intensity. The proposed 30-intensity, 60-intensity, and 90-intensity 
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level can therefore be used in accordance with the FACS specifications of x-intensity (low), y-

intensity (medium), and z-intensity (high), respectively. Interrater agreement between the four 

FACS coders was good to excellent for all single AUs, including intensity (intraclass correlations 

ranging from 0.79 to 0.99). The same pattern of results was evident for the reliability items in 

which the four FACS coders scored six AUs for the same face. Only for the 90-intensity 

reliability coding was classification success lower (75%). However, in none of the cases did 

more than two FACS coders suggest an intensity level that was different from the target 

intensity. 

 For the 54 AU combinations, classification accuracy was similarly high at 80%, with 

excellent interrater agreement. There were no overall differences in accuracy between the 

nonemotional and emotion-specific AU combinations. In most cases, only one AU of the AU 

combination deviated from the target formula or was omitted from coding. For example, AU26 

(Jaw Drop) instead of AU27 (Mouth Stretch) was scored by one of the four FACS coders for 

surprise, whereas AU5 (Upper Lid Raiser) was left out by one coder for anger and fear. Besides 

these minor deviations of singular AUs from the target formula, all FACS coders agreed on the 

majority of AUs in each AU combination, which is reflected in the high interrater agreement 

(ranging from 0.95 to 1.00). The pattern of results was the same for the six reliability items in 

which the four FACS coders scored six AU combinations for the same face. Eighty-three percent 

of reliability AU combinations were accurately coded, and interrater agreement was high at 0.95. 

Experiment 2 

The high accuracy of classification for all single AUs and AU combinations suggests that 

the validation of AUs as synthesized by FACSGen 2.0 was successful. Consequently, all AUs 

achieved verification by FACS-certified coders for the relevant target AU formula. In the second 
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experiment, we aimed to test the validity of FACSGen expressions for emotional meaning. For 

this purpose, we focused on the emotion-specific AU combinations of the first study (including 

contempt) and obtained participants’ emotion recognition scores as well as their ratings of 

intensity and believability. Furthermore, we conducted a comparison task in which participants 

judged the similarity of emotional expressions displayed by FACSGen faces and human faces.  

Method 

Participants. Thirty-nine students (34 women, 5 men) from the University of Geneva 

participated in exchange for course credit or CHF15. Their mean age was 22.9 years (SD = 3.54), 

ranging from 18 to 38 years.  

Stimulus material and design.  

Recognition task. Two White male and female photofit FACSGen faces were used as 

stimulus targets. Photofit faces contribute to a realistic facial appearance by integrating the 

texture detail of a real human face, such as facial hair (e.g., eyebrows) and skin pigmentation. All 

photofit FACSGen faces expressed the eight emotion-specific AU combinations (anger, disgust, 

embarrassment, fear, happiness, pride, sadness, and surprise) that had been validated in the 

previous study. In addition, we included contempt, which was operationalized as a unilateral 

dimpler (AU14uni) from descriptions by Langner et al. (2010). To manipulate the degree of 

perceived emotional magnitude, we displayed expressions at two intensity levels (100%-high, 

50%-medium). Figure 1 shows examples of each emotion as expressed by a photofit FACSGen 

face at high intensity.  

For every stimulus face, dynamic emotional expressions were created at a frame rate of 

25 frames per second. Stimuli started at a neutral position and then changed linearly (onset 

duration = 1,500 ms) to a peak expression with an apex duration of 1,500 ms. In total, the video 
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clips for each emotion covered 3 s. The four photofit faces showing nine different emotional 

expressions at two intensity levels were rendered in color with the same viewpoint, camera focal 

length, and lighting. The resulting set of 72 stimuli measured 800 × 1,200 pixels and was 

displayed on a black background in random order. Video examples of each type of emotional 

expression at 100-intensity (Video 3) and 50-intensity (Video 4) can be viewed at 

http://www.affective-sciences.org/facsgen-2010. 

Comparison task. Pictures of four human faces (two male, two female) were selected 

from the Amsterdam Dynamic Facial Expressions Set (ADFES; Van der Schalk et al., 2009) and 

showed the nine emotions (including neutral) at peak level. All expressions were validated in 

FACS terms and achieved sufficient emotion recognition rates. Based on the detailed FACS 

coding of these human expressions, photofit expressions of the same faces were modeled in 

FACSGen. That is, the same AUs as coded in the human expressions were implemented in 

photofit FACSGen expressions. As we were unable to resynthesize the human hairstyle, oval 

masks were used to conceal the outer part of the face. Human and FACSGen expressions always 

showed the same emotions and appeared side by side (with the presentation side being 

counterbalanced). The resulting set of 40 stimuli (4 faces × 10 emotions) measured 834 × 569 

pixels and was displayed on a black background in random order for 5 s each. Figure 2 shows 

examples of each emotion as displayed by human faces and photofit FACSGen faces. 

Procedure. After signing a consent form, participants received detailed instructions 

regarding the purpose of the study and the experimental tasks with Eprime 2.0.8.22 (Psychology 

Software Tools, Inc.). The experiment always started with the recognition task in which dynamic 

expressions of nine emotions were shown by four photofit FACSGen faces at high and medium 

intensity. Participants were informed that they would see short video clips of animated characters 
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displaying various facial expressions. Their task was to indicate which emotion was being 

expressed in the face, and how intense and believable the facial expression was in terms of the 

chosen emotion category. For the comparison task, paired images of 10 emotions were shown by 

real human faces and FACSGen faces next to each other. Participants were told that the 

(FACSGen) computer-generated expressions were always modeled on the corresponding real 

human facial expression by the person shown. No information was provided about the type of 

emotion expressed by the human face, so that comparisons had to rely on actual resemblance of 

expressive features. The participants’ task was to indicate how well the respective expression 

shown by the human person was captured in the FACSGen animation. 

Dependent measures. In the recognition task, participants successively rated for every 

stimulus (a) the expressed emotion, (b) the intensity, and (c) the believability of the expression in 

terms of the chosen emotion category. In line with previous research (e.g., Biehl et al., 1997; 

Goeleven et al., 2008; Langner et al., 2010), expressed emotion was measured within a fixed-

choice format that required the selection of an emotion category that best matched the shown 

facial expression. Response categories included the nine presented emotions, as well as the 

option “no emotion/other emotion” if none of the suggested categories was considered applicable 

(Frank & Stennett, 2001). For the intensity and believability assessment of the chosen emotion, 

ratings were made on 7-point Likert scales, with response options ranging from 1 (not at all) to 7 

(very). 

 In the comparison task, participants indicated for each image pair how well the 

(FACSGen) computer-generated expression captured and reproduced the human expression. 

Response options ranged from 1 (not well at all) to 7 (very well). 

Results and Discussion 
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Recognition accuracy. Analyses of variance (ANOVAs) with the within-subjects factors 

emotion (anger, contempt, disgust, embarrassment, fear, happiness, pride, sadness, and surprise) 

and intensity (100, 50) were conducted on the recognition scores. Table 2 shows the mean 

percentage recognition and unbiased hit rates for the nine emotions at two intensity levels. 

Percentage recognition refers to the percentage of correctly identified expressions and was 

calculated as the number of correct responses divided by the number of target stimuli for an 

emotion. As this measure does not take response bias into account (e.g., the bias to say “happy” 

for all expressions), we also calculated unbiased hit rates (Wagner, 1993). Unbiased hit rates 

express recognition accuracy as proportions of both stimulus frequency and response frequency 

and vary between 0 and 1 (perfect recognition; see Goeleven et al., 2008, for a detailed 

description of unbiased hit rates). 

The mean overall percentage recognition for emotions was 72%. Recognition rates were 

sufficiently high at 100-intensity and 50-intensity and comparable to those reported in previous 

research with human faces (Bänziger, Grandjean, & Scherer, 2009; Bänziger et al., 2011; 

Bänziger & Scherer, 2010; Beaupré & Hess, 2005; Goeleven et al., 2008; Langner et al., 2010; 

Tracy et al., 2009; Van der Schalk et al., 2009). Except for contempt at 50-intensity (M = 0.40, p 

= .200), all percentage recognition scores and unbiased hit rates were significantly higher than 

chance, set conservatively at 33%, ps < .01 (Tracy et al., 2009). An ANOVA of the arcsine-

transformed unbiased hit rates (Winer, 1971) revealed a significant main effect of intensity, F(1, 

38) = 30.09, p < .001, ηp² = .44. Overall, expressions displayed at 100-intensity (M = 0.68, SE 

=.02) were better recognized than those displayed at 50-intensity (M = 0.59, SE = .03). In 

addition, there was a significant main effect of emotion, F(8, 304) = 7.19, p < .001, ηp² = .16. 

Recognition rates were significantly higher for surprise, anger, and sadness (M = 0.74, SE = .04) 
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and significantly lower for contempt (M = 0.45, SE = .04), compared with all other expressions 

(means between 0.56 and 0.67, ps < .05). The low recognition of contempt replicates the findings 

of Langner et al. (2010) and Van der Schalk et al. (2009), who also found contempt to be the 

least well-recognized expression. For fear and embarrassment, similar suboptimal recognition 

results were reported by Beaupré and Hess (2005), Goeleven et al. (2008), and Tracy et al. 

(2009). There was no significant interaction between intensity and emotion, F(8, 304) = 1.07, p = 

.38, ηp² = .03. 

Intensity. For intensity ratings, a 9 (emotion) × 2 (intensity) ANOVA revealed a 

significant main effect of target intensity, F(1, 38) = 179.67, p < .001, ηp² = .82. As expected, 

expressions at 100-intensity (M = 5.09, SE = .11) were judged as being more intense than those 

at 50-intensity (M = 3.99, SE = .13), confirming that the manipulation of intensity of the 

emotional expressions was successful. Furthermore, a significant main effect of emotion 

occurred, F(8, 304) = 22.27, p < .001, ηp² = .37. Overall, surprise and pride were rated to be the 

most intense expressions (M = 5.01, SE = .13), followed by anger and fear; then happiness, 

disgust, and sadness (means between 4.78 and 4.46); and finally embarrassment and contempt 

(M = 4.00, SE = .14). These findings are in line with previous results in which intensity ratings 

were among the highest for surprise and the lowest for contempt (Goeleven et al., 2008; Langner 

et al., 2010). The main effects of intensity and emotion were qualified by a significant two-way 

interaction between intensity and emotion, F(8, 304) = 4.41, p < .001, ηp² = .10. Depending on 

the level of target intensity, emotions differed significantly from each other in their ratings of 

intensity (see Table 2). Post hoc tests showed that judged intensity of anger and happiness varied 

considerably across the 100-intensity and 50-intensity condition. Whereas anger at 100-intensity 

was rated as being more intense than happiness, fear, disgust, and sadness (ps < .05), these 
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differences dropped to insignificance at 50-intensity (ps > .05). Similarly, intensity ratings of 

happiness that differed from those of contempt and embarrassment at 100-intensity (ps < .001) 

were not significantly different at 50-intensity (ps > .05). In this sense, ratings of intensity tended 

to merge with lower target intensity of the emotional expressions. 

Believability. A 9 (emotion) × 2 (intensity) ANOVA on the believability ratings showed 

a significant main effect of intensity, F(1, 38) = 10.29, p < .01, ηp² = .21. Overall, expressions 

displayed at 100-intensity (M = 4.82, SE = .16) were rated to be more believable than 

expressions displayed at 50-intensity (M = 4.49, SE = .14). A significant main effect of emotion 

revealed significant differences in perceived believability between the emotions, F(8, 304) = 

9.75, p < .001, ηp² = .20. In general, surprise, pride, happiness, and anger were rated to be most 

believable (M = 4.98, SE = .17), followed by sadness and embarrassment (M = 4.62, SE = .16), 

with contempt, fear, and disgust scoring around the midpoint of the scale (M = 4.26, SE = .19). 

This pattern of results was highly similar for expressions at 100-intensity and 50-intensity (see 

Table 2) and comparable to genuineness ratings reported by Langner et al. (2010) for human 

expressions. The interaction between intensity and emotion was not significant, F(8, 304) = 1.49, 

p = .16, ηp² = .04. 

Comparison of human and FACSGen expressions. To examine how closely 

participants rated emotional expressions displayed by human and FACSGen faces, we computed 

a one-way ANOVA with the within-subjects factor emotion (anger, contempt, disgust, 

embarrassment, fear, happiness, pride, sadness, surprise, and neutral) on the similarity measure. 

Results showed that the main effect of emotion was significant, F(9, 342) = 8.46, p < .001, ηp² = 

.18. As expected, for neutral expressions, FACSGen faces were judged to be most like human 

faces (M = 5.57, SE = .16), which corresponds to a similarity measure of 80% (see Figure 3). 
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Note that these expressions showed only neutral photofit faces that had undergone no emotional 

manipulation.3 The result of the neutral expressions can therefore function as a baseline for the 

interpretation of the emotional expressions. Overall, mean similarity across all emotions was 

4.85 (SE = .17), thereby demonstrating high comparability in expressive quality. Surprise and 

anger were rated to be most similar (M = 5.28, SE = .15) between FACSGen and human faces, 

followed by contempt, sadness, happiness, fear, and disgust (M = 4.83, SE = .17), and finally by 

embarrassment and pride (M = 4.46, SE = .18, ps < .05).  

General Discussion 

In this paper, we presented FACSGen 2.0, new animation software providing high-

quality 3D facial stimuli for use in emotion expression research. FACSGen allows the creation of 

realistic facial expressions, both static and dynamic, on the basis of FACS. Facial stimuli and 

related informational cues can be parametrically controlled and manipulated for a virtually 

infinite number of faces, allowing the production of standardized stimulus material for 

experimental research. In two studies, we tested the validity of the software for the AU 

appearance defined in FACS and the emotional meaning conveyed by FACSGen expressions. 

Experiment 1 reported validation data for 35 single AUs and 54 AU combinations that had been 

implemented in faces of different gender and ethnicity. The classification of AUs was high and 

the AUs interacted predictably in combination with each other. For all AUs, quality of AU 

appearance was scored satisfactorily by the FACS coders, and the three-level intensity coding 

generally matched the FACS specifications. Based on the high classification rates in combination 

with the good interrater reliabilities, these results suggest that the AUs as synthesized by 

FACSGen 2.0 are valid exemplars that correspond to what is described in the FACS manual. 
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Experiment 2 showed that emotional expressions generated with FACSGen convey 

affective meaning that is reliably recognized by lay participants. The mean recognition rate of 

72% was high and comparable with those previously reported with human faces (Beaupré & 

Hess, 2005; Goeleven et al., 2008; Langner et al., 2010; Tracy et al., 2009; Van der Schalk et al., 

2009). Overall, surprise, anger, and sadness were the most easily recognizable emotions, whereas 

expressions of contempt were most difficult to detect. The low recognition rate of contempt was 

in line with findings by Langner et al. (2010) and Van der Schalk et al. (2009), who argued that 

this may be a general feature of the emotion, and not of the expression itself. The manipulation 

of the perceived emotional magnitude was successful, with greater levels of intensity being 

attributed to expressions of full intensity than to expressions of medium intensity. Such high-

intensity expressions were also better recognized and judged to be more believable than medium-

intensity expressions, probably because of their increased emotional salience. When comparing 

emotional expressions displayed by FACSGen faces and human faces side by side, perceived 

resemblances were high. Similarity ratings for all nine emotions were significantly above the 

midpoint of the scale, suggesting that the emotional signal value of human expressions is 

sufficiently reproduced in FACSGen expressions. These findings underscore the effectiveness of 

the software in eliciting reliable and prototypical affective stimuli that can be used for systematic 

testing in emotion research. 

FACSGen 2.0 is comparable to other software such as Poser (Spencer-Smith et al., 2001), 

FACE (Wehrle, Kaiser, Schmidt, & Scherer, 2000), realEmotion (Grammer, Tessarek, & Hofer, 

2011), Alfred (Bee, Falk, & André, 2009), or the Virtual Actor Project (Helzle, Biehn, Schlömer, 

& Linner, 2004). Although some of these programs allow one to generate AU-based facial 

actions, we are unaware of whether and how they have been validated in FACS terms. Apart 
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from the fact that these animation packages are not easily available or have become obsolete, 

there is a great difference in the ease of use, often requiring prior technical knowledge. 

FACSGen has the advantage of striking a balance between usability and realism. Currently, it is 

the only software to include FACS-validated AUs that can be used by researchers of any 

discipline. No special training is required to generate high-quality facial animations, and 

experimental stimuli can be produced rapidly. The software allows the creation of facial actions 

in FACS-defined form and motion at all levels of intensity. Moreover, the user has maximum 

flexibility by combining AUs of any type and by specifying the time profiles of facial 

movements in a linear or nonlinear fashion. To our knowledge, none of these options are offered 

in any other software currently available. 

Despite these advantages of FACSGen 2.0 software, some limitations should be 

acknowledged. Because FACSGen models come by default with no hair, the appearance of 

faces, in particular female faces, may seem somewhat unusual. However, no restrictions are 

implied in the manifestation of gender typicality (Freeman & Ambady, 2009). Past research has 

shown that hairless synthetic faces are unambiguously recognized as male or female (Becker, 

Kenrick, Neuberg, Blackwell, & Smith, 2007; Roesch et al., 2011) because of variations in facial 

features. Moreover, trait attributions of male and female synthetic faces without hair have been 

found to be similarly sensitive to features resembling emotional expressions, as is the case for 

human faces with hair (see Becker et al., 2007; Oosterhof & Todorov, 2008). Inferences drawn 

from hairless faces, therefore, may not necessarily be separate from those drawn from faces with 

hair. Nonetheless, to address this issue, we are currently working on an automatic masking 

system that will conceal the peripheral part of the head, including the hair. A similar approach 

has been taken by Goeleven et al. (2008), who removed the hairline from the faces in their 
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human database, arguing that this makes the emotional expression even more distinctive. We 

believe that our solution is a reasonable compromise, but acknowledge the possible limitations 

that may be caused by lack of hair.  

Photofitting now allows the application of texture details such as facial hair (e.g., 

eyebrows, beard) and skin pigmentation to FACSGen models. Although this represents a 

significant advance in the human-like appearance of faces, miscellaneous components such as 

glasses, earrings, or other aesthetic items (i.e., piercing) cannot yet be included. We also 

observed that the sclera and the teeth are perceived as being too white, particularly in the 

comparison between FACSGen and human faces of Experiment 2. We have taken note of these 

issues and plan to correct for the brightness level in the future.  

Stimuli created with FACSGen are 2D projections of actual 3D content. This 3D content 

can be rendered from any viewpoint, potentially allowing the presentation of stimuli in 

stereoscopic immersive environments of any kind. Like other software (e.g., Poser, Studio Max), 

however, the current implementation does not include such stereoscopic output. Moreover, a 

linear morph model is used to synthesize geometric movement of facial actions. Although this 

may not allow for an exact representation of naturally deforming motion of nonlinear quality, 

such linear blend shape approaches are still commonly used with high success in computer 

graphics (see Oleg, Rogers, Lambeth, Chiang, & Debevec, 2009; Parke & Waters, 1996).4 

Currently, FACSGen permits the generation of linear and nonlinear temporal motion by 

manipulating the activation curves of AUs. This provides the opportunity to resynthesize 

sophisticated facial behavior in a 3D and dynamic form. Until now, most human databases have 

consisted of static photographs of facial expressions, despite their rather unrealistic nature. This 

is surprising, given the large body of evidence showing that dynamic expressions are perceived 
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as more naturalistic, realistic, and intense and that they evoke stronger facial and brain activation 

than do static expressions (Biele & Grabowska, 2006; Sato, Fujimura, & Suzuki, 2008; Sato, 

Kochiyama, Yoshikawa, Naito, & Matsumura, 2004; Sato & Yoshikawa, 2007; Weyers, 

Mühlberger, Hefele, & Pauli, 2006).  

FACSGen has already been valuable in several psychological and neuroscientific studies 

involving dynamic stimuli (Cristinzio, N’Diaye, Seeck, Vuilleumier, & Sander, 2010; N’Diaye, 

Sander, & Vuilleumier, 2009). Moreover, it could be a useful tool in the context of clinical 

applications requiring the training and rehabilitation of patients with emotional dysfunctions and 

facial movement disorders (see Denlinger, VanSwearingen, Cohn, & Schmidt, 2008). Because 

single facial actions can be activated dynamically and independently from each other, FACSGen 

allows the dissection of complex facial expressions into its parts. Acquiring such controlled 

facial stimuli of human posers remains a challenging and labor-intensive task. With FACSGen, 

these problems can be overcome, as facial expressions can be systematically deformed and 

controlled on the basis of objective descriptors, such as the Facial Action Coding System. 
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Footnotes 

1Trait d’Esprit, http://www.traitdesprit.ch 

2In cases in which an AU combination was not the sole aggregation of two or more 

individual AUs, but revealed new appearance changes, separate morph targets were created. To 

our knowledge, this was required only for the combinations AU1+4 and AU1+2+4. 

3If comparisons between human and FACSGen expressions had been made simply on the 

basis of emotion categorization (thereby generalizing over a wide range of variants of an 

emotional expression), we would expect correspondence ratings to be considerably higher for 

neutral expressions (achieving ceiling rates close to 100%). Given that the perceived similarity of 

the two types of stimuli was not perfect even for neutral expressions, participants indeed seemed 

to rely on feature resemblance over and above whether the two expressions were recognizable as 

members of the same class of emotion. 

4Clearly, more information should be gained in the future about the dynamics of facial 

actions through the quantitative analysis of facial movements over time in a variety of 

communicative contexts. It must be noted, however, that such real-time AU movements can be 

captured only with the use of dynamic 3D facial scanners or optical motion capture systems with 

a large number of markers, thereby allowing a comparison between linear and nonlinear 

geometric motion. Although efforts have recently begun to build a FACS-valid facial model 

based on nonlinear geometric movements recorded from real faces (see Cosker, Krumhuber, & 

Hilton, 2010), it will take several more years until such models become available for wider 

public distribution. 
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Table 1 

Mean Correct Classification and Interrater Reliability for 35  

Single Action Units (AUs) and 54 AU Combinations 

FACS Coding Set 

 

% Correct  Intraclass 

 

(a) 35 Single AUs    

       AUs 98.57  0.99 

       30-Intensity (x) 97.86  0.85 

       60-Intensity (y) 86.43  0.79 

       90-Intensity (z) 90.00  0.93 

 

    6 Reliability AUs    

       AUs 100.00  1.00 

       30-Intensity (x) 100.00  1.00 

       60-Intensity (y) 87.50  0.96 

       90-Intensity (z) 75.00  0.97 

 

(b) 54 AU combinations 80.09  0.97 

       46 nonemotional  82.87  0.96 

       8 emotion specific 81.25  0.98 

 

    6 Reliability AU combinations 83.33  0.95 
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Table 2          

Means (Standard Errors) of Percentage Recognition, Unbiased Hit Rates, and Intensity and Believability Ratings as a Function of 

Emotion and Intensity 

 

 

Emotion 

          

Measure Anger Contempt Disgust Embarrassment Fear Happiness Pride Sadness Surprise 

          

100-Intensity          

    % Recognition 87.82 56.41 68.59 69.23 72.44 88.46 74.36 83.97 87.82 

 (4.09) (4.57) (5.09) (5.84) (4.19) (2.88) (4.73) (4.45) (3.66) 

    Unb. hit rate 0.82a  0.50c  0.61bc  0.59c  0.65bc  0.72ab  0.63bc  0.80a 0.81a  

 (.04) (.05) (.05) (.06) (.04) (.04) (.05) (.05) (.04) 

    Intensity 5.54a  4.22e  5.08c  4.65d  5.09c  5.23bc  5.47ab  4.97c  5.56a  

 (.13) (.17) (.16) (.10) (.13) (.16) (.14) (.13) (.12) 

    Believability 5.08ab  4.34d  4.26cd  4.80bc  4.51cd  5.21a  5.19a  4.79bc  5.24a  

 (.21) (.20) (.28) (.14) (.25) (.20) (.18) (.22) (.18) 
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50-Intensity          

    % Recognition 71.79 48.08 61.54 60.26 67.31 77.56 71.79 76.28 87.82 

 (4.79) (5.31) (5.87) (5.09) (4.12) (5.10) (5.45) (4.40) (3.66) 

    Unb. hit rate 0.66ab  0.40d  0.55ab  0.53b  0.57bc 0.61ab  0.59ab  0.66ac  0.73a  

 (.05) (.05) (.06) (.05) (.04) (.05) (.05) (.05) (.04) 

    Intensity 4.03b  3.53c  3.96b  3.61c  4.06b  3.81bc  4.43a  3.95b  4.56a  

 (.15) (.19) (.16) (.16) (.14) (.19) (.16) (.15) (.14) 

    Believability 4.65a  4.34bc  4.01c  4.27c  4.09c  4.72a  4.90a  4.61ab  4.86a  

 (.18) (.17) (.20) (.18) (.19) (.18) (.16) (.18) (.18) 

                    

          

Note. Means in the same row not sharing a subscript differ significantly. For reasons of readability, unbiased (unb.) hit rates are reported here as untransformed 

proportions.  
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Figure 1. Examples of nine emotions as expressed by a photofit FACSGen face at high intensity 

in the recognition task of Experiment 2. (Emotion labels have been added for illustrative 

purposes, but were not part of the experimental study.) 
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Figure 2. Examples of 10 emotions as displayed by human faces and photofit FACSGen faces in 

the comparison task of Experiment 2. (Emotion labels have been added for illustrative purposes, 

but were not part of the experimental study.) 
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Figure 3. Similarity ratings (1-7) of human and FACSGen expressions for 10 emotions in the 

comparison task of Experiment 2. Error bars represent standard errors. 
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Appendix A 

Control Panel in FACSGen 2.0 With Sliders for Each Action Unit (AU) That Can Be Adjusted in 

Magnitude From 0 to 100% 

 

In the present example, AU4 and AU10 have been activated at 70% and 60% intensity, 

respectively. 
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Appendix B 

Control Panel in FACSGen 2.0 That Allows the Creation of Dynamic Facial Expressions Over 

Time Through Nonlinear Manipulation of Activation Curves of Action Units (AUs) 
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Appendix C 

Overview of 35 Single Action Units (AUs) and 54 AU Combinations of the Facial Action 

Coding System (Ekman, Friesen, & Hager, 2002) as Synthesized by FACSGen 2.0 and Validated 

in Experiment 1 

Single AUs Name  AU Combinations 

 

1 Inner Brow Raiser  1+2 22+23+25 

2 Outer Brow Raiser  1+4 23+25+26 

4 Brow Lowerer  1+2+4 14+17 

5 Upper Lid Raiser  1+2+5 14+23 

6 Cheek Raiser  4+5 15+17 

7 Lid Tightener  5+7 15+23 

9 Nose Wrinkler  6+43 17+23 

10 Upper Lip Raiser  6+7+12 17+24 

11 Nasolabial Furrow Deepener 6+12+15 18+23 

12 Lip Corner Puller  6+12+15+17 20+25+26 

13 Sharp Lip Puller  6+12+17+23 20+25+27 

14 Dimpler (bilateral)  7+12 4+5+7+24 [Anger] 

14uni Dimpler (unilateral)  7+43 10+16+25+26 [Disgust] 

15 Lip Corner Depressor  9+17 14+54+62+64 [Embarrassment] 

16 (+25) Lower Lip Depressor  9+16+25 1+2+4+5+20+25+26 [Fear] 

17 Chin Raiser  10+14 6+12 [Happiness] 

18 Lip Pucker  10+15 12+53/+64 [Pride] 
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20 Lip Stretcher  10+17 1+4+15 [Sadness] 

22 (+25) Lip Funneler  10+12+25 1+2+5+25+27 [Surprise] 

23 Lip Tightener  10+15+17  

24 Lip Presser  10+16+25  

25 Lips Part  10+17+23  

26 (+25) Jaw Drop  10+20+25  

27 (+25) Mouth Stretch  10+23+25  

43 Eye Closure  10+12+16+25  

45 Blink  12+15  

46 Wink  12+17  

51 Head Turn Left  12+23  

52 Head Turn Right  12+24  

53 Head Up  12+25+26  

54 Head Down  12+25+27  

61 Eyes Turn Left  12+15+17  

62 Eyes Turn Right  12+16+25  

63 Eyes Up  12+17+23  

64 Eyes Down  20+23+25  

 

Note. AU25 is automatically scored with AU16 and AU22, which usually part the lips, and with AU26 and AU27, which were 

implemented as open-mouth actions. 


