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Abstract—In this work, we develop a new method for the fast
and memory-efficient computation of Slepian functions on the
sphere. Slepian functions, which arise as the solution of the
Slepian concentration problem on the sphere, have desirable
properties for applications where measurements are only avail-
able within a spatially limited region on the sphere and/or a
function is required to be analyzed over the spatially limited
region. Slepian functions are currently not easily computed for
large band-limits for an arbitrary spatial region due to high
computational and large memory storage requirements. For the
special case of a polar cap, the symmetry of the region enables
the decomposition of the Slepian concentration problem into
smaller sub-problems and consequently the efficient computation
of Slepian functions for large band-limits. By exploiting the
efficient computation of Slepian functions for the polar cap region
on the sphere, we develop a formulation, supported by a fast
algorithm, for the approximate computation of Slepian functions
for an arbitrary spatial region to enable the analysis of mod-
ern data-sets that support large band-limits. For the proposed
algorithm, we carry out accuracy analysis of the approximation,
computational complexity analysis and review of memory storage
requirements. We illustrate, through numerical experiments, that
the proposed method enables faster computation, and has smaller
storage requirements, while allowing for sufficiently accurate
computation of the Slepian functions.

Index Terms—Spatial-spectral concentration problem,
Slepian functions, 2-sphere (unit sphere), spherical harmonics.

EDICS: MDS-ALGO, DSP-TRSF.

I. INTRODUCTION

Signals are naturally defined on a sphere in a large
number of real-world applications found in various and di-
verse branches of science and engineering; including med-
ical imaging [1]–[3], cosmology [4]–[6], acoustics [7], [8],
geophysics [9], [10], planetary sciences [11], [12], wireless
communication [13], [14] and computer graphics [15], [16],
to name a few. In these applications, signals and/or data-sets on
the sphere are often analyzed in the harmonic domain which
is enabled by the spherical harmonic transform which serves
as a well-known counterpart of the Fourier transform [17].
Spherical harmonic functions, or spherical harmonics for short,
form an orthonormal basis [17] for signals on the sphere.
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Signals on the sphere can be reconstructed from a finite
number of measurements by expansion in the spherical har-
monic basis, provided that the spherical harmonic transform
can be accurately computed which requires the samples to be
taken on a grid (on the whole sphere) defined by sampling
schemes [18], [19].

However, it is common for signals to be measured, re-
constructed and/or analyzed within a region of the sphere in
many fields including medical imaging [20], signal process-
ing [21], [22], geological studies [9], [10], acoustics [7] and
cosmological studies [23], [24], to name a few. For example,
the samples are unavailable (or unreliable) at the North and
South pole for satellite measurements of the Earth’s magnetic
or gravitational field [25]. Since the data-sets/measurements
are defined over the spatially limited region, the use of the
globally defined spherical harmonic basis may not be suitable
for signal analysis in these applications. Alternatively, Slepian
functions, which arise as the solution of the Slepian concentra-
tion problem on the sphere [26]–[28] to find the band-limited
functions with optimal energy concentration within a spatial
region on the sphere, serve as an orthonormal basis of the
space formed by band-limited functions, and therefore are well
suited for signal analysis [21], [24], [29], [30] and accurate
signal reconstruction (over the spatially limited region) [7],
[13], [22] in these applications.

Despite being widely applicable, Slepian functions are cur-
rently not computed for large band-limits due to the high com-
putational complexity and large memory storage requirements
associated with their computation [31]. The conventional
method for computing Slepian functions for an arbitrary spatial
region on the sphere [28], [32] requires the computation of a
L2×L2 matrix, where L denotes the band-limit (formally de-
fined in Section II-A) in the spherical harmonic basis, and the
subsequent eigenvalue decomposition of this matrix, both of
which are computationally intensive. Furthermore, the storage
of such a large matrix on a commonly available desktop com-
puter (with limited memory) also becomes infeasible for large
L. For the special case of a polar cap spatial region, the compu-
tational complexity and storage requirements are manageable
for large band-limits as the symmetry of the polar cap region
enables the decomposition of Slepian concentration problem
into subproblems of smaller size, where the largest matrix
is L × L [25], [31]. To the best of our knowledge, Slepian
functions have only been computed up to L = 72 [33] despite
higher band-limit data being available, with the exception of
the special case of the region being a polar cap for which
Slepian functions have been constructed up to L = 500 [31].
While Slepian functions have been used to spatially and
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spectrally localize a global spherical harmonic power spectrum
with large band-limit, Slepian functions, which in this context
are used as data tapers, have a small band-limit [12], [29].
In [34] an iterative algorithm is proposed for the computation
of the most concentrated eigenfunction which obtains smaller
computational complexity than the conventional method but
can only compute the first Slepian function.

With the large band-limits supported by modern data-sets on
the sphere, such as the Enhanced Magnetic Model (EMM2015)
of magnetic field of Earth with band-limit L = 720 [35], it
is desirable to be able to compute Slepian functions for large
band-limits. In this work, with an aim to make computation
of Slepian functions manageable for large band-limits, we
address the following questions:
• Can we develop a method for calculating Slepian func-

tions that is more computationally efficient than the
conventional method?

• How can we reduce the memory storage requirements to
make the computation of Slepian functions manageable
on a commonly available desktop computer for large L?

• How does the reduction in computational burden and
storage requirements impact on the accuracy of Slepian
functions?

In addressing these questions, we organize the rest of
the paper as follows. We review the necessary mathematical
background for signals on the sphere and spherical harmonics
in Section II, before presenting the conventional approach to
computing Slepian functions on the sphere. The proposed
method for computing Slepian functions is then derived in
Section III, where we also analyze the properties of the pro-
posed method and develop an algorithm for implementing the
proposed method that is computationally and memory effi-
cient. In Section IV, we illustrate the accuracy, computational
complexity and storage requirements of the proposed method
compared with the conventional method of computing Slepian
functions for the example of mainland Australia. Slepian
functions for the example of South America are computed
using the proposed method in Section V. Concluding remarks
are then made in Section VI.

II. PROBLEM FORMULATION

To clarify the adopted notation, we briefly review the
mathematical background for signals defined on the sphere
and their spectral domain representation before presenting
Slepian functions on the sphere and stating the problem
under consideration. The important notation and mathematical
symbols adopted in this paper are summarized in Table I.

A. Mathematical Background

1) Signals on the Sphere: A point on the unit sphere S2

(also known as the 2-sphere or sphere) is given by a unit
vector x̂ ≡ x̂(θ, φ) , (sin θ cosφ, sin θ sinφ, cos θ)′ ∈ R3,
where θ ∈ [0, π] is the colatitude that is measured with respect
to the positive z−axis and φ ∈ [0, 2π) is the longitude which
is measured with respect to the positive x−axis in the x − y
plane, and (·)′ denotes the vector transpose operation.

TABLE I: Important notation and mathematical symbols
adopted in this paper.

Symbol Notation
S2 The unit sphere (also known as sphere, 2-sphere).

L2(S2) Hilbert space of square integrable functions on S2.
Ym` (x̂) Spherical harmonic function of degree ` and order m.
L Band-limit of a function on the sphere.
HL The subspace of band-limited signals on L2(S2).
R Arbitrary region on the sphere.
RΘ Polar cap of co-latitude radius Θ centered at the North pole.

RΘ(x̂c) Rotationally symmetric region centered at x̂c = (θc, φc).
A Area of R.
AΘ Area of RΘ or RΘ(x̂c).
K L2 × L2 matrix containing inner products of Ym` (x̂) on R.
C The matrix K for RΘ.
N Sum of eigenvalues of K, dNe is approximately the number of

well-concentrated Slepian functions in R.
NΘ Sum of eigenvalues of C, dNΘe is approximately the number of

well-concentrated Slepian functions in RΘ or RΘ(x̂c).
λ Concentration ratio of Slepian function within a region.
hα Eigenvector of K corresponding to λα, α = 1, 2, . . . , L2.

hα(x̂) Slepian function for R corresponding to λα, α = 1, 2, . . . , L2

calculated using the conventional method.
sα(x̂) Slepian functions for RΘ corresponding to

λα, α = 1, 2, . . . , L2.
gα(x̂) Slepian functions for RΘ(x̂c) corresponding to

λα, α = 1, 2, . . . , L2.
P NΘ ×NΘ matrix containing inner products of rotationally

symmetric Slepian functions on R.
M The number of points used to calculate the elements of P

via numerical integration.
f̃a Eigenvector of P corresponding to λa, a = 1, 2, . . . , NΘ.

fa(x̂) Slepian function for R corresponding to λa, a = 1, 2, . . . , NΘ

calculated using the method proposed in this paper.

The set of complex-valued square-integrable functions de-
fined on the sphere forms a Hilbert space denoted by L2(S2)
equipped with the inner product given by [17]

〈f, h〉 ,
∫
S2

f(x̂)h(x̂) ds(x̂), (1)

for two functions f and h defined on S2. Here ds(x̂) =
sin θ dθ dφ is the differential area element on S2 and (·)
denotes the complex conjugate. The inner product induces
a norm ‖f‖ , 〈f, f〉1/2. We refer the functions with finite
energy (finite induced norm) as signals on the sphere.

2) Spherical Harmonic Domain Representation: The spher-
ical harmonic functions are the archetype set of basis functions
for L2(S2). The spherical harmonic functions (or spherical
harmonics for short) Y m` (x̂) for integer degree ` ≥ 0 and
integer order |m| ≤ `, where | · | denotes the absolute value,
are defined as [17], [36]

Y m` (x̂) = Y m` (θ, φ) = Nm
` Pm` (cos θ)eimφ, (2)

with

Nm
` =

√
2`+ 1

4π

(`−m)!

(`+m)!
, (3)

and Pm` denotes the associated Legendre function of integer
degree ` and integer order m [17]. The spherical harmonics
are orthonormal over the sphere with

〈
Y m` , Y qp

〉
= δ`,pδm,q ,

where δm,q is the Kronecker delta function: δm,q = 1 for
m = q and is zero otherwise.
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By the completeness of spherical harmonics, we can expand
any signal f ∈ L2(S2) as

f(x̂) =

∞∑
`=0

∑̀
m=−`

(f)m` Y
m
` (x̂), (4)

where the equality is understood in terms of convergence in
the mean [17] and

(f)m` , 〈f, Y m` 〉 =

∫
S2

f(x̂)Y m` (x̂) ds(x̂), (5)

denotes the spherical harmonic coefficient of degree ` and
order m. The signal f ∈ L2(S2) is defined to be band-
limited at degree L if (f)m` = 0 for ` ≥ L. The set of
band-limited signals forms an L2 dimensional subspace of
L2(S2), which is denoted by HL. We define the column vector
f =

(
(f)0

0, (f)−1
1 , (f)0

1, (f)1
1, (f)−2

2 , · · · , (f)L−1
L−1

)′
of size L2

as the spectral domain representation of a band-limited signal
f ∈ HL.

3) Rotation on the Sphere: Rotation of a function on the
sphere can be described in terms of the rotation operator
D(ϕ, ϑ, ω) which rotates a function by an angle ω ∈ [0, 2π)
around the z-axis, followed by an angle ϑ ∈ [0, π] around
the y-axis and finally an angle ϕ ∈ [0, 2π) around the
z-axis, where the axis and rotations follow a right-handed
convention [17]. The inverse of the rotation operator is given
by D(ϕ, ϑ, ω)−1 = D(π−ω, ϑ, π−ϕ). Rotation of a function
on the sphere is realised by inverse rotation of the coordinate
system with

(D(ϕ, ϑ, ω)f)(x̂) = f(R−1x̂), (6)

where R is the 3 × 3 rotation matrix corresponding to the
rotation operator D(ϕ, ϑ, ω) [17].

4) Regions on the Sphere: We use R to denote an arbitrary
closed region of the sphere with area A =

∫
R
ds(x̂). R can be

irregular in shape and does not need to be convex, it can also
be a union of unconnected subregions, with R = R1∪R2∪ . . .
[17], [28]. A useful region of the sphere is the polar cap region
RΘ , {x̂(θ, φ) ∈ S2 | 0 ≤ θ ≤ Θ}, parameterized by central
angle Θ formed by the boundary of the polar cap with the
positive z-axis [25].

B. Slepian Functions on the Sphere

For signals on the sphere, the Slepian concentration prob-
lem [37]–[40], to find the band-limited (or space-limited)
functions with optimal energy concentration in the spatial (or
spectral) domain, has been extensively investigated [17], [25],
[27], [28], [30], [41]. In order to maximize the spatial con-
centration of a band-limited signal h ∈ HL within the
spatial region R ⊂ S2, we seek to maximize the spatial
concentration (energy) ratio λ given by [28]

λ =

∫
R
|h(x̂)|2ds(x̂)∫

S2
|h(x̂)|2ds(x̂)

, 0 ≤ λ < 1. (7)

The conventional approach to solving this problem is to
express it in the spectral domain as

λ =

L−1∑̀
=0

∑̀
m=−`

L−1∑
p=0

p∑
q=−p

(h)m` (h)qpK`m,pq

L−1∑̀
=0

∑̀
m=−`

(h)m` (h)m`

, (8)

where
K`m,pq ,

∫
R

Y m` (x̂)Y qp (x̂)ds(x̂). (9)

Using the spectral domain version of the concentration ratio
(8), the Slepian concentration problem to maximize the con-
centration ratio λ can be solved as an algebraic eigenvalue
problem given by

L−1∑
p=0

p∑
q=−p

K`m,pq (h)qp = λ(h)m` , (10)

with matrix formulation

Kh = λh, (11)

where the matrix K contains elements K`m,pq with similar
indexing adopted for h and has dimension L2 × L2. The
solution of the eigenvalue problem (11) gives L2 eigenvectors
hα, α = 1, 2, . . . , L2, where the eigenvalue associated with
each eigenvector is denoted λα and eigenvectors are indexed
such that 0 ≤ λL2 ≤ . . . ≤ λ2 ≤ λ1 < 1. Since the eigenvalue
problem in (11) is formulated in the spectral domain, each
eigenvector represents the spectral domain (spherical harmonic
coefficients) of the associated eigenfunction in the spatial do-
main. The eigenfunctions hα(x̂) are obtained by expanding the
eigenvectors hα in the spherical harmonic basis using (4). The
eigenvalue associated with each eigenvector (or eigenfunction)
is a measure of concentration of eigenfunction within the
spatial region R. Consequently, the eigenfunction h1(x̂) is the
most concentrated in R, while hL2(x̂) is most concentrated in
the complement region S2\R.

Since, by definition, K is Hermitian symmetric and positive
semi-definite the eigenvalues are real and non-negative and
the eigenvectors can be taken as orthogonal (orthonormal due
to normalization in (7) [17], [28]). Such orthogonality, in
conjunction with (11), implies∫

S2

hα(x̂)hβ(x̂)ds(x̂) = h′αhβ = δα,β , (12)∫
R

hα(x̂)hβ(x̂)ds(x̂) = h′αKhβ = λβh
′
αhβ = λβδα,β ,

(13)
that is, the eigenfunctions are orthonormal on the sphere and
orthogonal over the region R.

Remark 1 (On the representation of band-limited signals in
Slepian basis): The solution of Slepian concentration problem
for a given region R and band-limit L provides L2 orthonormal
band-limited eigenfunctions, which span the L2 dimensional
subspace HL and therefore form a basis, referred to as Slepian
basis or Slepian functions, for the representation of any signal
in HL.
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The number of eigenfunctions that are well-concentrated
(with eigenvalue close to 1) in R is approximated1 by the
sum of the eigenvalues N , that is,

N =

L2∑
α=1

λα = tr(K) =
A

4π
L2, (14)

where tr(·) denotes the trace of the matrix and A is the area
of the region R.

1) Slepian Functions for a Polar Cap: Here we review the
computation of Slepian functions for a polar cap region RΘ.
We use s ∈ HL to denote the functions which we require
to be concentrated within the polar cap region. With this
consideration, we rewrite the Slepian concentration problem
in (11) as

Cs = λs, (15)

where C is the matrix K for a polar cap region and s is
the spectral domain representation of s. In order to solve the
Slepian concentration problem (10), we are first required to
evaluate K`m,pq , given by the integral over R in (9). For the
special case of a polar cap region RΘ, analytic expressions
have been devised in the literature to compute C`m,pq [28],
[42] in terms of Wigner-3j symbols [17], that is,

C`m,pq = 2πδm,qN
m
` N

m
p

∫ Θ

0

Pm` (cos θ)Pmp (cos θ) sin θ dθ

= (−1)m
√

(2`+ 1)(2p+ 1)

2

`+p∑
n=|`−p|

(
` n p
0 0 0

)(
` n p
m 0 −m

)
× [Pn−1(cos Θ)− Pn+1(cos Θ)], (16)

which implies that C`m,pq = 0 for m 6= q and C`m,pq =
C`(−m),p(−q).

Remark 2 (On the computation of Slepian functions for
polar cap region): The formulation in (16) implies C`m,pq = 0
for m 6= q and C`m,pq = C`(−m),p(−q), which, by appropriate
switching of rows and columns of the matrix C, enable us
to formulate C as a block diagonal matrix, where non-zero
elements with a fixed order m appear next to each other
forming sub-matrices C(m) of size (L −m) × (L −m) [25]
with

C(m) =


Cmm,mm Cmm,(m+1)m · · · Cmm,(L−1)m

C(m+1)m,mmC(m+1)m,(m+1)m · · · C(m+1)m,(L−1)m

...
...

. . .
...

C(L−1)m,mm C(L−1)m,(m+1)m · · · C(L−1)m,(L−1)m


(17)

for 0 ≤ m < L and C(m) = C(−m). Due to the block diagonal
structure of C for the polar cap region, rather than solving the
L2 × L2 eigenvalue equation (11), we can solve L smaller
problems of size (L−m)× (L−m), the largest being of size
L× L for m = 0, of the form

C(m)s(m) = λs(m), (18)

1Since the sum of eigenvalues N given in (14) may not be an integer, any
reference to N as number is treated as dNe in the rest of the paper to keep
the notation succinct. Here d·e denotes the integer ceiling function.

where s(m) =
(
(s)m|m|, (s)

m
|m|+1, · · · , (s)mL−1

)′
contains spher-

ical harmonic coefficients of order m. For each eigenvector,
the associated Slepian functions can be obtained using (4).

Alternatively, Slepian functions can be obtained directly
and efficiently using the method presented in [25], [28]. This
method is analytic and so allows for the accurate and fast
computation of Slepian functions in a polar cap. The only
matrix is a tridiagonal matrix of size (L−m)× (L−m), the
largest being of size L×L for m = 0, that has elements with
simple analytical expressions.

The number of Slepian functions that are well-concentrated
in the polar cap can be approximated by substituting its area
AΘ , 2π(1− cos Θ) into (14), giving the sum of eigenvalues
of C for a polar cap region,

NΘ =
(1− cos Θ)

2
L2. (19)

C. Problem Statement

Following the formulation of Slepian concentration problem
presented above, we summarize below the method, referred
to throughout this method as the conventional method, for the
computation of Slepian functions for a given band-limit L and
an arbitrary shaped region R: 2

1) Calculate the L2 × L2 matrix K composed of inner
products between spherical harmonic functions (9) via
numerical integration of spherical harmonics over R. 3

2) Carry out the eigenvalue decomposition of K to com-
pute eigenvalues λα and eigenvectors hα for α =
1, 2, . . . , L2. Eigenvectors represent Slepian functions in
the spectral (spherical harmonic) domain.

Computing Slepian functions with large band-limits using this
method is infeasible due to the large computational complexity
of calculating the L4 elements of K, and subsequently comput-
ing the eigenvalues and eigenvectors. At large L, the memory
required to store K also becomes too large for a standard
desktop computer. For the special case of a polar cap region,
following Remark 2, the computational complexity and storage
requirements to compute Slepian functions at large band-limits
are manageable due to the matrices C(m) (and the tridiagonal
matrix if the eigenfunctions are to be computed directly) being
at most of size L × L. In this work, we aim to develop a
method of computing Slepian functions for large band-limits
and an arbitrary region on the sphere that has manageable
computational complexity and storage requirements.

III. EFFICIENT COMPUTATION OF SLEPIAN FUNCTIONS
FOR AN ARBITRARY REGION ON THE SPHERE

As explained in the previous section, the conventional
approach, that is computationally expensive and memory inef-
ficient, to compute Slepian functions is to solve the eigenvalue
problem in (11), which is obtained by expanding the function

2This conventional method of computing Slepian functions is implemented
in the SLEPIAN_Alpha software DOI: 10.5281/zenodo.56825 [43].

3Since there does not exist any (exact) quadrature rule to evaluate the
integral of the function on the sphere over an arbitrary region, K`m,pq , given
in (9), is computed numerically by employing the approximate quadrature
rule [32] for the discretization of integral over arbitrary region R.
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h ∈ HL in harmonic space in the equivalent concentration
problem formulated in (7). By finding the alternative basis, in
which the function h ∈ HL in (7) has sparse representation,
we propose a fast method, with less storage (memory) require-
ments, for the computation of Slepian functions on the sphere
for a given band-limit L and region R ⊂ S2.

A. Slepian Functions for Rotationally Symmetric Region

Definition 1 (Rotationally Symmetric Region): We define
a rotationally symmetric region centered at x̂c = x̂c(θc, φc)
enclosing the region R 4 as RΘ(x̂c) = {x̂(θc, φc) ∈ S2 |∆(x̂ ·
x̂c) ≤ Θ}, where ∆(x̂ · x̂c) denotes the great circle distance
between x̂ and x̂c. The region is rotationally symmetric around
its center x̂c. We note that RΘ = RΘ(x̂c(0, 0)), that is, a polar
cap region is a special case of rotationally symmetric region
with x̂c = x̂c(0, 0) (North pole).

For a given band-limit and rotationally symmetric re-
gion RΘ(x̂c), we denote Slepian functions by gα(x̂), α =
1, 2, . . . , L2. Noting that the polar cap region RΘ, when
rotated around y-axis by θc and then by φc around z-axis,
becomes rotationally symmetric region RΘ(x̂c), we compute
Slepian functions for rotationally symmetric region RΘ(x̂c)
by first computing Slepian functions sα(x̂), α = 1, 2, . . . , L2

in the polar cap region RΘ followed by the rotation of polar
cap Slepian functions as

gα(x̂) = (D(φc, θc, 0)sα)(x̂), α = 1, 2, . . . , L2. (20)

The rotation of sα(x̂) in the spatial domain using the rotation
operator D(φc, θc, 0) in (20) is carried out in spectral (spheri-
cal harmonic) domain as a linear transformation given by [17]

(gα)m` = e−imφc

∑̀
m′=−`

dm,m
′

` (θc)(sα)m
′

` , (21)

where dm,m
′

` (·) is the Wigner-d function of degree ` and
orders m,m′ [17]. We also note that the number of Slepian
functions that are well-concentrated in the region RΘ(x̂c) is
approximated by NΘ given in (19).

B. Signal Expansion in Slepian Basis

Since Slepian functions within the polar cap region or
rotationally symmetric region can be efficiently computed (Re-
mark 2), we can represent/expand any band-limited function
h ∈ HL, using the Slepian basis designed for a rotationally
symmetric region, that is (see Remark 1)

h(x̂) =

L2∑
α=1

(h)αgα(x̂), (22)

where
(h)α , 〈h, gα〉 =

∫
S2

h(x̂)gα(x̂)ds(x̂), (23)

denotes the α-th Slepian coefficient.
We study the eigenvalue spectrum for rotationally symmet-

ric regions centered at the North pole (polar cap regions)

4If R is a union of unconnected subregions, then the polar cap should
enclose all subregions.
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Fig. 1: Eigenvalue spectra for rotationally symmetric regions
RΘ(x̂c) centered at the North pole. a) For a band-limit
L = 50 and polar cap radii of Θ = π/6, π/5, π/4, and
π/3. (b) For a polar cap radius of Θ = π/3 and for band-
limits L = 30, 40, 50, and 60. NΘ is shown by a marker on
each spectrum which well-approximates the number of well-
concentrated Slepian functions in RΘ(x̂c).

in Fig. 1. Fig. 1(a) shows the eigenvalue spectra for Slepian
functions of rotationally symmetric regions centered at the
North pole for a band-limit L = 50 and polar cap radii of
Θ = π/6, π/5, π/4, and π/3. Fig. 1(b) shows the eigenvalue
spectra for Slepian functions of a rotationally symmetric
region with a polar cap radius of Θ = π/3 and band-
limits L = 30, 40, 50, and 60. All spectra have a sharp
transition from well-concentrated eigenvalues (λα ≈ 1) to
poorly concentrated eigenvalues (λα ≈ 0). This transition
takes place at NΘ, given by (19), as indicated by the markers
in Fig. 1.

As only the first dNΘe Slepian functions for the rotationally
symmetric region are well-concentrated within the region
RΘ(x̂c), the expansion of h(x̂) given in (22) can be truncated
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at5 dNΘe for x̂ ∈ RΘ(x̂c) as

h(x̂) ≈
NΘ∑
α=1

(h)αgα(x̂), x̂ ∈ RΘ(x̂c). (24)

The error between the Slepian function, given by equation
(22), and its approximation, given by (24), within RΘ(x̂c) is

L2∑
α=NΘ+1

(h)αgα(x̂), x̂ ∈ RΘ(x̂c). (25)

Due to the small energy concentration λα within the region
RΘ(x̂c) of Slepian functions with α > NΘ, the error given
by (25) is approximately zero.

The quality of the approximation to the Slepian function
given in (24) within the spatial region of interest R can be
measured by defining the quality measure as a ratio of the
energy concentration of the approximate representation to the
energy of the exact representation within the spatial region,
that is [25], [44],

Q(NΘ) =

NΘ∑
α=1

λα|(h)α|2

L2∑
α=1

λα|(h)α|2
. (26)

Later in the paper in Section IV and Section V, we show,
through illustration, that the approximate representation given
in (24) is of high quality.

C. Concentration Problem – Formulation in Slepian Basis

We define the truncated expansion given in (24) as

f(x̂) ,
NΘ∑
α=1

(f)αgα(x̂), (f)α , 〈f, gα〉. (27)

For an arbitrary shaped region R ⊂ RΘ(x̂c), we seek to
maximize the concentration ratio of f(x̂) inside the region
R and over the whole sphere, that is,

λ =

∫
R
|f(x̂)|2ds(x̂)∫

S2
|f(x̂)|2ds(x̂)

= maximum, 0 ≤ λ < 1. (28)

Using (27), λ can be equivalently expressed as

λ =

NΘ∑
α=1

NΘ∑
β=1

(f)α(f)βPα,β

NΘ∑
α=1

(f)α(f)α

, (29)

where
Pα,β ,

∫
R

gα(x̂)gβ(x̂)ds(x̂). (30)

The problem of maximizing λ in (29) can be solved as an
algebraic eigenvalue problem of size NΘ given by

NΘ∑
β=1

Pα,β (f)β = λ(f)α, (31)

5Again, we take any reference to NΘ as number as dNΘe.

with matrix formulation

Pf̃ = λf̃ , (32)

where f̃ =
(
(f)1, (f)2, . . . , (f)NΘ

)′
and P is a matrix of size

NΘ × NΘ with elements given by (30). The solution of the
eigenvalue problem in (32) gives NΘ orthonormal eigenvectors
f̃a, a = 1, 2, . . . , NΘ where we have indexed eigenvectors
such that eigenvalue λa associated with the eigenvector f̃a
follows 0 ≤ λNΘ ≤ . . . ≤ λ2 ≤ λ1 < 1. For each eigenvector
f̃a, the associated eigenfunction fa(x̂) is obtained using (27).

In principle, the Slepian concentration problem in (7) max-
imizes the concentration of a band-limited function h ∈ HL
within the arbitrary spatial region R, the solution of which
gives L2 band-limited orthonormal eigenfunctions, which
serve as an alternative basis, referred to as Slepian basis or
functions, for the representation of any band-limited signal.
Out of these L2 Slepian functions, N number of Slepian
functions are well-concentrated within the spatial region.
Consequently, any band-limited function, when expanded in
Slepian basis, can be well-approximated within the region
using the (first) N concentrated Slepian functions. This is
the essence of the concentration problem; it enables sparse
representation of a signal concentrated within a region of
interest by expansion in the Slepian basis. Conventionally, the
concentration problem is formulated as an eigenvalue problem,
(11), the solution of which requires eigenvalue decomposition
of L2 × L2 matrix.

Here we have posed a concentration problem to maximize
the concentration of f(x̂) within the spatial region R ⊂
RΘ(θc). Since f(x̂) ≈ h(x̂) for x̂ ∈ RΘ(θc), we have
hα(x̂) ≈ fα(x̂) for α = 1, 2, . . . , N , that is we have the
(approximately) same well-concentrated eigenfunctions of the
two concentration problems formulated in (7)-(11) and (28)-
(32). However, the latter requires the eigenvalue decomposi-
tion of matrix P of size NΘ×NΘ and, therefore, can be solved
efficiently and has manageable storage requirements. Conse-
quently, the proposed formulation enables the approximate
computation of Slepian functions for a given band-limit L and
an arbitrary region R. We analyze the accuracy, computational
complexity and storage requirements in the next section.

Remark 3 (On the accurate computation of Slepian Func-
tions for arbitrary regions): Our proposed method can com-
pute Slepian functions for any arbitrary region of the sphere,
which does not have to be well-approximated by a rotationally
symmetric region. Slepian functions serve as an orthonormal
basis for the whole sphere and an orthogonal basis for the
region on which they are defined. Since this is true for any
region including the polar cap, the polar cap Slepian functions
can be used to represent any band-limited function on the
sphere (See Remark 1 and (22))). The function can be defined
on any region, not just within the polar cap. If the function is
concentrated within the polar cap though, it can be represented
more efficiently (Slepian functions with a small amount of
energy in the region can be discarded, see (24)). Similarly, if
the function exists within a region enclosed by the polar cap it
can be efficiently represented by the well-concentrated polar
cap Slepian functions. Hence, the region does not have to be a
polar cap or approximately a polar cap in shape. In this work,
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the functions in question are Slepian functions in a region of
interest that is enclosed by the polar cap.

D. Properties of Slepian Functions

1) Orthogonality: We show that Slepian functions hα and
fα, computed using the conventional method and the proposed
formulation respectively, exhibit the same orthogonality prop-
erties for α = 1, 2, . . . , NΘ. By definition, the matrix P is
positive semi-definite and Hermitian symmetric, which implies
that its eigenvalues are real and non-negative and the eigen-
vectors are orthogonal. We choose them to be orthonormal,
that is,

f̃ ′af̃b =

NΘ∑
α=1

(fa)α(fb)α = δa,b, (33)

which is equivalent to the orthonormality of associated eigen-
functions fa(x̂) in the spatial domain, that is,∫

S2

fa(x̂)fb(x̂)ds(x̂) = δa,b, (34)

which is obtained using the expansion of f(x̂) given in (27).
In addition to being orthonormal over the whole sphere, the

eigenfunctions fa(x̂) are orthogonal over the region R, that
is, ∫

R

fa(x̂)fb(x̂)ds(x̂) =

NΘ∑
α=1

(fa)α

NΘ∑
β=1

Pα,β(fb)β

= f̃ ′aPf̃b = λbf̃
′
af̃b = λb δa,b, (35)

which follows from the formulation of eigenvalue problem in
(32) and the orthonormality relation in (33).

2) Spectral Domain Representation: Using the definition
of f(x̂) in (27) and the definition of the spherical harmonic
coefficients (5), the spherical harmonic coefficients (f)m` are
given by

(f)m` ,
∫
S2

f(x̂)Y m` (x̂) ds(x̂)

=

∫
S2

NΘ∑
α=1

(f)αgα(x̂)Y m` (x̂) ds(x̂)

=

NΘ∑
α=1

(f)α

∫
S2

gα(x̂)Y m` (x̂) ds(x̂) =

NΘ∑
α=1

(f)α(gα)m` .

(36)

3) Number of Well-concentrated Eigenfunctions: With an
assumption that the spectrum of eigenvalues has a sharp
transition from unity to zero, the number of well-concentrated
eigenfunctions in R is approximated by the trace of the
matrix P with

NP = tr(P) =

NΘ∑
α=1

∫
R

gα(x̂)gα(x̂)ds(x̂)

=

∫
R

NΘ∑
α=1

|gα(x̂)|2ds(x̂). (37)

The sum of Slepian functions over the sphere is independent
of the position on the sphere [28], that is,

L2∑
α=1

|gα(x̂)|2ds(x̂) =
NΘ

AΘ
, x̂ ∈ S2. (38)

Noting that Slepian functions gα(x̂) for rotationally symmetric
region have low energy concentration (λ ≈ 0) when α =
NΘ + 1, NΘ + 2, . . . , L2, we have

NΘ∑
α=1

|gα(x̂)|2ds(x̂) ≈ NΘ

AΘ
, ∀x̂ ∈ RΘ(x̂c), (39)

which allows us to approximate NP in (37) as

NP ≈
A

AΘ
NΘ =

A

AΘ

AΘL
2

4π
=
AL2

4π
= N, (40)

which indicates both the conventional method and the pro-
posed formulation to solve the concentration problem yield
approximately the same number of well-concentrated eigen-
functions.

E. Efficient Computation of Slepian Functions for Arbitrary
Region – Algorithm

Based on the formulation presented in Section III, we here
present an algorithm to compute Slepian functions for a given
band-limit L and arbitrary region R. To enable the computa-
tion of Slepian functions for large band-limits, the algorithm,
consisting of following steps, is designed to minimize the
computation time and storage requirements:

1) Find Θ and x̂c for a rotationally symmetric region
RΘ(x̂c) of smallest area enclosing the region R.

2) Rotate R and RΘ(x̂c) to the North pole, first by π −
φc around z-axis, and then by θc around y-axis. The
rotationally symmetric region rotated to the North pole
becomes a polar cap region RΘ. We use R̃ to denote
the region R rotated to the North pole.

3) Compute Slepian functions concentrated in RΘ as
sα(x̂), α = 1, 2, . . . , NΘ for each order −L < m < L:

a) Find the spherical harmonic coefficients of the
polar cap Slepian functions of order m s(m), by
solving (18).

b) Discard any polar cap Slepian functions that are
not well-concentrated in the region.

c) Evaluate the remaining well-concentrated polar cap
Slepian functions in the spatial domain s(x̂) by
expansion in the spherical harmonic basis (4).

4) Calculate the matrix P, whose elements are given by

Pα,β ,
∫
R

gα(x̂)gβ(x̂)ds(x̂)

=

∫
R̃

sα(x̂)sβ(x̂)ds(x̂), (41)

by numerically integrating the polar cap Slepian func-
tions sα(x̂), α = 1, 2, . . . , NΘ over the region R̃ using
the samples stored in Step 3c).

5) Find the eigenvalues and eigenvectors of P.
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Fig. 2: Mainland Australia on the sphere surrounded by the
rotationally symmetric region RΘ(x̂c) shown in green.

6) To obtain Slepian functions for R, fa(x̂), a =
1, 2, . . . , NΘ, (note that for RΘ, gα(x̂) = sα(x̂), hence
equations (36) and (27) apply for sα(x̂)) either:

a) Calculate the spherical harmonic coefficients of the
eigenvectors of P (s)m` using (36), then rotate the
eigenvectors to the region’s original location using
(21) and finally expand in the spherical harmonic
basis using (4).

b) Expand the eigenvectors for the region at the North
pole in the truncated polar cap basis (27) to get
Slepian functions for the region at the North pole
before rotating the functions to the region using
(6).

We here expand on some of these steps. In Step 1), we
determine Θ and x̂c for a rotationally symmetric region
RΘ(x̂c) enclosing the region R as follows. If C denotes the
boundary of the region, we first numerically find the two points
ŷ1, ŷ2 ∈ C ⊂ R ⊂ S2 for which the spherical distance
∆(ŷ1, ŷ2) = cos−1(ŷ1 · ŷ2) [17] between them is maximum.
This is performed using a search over all pairs of boundary
points which has computational complexity O(N2). We con-
sider the number of points N to be relatively low so that this
does not effect the overall computational complexity of the
algorithm. For regions with a large number of boundary points,
alternative methods for finding the enclosing polar cap, such
as first finding the convex hull of the region with complexity
O(N logN), can be investigated. Then, we determine Θ as

Θ =
∆(ŷ1, ŷ2)

2
, (42)

and x̂c as the center point of the smaller arc of the great circle
passing through ŷ1 and ŷ2). For regions where ∆(ŷ1, ŷ2) >
π, that is the region R extends onto both hemispheres, a mod-
ification is needed. In this case points ŷ1, ŷ2 ∈ C ⊂ R ⊂ S2

need to be found so that the spherical distance is minimized
and Θ = π − ∆(ŷ1, ŷ2)

2 . As an illustration, the rotationally
symmetric region RΘ(x̂c) enclosing mainland Australia region
R is shown in Fig. 2.

In Step 3), the polar cap Slepian functions are computed
one order m at a time and only the well-concentrated ones

are stored to reduce storage requirements from L2 × L2 to
NΘ×M , where M is the number of points that the polar cap
Slepian functions are evaluated at for subsequent numerical
integration. In Step 4), the inner products between the polar
cap Slepian functions are calculated using numerical integra-
tion. We use the trapezium rule on an equiangular grid with a
resolution parameter that is used to set the number of points
used in the integration. The resolution can be increased to
allow for greater accuracy or decreased to reduce computation
time and storage requirements. Since the equiangular sampling
has dense sampling around the poles (θ = 0 or θ = π/2), we
note that the evaluation of the integral is more accurate, for
the same resolution parameter, if the region is closer to poles
than the equator (θ = π/2).

F. Efficiency Analysis - Computation Time and Memory

We here analyze the efficiency in terms of computation
time and memory requirements of our proposed algorithm for
computing Slepian functions within an arbitrary region on the
sphere presented in Section III-E.

The proposed algorithm computes the NΘ ×NΘ matrix P
by carrying out the inner products of polar cap Slepian
functions using numerical integration using M = L2 points,
resulting in computational complexity O(L2NΘ

2) = 0.25(1−
cos Θ)2O(L6), using (19). Note that the number of points
M can be decreased to reduce computation time but this
will decrease the accuracy of computation. The computational
complexity for eigenvalue decomposition of n × n matrix is
O(n3) [31], hence the eigenvalue decomposition of P has
complexity O(NΘ

3) = 0.125(1− cos Θ)3O(L6). For the con-
ventional method of computing Slepian functions (reviewed
in Section II-B), the matrix K is size L2 × L2, integrating a
function with band-limit L requires at least L2 samples [18],
[45], hence computation of the L4 elements of K has compu-
tational complexity O(L6). The eigenvalue decomposition of
K is also O(L6). Hence, the computational complexity of the
proposed method is O(L6), like the conventional, method but
with prefactor 0.25(1−cos Θ)2 for the matrix computation and
0.125(1−cos Θ)3 for the eigenvalue decomposition. It is noted
that the parallel computing capability can be used to reduce
the computation time of both the proposed and conventional
methods of computing the matrix [10].

For applications, where Slepian functions are required to
be computed for large band-limits and spatial regions with
enclosing rotationally symmetric regions with small area, we
expect that the proposed method offers significant reduction
in the computation time and memory storage requirement
since the reduction in both the memory requirements and the
computation time is proportional to the area of the rotationally
symmetric region enclosing the spatial region of interest

IV. ILLUSTRATION - AUSTRALIA

In this section, we evaluate the proposed algorithm, pre-
sented in Section III-E, for computing Slepian functions within
an arbitrary region on the sphere in terms of the numerical
accuracy of Slepian functions and eigenvalues, and the com-
putational complexity and storage requirements. In order to
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Fig. 3: a) Eigenvalue spectrum for Slepian functions con-
centrated in Australia band-limited at L = 64 (NΘ = 103)
obtained using the proposed λa, a = 1, 2, . . . , NΘ and conven-
tional λα, α = 1, 2, . . . , NΘ methods. b) Absolute difference
in eigenvalues |λα−λa|. Dashed back line shows approximate
number of well-concentrated Slepian functions N .

carry out the analysis, we compute Slepian functions for the
example of mainland Australia as the region R.

As discussed in Section III-E, the resolution of the equian-
gular grid for numerically integrating the polar cap Slepian
functions can be altered to change the accuracy of integration,
and the computational and storage requirements. For analysing
the proposed algorithm, we set the resolution of equiangular
grid so M ≈ L2 samples are used for numerical integration.

A. Numerical Accuracy Analysis - Spatial Domain

We here compare the accuracy of computing Slepian func-
tions using the proposed method fa(x̂) compared with the con-
ventional method ha(x̂). For a given band-limit L, expansion
of the band-limited functions using all L2 Slepian functions
designed for a rotationally symmetric region, is equivalent to
the expansion of a signal in the spherical harmonic basis.
Since Slepian functions gα(x̂), α = NΘ + 1, NΘ + 2, . . . , L2,

although negligible, have some energy in the spatial region R,
the truncation of the representation in Slepian basis at NΘ,
given in (24), results in an approximation error as we will
show in this section. It must be noted neither the proposed
nor the conventional method for the computation of Slepian
functions is exact due to the need to numerically integrate the
spherical harmonics Y m` (x̂) for all degrees ` ≥ 0 and orders
|m| ≤ ` over R (9) in the conventional method and the polar
cap Slepian functions sα(x̂), α = 1, 2, . . . , NΘ over R̃ (41)
for the proposed method.

We compare the numerical accuracy of the two methods
for the mainland Australia region R and band-limit L = 64.
Fig. 3(a) shows the eigenvalue spectrum obtained using the
conventional λα, α = 1, 2, . . . , NΘ and proposed method
λa, a = 1, 2, . . . , NΘ. The absolute difference in the eigen-
values computed using the conventional method and the pro-
posed method |λα − λa| is plotted in Fig. 3(b), where it can
be observed that the spectra obtained by both methods are
similar with the difference in corresponding eigenvalues of
the proposed method and conventional method being on the
order of 10−2 or less. Furthermore, the difference is smaller
for the most concentrated eigenfunctions in R and grows with
the decrease in the spatial concentration of eigenfunctions.
This is of significant importance in many applications that
only use the well-concentrated Slepian functions for signal
analysis [25], [46]. The number of well-concentrated Slepian
functions in Australia is approximated by the trace of the
matrix K for the conventional method (14) and by the trace of
the matrix P for the proposed method (37), which both round
to N = 63, as indicated by the black dashed line in Fig. 3.

We plot the ten most concentrated Slepian functions over
Australia shown in Fig. 4 using the conventional and the
proposed method, where the similarity in the shape of Slepian
functions can be observed. We note that we have plotted the
real Slepian functions in Fig. 4; the real Slepian functions
can be computed from the complex Slepian functions using
the relationship between their real and complex spherical
harmonic coefficients [17]. The difference in decibels between
the Slepian functions obtained using the conventional and the
proposed method, 10log10|hα − fa|, for the ten most concen-
trated Slepian functions is shown in Fig. 5. The maximum
difference observed in Fig. 5 is smaller than 0 dB showing
that the proposed method allows for accurate computation of
the Slepian functions.

B. Numerical Accuracy Analysis - Spectral Domain

To further quantify the difference in Slepian functions
obtained using the two methods, we compute the quality factor
Q(NΘ), given by (26), for each Slepian function band-limited
at L = 64 and concentrated in mainland Australia computed
using the proposed method fa and plot this in Fig. 6. The qual-
ity factor is high for all Slepian functions but particularly for
Slepian functions well-concentrated within R, with a quality
factor of 95% or higher. This shows that the approximation,
given in (24), used by the proposed method is highly accurate.
The number of well-concentrated eigenfunctions is indicated
by N , shown by the black dashed line in Fig. 6.
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Fig. 4: Slepian functions fa(x̂), a = 1, 2, . . . , 10 and hα(x̂), α = 1, 2, . . . , 10 most concentrated in Australia with band-limit
L = 64 . The ordering of concentration is left to right, top to bottom with Slepian functions obtained using the proposed
method fa(x̂) in the first and third columns and Slepian functions obtained using the conventional method hα(x̂) in the second
and fourth columns.

We also calculate the mean difference Ea in the spherical
harmonic coefficients of Slepian functions computed using the

proposed (f)m` and conventional (h)m` methods with

Ea ,
1

L2

L−1∑
`=0

∑̀
m=−`

|(fa)m` − (ha)m` |, (43)
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Fig. 5: The difference in decibels between Slepian functions computed using the conventional and the proposed method,
10log10|hα − fa|, for the ten most concentrated in Australia with band-limit L = 64. The ordering of concentration is left to
right, top to bottom.
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this is shown in Fig. 7 for a = 1, 2, 5 and 6, the first, second,
fifth and sixth most concentrated Slepian functions in Australia
for band-limits L = 20, 40, 60, 80 and 100. Ea is on the order
of 10−3 or smaller, indicating that the proposed method allows
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Fig. 7: Mean difference Ea (43) for a = 1, 2, 5 and 6, the
1st, 2nd, 5th and 6th most concentrated Slepian functions in
Australia for L = 20, 40, 60, 80 and 100.

the accurate computation of Slepian functions.

C. Efficiency Analysis

We here analyze the efficiency in terms of the computational
complexity and memory required to compute Slepian functions
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Fig. 8: The computation time τ in seconds to compute
the matrices P and K and subsequently perform eigenvalue
decomposition using the proposed, shown by the solid black
lines, and conventional, shown by the red dashed lines, meth-
ods respectively to compute Slepian functions concentrated in
Australia for L = 16, 32, 64, 128 and 256.

for the proposed method, as discussed in Section III-F for the
example of mainland Australia.

Fig. 8 shows the computation time for calculating the ma-
trices P and K, and subsequently performing their eigenvalue
decomposition using the proposed and conventional methods
respectively using MATLAB running on a machine equipped
with 3.4 GHz Intel Core i7 processor and 8 GB of RAM for
mainland Australia. As can be seen in Fig. 8 the computation
time of the proposed method is much faster than the conven-
tional method, around two orders of magnitude. The smaller
dimension of the P matrix compared with K results in a faster
matrix computation time and faster eigenvalue decomposition.

The memory required to store matrix P is 0.25(1−cos Θ)2

times smaller compared with storing the L2 × L2 matrix K.
The commonly available desktop machine used in our analysis
has 1.302 ×1010 bytes for array storage in MATLAB. As
MATLAB’s type double requires 64 bits, the maximum band-
limit that the matrix K can be stored for is L = 200. In
practise, as matrices other than K need to be stored, it is only
possible to compute Slepian functions using the conventional
method for less than L = 100.

The maximum band-limit which the matrix P can be stored
depends on the region R, or more specifically on the area of
the rotationally symmetric region enclosing R. For example,
the rotationally symmetric region surrounding Australia is
2.5% of the area of the sphere hence, the matrix P is of size
0.000625L4 and the maximum band-limit that P can be stored
for is L = 1270 for 1.302 ×1010 bytes of array storage. In our
proposed algorithm presented in Section III-E, Step 3) requires
a NΘ×M matrix to store the NΘ well-concentrated polar cap
Slepian functions evaluated at M points. For M = L2 points
used Section IV, the maximum band-limit that this matrix can
be stored for on our desktop computer is L = 505; the
maximum band-limit could be increased by decreasing M .
We have managed to compute Slepian functions in Australia
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Fig. 9: a) Eigenvalue spectrum for Slepian functions concen-
trated in South America band-limited at L = 32 (NΘ = 90)
obtained using the proposed λa, a = 1, 2, . . . , NΘ and conven-
tional λα, α = 1, 2, . . . , NΘ methods. b) Absolute difference
in eigenvalues |λα−λa|. Dashed back line shows approximate
number of well-concentrated Slepian functions N .

using the proposed method and M = L2 for band-limits up
to L = 320.

V. ILLUSTRATION - SOUTH AMERICA

Our proposed method can compute Slepian functions for
any arbitrary region of the sphere, the region does not have
to be well-approximated by a rotationally symmetric region
(Remark 3). We have included Slepian functions band-limited
at L = 32 for South America, which is less similar to
a rotationally symmetric region than Australia, as another
example. Fig. 9(a) shows the eigenvalue spectrum obtained
using the conventional λα, α = 1, 2, . . . , NΘ and proposed
method λa, a = 1, 2, . . . , NΘ. The absolute difference in the
eigenvalues computed using the conventional method and the
proposed method |λα−λa| is plotted in Fig. 9(b), where it can
be observed that the spectra are similar with the difference
in corresponding eigenvalues of the proposed method and
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Fig. 10: Slepian functions fa(x̂), a = 1, 2, . . . , 10 and hα(x̂), α = 1, 2, . . . , 10 most concentrated in South America with
band-limit L = 32 . The ordering of concentration is left to right, top to bottom with Slepian functions obtained using the
proposed method fa(x̂) in the first and third columns and Slepian functions obtained using the conventional method hα(x̂) in
the second and fourth columns.

conventional method being on the order of 10−2 or less, as
was the case for the example of Slepian functions with L = 64

defined on mainland Australia in Fig. 3.
We plot the ten most concentrated Slepian functions over
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South America shown in Fig. 10 using the conventional and
the proposed method, where the similarity in the shape of
Slepian functions can be observed. The difference in decibels
between Slepian functions obtained using the conventional and
the proposed method, 10log10|hα − fa|, for the ten most con-
centrated Slepian functions is shown in Fig. 11. The maximum
difference observed in Fig. 11 is smaller than 0 dB, as was the
case for the example of Slepian functions with L = 64 defined
on mainland Australia in Fig. 5, showing that the proposed
method allows for accurate computation of Slepian functions.

VI. CONCLUSIONS

We have proposed a new method for the computation
of Slepian functions on the sphere for an arbitrary spatial
region. By exploiting the efficient computation of Slepian
functions for the polar cap region on the sphere, we have
developed a formulation, supported by a fast algorithm, for
the approximate computation of Slepian functions for arbitrary
spatial region. In comparison to the conventional method of
computing Slepian functions, the proposed method enables
faster computation and has manageable storage requirements.
We derive the approximation error and define the quality of
approximation measure as the ratio of energy of the approxi-
mation to the energy of the true Slepian function in the region
of interest. We have conducted numerical experiments to show
that the proposed method maintains accurate computation of
Slepian functions and has a high quality of approximation,
allows for faster computation and has significantly smaller
storage requirements than the conventional method. The pro-
posed method enables accurate computation for Slepian func-
tions for an arbitrary region which does not have to be
well-approximated by a rotational symmetric region and is
particularly efficient in terms of computational complexity
and storage requirements when the region has an enclosing
rotationally symmetric region with a small area.

The ability to compute Slepian functions with reduced
computation time and storage requirements while maintaining
accurate computation of Slepian functions will allow for
Slepian functions to be used in applications where the data
enables large band-limits. Future work includes exploiting the
inherently parallel structure of our proposed method to further
reduce the time required to compute the Slepian functions.
We intend to apply the proposed method to large band-limit
applications in a range of fields.
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Fig. 11: The difference in decibels between Slepian functions computed using the conventional and the proposed method,
10log10|hα − fa|, for the ten most concentrated in South America with band-limit L = 32. The ordering of concentration is
left to right, top to bottom.
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