
Software Patterns and Architecture

Under Examination Hammer
AnApproach to the Consolidation of Interdisciplinary Knowledge

AThesis Submitted for the Degree of

Doctor of Philosophy

of the

Australian National University

Hassan Almari

29 November 2018

© Hassan Almari 2018

Typeset by LATEX

I declare that the work in this thesis is entirely my own and that to the best of my knowledge

it does not contain any materials previously published or written by another person except where

otherwise indicated.

Hassan Almari

29 November 2018

Special Thanks

To all my family members who gave me moral support and encouragement in the entire process

of this study; utmost appreciation is extended to my parents, who gave me courage and laid a firm

foundation for my education and success. I also appreciate my brothers and sisters for their

ultimate encouragement and care. Thanks go, also, to my sons for their perseverance whilst I was

away or busy. They missed out on paternal love. Last, I admire Jamilh's (my lovely wife's) positive

attitudes and for being at the bedrock of every success I have ever achieved. When I was down

and out, or in despair, she motivated me, whilst ensuring that I achieved what I had always

expected to accomplish.

v

Acknowledgements

I take this opportunity to highly praise my remarkable supervisor, Dr. Clive Boughton, for

his continuous support, advice, friendship, and patience. He has acted as my mentor, guiding

me through the rugged terrain of academia, starting with my master’s program in 2008. He has

provided me with his support, not only in regard to my studies, but also in regard to my work

and personal matters. Essentially, it was his unrelenting efforts in providing feedback whenever

needed, which enabled me to come up with a well-crafted project.

I would also like to recognise the efforts made by Dr. Henry Gardener and Dr. Athman

Bouguettaya for their support and help during my surveys/distribution processes within this

project.

Throughout this journey, there is also a number of people who provided me with guidance

and ideas. To name but a few, I wish to salute my friends Dr. Carol Boughton for her editing

and advice, Dr. Shayne Flint for being a wise and helpful friend during my work, and Dr. Ziyad

Alshaikh for his recommendations during my first year of this research.

Equally, I salute all the people within the Saudi Ministry of Defence for their support dur-

ing my research, especially Saudi Air Force for their hospitality and willingness to share their

knowledge with me regarding software development.

My research has been a long journey, which has been full of obstacles; therefore, it would

be disappointing if I fail to mention Dr. Sergey Denisov for his advice and professional help

during this thesis’ formatting; Dr. Vashkar Chowdhury for his statistical advice and statistics

proofreading; Ms Sharen and Mr. Angelo Victor Mercure for their overall proofreading; and Dr.

Jasur Abdullaev for his advice, and support during the final phase of this thesis.

I wish to state that my transitional endeavour, from the military environment to education,

has not been a bed of roses, as it has been full of ups and downs. Nevertheless, the experience

and knowledge I have gained motivated me to appreciate Australian National University for

giving me the opportunity to conduct my research. Specifically, I appreciate my fellow graduate

students Mazen Alismail, and Dr Alexander Krumphols for their excellent discussions, which

opened new ideas and possibilities for me. I cannot finish without mentioning members of staff

working in the Research School of Computer Science for their support and guidance.

I cannot forget to mention my sponsor, the Royal Saudi Air Defence Force (RSADF) for

their scholarship and support. I also salute the SaudiArabian Embassy and Cultural Mission for

their cooperation while conducting my thesis. Equally, I recognise, Ambassador Hassan Nazer

(retired) and the new Saudi Ambassador Mr. Nabil AL SALEH for their personal care, and

unlimited support during this journey.

vii

Abstract

Software engineering is normally perceived, and even defined, based upon applicability

of scientific and technical knowledge, in order to provide solutions to different challenges. The

bright side of engineering concepts in general, is the continuous process of acquiring knowledge

and skills needed to develop and make adjustments to various systems, in respect to helping

humankind.

An important phase of this process is ”Architecting”, which is the big picture of any in-

tended systems. While good architecture leads to successful systems, bad architecture can result

in misfortune.

In this thesis, my proposition is to investigate, in depth, both theoretical (academic) and

industry domains, regarding the way in which they treat Software Pattern (SP), SoftwareArchi-

tecture (SA), and Software Architecture Evaluation (SAE) techniques.

I argue that the process of creating, evaluating, and documenting SPs and SA with no com-

mon guidelines, standards, and frameworks, will result in unused and conflicted information

within their areas, which finally will impact the software engineering field. While the employ-

ment of interdisciplinary knowledge (such as SPs, modelling techniques, description languages,

evaluation methods, standards, and frameworks), could elevate SA development and validation

methodologies, and increase its utilisation within the software engineering community.

The goal here is to help build better systems, which could be improved by developing suit-

able SA, and evaluate its qualities by proper methods and tools, before further development,

which should save time as well as money.

Therefore, after a long process of analysing the current-state-of-the-art, I have introduced in

this thesis novel findings concerning descriptions, relationships, documentation, and utilisation

in relation to SA, SAE, and SPs, through employing several investigatory techniques, including

comparisons between reliable references, questionnaires, field study, and case study.

The investigation of SPs resulted in creating a database as a partial solution, in order to

minimise their confusion within the literature, concerning their definitions, categorisations, and

relationships with different quality attributes Quality Attribute (QA)s; also, to introduce the

information in a proper fashion for users, which includes the required data that supports com-

parisons between pattern references, and to facilitate their selection processes.

The issues, gaps, limitations, inconsistencies, and conflicts within current SA, QAs, and SPs

discovered by this study, such as their poor description and the ignorance of them by developers

during software development, has led to important recommendations, as well as suggestions for

future research.

The required information from different sectors (government, academia and industry) re-

garding SPs, SA, SAE, and modelling languages, has been gathered, and analysed through two

surveys and a field study.

The strong relationships and influences between the aforementioned areas were introduced

ix

and proven by a case study analysis for the Real-time Control System Real-time Control Sys-

tem (RCS) reference architecture, followed by introducing a conceptual paradigm that aimed to

improve and generalise the Moreno et al. [2008] performance model.

The outcomes from this thesis provide the basis for future work. Also, the information from

different interdisciplinary knowledge merged to form new concepts for SA evaluation, which

are recommended for future study.

Contents

Special Thanks v

Acknowledgements vii

Abstract ix

List of Figures xx

List of Tables xxvi

Abbreviations xxvii

Preface xxxiii

I Introduction 1

1 Overview 3

1.1 Introduction . 4

1.2 Initial motivation and research aim . 4

1.2.1 Contributing Factors to the Problem Domain of this Thesis 6

1.3 Methodology and Research Design . 6

1.3.1 Research Method . 6

1.3.2 Research Activities . 7

1.3.3 Research Life Cycle . 7

1.4 Thesis Scope and Structure . 8

1.4.1 Introduction (PART I) . 11

1.4.2 Contribution (PART II) . 11

1.4.3 Wrapping up (PART III) . 12

1.5 Publications . 12

1.6 Summary of Contributions . 13

2 Background 15

2.1 Introduction . 16

2.2 Initial research . 18

2.3 Software Architecture Description . 27

2.3.1 Brief Analysis of SA description methods . 27

2.3.2 Views of SA description . 33

2.3.3 Formal methods and languages . 35

2.3.3.1 Common formal methods and languages . 37

2.3.3.2 Applicability of formal methods in the software Life Cycle 38

2.3.3.3 Degree and scope of Formal methods . 38

2.3.3.4 ADLs as example of formal description . 39

2.3.4 ACME in brief . 41

2.3.4.1 ACME design trade-offs . 42

2.3.5 Conclusion . 43

2.4 Model driven approaches and Architecture . 43

2.4.1 Model driven software development . 44

2.4.1.1 Importance of domains in MDSD . 47

2.4.2 Introduction to MDA . 48

2.4.2.1 MDA Framework . 49

2.4.3 Object Oriented (OO)-method . 51

2.4.3.1 Key aspects of OO-method with respect to SA, SPs, and QAs 52

2.4.3.2 Mapping OO-Processes to MDA-Processes 53

2.4.3.3 Extra features of OO-methods missing from MDA 54

2.4.4 eXecutable and Translatable UML (XT UML) as an example of model automation approach 54

2.4.5 Key aspects of MDSD approaches with respect to SA, SPs, and QAs 55

2.4.5.1 Models and transformations . 56

xi

2.4.5.2 Pattern Languages with respect to SA (in brief) 60

2.4.6 Conclusion . 63

2.5 Evaluating Software Architecture . 64

2.5.1 Evaluating software architecture in general . 64

2.5.2 Comparisons between current common architecture evaluation approaches 65

2.5.2.1 Scenario-based evaluation methods . 66

2.5.2.2 Measuring techniques . 74

2.5.3 Analysis of Specific Evaluation Techniques . 77

2.5.3.1 Software Engineering Institute (SEI) -- Bass approach 78

2.5.3.2 Satisfying QAs through the use of SPs, Babar et al. [2005] 82

2.5.3.3 Mapping between SEI Tactics approach and Babar et al. [2005] Pattarn approach 84

2.5.3.4 Exploring quality attributes using architectural prototyping Bardram et al. [2005] 85

2.5.3.5 Garlan approaches . 87

2.5.3.6 Model-driven performance analysis Becker [2008] and Moreno et al. [2008] . . 89

2.5.3.7 Evaluating SA using Metrics -- Zayaraz [2010] 91

2.5.4 QAs in SA Context . 92

2.5.4.1 Complexity of quality attributes . 92

2.5.4.2 Understanding quality attributes . 93

2.5.4.3 Quality attribute characterisations . 94

2.5.4.4 Sensitivity points and trade-off points . 96

2.6 Research challenges . 97

2.6.1 Research conceptual challenges . 97

2.6.2 Major architecture developments challenges and debates 100

2.6.2.1 General challenges influencing the architecture evaluation 100

2.6.2.2 Standardisation as a common problem in software architecture 102

2.6.2.3 Architecture modelling Challenges . 103

2.7 Conclusion and Conjecture . 103

II Contribution 105

3 The dilemma of Software Pattern descriptions with partial solution 107

3.1 Introduction . 108

3.2 Rationale of the investigation approach . 108

3.3 Investigation Analyses . 111

3.3.1 Patterns and Quality Attributes Refinement . 111

3.3.1.1 Problems Discovered within the Current Pattern Definitions and Terminologies . 112

3.3.1.2 Problems Discovered within Current Pattern Categorisations 114

3.3.2 The Variation Concept as a Problem within QAs . 116

3.4 Conflict Example - (Proxy Pattern) . 117

3.5 Summary of the issues discovered by this study . 119

3.6 Proposed solution . 120

3.6.1 Functionality description . 122

3.6.1.1 Pages descriptions . 122

3.7 Related work . 130

3.8 Conclusion . 130

4 Factors Influencing Utilisation of Software Patterns: AQuestionnaire Analysis Result 133

4.1 Executive summary . 134

4.2 Introduction . 134

4.3 Research methodology and Survey process . 135

4.3.1 Research technique and process . 135

4.3.2 Instrument questions . 135

4.3.3 Invitation mechanism and Instrument distribution . 140

4.3.4 Target population and Sampling technique . 140

4.3.5 Procedure of the analysis . 141

4.3.6 Rationale of the selected analysis methods . 143

4.3.6.1 Single Dimensional Analysis Methods . 143

4.3.6.2 Two-Dimensional Analysis Methods . 143

4.3.6.3 Three and Four-Dimensional Analysis Methods 143

4.4 Findings and Recommendations . 144

4.4.1 Discussion of Findings . 146

4.4.1.1 Individual Analysis . 146

4.4.1.2 Two Dimensional Analysis . 149

4.4.2 Important comments from some non-significant results that related to the research goals 156

4.4.3 Inappropriateness of three and four dimensional analyses 158

4.5 Related work . 158

4.6 Limitations . 159

4.7 Conclusion . 159

5 Utilisation of Software Architecture Artefacts and its Evaluation 163

5.1 Executive summary . 164

5.2 Introduction . 164

5.3 Survey methodology and process . 165

5.3.1 Instrument questions . 165

5.3.2 The analyses methods and procedure . 171

5.3.2.1 Data Distribution Normality statistics . 172

5.3.3 Findings and Recommendations . 172

5.3.3.1 Significant Results . 176

5.3.3.2 Inappropriateness of Three and Four Dimensional Analyses 188

5.3.3.3 Focused Analysis on Q6, Q7, Q13 and Q14 189

5.3.4 Related Work . 196

5.3.5 Limitations . 196

5.3.5.1 Summary of significant results . 197

5.4 Field Study Analysis . 200

5.4.1 Introduction . 200

5.4.2 Objective of the Field Study . 200

5.4.3 Study Process and Methods . 201

5.4.3.1 Organisation Location and Selection Criteria 201

5.4.3.2 Communication Procedure . 202

5.4.4 Preliminary phase . 202

5.4.5 Result of the preliminary phase . 203

5.4.6 Final Phase -- Conducting the Study . 206

5.4.7 Findings and Recommendations . 206

5.5 An Experience Story . 212

5.6 Conclusion . 213

6 The RCS as a Case Study and Promoting theMoreno et al. [2008] Approach 215

6.1 Introduction . 216

6.2 RCS under Examination-Intro . 216

6.2.1 Case Study Process . 217

6.2.2 Discussion and Findings . 217

6.2.2.1 RCS architecture and BCK styles . 219

6.2.2.2 The RCS architecture and Mellor Styles . 223

6.2.3 Manifestation of QAs within RCS architecture . 227

6.3 Incipient Concept to Promote Moreno et al. [2008] approach-Intro 231

6.3.1 Patterns and QAs conceptual schema . 231

6.3.1.1 Conceptual schema description and steps . 232

6.3.1.2 Prospect of the conceptual schema . 236

6.3.2 Conceptual schema limitations . 241

6.4 Conclusion . 242

III Wrapping up 243

7 Discussion and conclusion 245

7.1 Introduction . 246

7.2 Summary of the research contribution . 246

7.3 Limitations and Drawbacks of the contribution . 249

7.4 Recommendations and Future work . 250

7.5 Overall conclusion . 251

7.6 Closing remarks . 252

Bibliography 253

IV Appendices 269

A Publications 271

B Complementary background information for Chapter 2 301

B.1 Introduction . 301

B.2 MDAAdvantages and Disadvantages . 301

B.3 More about ADLs . 302

B.3.0.1 ADL elements . 303

B.3.0.2 Design goals of ADLs . 303

B.3.0.3 The Most ADLs that are still supported . 306

C Database application 309

C.1 Technical description . 309

C.1.1 DB tables . 309

C.1.2 Database Snapshots . 311

C.1.3 Brief description of development changes and difficulties 312

D Complement information for the SPs Survey 315

D.1 Introduction . 315

D.2 Rationale of the Two-dimensional analysis method used -- by details 315

D.3 Two dimensions supportive analysis . 316

D.3.1 Analyses of (Q1 and each of Q17--Q20) . 317

D.3.2 Analyses of (Q2 and both (Q5 and Q8) . 317

D.3.3 Analyses of (Q2 and each question from Q17 to Q20) 317

D.3.4 Analyses of (Q3 and Q4): . 321

D.3.5 Analyses of (Q4 and each of the questions from Q17 to Q20): 321

D.3.6 Examples of 3 and 4 dimensional analysis: . 322

D.4 Snapshots of primitive analysis database . 324

D.5 Summary Tables for most important results . 325

E Complement information for SA Survey 331

E.1 Survey Questions . 331

E.2 Individual Analysis (One dimension _Descriptive statistics) 331

E.2.1 Analyses of (Q8) . 332

E.2.2 Analyses of (Q9 and Q10) . 332

E.2.3 Analyses of (Q12): ”Do you know or use any architectural evaluation method that can

produce quantitative measures surrounding architecture characteristics?” 333

E.3 Two dimensions matrices analysis . 334

E.3.1 Information related to the significant results . 334

E.3.1.1 Analyses of Q1 with (Q9 and Q10) . 334

E.3.1.2 Analyses of Q1 with (Q15--Q23) . 335

E.3.1.3 Analyses of Q2 with (Q9 and Q10) . 340

E.3.1.4 Analyses of (Q3 and Q17) . 343

E.3.1.5 Analyses of Q4 with (Q21 and Q23) . 346

E.3.1.6 Analyses of (Q5 and Q16): . 347

E.3.1.7 Analyses of (Q5 and Q18): . 348

E.3.1.8 Analyses of (Q5 and Q22) . 350

E.3.1.9 Analyses of Q6 with (Q9, Q10, and Q15 to Q23): 352

E.3.1.10 Analyses of Q7 with (Q9, Q10, and Q15 to Q23): 353

E.3.1.11 Analyses of (Q10 and Q17): . 354

E.3.1.12 Analyses of (Q13 and Q23): . 355

E.3.1.13 Analyses of (Q10 and Q13): . 356

E.3.2 Examples of non-significant results for 2-dimensions analyses 356

E.3.2.1 Analyses of (Q2 and Q6) . 356

E.3.2.2 Analyses of (Q2 and Q7): . 358

E.3.2.3 Analyses of (Q2 and Q13): . 359

E.3.2.4 Analyses of (Q2 and Q14): . 359

E.4 Examples for three and four dimensional analyses . 360

E.4.1 Three dimensional analysis: . 360

E.4.2 Example for Four dimensional analyses . 363

E.5 Supported information for the Summary Table of Chapter 5 . 364

E.5.1 Analyses of (Q2 and Q11): . 364

E.5.2 Analyses of (Q3 and Q5): . 364

E.5.3 Analyses of (Q3 and Q7): . 365

E.5.4 Analyses of (Q9 and Q10 by Q6) . 366

E.5.5 Additional important summary tables for 2-Dimensional analyses 367

E.6 Supportive information for the Field study . 381

F Complementary information for The RCS -- Chapter 6 389

F.1 RCS analysis - Supporting Figures . 390

G Opportunity to improve SA through future-work thoughts 395

G.1 SysAE approach - Big picture - Long-term vision . 395

G.2 SAQEF evaluation framework and models . 397

G.2.1 SAQEF specifications . 398

G.2.2 SAQEF Concept and Methodology . 398

G.2.2.1 Brief description of the Solution . 398

G.2.2.2 Brief description of utilised standards, profiles, language, and framework includ-

ing some of SAQEF examples . 399

G.3 SAQEF model organisation and views . 402

G.4 Architectural tactics and metrics . 407

G.4.1 Applying metrics with the parametric diagram . 407

G.5 Conclusion . 408

Author Index 411

List of Figures

1.1 Thesis-Structure-Diagram. 10
1.2 Dependency relationships between chapters and appendices: Package Diagram. 11

2.1 The main common steps for a Systematic review. 20
2.2 Comprehensive search and Systematic review processes in IDEFO diagram for-

mat as adopted for this study. 27
2.3 The three main methods for describing SA. 28
2.4 General prospective of the model types for describing a system. 35
2.5 Evolution of formal methods. 36
2.6 Formal methods adoption has grown by 53% within 3 years. 37
2.7 AADL abstraction and key specification elements, after Feiler et al. [2006]. . . 41
2.8 Main differences between modelling approaches, after Cabot [2014]. 44
2.9 Basic concept of MDA. 49
2.10 The basic, extended, and complete MDA framework. 50
2.11 MDA basic process. 51
2.12 OO – method concept schema. 52
2.13 The X

T UML concept. 55
2.14 Horizontal and Vertical transformations of models. 56
2.15 Relationship between models and real world. 59
2.16 Model to Model Transformation . 60
2.17 Evaluation techniques. 65
2.18 Activities in SAAM analysis. 67
2.19 The four phases of ATAM. 68
2.20 Steps of ATAM. 70
2.21 A conceptual flow of ATAM. 71
2.22 Steps of ARID. 72
2.23 The ALMA method five steps. 73
2.24 The ALPSM method six steps. 73
2.25 Quality attribute scenario representation model. 79
2.26 Performance characteristics: stimuli, responses and architecture decisions. . . . 79
2.27 Performance tactics with elaboration. 82
2.28 Relationships between security attributes, properties, and patterns. 83
2.29 Applying Auditability tactic. 83
2.30 Similarity between Bass and Barbar tactics. 86
2.31 Performance framework. 89

3.1 Visualizing the ProblemArea. 109
3.2 The main SPs investigation phases towards producing the solution. 109
3.3 Examined references included – (Database snapshot). 111
3.4 Terminologies of “Pattern” within software development lifecycle. 113
3.5 The GoF approach for classifying and describing Proxy pattern, includes all

variants and relationships with quality attributes. 117
3.6 POSA team approach for classifying, describing Proxy pattern, include all vari-

ants and relationships with quality attributes. 118
3.7 Reliability as an example of its QAs sub-categories differences. 119
3.8 Reliability sub-categories differences between ISO-9126 and ISO-25010. . . . 121
3.9 Overall structure of matrix pages and tabs. 123
3.10 Landing page, which describe the application and its pages functionalities. . . . 123
3.11 List of patterns, their other names, and definitions. 124
3.12 Drop down menu for SPs categorisations. 125
3.13 GoF categorisation table. 125
3.14 Description table for ‘Check Point’ pattern. 126
3.15 Efficiency (QA) description table, including definitions (SEI, POSA and ISO).

Also, the table shows the (SPs) related to Efficiency. 126

xvii

3.16 Snapshot of general matrix that shows the relationships between SPs and QAs;

where - S⇒ Support, H⇒ Hinder, and B⇒ Both (conflict). 128
3.17 Edit existing relation page. 128
3.18 Create new relationships between SP and QA-(QA information page- step 2). . 129
3.19 Search relation page, either by pattern or by quality attribute. Also, it could

search all conflict relations within the database 129

4.1 The survey process that applied for Chapters 4 and 5, after Kasunic [2005]. . . 135
4.2 The three sections of the questionnaire. 141
4.3 The level of participants’ agreement to the four statements (proposed solutions). 149
4.4 Mean response of how often developers’ uses software styles/patterns during

their work by their general field of expertise. 150
4.5 Mean plots (a) to (d) for each of the statements (Q17 to Q20) in Y-axis, along

with developers’ work sectors in X-axis. (A=Academia; I=Industry; G=Gov-

ernment). 153
4.6 The mean of the items for developers who are aware of software styles/patterns. 154
4.7 Developers’ work sectors vs how often they used software patterns (frequency

in stacked bar chart). 156

5.1 The two pillars to investigate SA, SAE, and SPs relationships. 164
5.2 The three main sections of the survey. 166
5.3 The main five SA elements influencing SAE. 166
5.4 The three main sections and their sub-sections of the analysis. 172
5.5 Respondent’s general field of expertise regarding software development. 172
5.6 The main factors Encouraging the utilisation of modelling techniques to de-

scribe SA. 177
5.7 The main factors Discouraging the utilisation of modelling techniques to de-

scribe SA. 178
5.8 The percentage of respondents who are aware of any system/software architec-

tural tactics/metrics that have been or are being used for evaluating architecture

description models. 181
5.9 Respondents who identified the most important factors that could SUPPORT

SA quantitative evaluation. 181
5.10 Means for the statements in (Q15-Q19), with error bar and assumed mean line. 183
5.11 Means for the statements in (Q20 to Q23), with error bar and assumed mean line. 184
5.12 The Field study phases. 201

6.1 RCS architecture analysis steps. 217
6.2 RCS overall architecture (for Military Application), after, Finkelstein [2008]. . 218
6.3 Functional relationships between modules of Elementary Loop of Functioning

(ELF), after Meystel et al. [2002]. 218
6.4 RCS computational node Inner-structure, after Finkelstein [2008]. 221
6.5 A top-level Elementary Loop of Functioning, with two control levels (nodes),

after Meystel et al. [2002]. 222
6.6 Relationships within a typical node of RCS Architecture, after Meystel et al.

[2002]. 223
6.7 The link between the entire RCS appraisal process and Chapter 3 findings. . . . 231
6.8 Model driven engineering and Model Driven Analysis. 232
6.9 Conceptual patterns evaluation schema. 233
6.10 The forces within Pattern ingredients, after Tešanovic [2005]. 233
6.11 Derived evaluation metrics starting from the right tactics. 234
6.12 Brief of the scenario-based dependencies and activities during SAE, after Kaz-

man et al. [1996]. 235
6.13 Pipe and Filter family illustrated through ACME-Studio tool. 235
6.14 Subset of the security pattern language. 239

6.15 Example of the model processes for (coupling measure), by utilising SysMLand

Artisan-tool. 240

B.1 MDA advantages, After Flint [2008]. 301
B.2 MDA limitations, After Flint [2008]. 302

C.1 Create new relation between SP and QA, Pattern information page. 311
C.2 Layers pattern description table, including definition, and related (QAs). 312
C.3 Overview page . 312

D.1 Stacked bar chart: Agreement with the four statements by different sectors. . . 319
D.2 Stacked bar chart: Years of experience in software development field with the

developers awareness of software style/patterns. 321
D.3 Overview page - for the primitive analysis database 324
D.4 Responses primitive analysis page - Respondent’s countries, total answers, per-

centage of their answers out of 20 questions. 324
D.5 Selection criteria page - were one or more questions should be selected and

submitted by clicking ’submit’ button to get the analysis results. 325

E.1 Bar chart for the best language to use to describe software/system architecture

as identified by the respondents. 332
E.2 Box plot of two items Q9 and Q10. 332
E.3 Pie Chart of the percentage of the respondents who know or use any architectural

evaluation method that can produce quantitative measures surrounding architec-

ture characteristics. 333

F.1 Each layer of the system contains a number of RCS-nodes, each containing –

Behaviour Generation (BG),World Model (WM), Sensory Processing (SP), and

Value Judgement (VJ)- modules. The nodes are interconnected as a layer style,

or lattice, through the communication system, Meystel et al. [2002]. 390
F.2 Hierarchical image and entity frames within Sensory Processing (SP) compo-

nent, AfterMeystel et al. [2002]. 391
F.3 Snapshot for the RCS Node structure with SysML, using Artisan tool. 392
F.4 Extracted RCS architecture for coupling evaluation 393
F.5 Modified model from the extracted RCS architecture, for comparison purpose. . 393

G.1 System Architecture Evaluation (SysAE-Product) structure, Using component

base products approach. 396
G.2 Requirement diagram – SAQEF. Requirement Hierarchy. 399
G.3 SAE – Operational concept (Graphical representation). 400
G.4 SAE – Operational concept (Model components representation). 400
G.5 UPDM structure. 401
G.6 UPDM structure (package digram) - Artisan tool. 402
G.7 SAQEF Packaging structure–(using packages and views) - (Package diagram) –

Artisan tool – The package ’SAQEF Model’ illustrate how the model organised

into packages that contain model elements . 404
G.8 SAQEF (Efficiency assessment) – More details with employment of DoDAF

views - (Requirement diagram) – Artisan tool 405
G.9 SAQEF-AV-1, used of DoDAF views - All view (AV-1) - Artisan tool 406
G.10 Measurement (Dimensions and Units) – SAQEF profile – Artisan tool 408
G.11 Constraints and parameters details for (System coupling measurement) in Block

Definition Diagram format (bdd) - SAQEF profile - Artisan tool. 409

G.12 Parametric Diagram – System coupling. The constraint block from Figure G.11

has been expanded in this Figure where its equation is the constraints property

(yellow box), which is belong to its block. Constraint notes are used to explain

the system coupling equation and expected output limits - SAQEF profile - Ar-

tisan tool. 410

List of Tables

2.1 This is the review strategy that has been applied in Chapter 2, followed by

Chapters 3, 4 and 5). 21
2.2 Formal, Semi-formal, and Informal ways of representing a section of Pipe-

Filter family. 34
2.3 Rushby’s four levels of formalisation. 38
2.4 General comparisons between ACME and AADLmain components. 40
2.5 Advantages of MDSD . 45
2.6 Mapping (Rushby 1993b) formality levels into the model maturity levels by

Rensink et al. [2006]. 47
2.7 Analogies between MDA and the OO-method. 54
2.8 MDSD approaches, Transformations Methods, and QAs – Comparison. 58
2.9 Comparisons between different evaluation techniques. 76
2.10 Absence of solutions to some problems in Babar et al. [2005] model. 84
2.11 Non-mapped elements between Babar et al. [2005] model and SEI model. . . 84
2.12 Software quality characterisation. 95
2.13 Set of quality attributes trade-offs. 97

3.1 Descriptions of the 7-Analysis Steps for the Targeted Resources. 110
3.2 Example of extracting pattern data in a format suitable to assist evaluation. . . 127

4.1 Summary of the questions and the objectives of each section 135
4.2 Section 1. Background Questions (Questions marked with (*) are mandatory). 136
4.3 Section 2. Pattern utilisation questions. 137
4.4 Section 3. Documentation of Software Patterns. 138
4.5 Geographical distribution of the survey respondents by country. 140
4.6 Two dimensional matrices analysis (only two questions will be analysed to-

gether). 142
4.7 Three dimensional matrices analysis (only three questions will be analysed

together). 142
4.8 Four dimensional matrices analysis (only three questions will be analysed to-

gether). 142
4.9 Frequency distribution of the questions regarding personal expertise and Chi-

square test result for equality of group frequencies. 145
4.10 Frequency distribution summary for (Q6 to Q16). 147
4.11 Independent sample t-test for equality of two population group means of ”how

often developers used software styles/patterns during their work” by devel-

oper’s field of expertise. 151
4.12 Independent sample t-test for equality of two population group means of “how

often developers used software styles/patterns during their work”. 155
4.13 Cross tabulation of three work sectors with software styles/patterns usage and

consideration of quality attributes and Chi-square test of independence be-

tween attributes. 157
4.14 Summary of the main significant analysis results with associated tables (for

better traceability) . 160

5.1 Section 1. Background Questions (Questions marked with (*) are mandatory). 166
5.2 Section 2. Software architecture utilisation questions. 167
5.3 Section 3. SA evaluation methods and tools. 169
5.4 Two dimensional matrices analysis (only two questions will be analysed to-

gether). 174
5.5 Frequency distribution of single response categorical questions/items and Chi-

square test results for equality of group frequencies; (Q2-Q5, Q8, Q11, Q12). . 175

xxi

5.6 Descriptive statistics for Likert scaled items along with one-sample t-test re-

sults for testing assumed mean of 3 (Neutral value), (Q9, Q10, Q15-Q23). . . 179
5.7 Cross tabulation between respondents’ experiences and the main factors that

DISCOURAGE the utilisation of modelling techniques to describe SA, (Q3

with Q7). 186
5.8 Frequency distribution of themultiple response questions/items, (Q6, Q7, Q13,

Q14) . 189
5.9 Pearson Chi-square test results between questions Q5 and Q6. 191
5.10 Pearson Chi-square test results between questions Q5 and Q7. 192
5.11 Independent samples t-test results between both statements for Equality of

Grouped Population Means corresponding to the categories (Yes or No). . . . 193
5.12 Pearson Chi-square test results for analyses of questions Q10 and Q13. 194
5.13 Summary of the main analysis results with associated tables (for better trace-

ability). 197
5.14 The Organisations Teams – preliminary phase 203
5.15 General criteria for selecting field study environment. 204
5.16 Summary of the Preliminary Visit Findings. 204
5.17 Investigated Projects during the case study. 207
5.18 Field study findings. 208

6.1 BCK styles and QAs within RCS architecture. 219
6.2 Mellor [2009] styles and QAs within RCS architecture. 224
6.3 QAs trade-offs within RCS Styles. 230
6.4 Reliability/availability evaluation, methods, data, and the generic framework. 238

B.1 ADL design goals . 304
B.2 ADL characteristics . 304
B.3 TheMost KnownADLs that still supported: the table contains also approaches

which are considered non-conventional ADLs, since they might neglecting

fundamental aspects, After Rech et al. 2009, pp 267 306

C.1 Database application revisions. 313

D.1 Two dimensional matrices analysis methods. 315
D.3 Cross tabulation of three work sectors with software styles/patterns usage and

consideration of quality attributes and Chi-square test of independence be-

tween attributes. 317
D.2 Descriptive statistics and comparison of the population mean to a hypothesized

neutral value of (3), using t-tests for each of the statement with the general field

of expertise regarding software development. 318
D.4 Descriptive statistics and test of the population mean to a hypothesized neutral

value at (3),using t-test for each of the statements with the sectors of work

experience. 320
D.5 Percentage frequency table: Awareness of software style/patterns by developers.321
D.6 ANOVA-1, Analysis of Question 1/ Option 1 “Requirements elicitation/mod-

elling /analysis”, for Q17 to Q20 by Q2. 322
D.7 Cross tabulation Analyses for (Q2 and Q3 with Q4 and Q5). 323
D.8 Cross tabulation and test of independence between how often developers used

software style/patterns and whether the developers support standard documen-

tation practices for software patterns. 325
D.9 Cross tabulation of how often developers used software style/patterns with the

main factors that discourage and encourage the utilisation of software patterns

by developers and Chi-square test of independence between attributes. 326

D.10 Group descriptive statistics for each of the four statements in first column along

with independent t-test results for testing difference between whether develop-

ers frequently used (≥ 3) software style/patterns during their work or not (< 3). 327
D.11 Cross tabulation of whether the relationship between the patterns and the qual-

ity attributes in those references been proved scientifically or otherwise with

the main factors that discourage and encourage the utilisation of software pat-

terns by developers and Chi-square test of independence between attributes. . 328
D.12 F statistic (p-value) from analysis of variance (ANOVA) for Q17-Q20 by the

sectors that developers gained most of their general software development ex-

perience (Q2)? . 329
D.13 F statistic (p-value) from analysis of variance (ANOVA) for Q17-Q20 by the

developer’s total years of experience in the software development field (Q3). . 330

E.1 Summary of the questionnaire and each section objectives. 331
E.2 Descriptive statistics Q9 and Q10. 333
E.3 Equality ofmeans between two groups corresponding to the respondents whose

general field of expertise regarding software development is “Architecture”

and those have other expertise. 334
E.4 Equality ofmeans between two groups corresponding to the respondents whose

general field of expertise regarding software development is “Project Manage-

ment” and those who have expertise in other fields apart from this. 335
E.5 Equality ofmeans between two groups corresponding to the respondents whose

general field of expertise regarding software development is “Design” and

those who have expertise in other fields apart from this. 336
E.6 Equality ofmeans between two groups corresponding to the respondents whose

general field of expertise regarding software development is “Architecture”

and those who have expertise in other fields apart from this. 337
E.7 Equality ofmeans between two groups corresponding to the respondents whose

general field of expertise regarding software development is “Coding” and

those who have expertise in other fields apart from this. 337
E.8 Equality ofmeans between two groups corresponding to the respondents whose

general field of expertise regarding software development is “Testing” and

those who have expertise in other fields apart from this. 339
E.9 One wayANOVA table to test the difference between two variables of interest

for Q9 and Q10. 340
E.10 Multiple comparison test for the item in Q10, according to the the group means

for the three sectors in which developers gained their software development

experience using LSD method. 341
E.11 Cross tabulation of the sectors that developer’s gained most of their general

software development experiences against selected categorical questions and

corresponding results for Chi-square test of independence. 341
E.12 One way ANOVA analysis for the item “Most of the existing software archi-

tecture evaluation methods, produce qualitative results” corresponding to the

categories of the respondent’s years of experience in total in the software/sys-

tems development field. 343
E.13 Post hoc test (multiple comparisons) result using Tukey’s HSD test. 344
E.14 Independent sample t-test results between Q4 and the statements in (Q21 and

Q23). 346
E.15 ANOVA procedure for testing equality of group means for the selected item

corresponding to the categories of how often respondents used models to de-

scribe software/system architecture during their work. 347
E.16 Multiple comparison test results using LSD method. 347

E.17 ANOVA procedure for testing equality of group means for the selected item

corresponding to the categories of how often respondents used models to de-

scribe software/system architecture during their work. 349
E.18 Multiple comparison test results using LSD method. 349
E.19 ANOVA procedure for testing equality of group means for the selected item

corresponding to the categories of how often respondents used models to de-

scribe software/system architecture during their work. 351
E.20 Multiple comparison test results using LSD method. 351
E.21 Independent sample t-test results for equality of two population group means of Likert scaled

items Q9, Q10 and Q15 to Q23 by the main factors that ENCOURAGE the utilization of mod-

elling techniques to describe software/system architecture (Q6). Groups formed by the devel-

opers who agreed with a Q6 item (Q6CB1 to Q6CB8) and developers who didn’t agree with

that item. 353
E.22 Independent sample t-test results for equality of two population group means

of Likert scaled items Q9, Q10 and Q15 to Q23 by the main factors that DIS-

COURAGE the utilization of modelling techniques to describe software/sys-

tem architecture (Q7). Groups formed by the developers who agreed with a

Q7 item (Q7CB1 to Q7CB5) and developers who didn’t agree with that item. . 354
E.23 Pearson Chi-square test results for analyses of questions Q10 and Q17. 354
E.24 Cross tabulation of “Usage of software style/pattern concepts & models dur-

ing architecture development, increases the utilisation of modelling descrip-

tion languages, BUT decreases the simplicity of the architecture valuation”

and “Most of the existing software architecture evaluation methods, produce

qualitative results”. 355
E.25 Cross tabulation of the most important factors that could SUPPORT quantitative evaluation for

any SA and the opinion about the statement “Current technology allows us to develop general

software evaluation models that assess any software architecture against any quality attributes”. 355
E.26 Pearson Chi-square test results for analyses of questions Q13 and Q22. 356
E.27 Pearson Chi-square test results for analyses of questions Q10 and Q13. 356
E.28 Cross tabulation of respondent’s sectors in which respondents gained most of

their general software development experience and the main factors that en-

courage the utilisation of modelling techniques to describe software/system

architecture. 356
E.29 Pearson Chi-square test results for analyses of questions Q2 and Q6. 357
E.30 Cross tabulation of respondent’s sectors in which respondents gained most of

their general software development experience and the main factors that DIS-

COURAGE the utilisation ofmodelling techniques to describe software/system

architecture. 358
E.31 Pearson Chi-square test results for analyses of questions Q2 and Q7. 359
E.32 Pearson Chi-square test results for analyses of questions Q2 and Q13. 359
E.33 Cross tabulation of sectors in which respondents gained most of their general

software development experience and the most important factors that could

SUPPORT quantitative evaluation for any SA. 359
E.34 Cross tabulation of sectors in which respondents gained most of their general

software development experience and the most important factors that could

HINDER quantitative evaluation for any Software Architecture (SA). 360
E.35 Pearson Chi-square test results for analyses of questions Q2 and Q14. 360
E.36 Pearson Chi-Square test results for testing association between years of experi-

ences of respondents in the software/systems development field and how often

the respondents use models to describe software/system architecture during

their work when the general field of expertise regarding software development

is “Requirements elicitation/modelling/analysis”. 361

E.37 Cross tabulation of years of experiences of respondents in the software/systems

development field and how often the respondents use models to describe soft-

ware/system architecture during their work when the general field of expertise

regarding software development is “Requirements elicitation/modelling/anal-

ysis”. 361
E.38 Multiple Comparisons between Q2, Q22, when Q1= Project Management . . 362
E.39 One wayANOVA table to test the difference among group means for Q22, Q2,

when Q1= Project Management . 362
E.40 Cross tabulation Analyses for (Q2 and Q3 with Q4 and Q5). 363
E.41 Cross tabulation of sectors in which respondents gained most of their general

software development experience and whether respondents were aware of any

system/software architectural tactics or metrics that have been or are being

used for evaluating architecture description models (e.g. detecting attacks for

security). 364
E.42 Pearson Chi-square test results for analyses of questions Q2 and Q11. 364
E.43 Pearson Chi-square test results for analyses of questions Q3 and Q5. 365
E.44 Cross tabulation of respondent’s years of experience in total in the software/sys-

tems development field and howoften they usedmodels to describe software/sys-

tem architecture during your work. 365
E.45 Pearson Chi-square test results for analyses of questions Q3 and Q7. 365
E.46 Independent samples t-test results for the selected items for equality of grouped

population means. 366
E.47 Cross tabulation of the developer’s years’ of experience in the software/system

development field against selected categorical questions and corresponding re-

sults for χ2-test of independence. 367
E.48 Cross tabulation between the developer’s awareness regarding modelling lan-

guages and selected categorical questions. 369
E.49 Cross tabulation of how often developer’s usedmodels to describe software/sys-

tem architecture during their work against selected categorical questions and

corresponding results for χ2 test of independence. 372
E.50 Cross tabulation of the developer’s general field of expertise regarding soft-

ware development against selected categorical questions and corresponding

results for χ2 test of independence. 374
E.51 Independent sample t-test for equality of two population group means of ”de-

veloping software/system architecture using current architectural frameworks

increases the reliability, standardisation, and reusability of the resulting archi-

tecture” by the main factors that ENCOURAGE the utilization of modelling

techniques to describe software/system architecture. 375
E.52 Independent sample t-test for equality of two population group means of ”Us-

age of software style/pattern concepts & models during architecture develop-

ment, increases the utilisation of modeling description languages, BUT de-

creases the simplicity of the architecture valuation” by the main factors that

ENCOURAGE the utilization ofmodelling techniques to describe software/sys-

tem architecture. 376
E.53 Summary table of χ2-test results for testing pairwise independence between

categorical variables. 378
E.54 nalysis of variance (ANOVA) results for Q9, Q10 and Q15 to Q23 by the single

response categorical variables. 379
E.55 Summary table of Chi-Square test results for testing pairwise independence

between two Likert scale variables, where (the row and column variables are

Likert scaled). 379

E.56 Summary table of Chi-Square test results for testing pairwise independence

between a categorical variable and a Likert scale variable (row variables are

categorical and column variables are Likert scaled). 380
E.57 Checklist questions, Organisation answers and feedback for: Site1 381
E.58 Checklist questions, Organisation answers and feedback for: Site2 383
E.59 Checklist questions, Organisation answers and feedback for: Site3 384

Abbreviations

Symbols

X
T UML eXecutable and Translatable UML

A

AADL Architecture Analysis & Design Language

ABAS Attribute-Based Architectural Styles

ACO Airspace Control Order

ADL Architecture Description Language

ADR Active Design Reviews

AHP Analytical Hierarchy Process

AI Artificial Intelligence

AIS Artificial Intelligence System

ALMA Architecture Level Modifiability Analysis

ALPSM Architecture Level Prediction of Software Maintenance

ANOVA Analysis of variance

ANU Australian National University

AOC Air Operations Centre

ARID Active Reviews for Intermediate Design

ATAM Architecture Tradeoff Analysis Method

ATO Air Tasking Order

B

BCK Bass, Clement, and Kazman

BG Behaviour Generation

C

C3 Command, Control, and Communication

C4I Command, Control, Communications, Computers, and Intelligence

CBO Coupling Between Objects

xxvii

CC Component-and-Connector

CDG Component Dependency Graph

CMMI Capability Maturity Model Integration

COSMIC Common Software Measurement International Consortium

COTS Commercial off-the-shelf

CPU Central Processing Unit

CSM The Core Scenario Model

CSP Communication Sequential Processes

D

DB Database

DoD Department of Defence

DoDAF Department of Defence Architecture Framework

DSL Domain Specific Language

E

EMF Eclipse Modelling Framework

ERP Enterprise Resource Planning

ESAAMI SAAM by Integration in the domain

EX Executer

F

FSM Finite State Machine

G

GoF Gang of Four

GUI Graphical User Interface

I

ICM Intermediate Constructive Model

ICT Information and Communication Technology

IDEF0 Integrated DEFinition language 0

IDL Interface Description Languages

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IIS Internet Information Service

IM Implementation Model

ISO International Organisation for Standardisation

IT Information Technology

J

JA Job Assignor

K

KD Knowledge Database

L

LSD Least Significant Difference

LTM Long Term Memory

M

MAAADL MontiArc Automaton Architecture description language

MDA Model Driven Architecture

MDD Model Driven Development

MDE Modelling Development Engineering

MDSD Model Driven Software Development

MDT Model Development Tools

MODA Ministry of Defence and Aviation

MoDAF Ministry of Defence Architecture Framework

MVC Model View Controller

N

NIST National Institute of Standards and Technology

NML Neutral Messaging Language

NOC Number of Components

O

OASIS Administrative Systems-development in Incremental Steps

OCL Object Constraint Language

OMG Object Management Group

OO Object Oriented

OOD Object Oriented Development

OODA Observe, Orient, Decide and Act

ORM Object-Role Modelling

P

PAC Presentation-Abstraction-Control

PCM Palladio Component Model

PDP Policy Definition Point

PEP Policy Enforcement Point

PIM Platform-independent model

PL Planner

POSA Pattern-Oriented Software Architectures

PSM Platform-specific model

Q

QA Quality Attribute

QML Quality of Service Modelling Language

R

RAM RandomAccess Memory

RCS Real-time Control System

REST Representational State Transfer

RMA Rate Monotonic Analysis

RSADF Royal Saudi Air Defence Force

RUP Rational Unified Process

S

SA Software Architecture

SAAM Software Architecture Analysis Method

SAAMCS SAAM founded on Complex Scenarios

SAAMER SAAM Evolution and Reusability

SACM Saudi Arabian Cultural Mission

SADL Semantic Application Design Language

SAE Software Architecture Evaluation

SAQEF Software Architecture Quantitative Evaluation Framework

SC Scheduler

SD Standard Deviation

SEI Software Engineering Institute

SNA Survivable Network Analysis

SOMF Service-Oriented Modelling Framework

SoS System-of-Systems

SP Software Pattern

SPE Software Performance Engineering

SPr Sensory Processing

SPSS Statistical Package for the Social Sciences

SQL Structured Query Language

STM Short Term Memory

SysAE SystemArchitecture Evaluation

SysML System Modelling Language

T

TPR Thesis Proposal Review

U

UGV Unmanned Ground Vehicle

UI User Interface

UML Unified Modelling Language

UPDM The Unified Profile for DoDAF/MoDAF

V

VDM Vienna Development Method

VJ Value Judgement

W

WM World Model

X

xADL AHighly Extensible Architecture Description Language

Z

Z Z notation, named after Zermelo–Fraenkel set theory

Preface

After 12 years of experience in software and systems engineering development, as an of-

ficer in the military, this research has been initiated. Its main aim is to ensure that I come up

with solutions or new findings, in order to make valuable improvements and contributions to

the software and systems engineering domains, and to enhance the ‘Information Technology

(IT)’ development process within my sponsor’s projects, the Ministry of Defence and Aviation

(MODA).

My journey in regard to this research started two years before I registered for a PhD program

at the ‘AustralianNational University (ANU)’, duringmymasters degrees at the same university,

while I was learning new concepts, methods, and processes concerning SA domains. I also

participated in the development processes of several projects and observed how SA was treated.

I later revisited the causes for those projects’successes and failures. An example is an integration

project for different weapons (worth 96 million US-dollars), which was extended from 1 year-

to-6 years and changed from a Fixed-Price contract into a Cost-Plus contract. I believe one of

the reasons that cause such failures is ignorance of its architecture development.

Therefore, when I started this research, I was determined to explore practices that could

be applied to software-intensive projects in general, and its architecture in particular, to enable

them to meet the requirements of different stakeholders.

I started by first holding the proposition that challenges possessed by the architecture are

important key factors for project failure. Based on this proposition, I was able to dig deeply into

the roots of SA, and SAE by going through various literature from different scholars. Particu-

larly, I examined the description, modelling, documentation, evaluation methods, and QAs of

SPs, SA.

Following this, I was able to come to a conclusion that improving (SPs, SA, and SAE)

methodologies, descriptions, processes, and documentation should improve software and sys-

tems engineering practices. In general, the development of software or systems engineering

approaches are interdisciplinary in nature.

Thus, I performed an extensive study of SPs, how SA is currently described, modelled,

utilised, and evaluated, as well as SAE methods and utilisation, within the current literature,

and organisational development projects (small to large).

My inquisitiveness and investigation regarding the aforementioned issues made me realise

that improvements in industry practices can be achieved through creating and utilising software

and systems architecture in a proper fashion. These enhancements should benefit the overall

outcome, as well as capability in the development of IT systems in general.

Moreover, the comments that I have received regarding my first thesis submission were

extremely valuable to me, because they gave me more time to closely perceive and participate

in current projects. In particular, I was able to interact and work with several ‘professional

groups’ from different disciplines, with the goal of understanding the wider impact of SA on

xxxiii

existing (developed), and under development systems.

It is therefore apparent that SA is an important phase of the software development life-

cycle. As a result, this study has discovered new findings, proposed new solutions, and enhanced

existing performance models, which are reported here. Also, this work helps to set the roadmap

for future research, by proposing new conceptual thoughts named ‘SysAE and SAQEF’ , which

have emerged as a result of this overall effort.

Hassan Almari

Canberra, Australia

Part

I
Introduction

1

Chapter

1
Overview

Slowly, at every level, the arrangement of wholes becomes so dense that there are no

gaps between the wholes: every part, and every part between two parts, is whole.

Alexander [1979, p490]

3

CHAPTER 1. OVERVIEW

1.1 Introduction

The intention of this research is to improve Software Architecture (SA) descriptions and

SoftwareArchitecture Evaluation (SAE) by exposing issues in their current approaches. Fulfill-

ing the intention includes disambiguation of conflicting definitions and opinions concerning the

documentation of Software Pattern (SP)s, their relationships with Quality Attribute (QA)s, and

their effectiveness in determining SAs and their evaluation.

In this introductory chapter, I present an overview of the study that includes information to

assist the reader to navigate this dissertation. I conclude this chapter with a summary of work

published during this study and contributions made to engineering research and practice.

1.2 Initial motivation and research aim

In conducting the research reported in this thesis, an initial motivation was present already

in the form of the following three interrelated statements:

Firstly, “ If we are to agree on what it means to document a software architecture, we should

establish a common basis for what it is we’re documenting”, Bachmann et al. [2011, p3]. Sec-

ondly, “Architecture assessments are essential for avoiding, identifying, or mitigating risks”,

Mistrı́k et al. [2014, p11]. Thirdly, “Using a pattern or style means making successive design

decisions that eventually result in an architecture”, Bachmann et al. [2011, p35].

The foundational theory behind this work (as expressed by many others includingQin et al.

[2008], Bachmann et al. [2011], and Bass et al. [2013]) is that SA, SAE, and SPs, are strongly

related. Whilst the theory might hold, the various artefacts and practices that have been devel-

oped over time (including their documentation processes) do not, which prevents the maximum

utilisation of many of the existing achievements within SPs, SA, and SAE domains.

This (current) situation has led to an initial aim of finding ways to realize current issues

regarding SA descriptions, SAE methods, and documentation of software patterns/styles1, in

order to identify areas of improvement.

Preliminary research (reported in Chapter 2) shows that SA and software Styles/Patterns

have a strong relationship and improving one will improve the other. It also explains that SAE

is affected by several factors, such as SA description languages including SPs, the level of for-

mality, documentation techniques, standardisation, and selected evaluation methods. After all:

“Architectural evaluation of a software/system is crucial for its success”, Reussner et al. [2005].

In order to assess the architectural fitness of software systems, a number of evaluationmeth-

ods have been proposed, such as Architecture Tradeoff Analysis Method (ATAM) and Software

1Different books distinguish between styles and patterns, where styles are considered for architecture and patterns

are considered for design. In this thesis, the difference between style and pattern is not critical, both are considered

as a recurring solution to the same problem in different contexts.

4

1.2. INITIALMOTIVATIONAND RESEARCHAIM

Architecture Analysis Method (SAAM), and Active Design Reviews (ADR). Most of the exist-

ing methods are intended for evaluation of a single architecture at a certain point in time.

Furthermore, the results from using MANY/SOME methods are highly dependent on the

person performing the evaluation and generally cannot be used to compare different architec-

tures. Most of the current mature architecture evaluation methods, such as ATAM and SAAM

use qualitative techniques that are typically applied through the use of scenarios. Consequently,

the interpreted results depend heavily on the choice of scenarios to evaluate certain QA. The gen-

eration of these scenarios is solely based on the vision and requirements of the stakeholder(s).

The conflicts between stakeholders’requirements raises amajor challenge to software architects.

This was noticed by Avison et al. [1999] and Baskerville et al. [2004] during their studies for

ATAM and SAAM methods. The same challenge is confirmed by Qin et al. [2008, p227-228],

Bass et al. [2013, p401], and Shreelekhya et al. [2016].

Moreover, SAAM has at least one pitfall in that it does not provide clear quality metrics

for the architectural characteristics that are being analysed, Clements et al. [2002a]. In addition,

the assessment of some properties requires experts. For example, evaluation of security is not

usually easy, due to the lack of adequately qualified resources. Another major problem is that

most of the evaluation methods are ad-hoc processes or minimally-automated and thus they are

prone to error. Additionally, most of these methods, especially the semi-automated ones, are

developed to evaluate one quality attribute, such as in the work done byMoreno et al. [2008] to

analyse performance.

Further research, as reported in Chapter 2, shows that the SA qualitative evaluation methods

received much more attention than quantitative evaluation methods, which renders the latter

methods as more limited and in need of more research, and exhibiting less maturity.

In concluding this preliminary research, the necessity to go further in order to investigate

SPs documentation and utilization, SA, and SAE methods, it was important to understand and

discover the factors influencing SAE approaches.

Hence, based upon the preliminary study, questions have been formulated (as below) so as

to promote understanding of the SA description and evaluation, and to develop a viable solution:

1. What effect do description languages, standardisation, evaluationmethods, modelling tech-

niques and their documentation have on ‘SPs and SA’ utilisation and evaluation?

2. How can ‘SPs and SA’ utilisation and evaluation be improved, including minimising the

effects of any hindrances?

Answering these questions is important, since “An unsuitable architecture will precipitate

disaster on a project”, Clements et al. [2002a].

5

CHAPTER 1. OVERVIEW

Thus, the aim of this research is to investigate the SA and SAE domains through liter-

ature review, questionnaires, field study, and analyses. As a result, issues and/or links

between different disciplines, such as SPs, modelling languages, and SA description

and evaluation techniques, were presented, in order to resolve identified issues, bridge

the gaps, and overcome the limitations of SAE current methods.

1.2.1 Contributing Factors to the Problem Domain of this Thesis

The following points list the main factors that make this research worthwhile:

1. Lack of architectural evaluation approaches that apply standard languages and that are

fully automated.

2. The absence of well-known, wide-spread standardized languages and tools in current ar-

chitectural evaluation studies.

3. There are no/few robust architectural evaluation models that can help architects and de-

velopers to check their architecture against intended and required ‘qualities’ with no need

for experts.

4. There is no existence of a facility (such as a database, repository, or thesaurus etc.) that

demonstrates the relationships between SPs and QAs based on reliable references.

5. There seems to be a dearth of experts on evaluation methods at an architectural level.

1.3 Methodology and Research Design

In this section, the ’best fit’ research methods, activities, and life cycle are described, ac-

cording to aims and context.

1.3.1 Research Method

Software engineering research methods were classified by Adrion [1993], as follows:

1. “Scientific Method: observe the world; propose a model or theory of behaviour; measure

and analyse; validate hypothesis of the model or theory; and if possible repeat.

2. Engineering Method (evolutionary paradigm): observe existing solutions; propose better

solutions; build or develop; measure and analyse; then repeat until no further improve-

ments are possible.

3. Empirical Method (revolutionary paradigm): propose a model; develop statistical or other

methods; apply to case studies; measure and analyse; validate the model; then repeat.

4. Analytical Method: propose a formal theory or set of axioms; develop a theory; derive

results; and if possible compare with empirical observations”

6

1.3. METHODOLOGYAND RESEARCH DESIGN

The Engineering Method is the best fit for achieving the thesis aim. In fact the research

started by observing the existing approaches that describe and evaluate SA, SAE methods, and

SPs, using several observation methods, such as analysing the current solutions, surveys, and

field study. Demonstration of the relationship between SPs and QAs was achieved with the

development of a database that contains the required information. A critique of a reference

architectural model has been carried out in Chapter 6 in order to provide evidence of the strong

relationship between SPs, SA, andQAs. The engineeringmethod is the best approximation to the

research activities applied in this thesis, and will continue to be used during the compilation of

recommended future work until no further improvements are possible. The latter will hopefully

be fulfilled via the link between this thesis aim and suggested future work as its extension.

1.3.2 Research Activities

“Research activities are sets of tasks that may be carried out to implement part of a research

approach”, Flint [2006].

According to a proposedmodel byGlass [1995], the four general computing research phases

are:

1. “The Informational Phase: gathering or aggregating information via reflection, literature

survey, people/organisational survey, or poll (e.g. Delphi approaches).

2. The Propositional Phase: proposing and/or formulating a hypothesis, method or algorithm,

model, theory, or solution.

3. The Analytical Phase: analysing and exploring a proposition, leading to a demonstration

and/or formulation of a principle or theory.

4. The Evaluative Phase: evaluating a proposition or analytic finding bymeans of experimen-

tation (controlled) or observation (uncontrolled, such as a case study or protocol analysis),

perhaps leading to a substantiated model, principle, or theory”.

Each one of these phases could have one or many activities. This thesis includes all the

activities above as explained in Section 1.4.

The adaptation and sequencing of Glass [1995] model is varies from research to research,

based on the need and the research life cycles, Flint [2006].

Important point has been considered during the research activities:

• Confidentiality of the data and results

The field study included in Chapter 5 and associated appendix, involved military sites, and

hence there shall be the need for retaining some sensitive information.

1.3.3 Research Life Cycle

“A life cycle orientation that addresses all phases”, Blanchard et al. [1990].

7

CHAPTER 1. OVERVIEW

Every project should have certain phases that form a cycle, in order to plan, develop, man-

age, and evaluate a successful outcome, which is known as the project life cycle,Kerzner [2013].

In order to successfully perform the research activities described in Section 1.3.2, using the

research method explained in Section 1.3.1, the life cycle of the research becoming more clearer

and understandable.

There are several life cycle approaches that explain different ways in which researchers can

perform their research; however listing and explaining these methods are out the scope of this

thesis. However, Flint [2006] explains some of these approaches in his thesis, especially the

ones related to software engineering domain.

In this research, I employed the first phase of the ‘Research-then-Transfer’ life cycle,

described by Potts [1993]. This approach starts with motivation and initial objectives to utilise

a method or technology to resolve an existing industrial problem, then the research continues

with slight or no involvement with industry. When the research is considered ‘ready for transfer’,

it is presented to industry, Flint [2006]. This research problem related to industry and academic

fields. Thus, there is slight involvement with industry organisations in different aspects of the

research through the surveys and the field study. This research concept is a continuous effort

that could be evolved even after the thesis is done. So, when the framework and models that are

proposed by this study are fully developed, then they will be transferred to the industry.

1.4 Thesis Scope and Structure

The scope of this research lies within the context of software engineering to improve SA

and its evaluation techniques. While the current deficiencies in SA descriptions and SAE mech-

anisms are discussed, the development and evaluation of a completely new SAE framework

within a more general context is beyond the scope of this thesis.

Using the operational view of theDepartment of DefenceArchitecture Framework (DoDAF),

the structure of this thesis is depicted in a System Modelling Language (SysML) activity dia-

gram; Object Management Group (OMG),Weilkiens [2007, p257–264], as shown in Figure 1.1.

The vertical swim-lanes (partitions) of the activity diagram in Figure 1.1, show how this thesis

has been organised into three parts, each part comprising two or more chapters. The rounded

boxes are the research activities that represent the chapters of this thesis, and the directional ar-

rows between the boxes represent the flow of ideas, inputs, and outputs. The commented green

boxes represent key contributions made by the research and the output of each activity.

The dependency relationships between chapters and appendices are illustrated in the pack-

age diagram in Figure 1.2.

Through reading the Preface, the reader can gain a concise overview; however, further

summary details can be gained by reading the introduction to each chapter of (PART II).

8

1.4. THESIS SCOPEAND STRUCTURE

Typographical and other conventions

Within the structure of this Thesis, there are several emphasising styles being used

as follows:

• Each key concept is described in a separate section.

• Within the text of this Thesis, the names of key concepts, important words, phrases, or

sentences are printed in italic font and/or bold font.

• Some of the most important paragraphs include comments, findings, summaries of

sections, and key concepts are placed on a grey box such as this.

• Figure and table numbers that start a with ‘letter’ are a reference to their placement in

an Appendix of the same letter.

9

CHAPTER 1. OVERVIEW

Figure 1.1: Thesis-Structure-Diagram.
10

1.4. THESIS SCOPEAND STRUCTURE

Figure 1.2: Dependency relationships between chapters and appendices: Package Diagram.

1.4.1 Introduction (PART I)

The first part (PART I) of the thesis comprises two chapters and two associated appendices

(A and B):

In Chapter 1, I outline the motivation, aims, scope, and structure of the research.

A literature review is reported and discussed in Chapter 2. The findings of the analysis are

reported in three main areas: i) SA descriptions and formality level, ii) model driven methods of

SA in architectural context, and iii) SAE. Also, this preliminary research explores the potential

“forces” that have an effect on software style/pattern descriptions, modelling techniques, and

standardisation. A comparison between existing software architecture evaluation methods and

categorizations of quality characteristics has been investigated, analysed and reported. This

background study of the current state-of-the-art highlighted challenges and gaps within SA and

SAE.

1.4.2 Contribution (PART II)

The second part (PART II) of this thesis comprises four chapters, Chapter 3 to Chapter 6.

In Chapter 3, and associatedAppendix C, I present an in-deep investigation and analysis of

11

CHAPTER 1. OVERVIEW

six reliable software pattern resources in the context of their relations to quality characteristics.

The study findings are stored in a database. Issues raised from the analysis are illustrated and

discussed.

The results of a questionnaire-based survey are in Chapter 4 and associated Appendix D

. These relate to tSPs utilisation factors. The survey was undertaken in order to support and

enhance, or otherwise, an understanding of the value of Chapter 3 outcomes, and to identify any

issues related to the usability of SPs amongst software engineers and developers.

Illustration of the challenging factors that have an effect on software architecture modelling

and evaluation techniques are captured through a second survey questionnaire and a field study,

with the results reported in Chapter 5 and associated Appendix E.

Both questionnaires in Chapter 4 and 5 were distributed to software developers within six

countries. The degree of experience in software engineering of each participants varied sig-

nificantly, but no participant had less than 5 years experience. Whereas, the field study was

conducted in a military site during the development of many large-scale systems by several in-

ternational companies, which means that these large scale Information Technology (IT) projects

joined highly experienced people from both industrial and military domains.

In Chapter 6 and associated Appendix F, I provide a case study through an exploration and

critique of an architecture reference model called “Real-time Control System (RCS)”. In this

chapter, I demonstrate the robust relations between SA, SPs, and QAs. I also explain how they

are bound together and affect each other through a well-known architecture utilised in industry.

Furthermore, this chapter introduces an evaluation concept for SA, including an example to

explain how the model works.

1.4.3 Wrapping up (PART III)

The third part (PART III) of the thesis is formed by one chapter, Chapter 7 titled “Discussion

and Conclusion”. In Chapter 7 and associatedAppendix G, I present a summary of the research

work and its limitations, together with my conclusion and suggestions for further research.

In the future work section, I propose two initial concepts: first is SystemArchitecture Eval-

uation – SysAE profile, to evaluate both hardware and software architectures. The second con-

cept is an evaluation framework and model named SAQEF, for evaluating software architecture

quantitatively. Although the rationale and justification of both concepts are briefly described in

Appendix G, I have included these two concepts in the future work section, as they need more

research and development to fully prove their applicability in the problem domain.

1.5 Publications

The results of the preliminary research presented in Chapter 2, and published in the follow-

ing refereed conference papers form the basis of the contribution made by this thesis.

12

1.6. SUMMARYOF CONTRIBUTIONS

• Almari, H. and Boughton, C. “Software Patterns vs Quality Attributes (Investigation Ap-

proach).” International Advanced Research Journal in Science, Engineering and Technol-

ogy Vol. 1, Issue 1, September 2014.

• Almari, H. and Boughton, C. “Questionnaire Report on Matters Relating to Software Pat-

terns.” Information Science and Applications (ICISA), 2014. International Conference on.

IEEE, 2014.

• Almari, H. and Boughton, C. “Questionnaire Report onMatter Relating to SoftwareArchi-

tecture Evaluation.” Software Engineering, Artificial Intelligence, Networking and Paral-

lel/Distributed Computing (SNPD), 2014.; The 15th IEEE/ACIS International Conference

on. IEEE, 2014.

• Almari, H. and Boughton, C. “The Five Factors Influencing Software Architecture Mod-

elling and Evaluation Techniques” IT Convergence and Security (ICITCS); 2014 Interna-

tional Conference on. IEEE, 2014.

1.6 Summary of Contributions

There are five key contributions arising from the research undertaken.

1. SPs and QAs relationship database (part of this study focused on SPs and their as-

sessments)

Six of the current well known references of software architecture patterns were selected

and studied. The problems, conflicts, and limitations of those six resources regarding SP

descriptions and documentation are presented in critique analytical fashion. Categoriza-

tions for all resources were conducted and compared. Relationships between all SPs within

those resources and the ISO-9126 quality model have been studied and illustrated. Note

that ISO-9126 has been replaced by ISO 25010 (the first part of which appeared in 2011

with a more complete version in 2014). It is an improved model of quality. Some of the

Chapter 3 findings were slightly affected by this new standard. However, most of the

findings are unaffected, as explained in Chapter 3.

A database application has been developed to gather together all the investigation data to

ease traceability of the above relationships, and to help developers quickly select best-fit

SP for their problem context. Also, it has exposed (and also helps confirm) some of the

issues regarding SPs in particular and SA in general.

2. Opinions of the software developers concerning SPs

It is important to knowwhat software development/project managers, architects, designers,

programmers, etc. know and think about SPs. A survey was created and distributed to

participants in six countries. The questionnaire targeted developers with over 5 years of

experience. The findings and recommendations of the survey results were analysed and

reported. One of the most significant findings of this survey is the strong agreement among

13

CHAPTER 1. OVERVIEW

participants about the relationships between SPs andQAs database that has been developed

within this research.

3. Comparison between (theoretical academic research and real world development en-

vironment in industry and government), regarding SA and SAE

To be able to judge, improve, and contribute to the arena of software engineering in gen-

eral and software architecture in particular, I have conducted the research presented in

Chapter 5 using two different methods (a survey and field study), both of which targeted

software architecture descriptions, modelling, and evaluation of architectures. The gaps

between the two worlds (the theoretical and the actual) are identified and discussed.

4. Reference Architecture under dissection and proposing evaluation concept

To demonstrate a proof or confirmation of the findings regarding the investigations, analy-

ses, and work presented in Chapter 2 to Chapter 5, an analysis of a reference model called

Real-time Control System (RCS) has been introduced to point out the critical and solid

connectivity between SA, SPs, and QAs and how they affect each other. Also, an im-

provement and modification to an existing performance model, in order to generalise SA

evaluation, is presented with some examples.

5. New concepts proposed to be developed in future work

The knowledge that I have gained from all the investigation, analysis, and effort surround-

ing the above four points merged to synthesise two important new concepts: System Ar-

chitecture Evaluation (SysAE), and SoftwareArchitecture Quantitative Evaluation Frame-

work (SAQEF). The main idea behind these two concepts is to provide more advanced

evaluation techniques to take advantage of existing SAE methods, and to eliminate their

drawbacks.

14

Chapter

2
Background

At each step, the process begins with a perception of the whole. At every step

(whether it is conceiving, designing, making, maintaining or repairing) we start by

looking at and thinking about the whole of that part of the world in which we are

working. We look at this whole, absorb it, and try to feel its deep structure.

Alexander [2005, p4]

15

CHAPTER 2. BACKGROUND

2.1 Introduction

The ever-increasing influx of data, evolution of technology, and the constant progression

of systems from being software-intensive to ultra-large scale, strongly suggests there is a sig-

nificant need for novel ways in which to construct, run, manage, and evaluate such systems. In

software engineering, one of the main objectives, even as far back as the first software engineer-

ing conferences of the 1960s, has been the development of software systems which consistently

satisfy a certain set of requirements, both functional and non-functional, Becker [2008]. The

importance of software architecture under the umbrella discipline of software engineering has

increased throughout the years. In fact, in the 1990s, this sub-discipline was a main focus of

research, as predicted by Fielding [2000].

It is proper here to define system architecture before defining software architecture because

the latter is part of the former. System architecture is comprised of three important components,

which are software, hardware, and people. System Architecture as defined in the Series by the

Software Engineering Institute (SEI) Group is: “a representation of a system in which there

is a mapping of functionality onto hardware and software components, a mapping of software

architecture onto hardware architecture, and a concern for the human interaction with these

components”, Bass et al. [2013].

What is Software Architecture (SA)?

Zachman [1996] provides an influential description of software architecture. “Ar-

chitecture is that set of design artefacts, or descriptive representations (i.e. models),

that are relevant for describing an object such that it can be produced to requirements

(quality) as well as maintained over the period of its useful life (change)”.

More recently, SA is defined as: “The set of structures needed to reason about

the system, which comprise software elements, relations among them, and properties

of both” Bass et al. [2013, p4].

The IEEE-42010 Principle extends the foregoing explanatory descriptions of ar-

chitecture. According to IEEE-42010, architecture denotes: “fundamental concepts

or properties of a system in its environment embodied in its elements, relationships,

and in the principles of its design and evolution ”.

Numerous other descriptions are available, each making a similar statement but using dif-

ferent expressions.

According to Bass et al. [2013], and from my experience as an air defence force officer in

charge of a software development and testing team, there are three points of SA significance as

follows:

16

2.1. INTRODUCTION

• Software architecture is critical not only in understanding a system’s characteristics, but

also at the architectural level, where these qualities ought to be designed in and can there-

fore be evaluated.

• Software architecture lays the foundationwithwhich quality can be achieved. This ground-

work, however, will only be useful if the details (including implementation) are attended

to just as closely.

• Software architecture can save time and costs significantly if it receives enough attention

during the development and documentation processes.

As technology continues to evolve, software architecture as a practice faces new challenges.

For example, making justifiable decisions is a feature pivotal to software architecture. To aid

this process, a common solution is architecture evaluation.

What is Software Architecture Evaluation (SAE)?

“SoftwareArchitecture Evaluation has been proposed as a means to achieve qual-

ity attributes”, Babar et al. [2004]. So, the architecture evaluation in brief is, a form

of artefact validation, just as software testing is a form of code validation, Clements

et al. [2002b].

Hence, architecture evaluation can be defined as a process that judges whether

an initial architecture description, or a series of candidate descriptions, represent the

specified quality attributes, Qin et al. [2008].

Drawing these together, I propose a definition for SAE as: a procedure that con-

sists of at least a specific method and an experienced team, in order to determine the

level of quality requirements that are possessed by software architecture, or an archi-

tectural style, to verify if the architectural decisions are correct.

Software Patterns (now often referred to as styles) are important parts of architectural so-

lutions; thus, we need to define SPs.

What is a Software Pattern (SP)?

“Each pattern is a three-part rule, which expresses a relation between a certain

context, a certain system of forces, which occurs repeatedly in that context, and a

certain software configuration, which allows these forces to resolve themselves”,

Alexander [1979].

17

CHAPTER 2. BACKGROUND

2.2 Initial research

Recent times have witnessed the emergence of software architecture evaluation as a sig-

nificant practice and research area. These developments have prompted practitioners and re-

searchers to create techniques, tools, and methods, which facilitate architecture appraisal, Over-

hage et al. [2007] and Breivold et al. [2012]. Further, system architecture affects related de-

velopment processes and acts as a centre for development. Consequently, architects generally

qualify as leaders of the majority of development groups. Indeed, architecture remains one of

the leading professions within the technology realm, Schlosser [2017].

In addition, quality attributes are a prime consideration during software architecting, de-

signing, implementation, and testing for any engineering product that includes significant soft-

ware components. No attribute is totally independent; each quality attribute supports, hinders,

or has no effect on others. Existence of the ‘no effect’ option has low probability within the soft-

ware development domain. This is because of the nature of software components’ interactive

processes. Also, the interwoven relationship between quality attributes makes the trade-offs pro-

cess necessary to some extent. More so, it increases the importance and complexity of capturing

required qualities on an architectural level. Therefore, if one misses important requirements in

the architecture phase, one is also almost sure of missing the same requirements through the

next phases of designing and implementation. As a result, desired quality in the end-product

will be unrealised. It is therefore important to get the architecture and its description correct for

a successful result.

On the other hand, self-adapting systems, such as Artificial Intelligence (AI), have their

own specific/particular sets of requirements, such as the ability to adjust to operational context

changes, Cheng et al. [2009]. With AI systems, in particular, symbolic computing has come to

signify a host of concerns regarding their architecture. One point of interest is to integrate the

use of non-numeric symbols into a computer’s main functions. In essence, the goal is to have

machines visualise environments, reason about them, based on their knowledge, and develop

the best plan to be executed. This type of system increases the complexity of the architecture

and its evaluation, Meystel et al. [2002]. Thus, the reasoning of quality attributes as they relate

to software architecture is an important aspect. Although, it should be noted that AI researchers

are too focused on specific concerns, which do not, in particular, involve software architecture

as it generally applies. There are, however, a few exceptions to this generalisation, one of which

is the Albus reference model 4-D/RCS. The architectural framework of this reference model

tackles a range of behaviours, awareness, and knowledge attributed to humans. This open/op-

erational control intelligent system architecture has been utilised in a variety of applications:

autonomous ground vehicles, cleaning and debarring workstations, control systems for postal

service stations, and more, Albus et al. [1996]. A second exception, is Roy Fielding (AI re-

searcher), who developed the Representational State Transfer (REST) architectural framework

for the purpose of understanding and evaluating architecture through the architectural styles used

18

2.2. INITIALRESEARCH

in network-based application software, to satisfy the requirements of internet-scale distributed

hyper-media systems, Fielding [2000]. Both architectures point to a strong relationship existing

between SA and SPs.

In addition, every system needs to evaluate its software architecture to work properly. SAE

methods are used to perform such assessments, which may also apply to Artificial Intelligence

System (AIS).

However, it is general knowledge that software architecture is difficult to evaluate and com-

pare objectively, Fielding [2000]. Thus, it is beneficial that requirements for quality attributes

are identified in the early development phases of software, and are encapsulated within its ar-

chitecture. The following reasons explain the importance of software architecture evaluation:

• The description of the software architecture is one of the first artefacts that can be evaluated

and analysed.

• The problems that are discovered during SA development processes can be fixed at con-

siderably lower cost than if they are discovered in the testing and/or deployment stages,

Clements et al. [2002a]. In the former, all that is involved would be modifying notations in

the architecture. However, in the latter, source code may need to be changed on a massive

scale, inducing needless cost and delay. The utilisation of full automation and modelling

techniques may help reduce these costs, if they are available.

• Architecture evaluation at an early stage helps open the communication paths between

stakeholders and to develop a satisfactory system architecture which increases the success

of projects.

• Architecture is at the centre of the development process. It includes decisions for the team

structure, work division, configuration repository, documentation organisation, manage-

ment strategies and development scheduling. An unsuitable architecture will cause a sig-

nificant amount of disorder when it must be modified to address new concerns or defects

that are uncovered in the early phase, Qin et al. [2008].

• The evaluation of software patterns (as a component of SA) aids developers in using and

integrating them into other architectures, if need be, by utilising prior information on qual-

ity attributes.

A concern that emerges here, is the quality of the resultant architecture when patterns with

differing quality attributes are combined. However, the relationships between software

patterns and quality attributes have been analysed and identified in a scientific manner,

Freitas [2009], Kim et al. [2006] who used Alloy-Analyser as a tool, and Zayaraz [2010].

Quality attributes, however, cannot be obtained in isolation, particularly within the con-

text of complex systems. Whenever one attribute is achieved, another attribute is consequently

affected. One such instance of this, is the relationship between performance and security. Typ-

ically, the more security requirements that are applied to a system the more time is needed to

process security checks, which in turn means a decrease in system performance, Bass et al.

19

CHAPTER 2. BACKGROUND

[2013].

The current research derives from the significance of software architecture and its assess-

ment, the worth of automation, the procedure for assessments, consistency of information and

standardisation of notation, plus limitations of the current evaluation methods and techniques.

Therefore, the outcomes are highly likely to add to the current body of software engineering

knowledge.

In order to understand and improve Software Architecture Evaluation, there are some

critical aspects that need to be addressed as reflected in the following questions:

• How is SA being described? What are the limitations of the current SA description

methods?

• Do the current modelling methods have an effect on SA? What are the drawbacks and

limitations of the current SA modelling techniques?

• How is SA being evaluated? What are the limitations of the current SAE methods?

The rest of this chapter addresses these questions.

According to Klassen et al. [1998], a Systematic Review is “a review in which there is a com-

prehensive search for relevant studies on a specific topic, and those identified are then appraised

and synthesized according to a predetermined and explicit method”. The five common main

steps in a systematic review are shown in Figure 2.1.

Figure 2.1: The main common steps for a Systematic review.

However, The Integrated DEFinition language 0 (IDEF0)1 diagram (Figure 2.2) and Ta-

ble 2.1 draw the theme of the processes and strategies that been applied during this thesis re-

search.

1The IDEF0 (in brief), is a functional modelling approach designed for manufacturing and logistics activities, in

order to describe processes, functions, development, business, and analysis within the engineering field, Buede et al.

[2016].

20

2
.2
.
IN
IT
IA
L
R
E
S
E
A
R
C
H

Table 2.1: This is the review strategy that has been applied in Chapter 2, followed by Chapters 3, 4 and 5).

Steps of ‘evidence

synthesis’

Comprehensive search and systematic review

roadmap
Implantation and comments

1
Preliminary re-

search

In order to enhance SAE methodologies, the cur-

rent SAE methods, gaps, and limitations must be

identified. Thus, to scope the objective and to

form specific questions, initial research should be

performed.

Preliminary research has been performed, reported on, and discussed with, the su-

pervisory panel and approved by them, through a Study PlanReport, on 30th January

2011 (12 pages) and (Thesis Proposal Review (TPR)-4th version,(44 pages). Some

parts of the preliminary research were included in Chapter 2.

2 Objective

Is to combine strengths of critical comprehensive

search processes and systematic review. It is to

describe the state-of the-art to answer questions

regarding SA and SAE. It can address broad or

narrow questions to produce ‘best evidence syn-

thesis’ and can provide answers to those ques-

tions with critical descriptive analysis, either

quantitatively or qualitatively.

A structured introduction and initial research are presented respectively in Sections

2.1 and 2.2, which will allow readers to assess quickly the relevance, quality, and

generality of the review presented in Chapter 2.

3
Question formula-

tion

The rationale for the survey is based on spe-

cific questions. Questions can be open-framed or

closed-framed.

• The research questions were formulated and justified based on initial research

in Section 2.2.

• SA and SAE are broad topics. However, several narrow subjects within (SA

and SAE) were discussed, such as Formality, MDA, and Performance models,

etc.

• Three important open-framed questions were listed, each one has been an-

swered through major sections, which are: 2.3 SA; 2.4Modelling SA; 2.5 SAE.

2
1

C
H
A
P
T
E
R
2
.
B
A
C
K
G
R
O
U
N
D

4

Developing the

research strategies

and protocol

It’s an important step of the review process to

identify the method and strategy on how the re-

search will be conducted. Prior planning helps

to increase consistency, integrity, and visibility.

Four important phases need to be considered dur-

ing the review strategies are as follows:

1. Critical: assess selected information and

articles.

2. Analyse: extract-opposing evidence from

selected materials.

3. Synthesise, compare, and reveal the re-

lationships between selected studies, con-

cepts, or theories: differing characterisa-

tions and descriptions, etc.

4. Evaluate and appraise practical use of the

selected approaches.

I considered my Master research Almari [2010] as a pilot study for this review due

to its relevance. The key points of the review strategy and protocol in this thesis are

summarised in this table as follows:

1. The review title presented in Section 2.2. The reviewers include: my su-

pervisory panel, and (external editor and proof-reader) as indicated in the ac-

knowledgement section. The research duration is visible within the study plan

report.

2. The objectives rationales pertaining to the questions and questions formula-

tion are illustrated in Sections 2.1 and 2.2

3. Criteria for studies inclusion, search strategy, critical appraisal and data ex-

traction, synthesise data, and reporting are all summarised in this table.

For versioning, bibliography management, and document retrieval, I have used sev-

eral applications during this research such as Curio, Papers, Concept-Draw Office,

Bibdisk, Texmaker, Office, Excel, Word).

2
2

2
.2
.
IN
IT
IA
L
R
E
S
E
A
R
C
H

5
Conduct search and

screening articles

The goal here is to find as many primary and sec-

ondary studies that are related to the thesis ques-

tion as possible.

No limitation on research evidence, which can be

included (e.g., primary and secondary research).

The data selection concept in this thesis review follows a multistage iterative pro-

cess. The strategy used to quest relevant studies and sources include: journals (cover

company journals), conference proceedings, scientific databases, grey literature (i.e.

technical reports), books, the Internet, etc.

Sources of evidence have been searched using the following methods:

• Trial searchers using (search-string) various combinations of terms and key-

words derived from the research questions using boolean ANDs and Ors.

• Consultations with my supervisor.

• Relevant studies references, strings, abstracts; and keywords.

• Relevant reliable websites.

• Relevant Conferences materials.

Also, randomized controlled trials that investigated the research questions arena

were used.

”Current software engineering search engines are not designed to support systematic

literature reviews. Unlike medical researchers, software engineering researchers

need to perform resource-dependent searches, Klassen et al. [1998]. However, the

case now is much more mature than the situation in 1998.

2
3

C
H
A
P
T
E
R
2
.
B
A
C
K
G
R
O
U
N
D

6
Sift the search re-

sult

The study selection criteria are proposed to clas-

sify those studies, which provide direct evidence

and strong relations to the research questions.

Articles and information classification schema was based on the relevant subject

(SA, SA modelling, and SAE). Applications such as Curio, Papers, Concept-Draw,

Bibdisk, Texmaker were utilised during the sifting process in order to manage the in-

clusion process and to avoid duplications and confusion. The articles selection was

based on the articles’ abstracts, key wording, and full text context that are relevant

to the thesis questions.

Inclusion Criteria:

1. Any study that is relevant to the three main review questions regarding SA,

SA modelling, and SAE.

2. Any study that addressed any of the research questions.

3. Any study addressed (SA and SAE) standardisation and automation processes

in particular.

4. Empirical studies, experiments, surveys, models, standards, and frameworks

that aimed to enhance and/or appraise (SA and/or SAE) methods.

5. Any information related to software patterns/styles documentation and eval-

uation.

6. Related information published in English language.

The following types of materials are excluded:

1. Unsourced information was excluded and removed.

2. Materials recommended as inappropriate by supervisory panel was excluded

and removed.

3. Standards and frameworks that have been published after 2010 were excluded

and will be recommended to be included in the future research.

4. Studies published in more than one journal/conference, the recent versions

were used. Other versions have been excluded.

5. Studies published with the same aims, designs, methods, and results were

excluded. Only the most common, reliable, popular, and complete studies

were selected and included.

6. Unpublished articles and incomplete data were excluded.

2
4

2
.2
.
IN
IT
IA
L
R
E
S
E
A
R
C
H

7
Critical appraisal &

data extraction

Critical appraisal is the systematic evaluation for

the studies included in the review and can be done

using checklists. The data extraction process is

designed to collect all the data required to address

the research questions.

Data extraction: All the information needed that is satisfying inclusion criteria and

relevant to the review questions was extracted. The data extracted include common

information such as date of data, title, authors, publication details, additional notes

available, etc.).

Critical appraisal processes were carried out based upon the information relevant to

the research questions, which include the context facet + articles facet, and contri-

bution facet. Also, included are studies’ design, methods used, and tools were.

A Critical appraisal checklist with main five questions was created and employed.

Each main question of the checklists comprises sub-questions:

1. Does the review address clear research questions?

2. Do the reviews’ results help to achieve the thesis main objectives?

3. What are the results of the review?

4. Are the review results providing a valid answer to the research questions?

5. Will the research results benefit the engineering field?

Supervisors reviewed all the research information, processes, and methods. They

pointed out to any incorrect actions or issues within any aspects of the research.

Regular meeting were scheduled and executed during the research.

Re-evaluating the selected studies after screening was conducted on iteration,

in order to check their consistency to inclusion criteria.

8

Synthesis narra-

tively (and/or)

statistically

Trends in the literature, knowledge gaps, and

clusters identified. Qualitative or quantitative

synthesis of study results, where possible, using

appropriate methodology or analysis.

Describing the findings in critical fashion with a positive argument towards the re-

search area and question was conducted. The important aspects, issues, gaps, com-

parisons, method mapping, and limitations around the three main subjects which

are SA, SA-modelling, and SAE, were logically and critically discussed and iden-

tified, as illustrated in Chapter 2. Visualising the findings through figures, tables,

and mapping mechanisms were presented.

2
5

C
H
A
P
T
E
R
2
.
B
A
C
K
G
R
O
U
N
D

9 Report

The report should describe and categorise avail-

able data relating to the research topic and ques-

tions, identifying knowledge, advantages, disad-

vantages, and gaps; identifying implications on

the thesis research schema.

Mostly narrative and qualitative synthesis study results (e.g. comparative and cri-

tique analysis) were used, in order to answer the review questions. Implications for

this thesis were illustrated and summarised in Sections 2.6 and 2.7. The knowledge

gaps and limitations were presented in Chapter 2, and recommendations for future

research are made and reported in Chapter 7. Reporting the review in Chapter 2

was designed and catalogued carefully in order to point out to the current research

problems and to be able to answer the research questions, while keeping the aim

and structure of the whole thesis concrete, which is justified in Chapter 1 and Sec-

tions 2.1 and 2.2. This thesis contribution to the identified problem is presented in

Part II.

2
6

2.3. SOFTWAREARCHITECTURE DESCRIPTION

Figure 2.2: Comprehensive search and Systematic review processes in IDEFO diagram format

as adopted for this study.

2.3 Software Architecture Description

The study of software architecture is a complex field and involves the study of design prin-

ciples and design patterns used in the creation of a software system. The design and imple-

mentation details of software architectures can be represented using different methods that can

be classified as; formal, semi-formal, and informal methods. Each of these methods has some

advantages and certain drawbacks. However, the basic principle behind these methods remain

the same which is to provide a way to describe the structural elements of a system along with

any supporting information needed. In general, the design representations of the architecture

are also known as high level design documents. The aim of this section 2.3, is to explore the

way architecture described within different methods and to compare between them within the

contexts of SA and SAE. I conclude the section with a study of common formal methods and

their relations with SA and SAE.

2.3.1 Brief Analysis of SA description methods

The architecture of any software application is an integral part of its design and deploy-

ment.2 Therefore, it is extremely important for any application to have well-defined descriptions

outlining the architecture. Thus, the study and description of software architectures is necessary

aspect of the software life cycle.

2In the context of this thesis terms such as architecture and design are including styles and patterns.

27

CHAPTER 2. BACKGROUND

There are several different ways in which software architecture can be viewed depending

upon the purpose and target audience.

There are three main methods for describing SA, as illustrated in Figure 2.3.

Figure 2.3: The three main methods for describing SA.

1. Informal methods uses languages/notations such as textual, english language, and general

purpose diagramming.

2. Semi-formal methods uses languages/notations such as UML, and SysML.

3. Formal methods uses languages/notations such as ADLs, and Z.

These methods are used to describe various kinds of software architectures in terms of its

structure, behaviour, components, and the relationship between them. This section explores the

ways in which each method of description differs from others. Also, it is to focus on the common

formal methods for describing software architectures.

There are several problems that need to be addressed during the development of a soft-

ware application. If the size of the application is small, the computational problems, which are

encountered can be solved by using regular algorithms and data structures. However, larger ap-

plications are rarely so simple or one-dimensional and are often made up of large interconnected

structures, which need to work together as a system. For example, most of Command, Control,

and Communication (C3) systems include mission planning and direction subsystem, mission

execution subsystem, and surveillance subsystem, which are connected to each other through

various interfaces and, hence, support each other, Hughes Company [1993].

The same applies on Command, Control, Communications, Computers, and Intelli-

28

2.3. SOFTWAREARCHITECTURE DESCRIPTION

gence (C4I) system, as I have participated in its development processes in 2016 with

the Raytheon company for the Saudi Ministry of Defence and Aviation (MODA).

Also, the same concept exists on banking software applications, which are made up of core

banking modules that work together with an internet banking modules and credit card handling

systems.

These complexities are inevitable to ensure that the application delivers the necessary func-

tionality flawlessly, remains reliable, reusable and is easy to maintain. However, the architect-

ing, designing, and testing of such complex systems poses several challenges. As the size of

the system increases, the development related problems increase manifold and with the increas-

ing size and complexities of present day software systems, design problems can no longer be

sidelined, Safwat et al. [2015].

The emerging field of architecture description concerning different aspects, such as defining

the high level system components and the connectivity between them, predicting and formalising

the expected behaviour of the system and defining the overall abstract structure of the system that

identifying the interconnected components. These processes contribute towards solving prob-

lems like translating a system from requirements to design, creating architectural descriptions

and ensuring that the architecture will stand up to the requirements, Dick et al. [2017].

In the context of this thesis the Diagrams and Models differed from each other. Whereas,

Diagram is a form of graphical representation that explains the architecture using any format

and notations alongside a natural language, without following any standards, languages, or

specific semantics. While Model is an abstract that follows a standard notation to describe

some aspects of the architecture, such as its components structure, and how they interact with

each other.

• The informal methods for describing software architectures (e.g. English, general purpose

diagramming) mostly used to explain the architecture in terms of simple boxes and lines

where boxes represent the components and lines represent the connections between them,

with some textual comments that does not follow any rules or specific notations.

The informal description of SA is easy to develop, understand, and interpret. However,

some of the common limitations arising due to the use of informal languages are mentioned

below:

1. Ambiguity: Informal diagrams, notations, and the use of natural languages result in

a lot of ambiguity regarding various factors, such as the meaning of connectors, their

directionality and related associations. In addition to, the way data and control infor-

mation flows, despite the components and connectors being represented as separate

presentation and visual forms. Often, these ambiguities can result in confusion and

non-uniform interpretations, which can lead to misunderstandings.

2. Communication gaps: Software development is no longer an individual job but often

29

CHAPTER 2. BACKGROUND

requires large teams interacting with other each to produce separate pieces of artefacts,

which together form the system. In such scenarios, smooth flow of information and

good communication is very important and the ambiguity of informal methods hinders

both.

3. System validity issues: From the development perspective, it is important that the ar-

chitecture is validated early, to ensure that it meets the specifications and fulfils the

requirements. This ensures that the architecture is translated into a design, and then

can successfully be translated into code. It is very difficult to properly validate an

architecture which is described using informal methods. Even assuming that the in-

formation is complete and accurate, it is still difficult to arrive at a precise validation

model due to the lack of scientific or mathematical notation to measure the complete-

ness and quality of such systems, Pressman [2006] and Qin et al. [2008]. This might

lead to a system failure at a later point of time. This becomes especially problematic

if the project development is being executed from multiple geographic locations.

4. Inaccurate behaviour description of architecture: The behaviour description of archi-

tecture deals with the functionalities of different units, communication between them

and their validity. Hence, it is a very important part of the overall description, but in-

formal methods fail in several aspects to describe SAbehaviour adequately, due to var-

ious factors like ambiguity, translation of diagrams into analytical models, tool based

support and automation process. All this can lead to communication gaps, system

deadlocks, and invalid systems.

5. One of the main differences between informal methods and other methods, is that the

system and architecture verification is donemanually with informal methods. Whereas

in the case of other methods, verifications are (or could be) automated and standardised

even though the effort involved would be greater, Rushby [1993a]. Taking into account

that, a manual ’verification’ may involve incorrect interpretations of symbols within

diagrams, because sometimes a box might be interpreted as a component and lines

might be assumed to represent flow/order, while the architect meant boxes to merely

indicate concepts and arrows to indicate data-flow. Thus, the communications between

stakeholders is an important factor to have common interpretations.

Therefore, the informal approaches do not provide a good foundation for describing and

evaluating SA, even though they can be useful in the initial stages of a project life cycle.

• Semi-formal methods rely heavily on standardised notations/languages (e.g. UML and

SysML) that prescribe the architecture and follow rules to apply them, Bass et al. [2013].

Recently, the Semi-formal languages have become more advanced and supported by tools.

Their level of formality is increased and they can be automated to generate code such as

using X
T UML language with a model compiler, or the Artisan tool3, that generates different

3Artisan Studio is an integrated suite of modelling tools previously developed by Atego Inc. which is now part

30

2.3. SOFTWAREARCHITECTURE DESCRIPTION

types of code (e.g. Java, C++ and Ada) from the UML/SysML models.

The high levelmodels created by using these languages can be of one ormore different kinds,

which are used for visualising the architectural designs of the system. For example, Use

Case models, Business Process models, Object models, State models, Deployment models,

and Component models. Each of these models describes one or more aspects or points of

view of the system architecture through diagrams, often intended for particular group(s) of

stakeholders. For example, the Use Case model can be represented by Use Case diagrams,

which is meant for both the user and developer. Similarly, the Deployment diagram can

be used to represent the Deployment model, which is useful from the system engineer’s

perspective etc.

Semi-formal models are more generic and can cover different views of the architecture, even

though they could be limited during the analysis phase. Also, they can be annotated by a

natural language and automated at the same time.

However, two points need to be considered during the utilisation of semi-formal models as

follows:

1. The generation of code is mostly incomplete because accurate and precise models are

needed. Hence, the generated code may require some amendments after the gener-

ation process, due to different reasons, such as models accuracy, tools maturity, and

the size of the system.

2. Semi-formal methods use natural language features, which could be good or bad,

depending upon the architects and the accurate utilisation of the natural language in

the correct manner and places, when constructing architecture descriptions.

In addition, there are some comments in the literature regarding semi-formal notations/lan-

guages in general and the UML in particular such as, it is not completely sufficient to elimi-

nate the presence of ambiguity as models can contain only a limited amount of information

and expressions. Considering the size of specification documents for a complex system, it

is almost impossible to represent them with complete accuracy, Pressman [2006] and Qin

et al. [2008].

Furthermore, Semi-formalmethods lack precise descriptions for SA behaviour. Even though

the semi-formal diagrams, such as (activity and sequence) diagrams are useful in predicting

the behaviour of systems, but “cannot represent time constraints effectively”, Ribeiro et al.

[2016]. Also, they are insufficient to describe computational data and to simulate real-time

dynamic behaviour. All this can lead to communication gaps, system deadlocks and invalid

systems, Rozier [2016].

I argue that the above comments are partially correct with respect to UML, where “UML

modelling tools provide poor support for composite state machine code generation. Gener-

ated code is typically complex and large, especially for composite state machines. Existing

of PTC Inc.

31

CHAPTER 2. BACKGROUND

approaches either do not handle this case at all or handle it by flattening the composite state

machine into a simple one with a combinatorial explosion of states, and excessive generated

code”, Badreddin et al. [2014]. I agree that the size of the system could be a challenge for

Semi-formal approaches in regard to accuracy, features and precise code generation, which

been noticed during my inspection for the speed controller system artefacts with Artisan

tool.

Generally, the code generation process for UMLmodels, are dependent on the properties of

a specific tool generator. In order to make generation process independent and compatible

with several tools, the code generators need a “uniform input model”, which a noteworthy

contribution towards standardisation concept and UML models transformation introduced

by Noyer et al. [2014].

Recently, semi-formal languages have evolved dramatically and they can model the whole

system including its behaviour and generate code from those models with more precision.

Also, they have been involved in SA frameworks (e.g., DoDAF), formal methods (e.g.,

AADL), requirements, automation analysis, code generation, management processes. There

are hundreds of semi-formal development in different domains, such as (but not limited to)

the work done by Lamancha et al. [2010], Silva Melo et al. [2014], Pereira et al. [2015],

Hilken et al. [2015], Lugou et al. [2016], Ribeiro et al. [2016], and Ribeiro et al. [2017].

Indeed, Semi-formal methods are not as precise as Formal methods. However, Semi-formal

approaches do have the strength over the Informal languages, such as, understandability.

So, they are understandable to human, and their models can demonstrate different architec-

tural views. Also, they do have some of the Formal methods strength regarding machine

readability.

Furthermore, They do not have the same ambiguity as Informal methods. Also, it’s not hard

to learn, develop, and understand. As a result, it is a good foundation for describing and

evaluating Software Architecture (SA).

• Formal methods are used to express architectures formally. One way is to describe SA

in terms of Component and Connector (C&C) and configurations that carry computational

information and provide the foundation for development of analytical functions. Such lan-

guages are (but is not limited to), the AADL, ACME, Arch-Java, Koala, and MontiArc

Automaton Architecture description language (MAAADL), Wortmann” [2016].

If we take as an example the AADL and theMAAADL as formal languages, they are consid-

ered to be an efficient to analyse and create architecture descriptions based on formal nota-

tions and tools,Medvidovic et al. [2000] andWortmann” [2016]. TheAADL is a modelling

language to model both (software and hardware) components, and associated properties,

whereas MAAADL focuses on modelling SAs logically.

According to Wortmann” [2016], “the MAAADL modelling infrastructure comprising the

concepts, ADL, state-based behaviour language, model transformation and code generation

32

2.3. SOFTWAREARCHITECTURE DESCRIPTION

framework to enable multi-platform generative software engineering”. More analysis of

formal methods is presented in the next section.

However, if we compare semi-formal and formal, we find that each one has different ad-

vantages. Formal languages are powerful during syntax and semantics analysis. Some of

the main advantages of formal methods in describing behaviour are mentioned below, Qin

et al. [2008]:

1. Formalmethods aremore concise and accurate than othermethods, which able inven-

tors or designers to express their specific concept through its semantics, and hence

support new designing approaches to be manifested.

2. Formal methods are more effective in describing aspects such as behaviours and pat-

terns, thus they are cognitive to behaviour analysis and creation of rules.

3. Due to the absence of ambiguity, it is possible to validate the system architecture

beforehand and also measure it for quality parameters.

In general the above points is correct, but it is vary from language to another. For exam-

ple, the formal semantics and executability are two limitations of AADL’s as examined by

Ölveczky et al. [2010]. However the AADL were evolved during the last few years and its

semantics becoming more mature, Oquendo [2016].

Challenges hindering the utilisation of formal methods are:

1. hard to learn;

2. hard to develop;

3. hard to understand by all stakeholders;

4. need an expert, who may not always be available;

5. high cost;

6. time consuming.

Considering the above factors along with, the fact that Semi-formal and Formal methods

description play an important role in the application of software architecture description and

modelling approaches, they are being hailed as the way forward.

More discussion about Formal methods is represented in section 2.3.3.

See the three notation representations in Table 2.2 that are describing a section of the Pipe-

Filter pattern, in order to better visualise the argument above.

2.3.2 Views of SA description

The basic idea behind the architecture of a system is that its elements can either be broken

down into smaller parts or combined to form bigger parts. Most of the development in the

software field is currently carried out on the basis of Object Oriented Development (OOD) and

the architecture is also described according to these concepts. This field of study is known as

33

CHAPTER 2. BACKGROUND

Table 2.2: Formal, Semi-formal, and Informal methods for representing a section of Pipe-Filter

family.

Informal description (POSA-

V1) Buschmann et al. 1996

Formal description with Z language Shaw et al. 1996

Class: Filter

Responsibility:

• Gets input data

• Performs a function on its

input data

• Supplies output data

filter_id: FELTER

In_ports, out_ports: P PORT
alphabets: PORT → P DATA
states: P FSTATE

starts: FSTATES

transitions: (FSTATES ×Par-
tial_Port_state) 7→ (FSTATEs…

Semi-formal description with

UML graphical Representation

Clements 2003.

	

—Filter_State—

f: Filter

internal_stste: FSTATE

pstate: Port_state

internal_state ∈ f.ststes ∧ dom

pstate = …

∀ p: dom pstate ·ran (pstate(p)…

Object Oriented Analysis Development, which is most commonly represented by specification

languages like the Unified Modelling Language or UML, Booch [2005].

There are different kinds of views, each of which can be made up of one or more models.

The most popular among these is the 4 + 1 architecture views, which is made up of logical,

development, process, and physical views. Each represented by a separate diagram, and using

a different kind of visualization for its architecture to report it to different stakeholder commu-

nities, Obbink et al. [2002].

In most cases, the description of any software system can be summarised using three im-

portant models: functional model; object model; and, the dynamic model. Figure 2.4 illustrates

this, showing that the 3 models together provide sufficient information about the whole system.

Also, each of these views can be divided into several sub-views that can form the whole parent

view within the same context. Each of these models is described below:

1. Functional Model: This is primarily meant for the end user and describes the system’s

functionality by separate use cases through Use Case diagrams. The overall structure is

described in terms of functions and processes.

2. Object Model: This model represents the system in terms of objects, relationships be-

tween them, properties of the objects, and the functionalities provided by overall objects.

They (objects) are modelled after real-world entities and this model primarily depicts the

information through class diagrams.

3. Dynamic Model: The focus of this model is on the functionalities provided by the sys-

tem and its behaviour during normal operations and state transitions. This model can be

34

2.3. SOFTWAREARCHITECTURE DESCRIPTION

represented by activity diagrams, state machine diagrams, sequence diagrams, etc.

System
Description

Functional Model
(e.g., use cases)

D
yn

am
ic

M
od

el

(e
.g

.,
sta

te
m

ac
hi

ne
s

di
ag

ra
m

s)

O
bject M

odel

(e.g., class diagram
s)

Figure 2.4: General prospective of the model types for describing a system.

Some of the common terms used in the modelling world are actors, scenarios, and use

cases. Here, an actor is any participating entity of the system, such as a person or a computer.

Whereas, scenario is a specific sequence of actions which yield some result, and the use cases

are a set of functional scenarios which can either be successful or fail and are performed by an

actor to achieve the goals Larman [2004]. The relationships in the diagram can be termed as

associations, dependencies, generalizations, etc.

2.3.3 Formal methods and languages

Formal methods are very useful in dealing with the shortcomings of the informal meth-

ods such as ambiguity and inconsistency. According to Kelly [1997] and Storey [1996], they

generally consist of logical and mathematical methods to create specifications and design of

a software system and also to construct and analyse these systems, Schumann [2001]. Also,

formal languages are constructed to be to be completely accurate and precise regarding every

aspect of the system. The formal languages are developed on the basis of formal techniques

and mathematical theories and formulae. The formal methods can be applied at any point in the

software development cycle to describe the system at whatever granular level is desired.

Formal methods can be applied starting at the highest (most abstract) level to the bottom,

to ensure that all the critical properties and aspects of the system are described accurately and

can be analysed with precision. Due to the application of mathematical theories in formal lan-

guages , the system is consistently measurable. Applying formal methods at various phases

in the process ensures smoother transitions. For example, the design can be created based on

mathematical principles and the development can be done according to these accurate designs

using standardised principles. This process ensures that the overall system is reliable and the

communication gaps are eliminated between developers.

All the advantages mentioned above and in Section 2.3.1, are to ensure that the system

can be verified against the requirements before the development or implementation cycles com-

mence. Also, due to exact definition of system boundaries and constraints, it is also possible to

35

CHAPTER 2. BACKGROUND

trace the verifications backwards, i.e., to check if code conforms to design, design conforms to

requirements, etc. There are several tools available to check if the constraints and boundaries

are consistent. For example the ACME-Studio tools can be used to check for inconsistencies

and anomalies in the architectural model. It is also possible to automate the validation checks

for such systems, Qin et al. [2008]. Such automation techniques can be based either on: a)

Automated Theory Proving, wherein the automation system takes the description, axioms and

rules as inputs and generates a logical validity proof as output; or b) Model Checking wherein

the system’s validity is verified by going through all the possible stages that the system can go

into and check whether the system’s properties are valid at each of these stages. The concept of

Model Checking has traditionally been used in the hardware field extensively and has recently

started spreading into other fields, Klarlund et al. [1998].

Considering all the above factors, usage of formal methods is very important especially

in systems which require high levels of quality, such as security and confidentiality, to ensure

bug-free software. By using formal methods from the initial requirement and design stages, the

errors can be reduced thereby saving development and implementation rework efforts. It is not

necessary to use formal methods at every stage of the project and in most cases partial formal-

isation is sufficient. Both Formal and Informal methods have their own shortfalls. However,

studies have indicated that using formal methods is the best way to prevent bugs and produce

high quality softwares, Rozier [2016], Qin et al. [2008]. With proper usage of formal methods

can yield applications of high integrity and accuracy, thus the cost can be high initially. Also,

formal methods can be used not only in development projects but also in various other types of

projects like enhancement projects, testing projects and maintenance projects. There have been

tremendous improvements in the area of formal method usage. Figures 2.5 and 2.6, demonstrate

how formal methods have evolved since 1970’s until 2010, Schumann [2001] and Foster [2011].

Figure 2.5: Evolution of formal methods.

36

2.3. SOFTWAREARCHITECTURE DESCRIPTION

Figure 2.6: Formal methods adoption has grown by 53% within 3 years.

2.3.3.1 Common formal methods and languages

A few common formal methods and languages are outlined below:

1. Petri Net: This was invented by Carl Adam Petri in 1962, which is used to describe dis-

tributed systems in a mathematical way.

2. B-Method, Abrial [1996].

3. Actor Model Method, Hewitt et al. [1973].

4. Vienna Development Method (VDM), Fitzgerald [1973].

5. Z Notation: This theory proposed by Jean-RaymondAbrial in 1977, Leavens et al. [2006],

which is a computational language based on set theory and calculus and is used for de-

scribing systems formally.

6. Communication Sequential Processes (CSP), Hoare [2004].

7. Architecture Description Language (ADL), Dissaux et al. [2005].

8. Domain Specific Language (DSL), Fowler [2010].

All of these methods are efficient in dealing with many of the problems associated with

informal architectural descriptions and also provide extensive technical capabilities. However,

they have their own limitations that prevent them from being used extensively.

Some of the main problems associated with formal methods and languages in general are:

1. An essential observation is that current ADLs, such as AADL,ACME, xADL offer support

for various types of architectural elements, but do not support the architectural views in

a way proposed by ISO-42010, which minimise the standardised aspect, BouckÃ et al.

[2008]

2. Since most of the coding while developing a software application is donemanually, the gap

between requirements, specifications, and the code is still wide. However, new approaches

such as, Model Driven Architecture (MDA) and Model Driven Development (MDD) that

focus on automation can help in lessening this gap.

37

CHAPTER 2. BACKGROUND

3. The integration process of software components during its development using formalmeth-

ods is difficult and time-consuming, due to the rigid mannerisms of the formal methods,

which is evident with the difficulties involved in learning and implementing such methods

(e.g. Z notation). However, formal methods advantages can be gained in the long-term,

Gogolla [2004], Qin et al. [2008], and Zamansky et al. [2015].

2.3.3.2 Applicability of formal methods in the software Life Cycle

A software development cycle is not a single process but consists of several phases be-

ginning from requirement gathering to the maintenance of the finished product. These phases

together contribute towards the development cycle. There are several approaches and method-

ologies available to conduct a lifecycle, the discussion of which is beyond the scope of this

research. Formal methods can be used during any of the phases of development to achieve

whatever degree of formal description is needed. However, it is important to use tools which

support automation as it is one of the core requirements for the best usage of formal methods,

Xia et al. [2012]. The following section illustrates the degrees of formality and scope during

software development.

2.3.3.3 Degree and scope of Formal methods

The four levels of formalisation degrees mentioned by Rushby [1993] are described in Ta-

ble 2.3.

Table 2.3: Rushby’s four levels of formalisation, Rushby 1993b.

Level Use of Formal Methods

0 This level involves writing of specifications with the help of natural languages, diagrams

and pseudo-code. The entire process is informal and no formal methods are used at any

point.

1 In this level, certain portions of the requirement and specifications are supplemented with

the help of mathematical theories even though analyses and proofs are still carried out in

an informal manner. This level reduces the ambiguities and is more accurate as compared

to level 0 while still maintaining a level of flexibility. This also ensures compactness and

allows for a smooth integration of design and development.

2 This level introduces the formal specification languages along with a certain level of

support from tools, which provide various functionalities such as syntax checking, type

checking, interpretations, animations etc. Proofs are still informal although they are en-

forced strictly. Also, some methods (e.g. Taylor 1990 and VDM/SL Jones 1990) allow

performing of formal proof-checking manually in order to obtain the best of both worlds.

3 This level makes use of complete formalisation with formal specification languages be-

ing employed at various levels with the help of supporting infrastructures. It also for-

malises proof-checking usingmathematical theorems. Techniques such as Theorem Prov-

ing, model checking and proof-checking are used in this level. Some common examples

of this level are the work done by Boyer et al. 1988, computational logic for Applica-

tive Common Lisp (ACL2) Kaufmann 1998 etc., where ACL2 represents a first-order

programming language based on Common Lisp.

For all the levels mentioned in Table 2.3, the formal methods utilization is dependent upon

the project goal and requirements, which determine if any of the above levels need to be used for

38

2.3. SOFTWAREARCHITECTURE DESCRIPTION

a project or not. In most existing cases, level 0 or 1 are sufficient to describe the architecture, but

are insufficient to automate the process and evaluation analysis. Levels 2 and 3 are considered

to be sufficient for code automation and also for evaluation analysis, bearing in mind that there

are several problems involved in applying these techniques for the first few times, such as the

complexity of their implementation. Some of the common scenarios where formal methods can

be used are:

1. Initial project stages: Usage of formal methods in the initial stages are hugely beneficial as

they reduce the possibility of mistakes early on, thus save valuable time and rework effort.

Studies have shown that fixing a defect post-development costs several timesmore than the

cost of the effort spent in avoiding it, Pressman [1997] andBendı́k et al. [2016]. The formal

methods can also be used for verification of flows between different stages. They can be

used in the early stages to create a traceability matrix between the client requirements and

actual designs. In order, to ensure that the developed code is in-sync with the requirements

of the clients. Though, these matrices are often not very beneficial from the client’s point

of view, but they are extremely useful from the developer’s perspective.

2. Verification of system components: Rather than verifying the entire system, the important

components of the system can be identified, then verified as stand-alone modules using

these methods even though it is important not to overlook other less important modules

as well. Typical candidates for such core validations are communication components,

security components and audit components.

3. Verification of system functionalities: Again, the important functionalities of the system

can be identified and verified rather than the system behaviour as a whole. Some typical

examples include safety features and termination features. Also, in most cases, it is suf-

ficient to prove the absence of failures such as deadlocks and security lapses rather than

proving the success of each and every functionality, Schumann [2001].

2.3.3.4 ADLs as example of formal description

ADLs, are considered to be an efficient way to analyse and create architecture descriptions

based on formal notations and tools,Medvidovic et al. [2000]. An ADL in its simplest form it is

a computer language used for describing architectures, even though there is a lot of ambiguity

about various aspects of an ADL, such as its purpose, scope, function, and interchangeability.

Hence no exact approved definition of ADL is available, Clements [2003]. However, according

to the IEEE-42010:2011, the architectural language defined as “any form of expression for use

in architecture descriptions”. Hence, there has been a general agreement on certain aspects of

architecture description and this has led to the development of a common, second generation

ADL known as ACME which serves as a common platform for architecture description and

which allows several related architecture analysis tools to reside under one roof.

After ACME language appeared, some advances in SA description had improved such as:

• The new ADL for descripting SA of a System-of-Systems (SoS) named SosADL, which

39

CHAPTER 2. BACKGROUND

is supporting automated analysis and it’s associated with its toolset, Oquendo [2016].

• Architecture Analysis & Design Language (AADL) which considered as a complete lan-

guage for designing both the software and the hardware and it’s supported by its toolset.

AADL architecture models can be used for code generation, documentation, and analy-

ses, Feiler et al. [n.d.].

As we can see from Table 2.4 and Figure 2.7 that AADL is more advanced than ACME.

Actually AADL language incorporates all ACME components in its specifications andmore. For

example, A device in AADL could have logical connections via ports to a software components,

as well as physical links to a processor through a bus, which is impossible in ACME language.

Table 2.4: General comparisons between ACME and AADLmain components.

The seven basic elements of ACME known as core

constructs, after Garlan et al. 1997:

AADL main elements, after Feiler et al. n.d.; Feiler

et al. 2006

1. Components: represent the individual elements

of a system as described previously.

2. Connectors: represent the relationships and con-

nections between the various components of the

system as described previously.

3. Ports: represent the interfaces of the individual

components to the external world.

4. Roles: represent the connector interfaces to the

external world.

5. System: this is a combination of components and

connectors. This also contains a description of the

overall structure along with information about the

hierarchy.

6. Properties: represent fields to store system infor-

mation, and also the information about various

elements of the system, such as components and

ports.

7. Representations: describe the lower-level de-

tails of an architecture element by means of sub-

architectures. Any element that needs to be de-

scribed in minute details, is described with the

help of a separate architecture description, which

in turn acts as a sub-system of the parent.

1. Component Type: defines a component’s exter-

nal attributes and its interface elements.

2. Component implementation: defines a compo-

nent’s internal structure.

3. Package: supports categorising AADL elements

into labelled groups.

4. Property Set.

5. Annex Library.

Elements 4 and 5 allow a developer to extend the

language based on specific requirements.

There are several ADLs available for architecture modelling purposes in the field of engi-

neering. Some are general purpose modelling languages and some are domain specific where

the language and tools are customised to work with specific domains only. In either case, the

focus is on the high level details as opposed to minute deployment specifics, so that the abstract

designs and descriptions can be created according to requirements.

More Analysis of ADLs family and their design goals can be found in Appendix B, Sec-

tion B.3.

40

2.3. SOFTWAREARCHITECTURE DESCRIPTION

Figure 2.7: AADL abstraction and key specification elements, after Feiler et al. [2006].

2.3.4 ACME in brief

This section introduced here as an example, to illustrate the advantages and disadvantages

of one of the ADLs. In order to support our further discussions within the next chapters.

The main aim ofACME proposed by Garlan et al. [1997] is to provide a flexible and inter-

changeable environment for architecture description. It allows the integration of several ADL

tools with different purposes under one roof in order to provide a platform for interchangeability.

Along with interchangeability, ACME also aims to fulfil the following goals:

1. To provide a platform for the development and visualisation of new architectural patterns,

using tools like ACME-Studio, which will also support architecture analysis.

2. To allow development of more domain specific ADLs.

3. To standardise ADL conventions and notations and to serve as a platform for standardisa-

tion.

4. To provide human readable descriptive expressions Shaw et al. [1996], andMavridou et al.

[2016].

ACME provides support for four architectural aspects:

1. Structures: to support the composition of a structure into its constituent parts or elements.

2. Properties of interest: to provide all the information about a system and its elements which

is needed to visualise the high level architecture of the system and to understand its be-

haviour in terms of functional and non-functional aspects.

3. Constraints: to provide information about the boundary conditions and also acts as an

41

CHAPTER 2. BACKGROUND

indicator of the way the system can evolve over time.

4. Types and styles: to provide types and styles definitions for the architecture descriptions.

2.3.4.1 ACME design trade-offs

As is the case of initial development for any language, conflicts between goals during the

development could exist. This is applicable to ACME too. For example, the first conflict is in

the design goals, where goals (one and four) mentioned in the previous section clashed with each

other. This conflict arose due to the fact that the aim of ACME was to provide a language that

is human-readable and easy to understand. At the same time, it should be in a machine readable

format. Tacking into account that , human usability is an important factor, making a language

user friendly can hamper machine automation capabilities. This is still far off in regard to the

current ACME specifications and technologies.

The second conflict is the need to keep the language as simple as possible while making

it rich and expressive to provide more flexibility. The simplicity and elegance was required

in order to ease the visualisation of an architecture for the intended audience. While the rich

and expressive features were aimed to support automation and standardisations, ACME has

compromised by taking a middle path wherein the expressions are rich and expressive only

when needed, otherwise keeping it as simple as possible, which is not a proper schema for full

automation or deep analysis.

Addition to the seven basic elements of ACME mentioned in Table 2.4, ACME also has

some language constructs that are detailed below:

1. Design element types: describe the structure and properties of design vocabulary items.

2. Property types: provide more information about various properties and their types.

3. Design invariants: describe boundaries which must be followed during design creation.

4. Design heuristics: provide ways for effective design creations.

5. Design analyses: computed functional values specified either in the ACME predicate lan-

guage or as external functions.

6. Architectural styles: made up by other constructs mentioned previously and summarise all

the aspects of the design required to create an appropriate architecture.

ACME is one of the good candidate languages for describing SA, which can serve as an

ADL by itself by providing a construct that contains information about the system architecture

along with information about its components, connectors, types, substructures, properties etc. It

can be treated as a representative of the ADL family which describe the architecture of a system

in terms of components and connectors. ACME’s architectural style, like the Pipe-Filter style, its

Roles and Ports together with the component relations are described in detail withinACME and

built-in within the ACME-tool. The properties in ACME are usually name-value pairs and the

entire structure is represented in textual format, which has many advantages over the common

C&C diagrams created by informal methods. However, in general ACME is easy to use and be

42

2.4. MODELDRIVENAPPROACHESANDARCHITECTURE

understood. It also can provide a lot of expressions and customised solutions in a constrained

manner, even though it’s lacking some of the flexibility and simplicity of general purpose ADLs.

However, the use ofACME is generally accompanied by the use of some supporting tools which

provide automation and graphical facilities. Another example (but not limited to) of a good

candidate language for describing SA is the AADL, which provides support for error analysis,

and its semantics possess well suited mechanisms that provide more reliable code generation

among other key features.

2.3.5 Conclusion

Section 2.3 explored the differences between formal, semi-formal, and informal methods

for describing architecture. Based on the studies conducted so far, formal and semi-formal meth-

ods are the descriptions that seem to be the best in order to describe and analyse architecture

of software systems, including styles and patterns. Also, it shows that semi-formal methods

have more advantages and less limitations than formal methods from most of all stakeholders

viewpoints. not just from developers viewpoint.

2.4 Model driven approaches and Architecture

The description of software architecture, notations, and styles is closely related to the con-

cept of model driven approaches, which all are an integral part of the software development

process. In this Section 2.4, modelling methods are explained.

There are several approaches towards SA development that utilise a model driven con-

cept. Model Driven Development (MDD)4, is an approach that deals with software complex-

ity by making software models primary artefacts of the software development process. While

Modelling Development Engineering (MDE) is an approach to software development that uses

models as primary artefacts, from which code, documentation and tests are derived, Rech et al.

[2009].

All the model driven development methods have certain similarities and certain unique

features. A summary of the main differences between modeling approaches is visualised in

Figure 2.8.

The basic idea behind the approach is to segregate the application specifications from the

underlying technical details. To explore each of these model driven approaches in details is

beyond the scope of this thesis. Hence, this section aims to explore and analyse the different

flavours of model driven approaches and the role of patterns and quality attributes with respect

to these model driven development methods, in the context of SA.

4MDD includes all software modelling techniques.

43

CHAPTER 2. BACKGROUND

Figure 2.8: Main differences between modelling approaches, after Cabot [2014].

2.4.1 Model driven software development

Over the years, several different approaches have been adopted by the software community

towards the design and development of software systems. Although each approach has its advan-

tages and disadvantages, concepts like abstraction and object orientation have always remained

in vogue. Recently, the focus has been on a new approach towards software development which

utilises models to create and support software development. This is known as Model Driven

Architecture (MDA), which manifests itself in several forms. The main advantage of MDA is

the high level of abstraction and platform independence achieved by the use of models, thereby

eliminating any tight coupling with specific programming languages.

The general common manifestation of this approach is Model Driven Software Develop-

ment (MDSD), which is implemented in different ways in several domains. MDSD is considered

to be a more accurate way of describing MDD and its use has increased dramatically in the last

few years, Stahl et al. [2006], Pons et al. [2012]. All the model driven approaches are bound

to concepts like Object Oriented Methods and UML. In almost every kind of model driven ap-

proach, initially a domain model is created which is then translated into a meta-model, then

converted into code generally by using some kind of generator, Rech et al. [2009]. The genera-

tion of models can be done with the help of a language like Executable UML (XT UML), which

44

2.4. MODELDRIVENAPPROACHESANDARCHITECTURE

focuses on semantics and helps people utilise existing knowledge repositories to create precise

systems. To identify the ways in which the various modelling approaches vary from each other

is beyond the scope of this thesis; however, several valuable research studies exist, see Rech

et al. [2009], and the MDA official website.

The most important common factor among these approaches is that all of them use stan-

dardised notations to create models, then to generate code from those models. Also, patterns

are actively used by all these approaches within the context of models and the corresponding

generators to aid in the process of development. For instance, X
T UML is very helpful in do-

main specific modelling. Within a software system, there are several domains and sub-domains

each performing a different function. For example, service domains are used for security and

networking, application domains provide the context to run the actual application, architecture

domains deal with the architectural decisions and so on. The abstraction of the domain is not

dependent on the underlying implementation details, and X
T UML can be used to create different

abstract models for each of these domains with the help of elements like class diagrams and

domain charts, Mellor et al. [2002]. According to Fowler [1997], under the X
T UML approach,

UML behaves like a normal compilable programming language.

Furthermore, in each of the model driven approaches, styles/patterns form an integral part

and are used extensively. Also, Domain Specific Modelling Languages DSLs are used for model

development.

As mentioned earlier, MDSD is an effective software development approach that speeds up

the software development process. It creates compact, precise, high quality models which vary

between semi-formal and formal, based on stakeholders needs. The created models have a direct

mapping with the code which is generated using them, and form an integral part of the software

system. The focus of the created models is to solve the domain related problems. Hence, the

choice of programming language is unimportant, thereby allowing higher levels of abstraction.

This holds well, not only for MDSD but also for other model driven approaches irrespective

of the domain, Stahl et al. [2006]. Some of the main advantages of the MDSD approach are

described in Table 2.5 and it can be seen that MDSD provides various advantages in terms of

cost, time and effort, irrespective of the domain and technology. However, identifying domain

and models types is a very important aspect of MDSD and will be explored further in the next

section.

Table 2.5: Advantages of MDSD

Aspects Economic Benefits

MDSD Adapting new business requirements is cheaper.

properties Adapting new technologies is cheaper.

The entire software lifecycle cost is reduced.

It’s advantageous in terms of cost, effort, time etc increases it’s business

value.

45

CHAPTER 2. BACKGROUND

Expert knowledge,

availability and

Focus is on domain knowledge as compared to technical knowledge, since

domain knowledge is more important from the functionality perspective.

usage Technical knowledge is integrated into MDSD platforms by experts so that

it can be used by developers during application development.

Due to the ready availability of technical knowledge, fewer experts are

needed for technology consultations.

Business knowledge is captured by models and technical knowledge is cap-

tured by platforms. Due to these integrations, knowledge repository is avail-

able during the entire project life cycle.

Software Development and implementation time is reduced.

development Newer technologies can be adopted through automation.

automation Due to automation, speed is increased and requirement for manual interven-

tion reduced.
Marketing time is less.

Creating high Overall quality is increased.

quality applications The non-functional QA related to infrastructure is clearly segregated from

functional code thereby making it easier to adopt new technologies.

Due to automation, the number of bugs is reduced and hence the mainte-

nance of systems is much easier, in terms of technology and architecture.

Maintenance and rework is reduced and hence client satisfaction is high.

Extensive decou-

pling of technologies

Since technology is captured by platforms and transformations, it is not

tightly bound to the application and hence changes to technology do not

reflect in application model changes.

Every time a new technology is adopted, it needs to be mapped to the plat-

form once, then it will be available for future use.

which will increase business value.

Use of formal

application models

Any changes or enhancements are captured via models thereby saving the

application and infrastructure from disturbances.

Since the software specifications and design are not dependent on the tech-

nology, the model is more robust and consistent irrespective of underlying

details.

There are several levels of model maturity that may apply during model development. Each

of these levels has a set of characteristics with respect to the specifications and approaches.

According to the model development level descriptions proposed by Rensink et al. [2006],

I have mapped those levels into the formality levels presented in Table 2.3, which help to visu-

alise and compare both characteristics, in order to help precisely set the target of the notations

formality and models maturity during architecture description, based on the business needs, as

illustrated in Table 2.6 .

Regarding software patterns, they are a means of solving software problems which occur

repeatedly in different scenarios. The solutions for such problems involve the creation of good

architecture and/or design descriptions by skilled and knowledgeable architects and designers.

When recurring problems can be solved with the help of these designs, they become known

as best practices which eventually evolve into established patterns. Patterns are most useful at

46

2.4. MODELDRIVENAPPROACHESANDARCHITECTURE

Table 2.6: Mapping (Rushby 1993b) formality levels into the model maturity levels by Rensink

et al. [2006].

Rensink and Warmer Maturity levels

Rushby’s

Formality

levels

Model Maturity Level 0: no specification.

Not

Applicable

(N/A)

Model Maturity Level 1: some text specification. (N/A)

Model Maturity Level 2: specification is text along with diagrams. 0

Model Maturity Level 3: specification is mainly diagrams with some text. 0

Model Maturity Level 4: specification characterised by precise and accurate models. 1

Model Maturity Level 5: complete modelled specification, only containing models. 2 & 3

higher abstract levels. They can be used in one single abstract layer (for example, architecture

patterns, or implementation patterns) or they can span across multiple abstract layers (for exam-

ple, patterns which involve a combination of architecture and design, such as Layer or Pipe-Filter

styles). The MDSD approach uses patterns extensively and the application of patterns can be

automated. Whenever newer elements are created, the existing elements are also modified in

such a way as to remain in-sync with the patterns used. For example, in an architecture using the

Pipe-Filter family, whenever a new element is created and attached to the family using ACME-

Studio (as the modelling tool), this new element conforms to the existing patterns which have

been used within the family. This pattern conformance feature is an advantage of this approach.

MDSD is a powerful modelling approach which has a variety of features and characteristics.

More information and brief summary of MDA advantages and disadvantages is illustrated

in two figures, in Appendix B and Section B.2.

2.4.1.1 Importance of domains in MDSD

Any system can be described by a combination of domains, and domain identification is a

crucial part of the MDSD approach. A domain refers to a particular knowledge spectrum with

boundaries. It is an independent unit made up of several relevant elements which also belong

to that particular area of knowledge. The entities or elements of a domain depend on the ex-

istence of other entities in the same domain, but are independent of the entities’ existence in

other (external) domains, unless it is linked to that other domain. However, any domain can

use the functionalities of other domains and can similarly provide its own functionalities for use

by other domains. Also, domains could be real or imaginary and each domain has a set of af-

fected behaviours associated with it,Mellor et al. [2002]. For example, the surveillance domain

(Radars) within Command, Control, and Communication (C3) systems provides functionalities

to the (Weapons) domain, like target information (speed, coordinates, etc.), through the logic

domain (C3) main processor.

The same situation applies in C4I systems, where, for example, Air Operations Centre

(AOC) as (a mission-planning domain) publishes its missions to database (another domain).

47

CHAPTER 2. BACKGROUND

This database is accessible by Air Tasking Order (ATO)/Airspace Control Order (ACO) (as

another domain) that encompasses thousands of sorties/ missions and a very large amount of

related information. The Operational Unit (as another domain) subscribes to ATOs. An ATO

can be edited so that the Unit views only those missions assigned to it.

Before embarking on an application development life cycle, it is important to identify and

segregate the domains that will make up the system as a whole. Generally, software systems

are made up of the application domain (e.g. an e-commerce site, such as Ebay), technology do-

main consisting of the technologies used in development (e.g. Java and J2ee), database domain

consisting of the database providers (e.g. SQL and Oracle) and any other middle layer domains

which may be relevant to the application, like message frameworks, user interfaces and business

processes, considering the fact that sometimes architecture is considered as a domain by itself.

While identifying the domains, it is necessary to define clear functional boundaries so that

each domain represents a specific purpose through the entities making up that domain. For

example, an e-commerce site (e.g. Ebay) represents an application residing in a domain and

made up of entities like orders, payments and rules. Similarly, a graphical user interface has

entities, such as windows and forms, with functionalities deciding the application behaviour

on actions like click and hover. Domain partitioning enables the segregation of application

from underlying implementation details thereby allowing creation of layered models. Once the

domains and sub-domains have been identified, they can be represented through models using

modelling techniques. It is useful to divide the domain into sub-domains, because smaller units

provide better control. A system can be divided into one or more sub-domains. Generally, sub-

domains fall under the following 2 categories:

1. Technical sub-domains – These are portions of a system which are identified based on a

technical aspect and need to bemodelled based on a specific language. These are contained

within the parent domain, (e.g. graphical user interfaces and persistence).

2. Partitions – Domains are often divided into several partitions to enable parallel function-

alities or load-balancing. For example, within an insurance domain several product types,

like Vehicle, Buildings and Life, can be defined. These partitions can further be decom-

posed into smaller parts, such as the Vehicle being decomposed into Motor Vehicle and

Marine Vehicle, Stahl et al. [2006].

Since domains are an integral part of MDSD executions, it is important and necessary to

identify the domains belonging to a system before attempting to model and formalise them.

Domain segregation is also important to identify the inputs for automation processes.

2.4.2 Introduction to MDA

Model Driven Development (MDD), proposed by the Object Management Group (OMG)

in 2002, is a fast evolving field Kleppe et al. [2003b], which provides a platform to develop

software applications. It provides assistance to the model driven software development process.

48

2.4. MODELDRIVENAPPROACHESANDARCHITECTURE

The basis for MDA is the creation of high-level abstract models. Generally, there is a slight am-

biguity in the programming community about the classification of MDSD and MDA concepts.

Some of this ambiguity originates from the fact that MDSD efforts without OMG are sometimes

referred to as MDA. In this context, Fowler’s description outlining the difference between the

two seems more accurate. According to Fowler [1997], MDA can be classified as a specific

version of MDSD5, which uses the standards of OMG.

2.4.2.1 MDA Framework

There are several major participants, as mentioned below, which together make up theMDA

framework:

1. Models – These are further divided into Platform-independent model (PIM), and Platform-

specific model (PSM).

2. Languages – These include the languages in which models are created, the transformation

definition languages and the meta-languages.

3. Transformations – This also includes tools with which to perform transformations.

Figure 2.9 illustrates a basic diagrammatic representation of the MDA concepts and Fig-

ure 2.10 highlights the differences between basic, extended, and complete frameworks of MDA.

Domain-Ralated
Specification

CORBA
Model J2EE Model XML Model

CORBA/C++
Code

J2EE/JAVA
Code

XML Code

PIM

Model-to-Model
Transformation

PSM

Model-to
Code Trans-
formation

Implementation

Figure 2.9: Basic concepts of MDA, Stahl et al. [2006].

Models are the most important aspects of the MDA. The basic elements and features of

models in this approach are:

5In this thesis, all software modelling methods discussed are laying under the umbrella of the MDSD.

49

CHAPTER 2. BACKGROUND

Metalanguage
Metalanguage + Basic

Elements Form
Extended MDA

Transformation
definition language

Exntends

Transformation definition
language + Extended MDA

Elements Form
Complete MDA

Basic MDA elements

Transformation
definition

Language 1 Language 2

PIM PSM
Transformation Tool

Is used byIs written in Is written in

Is written in Is written in

Figure 2.10: The basic, extended, and complete MDA framework, Kleppe et al. [2003a].

1. Models are used to represent the system of interest and can be of two types:

• Models that are independent from the platform in which the system is going to be

implemented, known as Platform-independent model (PIM)s.

• Models which are aimed at specific platforms and will not work with other platforms,

known as Platform-specific model (PSM)s. The PIMs are usually created using mod-

elling languages like UML/SysML. PSMs can be created in different languages de-

pending upon the needs specified, as illustrated in Figure 2.9.

2. Amodel is described using a well-defined language. Models in one language can be con-

verted into models in another language using transformation definitions.

3. Transformations from onemodel to another are done using transformation languageswhich

are well-formed languages working with a set of transformation tools. The tools read the

instructions, written in a transformation language, as definitions and execute them at the

Meta-level.

4. The transformation definition languages and the modelling languages either use or extend

meta-languages. Meta-model languages and Transformation languages are important parts

of MDA, Kleppe et al. [2003a].

It is seen that the aim of MDA is to separate the platform details from the business logic.

This essentiallymeans that business logic, design and specifications should be platform-independent

and should behave in the same manner irrespective of the underlying technologies. This ensures

that changes in technology do not hamper the application behaviour and also that the business

knowledge is not bound to the technical details, and remains common across platforms. All this

50

2.4. MODELDRIVENAPPROACHESANDARCHITECTURE

ultimately means adhering to the separation of concern concept, and that models comprise the

core of the system and different platform-specific codes can be generated as long as the models

are available.

In the Model Driven Architecture approach, developers usually concern themselves with

the development of platform independent models. These models are then converted to platform

specific models using tools, which are able to understand the definitions. These operations are

performed in stages sequentially. After creation of the PSMs, they are further transformed into

code. The entire process can be defined in one line as illustrated in Figure 2.11.

PIM Transformation PSM Transformation CODE

Figure 2.11: MDA basic process.

These factors indicate that the life cycle of MDA follows traditional life cycles, like wa-

terfall, wherein the steps are carried out sequentially and each step in the sequence produces an

output which can be used as input for the next stage. The output models are usually machine-

understandable just like traditional models except for the fact that the conversion from onemodel

to another is done with the help of tools as opposed to the traditional manual processes. Seman-

tically, all these models are well-defined using modelling languages with the aid of software

patterns and styles. The majority of these models are bound with Object Oriented (OO) con-

cepts and methods. The association of OO methods with MDA concepts is explored in the next

section.

2.4.3 Object Oriented (OO)-method

The Object Oriented approach is well-established in the field of software development. The

OO-method in the context of model driven architecture and development process is based on the

idea of creating models that satisfy the OO-concept, which represents the business requirements

accurately in order to obtain a high quality product. The main schema of OO-methodology with

respect to model driven approach are as follows:

1. The modelling principles have to satisfy Object Oriented concepts and have to be defined

in an accurate manner.

2. The traditional OO concept can be integrated with the formal and latest modelling concepts

to create a high quality framework.

3. All the architectural layers and views represented by the models have to be represented

accurately in the finished product and this can be done by maximising automation of code

with the help of code generators. The layers may include static and dynamic aspects as

well as the front-end.

The OO-concept merged with model-driven development well. Martin et al. [1994]. Its

concept of agility is often used in the Agile methodology with its integrated platform, Qumer et

51

CHAPTER 2. BACKGROUND

al. [2008]. This ensures rapid development to create user-friendly code satisfying current market

needs. The two main phases of OO-based model driven development are: a) Conceptual mod-

elling representing the problem; and b) Code Generation representing the solution. Figure 2.12

shows the OO-Method concept.

Model Creation Mapping Transformation

Requirements Conceptual
Schema

Application
Model

XXXXXXXXApplication
Code

Figure 2.12: OO – method concept schema, Pastor et al. [2007].

The following models are created by using the OO-method for MDSD, including some

examples from my experience with C3 systems:

1. Object Model – This represents the structure of objects and instances known as classes be-

longing to the domain under consideration. This also represents the relationships between

different objects and their service activators. For example, in C3 system, targets and con-

soles are object classes which can interact with each other. Whereas, a specific target with

ID, is considered as an instance.

2. Dynamic Model – This represents the behaviour of the objects identified and the order in

which interactions and events occur within the system. For example, a target is followed

by identity creation.

3. Functional Model – This deals with the changes occurring in the system when the state

of an object changes due to some action. For example, an enemy target disappears when

destroyed.

4. Presentation Model – This deals with the concepts related to the presentation of the system

in terms of views and user interfaces. The views are responsible for the way the user

interface behaves and also for capturing the user interactions. For example, in a C3 system,

the airspace tactical maps is a view belonging to the presentation layer.

2.4.3.1 Key aspects of OO-method with respect to SA, SPs, and QAs

The main features of Object Oriented methods with respect to SPs and QAs are described

below:

1. Any approach following the OO-method must ensure that all the information related to

architectural and structural SPs present in the system must be captured and recorded accu-

rately so that the correct components can be created using modelling methods. Also, the

approach should capture the patterns in behaviour in order to enable the creation of proper

expressive models. Therefore, these patterns act as the inputs for the creation of models.

2. After capturing the architectural information in the system, the architecture has to be doc-

52

2.4. MODELDRIVENAPPROACHESANDARCHITECTURE

umented in a precise order and the important patterns must be marked.

3. The use of OOMethod for a specific SP that is related to a specific QA, will have an affect

on the overall system’s qualities, as explained in Chapter 3.

According to Pastor et al. [2007], patterns in the architecture are an important part of the

product creation. These patterns must be studied and used well so that a high quality product is

obtained. However, there are some problems associated with this approach.

1. First and foremost, there is a shortage of empirical data that supports the relationship be-

tween architecture/design Patterns and QAs. Hence, obtaining measurable quality using

these patterns is still a difficult task; although there is plenty of research that has been done

in this area, such as the analysis of architecture styles workshop conducted by Kim et al.

[2006], Bass et al. [2013], Mistrı́k et al. [2014].

2. Second, the quality and efficiency of the patterns are dependent on the environment and

quality measurements. What may work well in one environment may not hold good for

others. This leads to inconsistent results.

3. Third, sometimes patterns interact with each other through interfaces and it is not clear

if the quality attributes of a particular pattern will apply to that pattern alone or be valid

across interacting patterns as the implementation details may vary for each pattern.

2.4.3.2 Mapping OO-Processes to MDA-Processes

From the previous sections, it can be seen that OO-development phases are most similar

to MDA-development phases, in order to produce high quality softwares with the help of trans-

formation mechanisms and generators. This section will explore the relationship between the

OO-method and MDA in order to examine the similarities between them and also the extent to

which patterns are applied within their models.

The OO driven modelling approach is made up of 2 phases:

1. Conceptual Modelling – This involves the identification and creation of platform indepen-

dent models known as PIMs in MDA approach.

2. Code Generation – This involves the generation of code from the models using transfor-

mation techniques, which includes two steps as follows:

• Initially, the PIMs are converted into platform specific models or PSMs.

• then the PSMs are converted into source code for the application. The transformations

define the mapping between PIM to PSM and PSM to code.

OO-method phases can be directly mapped to MDA stages, Pastor et al. [2007], as shown

by Table 2.7.

53

CHAPTER 2. BACKGROUND

Table 2.7: Analogies between MDA and the OO-method.

MDA OO-Method

Platform-independent model (PIM) Conceptual Model

Platform-specific model (PSM) Application Model

Implementation Model (IM) Application Code

PIM-to-PSM transformation Mappings

PSM-to-IM transformation Transformations

2.4.3.3 Extra features of OO-methods missing from MDA

There are certain features in the OO-methodology that cannot be directly mapped to MDA.

According to the Kleppe et al. [2003b], PIMs may often contain all the information necessary to

generate the application code, thereby eliminating the need for any extra information. Whereas,

the OO-method is more definite due to the fact that the Object-Oriented Administrative Systems-

development in Incremental Steps (OASIS) specification language provides a very precise plat-

formwhichmeans that the OO-models contain complete information needed for code generation

each and every time as opposed to sometimes.

Another difference between the two approaches is that in the case of MDA, whenever the

PIM contains all the necessary information, the PSMbecomes obsolete and is no longer required.

In such cases, the code can be generated directly from the PIM, Pastor et al. [2007]. On the

other hand, in the case of OO-method modelling, it is necessary to define an application model

which is platform specific and this cannot be bypassed even though it is not mandatory for the

applicationmodel to be revealed. This difference goes to prove that theMDAPIMs contain some

level of platform details required for code generation which means that they are not platform

independent. Whereas, conceptualmodels generated by theOO-method are completely platform

independent. This implies that the OO-method models can be run on any platform accurately.

Overall, this means that the models generated using the OO-method are complete entities

by themselves which contain all the computational information necessary for code generation

and it is possible to create complete systems with these models without the need for any other

predefined elements, such as libraries and controls, Pastor et al. [2007].

2.4.4 eXecutable and Translatable UML (XT UML) as an example of model

automation approach

eXecutable and Translatable UML (XT UML) is one of the main contributors towards MDA

and helps in generating models which meet the system architectural specifications, Figure 2.13

illustrates the X
T UML concept.

Executable UMLs can be considered as extensions or supplements to the traditional way

for defining system specifications in terms of its interfaces and constraints. The traditional

definitions containing these elements use the Interface Description Languages (IDL), and the

PIMs generated by X
T UML can be mapped to these definitions easily. From X

T UML’s point

54

2.4. MODELDRIVENAPPROACHESANDARCHITECTURE

xtUML Domain
Models

Marking Model

Bridging

Simple modelling language:

• UML profile

• Well-defined semantics

• Executable

Allows early testing and 100%
impl. generation.

Clear separation of Concerns
within requirements model

Allows domain models to be au-
tonomous and highly reusable

Describes how each domain is
to be woven together to specify
a particular system

Model
Compiler

Implementation
Artefacts

Direct translation to code
No need for PSM

Each application ’apsect’
is modelled and verified
autonomously

Figure 2.13: The X
T UML concept, Flint [2008].

of view, the platform specific models are not mandatory, unlike PIM, and can be discarded as

X
T UML considers PSM to be just an intermediate layer between PIM and code, Mellor et al.

[2002].

Executable UML focuses on domain-specific modelling that creates models, based on the

domains. The domains are generally identified based on the requirements wherein the require-

ments are broken down into several use cases and each use case is put under a specific category

representing a particular subject area. All the use cases belonging to a particular category to-

gether form a domain. Domains and their use cases are mutually dependent on each other.

Domain experts may have to go back and forth to arrive at exact specifications related to the

two. Once the domains and use cases are identified, XT UML can be used to create high level

abstract models of the domains, and the domains combined together form the big picture of the

system architecture.

Irrespective of the differences between the various modelling approaches, such as (MDA

and OO-methods), patterns are used uniformly within the models and transformation engines;

hence, patterns play an extremely important role in all approaches. As a result, modelling meth-

ods benefits and drawbacks will be reflecting in the overall architecture.

2.4.5 Key aspects of MDSD approaches with respect to SA, SPs, and QAs

Model Driven Software Development (MDSD) does not have a clear-cut relationship with

SA. However, there are certain relationships between the two, which are described further in

this section.

55

CHAPTER 2. BACKGROUND

2.4.5.1 Models and transformations

There are two possible transformations that can be identified with respect to model driven

approaches. They are known asHorizontal Transformation and Vertical Transformation Punter

et al. [2008], which are illustrated in Figure 2.14.

Horizontal Transformation

V
er

tic
al

Tr
an

sf
or

m
at

io
n

Abstract Model(n)Abstract Abstract Model(n+1)

Concrete Model(n) Concrete Model(n+1)

Implementation Model(n)Implementation Implementation Model(n+1)

Figure 2.14: Horizontal and vertical transformations of models, Rech et al. [2009].

The identification of transformation depends on the direction in which it is happening. If it

is happening from a higher-level to a lower-level (or vice versa), it is known as Vertical trans-

formation; for example, transformation from PIM to PSM or PSM to Code. Even reverse engi-

neering code to obtain the high level models is considered as vertical transformation. Contrary

to this,Horizontal transformation occurs when the transformation happens at the same level. In

the case of horizontal transformations, the transforming is usually between models at the same

level; i.e. between two abstract models of the same hierarchical level. Typical examples of this

include code refactoring and code refinement, where one model is transformed into another at

the same level based on the business needs.

Irrespective of the type of transformation, there are a few quality parameters present across

all of them. Table 2.8 summarises some of theMDSD factors that have an effect on different

QAs, from the point of view of three types of transformation techniques, Rech et al. [2009]:

1. Horizontal transformation approach – proposed by Röttger et al. [2004], uses partial au-

tomation techniques (to transform context models) to provide good response times in mod-

els by refining them.

2. Horizontal approach – proposed by Merilinna et al. [2004], uses complete automation

techniques (to transform architectural models), in order to provide better performance and

reliability in models by refactoring them. This approach is good to use during the evalu-

ation of architectural facts.

56

2.4. MODELDRIVENAPPROACHESANDARCHITECTURE

3. Vertical approach – proposed by Kurtev [2005], uses complete automation (e.g. for UML

models) to provide better adaptable models by synthesising them.

57

C
H
A
P
T
E
R
2
.
B
A
C
K
G
R
O
U
N
D

Table 2.8: MDSD approaches, Transformations Methods, and QAs – Comparison.

Input Quality

Proposal Purpose Type of artefact attributes Automation

Zou et al. [2003] Reverse engi-

neering (mi-

gration)

Vertical (CM-

to-PIM)

Program Code Coupling and co-

hesion

No

Röttger et al. [2004] Refinement Horizontal Context models Response time Partial

Merilinna [2005] Refactoring Horizontal

(PIM-to-PIM)

Architectural mod-

els

Performance,

availability,

reliability

Yes

Kurtev [2005] Synthesis Vertical (PIM-

to-PIM)

UML class models Adaptability Yes (Mistral)

Markovic et al. [2005] Refactoring Horizontal

(PIM-to-PIM)

UML class models Syntactical

correctness

No

Sottet et al. [2006] – – Interface models Compatibility,

error protection,

homogeneity-

consistency

No

Ivkovic et al. [2006] Refactoring Horizontal

(PIM-to-PIM)

Architectural mod-

els expressed in

UML

Maintenance,

performance and

security

No

Kerhervé et al. [2006] Synthesis, re-

finement

Horizontal and

Vertical

Information models Response time,

network de-

lay, network

bandwidth

No

5
8

2.4. MODELDRIVENAPPROACHESANDARCHITECTURE

Patterns and Transformation:

Each of the techniques mentioned in Table 2.8 takes an input model and converts it into an

output model, except for the first approach by Zou et al. [2003], which reverses the code to get

models. The transformation process is accomplished with the help of supporting transformation

tools and techniques.

Some of the tools and engines used for this purpose make use of certain patterns and styles

to achieve the transformation. Figure 2.15 illustrates the relationships between models - models,

and models - real world elements (domains), while Figure 2.16 illustrates the implementation

of the observer pattern (as an example), which shows the transformation from one model to

another, along with the dependency between GUIs and entities.!
!
!

!
!
!

!
!
!
!"#$%&'(')&*+,"-./0"1'2&,3&&.'4-5&*/'+.5'%&+*'3-%*5''
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

"#$%&'!()*%+!,#-+.!*+*$*'/01!

2#.*+!(2#.*+!*+*$*'/01!

2*/%!2#.*+!(2*/%!2#.*+!
3+*$*'/01!

4%-5*/!(6-/7%8/09!*:5!;#.*1!

"*08-&<*0!

"*08-&<*0! 4-%'07#-%/&#$!

!"#$%&'(#)*+,#
-.*/01%.)*-2%/#(2.,$-#
1.%)#3%(,'0#42-5%&-#
/,,(#%1#),-*)%(,'#21#4,#
5*6,#*''#/,$,00*.7#
2/1%.)*-2%/#%/#-5,#
)%(,'0#

Figure 2.15: Relationship between models and real world.

Sometimes, the output models may have properties which are different from the input mod-

els. In those cases, patterns may be used to create the output models with precision and desired

quality. For example, while converting general domain models (e.g. architectural models) to

specific models (e.g. quality model), the reusability metrics must be maintained, as discussed by

Becker [2008] and Moreno et al. [2008] performance model in Section 2.5.3.6. Also the struc-

tures in the models corresponding to the solution structure provided by a particular pattern are

created using transformations. There are several aspects or forces which affect the applicability

of a pattern, such as its qualities, Schumacher et al. [2006]. Also, there are several variations

of each pattern which can be used according to the needs, as each variation often comes with

some advantages and drawbacks. The user of the pattern has to study these and take the design

decisions accordingly, Stahl et al. [2006].

Utilising MDSD approaches makes it easy to use patterns in some situations by providing

code generation features with the help of models. For example, to create manually the depen-

dencies and event registrations along with notifications for the observer pattern in the code is a

difficult job. It is much easier to create models which represent these aspects and generate the

code from those models. It may be necessary occasionally to customise or extend the pattern

59

CHAPTER 2. BACKGROUND

GU

Domain Metamodel
Report

View
Entity

(Open)
«o

bs
er

ve
s»

«interface»
EntityObserver
entityChanged()

Target MetaModel

GUIBase
entityChanged()

Report
Base

View
Base

Dialog
Base

Entity Implementation Base
addObserver(observer o)
removeObserver(observer o)
Update();

Figure 2.16: Domain Meta-Model-To-Target Meta-Model Transformation (for the Observer

Pattern and the dependencies between GUI and Entities are clear in both models), Stahl et

al. [2006].

based models to enable code generation.

While using patterns in the model driven environment, it is important to segregate the ap-

plication and transformation models since the pattern usage is different for each. The decisions

regarding the patterns in transformations must be made by the developer who creates the trans-

formations, and the application developer needs to make decisions about the implementation

details of those patterns. Pattern description and documentation issues are discussed in Chap-

ters 3 and 4.

2.4.5.2 Pattern Languages with respect to SA (in brief)

Pattern languages are generally groups of patterns intended to solve a particular problem

which might be complex and too minute to be solved by normal means Greenfield et al. [2004].

Some examples of pattern languages are Enterprise Application Architecture Patterns, Fowler

et al. [2003], Security Patterns, Schumacher et al. [2006] and Remoting patterns, Greenfield

et al. [2004].

These groups of patterns shall usually be well-defined and sequential. Each pattern is de-

pendent upon the preceding pattern and hence the dependencies also should be well-defined.

However, these patterns are indicative of the system’s behaviour. They are designed to solve

common problems within the system. Hence, it is a good approach to describing, combining,

and classifying SPs. On the other hand, the Gang of Four (GoF) and Pattern-Oriented Software

60

2.4. MODELDRIVENAPPROACHESANDARCHITECTURE

Architectures (POSA) patterns are more generic and it is possible to use any pattern independent

of the others.

However, according to Alexander et al. [1977]: “No pattern is an isolated entity. Each

pattern can exist … only to the extent that it is supported by other patterns. So, patterns are

not individual independent entities and any pattern can exist only when it receives support from

other patterns.” Patterns can form much of any architecture, that’s why it is important to this

research objective, as can be seen from the analysis of the RCS-reference model in Chapter 6.

The use of UML macro definitions is to create models that are sometimes defined as pat-

terns by certain tools and modelling approaches. However, many dispute this because a pattern

is considered to be much more complex, Greenfield et al. [2004]. At the same time, it is agreed

that building groups of patterns which address some generic problem makes their usage and in-

tegration much easier with systems. For example, the Enterprise Data Model built by Silverston

et al. [2009] using patterns, aims to solve the problems related to the enterprise architecture and

database domains.

The strengths and weaknesses of these kinds of approaches are described below:

1. Strengths – They provide a good balance between creation of general patterns to solve

specific needs. They are consistent and easy to integrate.

2. Weaknesses – It is difficult to arrive at a commonmodelling style as there are several levels

and layers of patterns involved. Also, it is difficult to understand the rules regarding pattern

usage, because several models with multiple levels of details are combined together.

Despite the weaknesses of some of these approaches, the idea of pattern languages is still

useful when it comes to modelling and automation. According to Schmidt et al. [2000] and

Greenfield et al. [2004], the main features that should be present in a pattern language are:

1. The language should provide patterns which deal with all aspects of software development,

such as architecture specification, architecture refining and system implementation.

2. The patterns should be created according to some common schema so that all the patterns

in the family are consistent with each other and can be searched and compared easily.

3. All the relationships between a family of patterns, such as dependencies, associations,

extensions and containment, should be well-defined and known.

4. The structure should be easy to navigate and to provide alternate options.

5. Implementation guidelines should be well-defined and documented so that the patterns can

be easily implemented within applications.

6. The patterns should expose information about their structure, rules, etc., so that they can

be modified easily if needed.

Pattern languages are useful for the creation of meta-model elements, which are needed

in the creation of Domain Specific Language (DSL). For example, in the case of a Remoting

pattern implementation in order to generate remoting infrastructure elements, pattern languages

61

CHAPTER 2. BACKGROUND

are useful to identify the elements that need to be represented by DSL. Some of these elements

are interfaces, invoker, request handlers for client and server, pooling, leasing elements for Life-

Cycles, and communication elements, such as callbacks and poll objects. For all these elements,

the pattern languages can be useful in identifying the configurable factors for each. Other in-

formation concerning the elements, such as their structure and their relationships, can also be

encompassed in a meta-model using DSL.

All this proves the usefulness of patterns with respect to the model driven approach. How-

ever, according to Lange et al. [2005] and Rech et al. [2009], quality concerns related to indi-

vidual patterns and merging of patterns, interfacing between patterns, etc., still remain unclear.

Chapters 3 and 4 of this thesis will explore some of these concerns.

• Pattern Family is a subset of Pattern Language:

According to Alexander [1979], patterns in problems often lead to the discovery of solu-

tion patterns. Also, pattern families help in finding reusable generic solutions to several domain

related problems irrespective of the field and sub-domains Greenfield et al. [2004]. Aa an ex-

ample, the Remoting Patterns Völter et al. [2004] and the Security patterns Schumacher et al.

[2006] are patterns that combine to work together inside the same domain, whereas in case of

the Garland family of patterns (described by Shaw et al. [1996]) every family is considered as a

single pattern with several components such as the case in the Client-Server family. Each family

is made up of three elements: Property types, Constraints, and Structures.

According to Schmidt et al. [2000] (POSA-V2), many of the popular patterns are merely

used for the creation of frameworks and hence those frameworks can be considered as concrete

implementations of the abstract patterns. In fact, most of the efficient frameworks are made

up of several pattern implementations, Greenfield et al. [2004]. Similar to the pattern families,

the modelling languages can also be combined together to form a blueprint for domain specific

software development. Due to these features, modelling languages are considered to be more

efficient and feature-rich as compared to normal programming languages. With this in mind,

it might be a good idea to consider the generation of frameworks as pattern families. A group

of patterns working together to achieve a common goal can be implemented together to cre-

ate a framework with automation techniques. For example, distributed applications often use

web services and web methods. Patterns can be used to implement these requirements and a

combined framework may be generated to be utilised by the distributed applications on various

platforms.

Studies have also shown that as the level of abstraction increases, the contribution towards

solving a problem decreases Greenfield et al. [2004]. However, the decrease in patterns utili-

sation to solve problems, is affected by other factors other than abstraction levels, as described

in Chapter 4. Keeping this in mind during pattern creation and implementation, the scope of

the problem needs to be kept narrow in order to increase the applicability of the patterns. Most

of the earlier patterns mentioned in the GoF Book, and POSA-V1 are quite broad and generic

62

2.4. MODELDRIVENAPPROACHESANDARCHITECTURE

in nature ,while most of the newer patterns are more specific to a particular problem domain.

For example, security patterns deal with the problems associated with the security domain. The

patterns defined by POSA-V2 have been categorised as pattern languages and pattern systems,

as explained in Chapter 3. However, the informal details provided for these patterns, and several

other patterns as well, are not sufficient for quality measurements or for automations. Measure-

ment of quality is a notable concern in most cases.

• Weaving patterns into languages:

The references available about patterns are not sufficient to explain how to use patterns or to

create solutions for problems, Greenfield et al. [2004]. Also, patterns are extremely important

to create models and to address quality related issues. The Kim et al. [2006] workshop tried

to address some of these issues with the help of the Alloy tool. This workshop also tried to

address mapping specifications between architectures and models, while maintaining properties

like consistency, reliability, and style compliance.

The patterns development trend in the last two decades is focusing more towards the de-

velopment of pattern families and languages as opposed to individual patterns, Schmidt et al.

[2000], Schumacher et al. [2006],Manolescu et al. [2006] , Zimmermann et al. [2008], Schmidt

et al. [2013]. Combining several patterns into one language is known as weaving patterns into

languages. It has also been predicted that pattern languages are the way forward for solving

domain specific concerns and coarse problems, Greenfield et al. [2004].

Apattern language could be considered as a way to define modelling languages. Most of the

formal languages are made up of several patterns which are already in use by other languages.

For example, languages like C# and Java are made up of properties, events, delegates, etc. The

definitions of these patterns can be used by the compiler to generate implementation details. The

main difference between the pattern language and modelling language is that the implementa-

tions details are exposed in the case of pattern languages whereas they are encapsulated partially

or completely in the case of modelling languages.

2.4.6 Conclusion

In the context of SoftwareArchitecture (SA), this section exploredmodel driven approaches

and their different flavours. It also explored the importance of patterns with respect to the model

driven approach in terms of domainmodels and transformationmodels. The grouping of patterns

into families and languages was also discussed along with their relationship with the modelling

methods. To conclude this section, it has been found that the MDSD and SPs are important

technologies that could help in improving the field of SA description and evaluation.

63

CHAPTER 2. BACKGROUND

2.5 Evaluating Software Architecture

Anumber of studies have critically analysed software architecture evaluation methods that

proposed several feature-based criteria in order to assess and compare these methods, and to

evaluate different characteristics of Software Architecture (SA), such as Abowd et al. [1997],

Dobrica et al. [2002b], Clements et al. [2002a], Obbink et al. [2002], Babar et al. [2004],

Kazman et al. [2005], Mårtensson [2006], Qin et al. [2008], and Athar et al. [2016]. In ad-

dition, others have also made an effort to report architecture evaluation’s best practices, such as

Best Practice.

In this section, the architecture evaluation in general will be discussed, followed by analysis

of some specific evaluation techniques in regard to their assessment of Software Architecture

(SA) models, as well as the complexity and tradeoff between different quality attributes. Also,

analysis of some related works that tackle the relationships between patterns and quality at-

tributes will be discussed. It will be then concluded by explaining QAs within the context of

SA.

2.5.1 Evaluating software architecture in general

Software architecture evaluation has been recently emerging as an important area of re-

search and practice resulting in the active development of methods, techniques and tools by

researchers and practitioners, Overhage et al. [2007]. System architecture is also considered as

a centre of development process, which has a big impact on other development phases. This is

why architects are generally suited to be the leaders of almost every development team and why

architecture is one of the top careers in the system development arena.

Two basic classes of evaluation methodologies were defined for architecture evaluation

about twenty years ago namely measuring and questioning, Abowd et al. [1997]. Measuring

employs quantitative metrics by defining precisely the numerical scale to the targets. There-

fore, only those attributes that are easily mapped to quantitative metrics, e.g. response time, can

serve as inputs for this kind of technique throughout the link in the network. Metrics, simulation,

prototype, and specific experience are required to perform this type of evaluation. The second

methodology, Questioning, which provides questions to check qualitative attributes which ex-

pands its suitability to almost any given quality attribute. This class includes scenarios, question-

naires, and checklists. Questioning techniques are primarily used for most current architecture

evaluation and are commonly supplemented by Measuring.

Throughout the architecture, design, implementation, and deployment phases, one should

always consider the achievement of QAs. It is a matter of getting the big picture (architecture),

and the details (implementation) correct to obtain satisfactory results.

Some of the techniques that have been used to evaluate SA are briefly explained in the next

section.

64

2.5. EVALUATING SOFTWAREARCHITECTURE

2.5.2 Comparisons between current common architecture evaluation ap-

proaches

Many different approaches and methods have been introduced to evaluate the SA in the

software community.

In order to understand some of these specific methods, the basic knowledge of the software

evaluation methods must be understood. In this section, a brief explanation and comparison

among some of those approaches will be discussed. Figure 2.17, illustrates the broad evaluation

domains. Most, if not all, existing evaluation methods and techniques fall under one of these

domains.

Questionaires
& Checklist

Measuring Scenario
Based

Hybrid
Techniques

Software
evaluation
Methods

Figure 2.17: Evaluation techniques.

• Questionnaires and Checklists:

A questionnaire, which applies to all architectures, is a list of wide-ranging, reasonably

open questions.

A checklist, is a detailed set of questions developed after much experience in assessing

a common set of systems, frequently domain-specific. Checklists tend to be much more

focused on particular functions or quality attributes of the system.

Questioning techniques are the broadest category of review techniques. Unlike measur-

ing techniques which actually require the existence of some artefact to measure, such as

the architectural models in this case, Questioning techniques include questionnaires and

checklists which are all used to elicit a discussion about the architecture and to better un-

derstand the fitness of the architecture based on its given requirements. Also, they may be

used to investigate any area of development phases-(virtually any state of readiness).

65

CHAPTER 2. BACKGROUND

• Scenarios and scenario-based methods:

A scenario is a short description of an interaction with the system from the point of view

of one of its stakeholders. Scenarios are usually specific to the system whose architecture

is being evaluated. An example of a scenario-based evaluation technique is the Survivable

Network Analysis (SNA) method developed by the SEI Coordination Centre. Permission

of survivability properties’methodical assessment of proposed systems, existing systems,

and modifications to existing systems is SNA’s main objective.

• Measuring techniques:

Unlike questioning techniques, Measuring techniques are used to answer specific ques-

tions about specific quality attributes. They require the presence of an architecture, a de-

sign, or implementation artefacts.

A review based on measuring techniques needs to focus not only on the results of the

measurement, but also on the assumptions under which the measurement was deemed

useful. For example, assumptions about resource utilisation patterns are made based on a

calculation of performance characteristics, Clements et al. [2002a].

• Hybrid techniques: Methods that are combined elements from two or more evaluation

methods, unlike those previously discussed, which fall clearly into one of the three camps.

Hybrid techniques may be combined Questionnaires and Checklists, Scenarios, and Mea-

suring metrics, Qin et al. [2008]. An example of such a hybrid method is Software Perfor-

mance Engineering (SPE).

In the next two sections, we briefly discuss the scenario-based methods and measuring

techniques, due to its importance to this thesis objectives and approach. Whereas, other methods

are the most known methods to the readers, and they were explained sufficiently within this

section.

2.5.2.1 Scenario-based evaluation methods

Architecture evaluation methods are used to assess SA, where the specified quality attribute

should be collected during both requirement gathering and evaluation phases, which then is

represented by an initial or a series of architecture description candidates. Since quality attributes

have different characteristics, defining the measurement of these attributes is essential before

evaluating. This ensures that the attribute can characterise the capability of software in meeting

the requirements.

The scenario-based method is the most notable of all architecture evaluation methods. It

uses scenarios or hypothesised sets of the system’s uses or modificationsDobrica et al. [2002a].

A scenario covers a wide range of possible behaviours that may be done to the final system. In

the context of architecture evaluation, scenarios are used to represent a concrete quality attribute.

Some of the most popular evaluation scenario methods are discussed with critique as follows.

66

2.5. EVALUATING SOFTWAREARCHITECTURE

2.5.2.1.1 Software Architecture Analysis Method (SAAM) was created in 1993 and pub-

lished in 1994. It is the first well-documented and carefully designed analysis method for archi-

tecture analysis Kazman et al. [1994]. During the early 1990s, when software architecture was

still not widely accepted, it was already a remarkable effort, Qin et al. [2008]. Improvements

were made later by getting more detailed descriptions and the financial managements system’s

study cases by (Kazman - 1996), which have been cited by Bass et al. [1998]). SAAM is a sim-

ple, easy to learn and carry-out method that requires minimal amount of training and preparation.

1. Develop Scenarios 2. Describe Architecture(s)Iterate

3. Classify/Prioritize Scenarios

4. Individually Evaluate Indi-
rect Scenarios

5. Assess Scenario Interaction

6. create Overall Evaluation

Figure 2.18: Activities in SAAM evaluation method, after Clements et al. [2002a].

SAAM is intuitive and simple; intuitive because it uses scenarios instead of quality attribute

description to measure a software’s quality; and simple because it only considers the relation-

ship between a scenario and architecture structure. Some evaluation methods, such as ATAM,

were introduced after SAAM due to its control over many common quality attributes. SAAM

also prepares a platform for stakeholders where they can discuss their ideas and concerns about

the system’s blueprint and to resolve the understanding of deviations and incorrect architectures

and/or designs. The general phases of evaluation, achievements for each phase, and the rela-

tionship between them comprise SAAM’s steps. The primary steps are shown in Figure 2.18.

SAAM however has one pitfall since it does not provide a clear quality metric for the archi-

tectural characteristics or attributes that are being analysed. Also, SAAM does not involve the

use of tools, because there are no tools to support theSAAM evaluation method until recently.

There are a few tools such as the Morale tool with limited support for SAAM, Zayaraz [2010].

2.5.2.1.2 Architecture Tradeoff Analysis Method (ATAM) is considered as SAAM’s ad-

vanced version. Aside from SAAM’s capabilities, ATAM also helps to better understand the

trade-off to multiple relatives and even inconsistencies of quality requirements or targets. While

67

CHAPTER 2. BACKGROUND

most experts were trying to enhance SAAM, its investors took notice of the relationship between

targets reflected by scenarios and their effects on system construction.

Presentation

Reporting Analysis

Testing

Figure 2.19: The four phases of ATAM.

ATAM is built upon three areas: architectural styles; quality attribute analysis, and, SAAM,

Qin et al. [2008]. It could be regarded as a hybrid technique because it uses questioning, scenar-

ios, and measuring techniques. Questioning is based on architectural styles, quality attributes,

and pre-existing questions. Scenario, is due to its main use of general and specific scenar-

ios. Measuring by using quantitative outputs from reliability, performance and security models,

Clements et al. [2002a].

ATAM’s main component consists of four phases that comprises of nine steps, in total. The

preparation before the first phase and follow-up after an evaluation finish, can be considered as

another two phases, which are not included in ATAM main phases. ATAM phases are repre-

sented in Figure 2.19:

Each phase contains different steps as follows:

• Phase 1: Presentation – exchanging information through presentations, (3-Steps).

• Phase 2: Investigation and analysis – assessing key quality attribute requirements with

respect to architectural approaches, (2-Steps).

• Phase 3: Testing – checking the results to date against the needs of all relevant stakehold-

ers, (3-Steps).

• Phase 4: Reporting – presenting the results of the ATAM, (1-Step).

More explication for ATAM steps as follow:

• Presentation

68

2.5. EVALUATING SOFTWAREARCHITECTURE

1. Present the ATAM – Evaluation methods are described to the participants, expecta-

tions are set and questions are answered by the evaluation leader.

2. Present the business drivers – Business goals motivating the development effort and

what the primary architectural drivers will be, are described by the project spokesper-

son (ideally the project manager or system customer).

3. Present the architecture –Architecture is described by the architect, focusing on how

it addresses the business drivers. In this step, I think that the explanations and jus-

tifications of the architecture choices by an architect is not enough and needs to be

accompanied by an evaluation mechanism and results for the architecture candidates,

to be able to support the chosen architecture. Its this reason, one of many that en-

courage me to do this research.

• Investigation and analysis

4. Identify the architectural approaches – Architectural approaches are identified but

not analysed by the architect.

5. Generating the quality attribute utility tree; eliciting and specifying the level of sce-

narios. Annotating with stimuli, responses, and prioritising the quality attributes that

comprise system utility. For this step, the employing of the tactics that were intro-

duced by Bass et al. [2013], could be a very helpful approach.

6. Analyse the architectural approaches – Architectural approaches that address high-

priority scenarios from Step 5 are elicited and analysed. Identifying architectural

risks, non-risks, sensitivity points, and trade-off points are done in within this step.

• Testing

7. Brainstorm and prioritise scenarios – From the entire group of stakeholders, a larger

set of scenarios is elicited, which are prioritised via a voting process involving all the

stakeholders.

8. Analyse the architectural approaches – This step reiterates the activities of Step 6

but uses the highly ranked scenarios from Step 7. These scenarios are the test cases

to confirm the analysis performed. Additional architectural approaches, risks, non-

risks, sensitivity points, and trade-off points may be uncovered and documented

through this analysis.

• Reporting

9. Present the result – Findings based upon the information collected during the ATAM

evaluation is presented to the assembled stakeholders by the ATAM team. Fig-

ure 2.20, shows the steps of the ATAM based on SEI description, Clements et al.

[2002a].

ATAMwas upgraded and enhanced in 1999 after being applied to several practical projects

69

CHAPTER 2. BACKGROUND

• Present the ATAM
• Present the Business

Drivers
• Present the Architecture

• Indetify the Architec-
tural Approaches

• Generate the Quality At-
tribute Utility Tree

• Analyze the Architec-
tural Approaches

• Brainstorm and Priori-
tize

• Analyze the Architec-
tural Approaches

• Analyze the Architec-
tural Approaches

1
Presentation

2
Investigation
and Analysis

3
Testing

4
Reporting

Figure 2.20: Steps of ATAM based on Clements et al. [2002a] description.

Kazman et al. [1999]. Merging several original steps, and complementing additional ones, en-

hanced ATAM method.

There are two major improvements of ATAM to be observed.

First is the concern on how to realise when it is suitable to discontinue the generation of sce-

narios. To address this concern, a set of quality attribute-specific questions has been developed

by SEI, by which one can find that some useful scenarios are still missing and try to supplement

them. More details about the questions may be found in SEI’s website6.

Second, is the adoption of Attribute-Based Architectural Styles (ABAS). ABAS, is a type

of analysis-assistant tool, which helps the stakeholders to identify quality attributes brought

by architectural styles. Since ABAS is a combination of stimuli, responses, and architectural

decisions based on attributes and an analysis models, thus it may be described as an architectural

style/pattern attached by attribute values, to reflect quality information. However, in the case of

performance as an example, relevant information is not enough. An analytic framework will be

used to facilitate analysis from the information gathered, Qin et al. [2008].

ABAS 7 is composed of four parts:

1. Problem description – a description of the problem that the structure solves.

2. Stimuli/responses – a characterisation and description of the stimuli that ABAS is designed

to respond to, as well as a description of the quality-attribute-specific measures of the

response.

3. Architectural style – relevant components to the quality attribute such as the set of com-

ponent and connector types, the topology, a description of the patterns of data and control

interaction among the components, and any properties of the components or connectors.

6 www.sei.cmu.edu
7More information about ABAS can be found on SEI’s website. See footnote 6.

70

http://www.sei.cmu.edu

2.5. EVALUATING SOFTWAREARCHITECTURE

4. Analysis – a quality-attribute-specific model that provides a method for reasoning about

the behaviour of component types that interact in the defined pattern.

Since ATAM was created, it has experienced a continuous evolution and improvement.

Some initial materials may be found in the works of Kazman et al. [1998] and Bass et al. [1998],

while ATAM ’s further detailed study cases can be found in Bass et al. [2013] and Clements

[2003] works. The latest status of ATAM can be found on SEI’s website including the tutorials

and support material. Figure 2.21 shows the latest conceptual flow of ATAM.

Analysis

Tradeoffs

Sensitivity
Points

Non-Risks

Risks
Risk

Themes
Distilled Info

Business
Drivers

Quality
Attributes

Scenarious

Architectural
Plan

Architectural
Approaches

Architectural
Decisions

Im
pa

ct
s

Figure 2.21: A conceptual flow of ATAM, SEI [2010].

2.5.2.1.3 Active Reviews for Intermediate Design (ARID) is an evaluation method for

partial architectures. It is situated between the intersection of two approaches. The first is

scenario-based design review techniques, such as ATAM or SAAM that were discussed earlier.

The second is active design reviews or ADRs. ARID is best suited for evaluating a partial archi-

tecture/design in its formative stages. Figure 2.22 illustrates the two phases of this evaluation

method.

Active Design Reviews (ADR)

ADRs are an effective technique for ensuring quality detailed designs in software. This

method actively engages reviewers using carefully structured tasks, which avoids askingYes/No

questions. Reviews may be undermined by such questions, which enabling the reviewer to

answer the questions without much consideration. In contrast, a sequence of exercises in this

method that based on test concrete and not feigned understanding are asked byADR to reviewers

to utilise design.

Evaluating detailed designs of logical units for a software is the primary use of ADRs.

Examples are modules and components. Its questions tend to address two things as illustrated

below:

71

CHAPTER 2. BACKGROUND

! "#$%&'()*&+$*,$-'$.$,/*
! 0,$12,$*&+$*#$/'3%*4,'$5'%3*
! 0,$12,$*&+$*/$$#*/6$%2,'7/*
! 0,$12,$*&+$*82&$,'29/*

0+2/$:;*
<$+$2,/29**

! 0,$/$%&*=<">*
! 0,$/$%&*&+$*#$/'3%*
! ?,2'%/&7,8*2%#*1,'7,'&'@$*/6$%2,'7/*
! =119)*&+$*/6$%2,'7/*
! AB882,'@$*

0+2/$:C*
<$-'$.*

Figure 2.22: Steps of ARID based on Clements et al. [2002a] description.

1. The quality and completeness of the documentation.

2. If the design’s provide sufficiency, fitness, and suitability concerning the required service.

There are many other SA evaluating methods, which are mostly scenarios-based, each one

does have its own unique focus and process such as:

• Architecture Level Modifiability Analysis (ALMA).

• SAAM founded on Complex Scenarios (SAAMCS).

• SAAM by Integration in the domain (ESAAMI).

• SAAM Evolution and Reusability (SAAMER).

• Architecture Level Prediction of Software Maintenance (ALPSM).

An overview of the above methods as follow:

• ALMA method:

The outcome of combining existing architecture level modifiability analysis approaches

with scenario-based SA analysis approaches, which focus solely on modifiability is the Archi-

tecture Level ModifiabilityAnalysis (ALMA) method. ALMAmethod comprises five stages as

illustrated in Figure 2.23; bear in mind, performing these steps is done with iteration, Bengtsson

et al. [2004].

Kazman et al. [2005] did analyze ATAM and ALMA methods in terms of fifteen criteria;

and they suggested several ways to improve both methods. Discussing these criteria is outside

the scope of this research. However, there are some drawbacks for the ALMA methods such

as::

• limits the attributes under inspection to modifiability.

• provides slight tractability support form the goal throughout the analysis outcome.

• in general the authors interpretations for the results do not follow any specific techniques.

More study and experiments could improve the ALMA method.

72

2.5. EVALUATING SOFTWAREARCHITECTURE

Figure 2.23: The ALMA method five steps.

• SAAMCS, ESAAMI, and SAAMER methods:

SAAMCS, ESAAMI, and SAAMER as extended methods of SAAM. Where SAAMCS is

focused on flexibility, Lassing et al. [1999]. The goal of SAAMCS is to use complex scenarios

for risk assessment. On the other hand, ESAAMI and SAAMER developed by Molter et al.

[1999] and Lung et al. [1997] respectively , are designed for reusability, Dogru [2010]. In one

hand, ESAAMI is an integration of SAAMwithin a specific domain with a reuse-based develop-

ment process, which reuses the knowledge defined by SA’s models. However, ESAAMI cannot

evaluate SA considering more than one QA at the same time. On the other hand, SAAMER

provides a framework that collects stakeholders, scenarios, artefacts, SA, and QAs information,

in order to support system reusability and evolution, Kim et al. [2010], Alebrahim [2017].

• ALPSM method:

ALPSM method’s main goal is to predict the size of change during maintenance using series of

scenarios. Its focus on maintenance effort, defines a maintenance profile, and does not check if

the architecture fulfill any other QA,Qin et al. [2008]. ALPSM consists of six steps as illustrated

in Figure 2.24, Bengtsson et al. [2004]. However, ALPSMmethod does not consider reusability

of the existing knowledge base, Dobrica et al. [2002b], Alebrahim [2017].

Figure 2.24: The ALPSM method six steps.

However, it is evident that most of the mature architecture evaluation methods, such as

ATAM and SAAM are using qualitative methods that are normally applied through scenarios. It

makes the resulting evaluation heavily skewed on the basis of selected scenarios and the inter-

pretations given to required quality attributes. The generation of these scenarios is solely based

on the vision of the stakeholders, Clements et al. [2002a] and Zayaraz [2010].

73

CHAPTER 2. BACKGROUND

2.5.2.2 Measuring techniques

The main focus of measuring techniques is the demands to know the QAs emanating from

the architectural structures. The results derived from these techniques are usually represented

in the form of numerical values. They are generated in response to quality issues raised by

the various stakeholders. These techniques are only able to answer a few questions revolving

around quality attributes such as performance and modifiability. Due to the various complex-

ity issues which surround measuring techniques, understandability matters often arise amongst

stakeholders. Examples of measuring techniques include simulations, metrics, prototypes, and

experiments, Zayaraz [2010].

The following subsections explain important concepts related to measuring methods:

2.5.2.2.1 Metrics: is “a system of weights and measures to express a hundred times the unit”

Simpson et al. [1989]. Also, it is defined as ”a system of weights and measures based on the

principle that each quantity should have one unit”, Walker [1988].

On a particular observable measurement of the architecture, the placed quantitative inter-

pretation is called metrics. Fan in/fan out of components is an example of metrics. Answers to

overall complexity that suggest locations that likely have to change or where change might be

difficult, can be provided by the most well-researched measuring techniques.

The following discussion represents a set of metrics (as an example), in order to measure

complexity and therefore predict areas of change in a real-time telecommunications system built,

using object-oriented design (Arora, 1995), cited in Clements et al. [2002a]). As opposed to

code, examining a detailed design can produce more information which makes the following

metrics more appealing.

• Number of component clusters – An object that composes the number of component clus-

ters it contains. For example, a computer is composed of a screen, keyboard, software,

etc., and other objects,

• Depth of structure: An object that is defined by the number of layers of encapsulation.

• Number of events: An object that reacts to a number of synchronous and asynchronous

calls.

• Number of synchronous calls: The total number of synchronous calls from one object to

other objects, either to get or set some data/resource.

• Number of asynchronous calls: The total number of asynchronous calls from an object to

other objects.

• Depth of Finite State Machine (FSM): Measures the depth of an indirection where an ob-

ject’s behaviour and the states of this behaviour are described by FSM.

• Number of data classes: The total number of data classes an object uses or refers to.

• Number of extended state variables: The number of variables an object’s FSM needs to

74

2.5. EVALUATING SOFTWAREARCHITECTURE

deal with the machine’s synchronisation aspects.

• Depth of inheritance tree: An object’s total depth from the base class in the system’s in-

heritance tree.

The source of faults is also predicted by other metrics. For example, below are two sets of

some metrics that were shown to be useful indicators of fault-prone modules in the telecommu-

nications domain (Khoshgoftaar -1996), which have been discussed in Clements et al. [2002a].

Call graph metrics

• Modules used: This module uses a number of modules, directly or indirectly, including

itself.

• Total calls to other modules: This is the number of calls to entry points in other modules.

• Unique calls to other modules: This module calls a number of unique entry points in other

modules.

Control-flow graph metrics

• If-then conditional arcs: This is the number of arcs that are not loops and contain a predicate

of a control structure.

• Loops: This is the number of arcs that contain a predicate of a loop construct.

• Span of conditional arcs: Within the span of conditional arcs, a total number of arcs is

located.

• Span of loops: The number of arcs plus the number of vertices within loop control structure

spans.

More of the SA metrics can be found in Bass et al. [2013], Kan [2003], Jaquith [2007],

Ejiogu [1991], Ejiogu [2005], and Carroll et al. [2007].

2.5.2.2.2 Simulations, prototypes and experiments: Creating and clarifying the architec-

ture may be achieved by building a prototype or a simulation of the system, but creating a de-

tailed one for review purposes is usually expensive. A portion of a normal development process

typically contains these artefacts; therefore using these artefacts during a review or in answering

questions encountered during the review, becomes a typical and natural process.

The answer to an issues raised by a questioning technique, could be solved by using sim-

ulation or prototype. Thus, if the review team asks “Can you support this assertion with any

evidence?”, one convincing answer would be the result of a simulation. This questioning tech-

nique is useful in the pattern case. For example, What evidence do we have that proves Pooling

patterns support performance?

2.5.2.2.3 Automated tools and architecture description languages: Representing archi-

tecture through the use of formal/semi-formal notations and languages has been common during

the last two decades. One of the most popular utilised architectural semi-formal notations and is

75

CHAPTER 2. BACKGROUND

the Unified Modelling Language (UML), Merilinna et al. [2004], Milicev [2009], and Silingas

et al. [2011].

Emerging from the academic and industrial research communities are several architecture

description languages, such as ADLs (discussed earlier in Chapter 2). Creating, maintaining,

and analysing architectures are dependant upon the language and tools maturity. If ADL can

describe the behaviour of the system then it most certainly has the tool environment to generate

a simulation of the system. Simulations like this provide early insight into architecture inaccu-

racies that lead to behavioural errors and reveal performance bottlenecks. Also, many of these

tool environments can turn architectural specifications into executable source code by using the

right tools, if available.

2.5.2.2.4 Software Performance Engineering (SPE): To see whether a system as designed

will meet its performance constraints, architecture could be examined through the use of a hybrid

analysis technique called SPE. SPE is not constrained in a Yes or No result. It is so much more

than that. Its purpose is to help the architects and/or designer illuminate and navigate among the

trade-offs that are available to them. The intent is to build in performance rather than add it to

the system’s architecture / design by scheduling SPE evaluations early and often.

Table 2.9: Comparisons between different evaluation techniques, after Clements et al. 2002a.

Quality Attribute(s)

Technique covered Approach(es) Used When applied

Questioning Techniques

Questionnaires

and checklists

Various Predefined domain spe-

cific questions

Can be used to prompt

architect to take certain

design approaches, or

any time thereafter.

Scenario-based

methods

Various; either non-

run-time attributes such

as modifiability or

run-time attributes such

as security.

System-specific sce-

narios to articulate

specific quality at-

tribute requirements;

scenario walk-through

to establish system’s

response.

When architecture de-

sign is complete enough

to allow scenario walk-

through.

SAAM Modifiability, function-

ality

ARID Suitability of design

SNA Security

Measuring Techniques

Metrics Various; often empha-

sise modifiability and

reliability.

Static analysis of struc-

ture.

After architecture has

been designed.

76

2.5. EVALUATING SOFTWAREARCHITECTURE

Simulations,

prototypes,

experiments

Various; often empha-

sise performance, func-

tionality, usability.

Measurement of the ex-

ecution of an artefact.

After architecture has

been designed.

RMA Performance oriented to

real-time systems.

Quantitative static anal-

ysis.

After the process model

has been built and

process-to-processor

allocations have been

done.
ADLs Various; tend to concen-

trate on behaviour and

performance.

Simulation, symbolic

execution.

When architectural

specifications are

complete.

Hybrid Techniques

SPE Performance. Scenarios and quantita-

tive static analysis.

When performance con-

straints have been as-

signed to architectural

components.

ATAM Not oriented to any

particular quality at-

tributes, but historically

emphasises modifiabil-

ity, security, reliability,

and performance.

Utility trees and brain-

stormed scenarios to

articulate quality at-

tribute requirements;

analysis of architectural

approaches to identify

sensitivities, trade-off

points, and risks.

After the architecture

design approaches have

been chosen.

Different common Software Architecture Evaluation (SAE) approaches have been briefly

discussed, each with its own capabilities. It is also explained that each evaluation method has

its own use. Table 2.9 illustrates the comparisons between different SAE approaches.

Most of the above evaluation methods mentioned above can contribute in building analyt-

ical models, which could involve in the new software model-driven development approaches,

automation checks with formal scenarios, and measuring techniques, in order to explore the

qualities within the architecture or software patterns.

In the next section, some specific evaluationmethods that contribute to the SAE in particular

will be discussed.

2.5.3 Analysis of Specific Evaluation Techniques

Over the past 20 years, there has been an increase in recognition to achieve quality attributes

such as dependability, performance and security. It is critical for the satisfaction of system’s s

requirements that architects/designers must pay careful attention to their architecture/design.

Because of this recognition, the field of software architecture has significantly matured in this

period. However, relatively informalmethods have been the basis of recent software architecture

77

CHAPTER 2. BACKGROUND

practices. This limits the potential to acquire insight and enhance the quality of the resulting

system by fully taking advantage of architectural designs, Garlan et al. [2006a].

Styles and patterns provide a domain-specific design vocabulary, and a set of limitations

on how that vocabulary may be used. Many architectures and designs use this vocabulary (e.g.

Styles and Patterns), as their backbone. Although, numerous tools are available to help for

individual architecture analysis. It is unfortunate that architects/designers acquire little or no

help for choosing the proper styles/patterns to achieve the desired QAs. The reason is, that only

few works have been done in developing such tools, I have introduced a partial solution to this

problem in Chapter 3.

Although, there are many approaches as well as researches that analyse specific quality

attributes and its relationship to the architecture in general, and styles in particular; whereas,

other research analyses the quality attributes for a specific domains, such as communications or

distributed systems. It is evident that most of the research areas are concerned on performance

and reliability which are very important qualities. However, the importance of these quality

attributes in the system depends on the system’s context and business goals. Therefore, a good

approach should be able to look into different quality attributes and analyse them with respect

to the system’s requirements.

In order to clarify and analyse important and individualised thinking towards SAE, a cri-

tique analysis of some specific SAE approaches will be discussed

2.5.3.1 Software Engineering Institute (SEI) – Bass approach

Throughout the three versions of Software Engineering Institute (SEI) tactics, Bass et al.

[1998], Bass et al. [2003], Bass et al. [2013]; their tactics concept has demonstrated evolution.

They introduced the relationship between architecture and quality attributes in the form of tac-

tics. “A tactic is a design decision that influences the control of a quality attribute response.”

A collection of tactics is called an architectural strategy or architectural pattern package tactics.

This approach is considered as a scenario based model.

• What important architectural decisions influence the achievement of quality attribute re-

quirements?

• To what stimuli must the architecture respond?

• By what criteria is the achievement of a quality attribute is measured?

Based on the above questions and arguments SEI-group, introduced the tactics methods.

Bass, amongst others, discusses the quality attribute decision known as tactics. Individual

quality tactics will not be discussed here but the general approach will be described, alongside

with the performance tactics as an example

A model is provided by the SEI-team to describe a scenario. To normalise various scenar-

ios into a standard form, six elements are adopted. This facilitates later evaluation processes.

78

2.5. EVALUATING SOFTWAREARCHITECTURE

The Bass-team8 scenario representation model is illustrated by Figure 2.25, while Figure 2.26

explains how the model works in performance case.

Figure 2.25: Quality attribute scenario representation model by Bass et al. [2013].

Performance

Stimuli

Mode
Regular

Overload

Source
Internal Event

Clock Interrupt
External Event

Frequency
Regularity

Periodic
Aperiodic

Sporadic
Random

Architectural Parameter

Resource
CPU Memory

Network
Devices & Sensors

Resource
Arbitration

Queuing
Policy

Offline
Cyclic

Executive

Queuing
Preprocessor

One-to-one
One-to-many

Online
Dynamic
Priority
Fixed

Priority

Queue
SJF
Fixed Penalty
FIFO
Deadline

Preemption
Policy

Shared
(preemptable)

Locking (non-
preemptable)

Resource
Consumption

Memory Size
CPU Time
Network Bandwidth
Devices & Sensors

Responses

Latency
Response Win-
dow

Criticality
Best/Avg
Worst Case
Jitter

Throughput
Criticality

Best/Avg
Worst Case
Observation Win-
dow

Precedence
Criticality
Ordering

Partial
Total

Figure 2.26: Performance characteristics: stimuli, responses and architecture decisions, Klein

et al. [1999].

• Source of stimulus: The stimulus is generated by an entity (a human, a computer system,

or any other actuator).

• Stimulus: When arriving at a system, the condition that needs to be considered is called a

stimulus.

• Environment: Only within certain conditions can a stimulus occur. The stimulus can take

place while the system is running or in an overload condition as long as a condition is true.

• Artefact: An artefact is stimulated; thismay be thewhole system or just certain components

of it.

• Response: After the arrival of stimulus, an activity commences. This is called response.

• Response measure –A response, when taken place, should be measurable in some manner

in order to test the requirement.

Redundancy is an example of tactics that have been used for achieving availability, which

reveals two things:

1. Tactics can refine other tactics – Bass-approach acknowledged redundancy as a tactic.

Therefore, redundancy of data (in a database system) or redundancy of computation (in an

8For the rest of this thesis (SEI and Bass) means same team and method.

79

CHAPTER 2. BACKGROUND

embedded control system) can be considered as its refinement, which are also tactics. To

make each type of redundancy more definite, a designer may use further refinements.

2. Patterns package tactics – Both redundancy tactic and synchronisation tactic may likely be

used by a pattern which supports availability. More concrete versions of these tactics will

also likely be used by this pattern.

It is important to point out that, although Bass-method organised the tactics for each quality

attribute as a hierarchy, this hierarchy is meant only to explain some of the tactics, and any list

of tactics is not essentially complete. For each of the six attributes that he elaborated, which

are: (availability, modifiability, performance, security, testability, and usability), they discussed

tactical approaches for achieving each one of them. Abrief discussion and an organisation of the

tactics were presented by the SEI-team. In order to locate an appropriate tactic, the architect uses

the path that is provided by the tactic tree. This approachwas able to determine several scenarios,

namely, General Scenarios and Concrete Scenarios. General Scenarios are independent of

the system. They are based in and can refer to any system, in general. On the other hand,

Concrete Scenarios are specific for a given system under consideration. Also, he presented

attribute characterisations as a collection of general scenarios, which are will be employed into

the proposed initial conceptual framework in the future work, as explained briefly in Section 7.4.

Unlike checklist techniques, using scenarios are system-specific and are not limited by a

particular domain, which is an advantage. More so, multiple stakeholders’ suggestions can be

synchronised in this scenario. Given the instance that similar cases are interpreted differently

by stakeholders, a redundancy elimination process can merge these perspectives. Examples of

these evaluation methods include SAAM, ATAM, ARID, and others as described in the previous

sections, Qin et al. [2008].

This approach is commendable because it links software quality and its architecture includ-

ing styles through the use of some tactics. It is also to be understood that achieving quality

attributes by identifying some tactics included in the styles helps developers to choose the right

styles for their intended system’s goal. However, developers, especially (architects), need to

identify all possible tactics for each quality attribute and try to understand the styles and map

these tactics according to the right style. This is difficult and time-consuming but it could suc-

ceed if the developer understands the style/pattern and its implementation choices.

Not to forget that, implementation is an important concern and that can give the developer

different choices about tactics. One solution that could be helpful for developers in their pattern

and quality selection, is to prove the relationship between these two aspects and to build an

incremental database that summarises all the proven relationships between patterns and qualities.

As I explained this solution in Chapter 3.

Comparison between the qualitymodels of SEI that are discussed above and the ISO/IEC9126

model shows some differences. The selection of ISO/IEC9126 model for comparison was in

2010 before the completion of new standard (ISO-25010).

80

2.5. EVALUATING SOFTWAREARCHITECTURE

However, the differences between both ISO standards above and SEI lies in the sub-characte-

ristics and attributes that are involved, e.g. availability assessment, as the combination of matu-

rity with fault tolerance, alongside recoverability, Bass et al. [2013]. Bass presents architectural

tactics that are related to one or more attributes. Consequently, ISO/IEC 9126 provides more

support to this prototyping, based on experimental architectural prototyping. This can be at-

tributed to the fact that quality assessment in this prototype is based directly on metrics. Bass’

assessments are based on quality attribute scenarios that require a need for metrics in order to

make a decision on whether a response measure agrees with specifics, Reussner et al. [2005].

In general, the software architecture in practice SEI approach is one step toward exploring

the relations between architecture and quality attributes. This approach needsmore investigation

on other possible tactics, formalising their strategies to achieve the desired qualities through

these tactics, and most importantly, to prove that the selected style or pattern support required

quality.

The general aim of this research is to improve SAE. To achieve this, the architecture deter-

mined by a set of elements, interaction mechanism, semantic constraint, implementation struc-

ture, and topological layout that need to be noted. Although all these aspects affect the quality

attributes, these attributes are difficult to tackle using this approach. On the other hand, formal-

ising this approach and mapping these tactics with more intensive strategies to the architectural

artefacts and pattern’s languages could be the best way to help evaluate models and automate

this relationship. For example, using advance use case modelling for discovering, identifying

and modelling the problem context, including the quality requirements for a system and the cre-

ation of proper scenarios will help in building the relationship between architectural models and

qualities in systematic ways, Armour et al. [2001]. Figure 2.27 provides an example of Bass

tactics for performance with more elaboration.

After the process model has been built and process-to processor allocations have been done,

the performance tactics illustrated in Figure 2.27 could utilise Rate Monotonic Analysis (RMA)

method to evaluate performance, which is oriented to the real-time systems. This is considered

as a quantitative static analysis approach.

Rate Monotonic Analysis (RMA):

Ensuring that a set of fixed-priority processes is scheduled on a CPU, so that no process

ever misses its execution deadline is a quantitative technique called RMA. It is a way to assure

that a system will meet its real-time performance requirements. RMA can be performed in the

absence of an implementation, which is a powerful advantage. Only a set of process definitions

with timing and synchronisation information is required, Klein et al. [2012].

RMA’s application is straightforward. Analysis will remain valid and the system will meet

its performance goals as long as the implementation does not violate the constraints given in

the concurrency model and that no process runs too long or introduces new synchronisation

constraints not accounted in the model. To make sure that no process misses its deadline, an

81

CHAPTER 2. BACKGROUND

algorithm that computes the ability to schedule a process must produce an affirmation. This

algorithm is made available by characterising the context of a real-time system in predefined

terms and by specifying the number and nature of the processes to be scheduled. If the algorithm

returns otherwise, then the design will have to be modified.

Performance
(Basic contributors to the response time

Blocked Time

Dependency on other
computations

Availability of
resouces

Contention for
resources

Resource Cosumption

Performance tactics

Resource Demand

• Increase Computation Efficiency
• Reduce Computational Overhead
• Manage Event Rate
• Control Frequency of Sampling

Resource Management

• Introduce Concurrency
• Maintain Multiple Copies
• Increase Available Resources

Resource Arbitration

Scheduling Policy

FIFO
Dynamic Priority

Scheduling

Round Robin
Earliest Deadline

First (EDF)

Fixed Priority

Semantics
Importance

Deadline
Importance Rate Monotonic

Static Scheduling

Figure 2.27: Performance tactics with elaboration, Bass et al. [2013].

2.5.3.2 Satisfying QAs through the use of SPs, Babar et al. [2005]

The approach used by Babar et al. [2005] is done by systematically analysing existing

security patterns in order to identify those patterns that have architectural implications to sup-

port the design and evaluation of security sensitive architectures. To understand the mechanism,

these patterns are provided to achieve security. The most common interpretations of security are

grouped into small sets of security attributes (as tactics) based on extensive studying and iden-

tification. A relationship between security and software architecture is established by analysing

several security patterns (as a pattern language), in order to study their effect on the identified

security attributes, then the identified security attributes are decomposed into more detailed el-

ements and properties. Figure 2.28 identifies the relationships between their security attributes,

security patterns, and security properties, shows their framework that relates to the problem and

solution domains for the security attribute. While figure 2.29 shows Auditability Flow (as an

example), from problem domain into implementation.

82

2.5. EVALUATING SOFTWAREARCHITECTURE

Reliability

Security Quality (Attributes)

Authenication

Authorization

Integrity

Confidentiality

Auditability

Maintainability

Availability

Error Management

Security Properties

Error Prevention

Error Handling

Fallback Procedure

Failure Logging

Simplicity

Encapsulation

Initialization process

Security Policy

Low-level Security

Permission
Management

Global Information Sharing

User Interface Consistency

Guidence

Access Control

User Indentification

Access Verification

Least Privilege

Privacy Promotion

Defense in Depth

Data Verification

Data Protection

Private Communication/
Information Protection

Reducing Exposure to Attack

Single Access Point

Security Patterns

Check Point

Roles

Session

Limited View

Full View with Errors

Secure Access Layer

Authoritative Source of
Data

Layered Security

Keys: Main
Properties

Sub-
Properties

Sub-
SubProperties

Figure 2.28: Relationships between security attributes, properties, and patterns, Babar et al.

[2005].

Figure 2.29: Applying Auditability tactic, as an example, Babar et al. [2005].

Furthermore, in the tractability Table 2.10, each security attributes (as a problem area) have

been examined throughout security properties to discover out if they do have security patterns

as (a solution). Two-problem areas, as shown in the table have linked to main properties, but

did not linked to any solution in Babar et al. [2005] tactics model. One justification could be

that the main properties satisfied the required security QA by utilising sub-properties.

However, the list below extracted from Figure 2.28, shows all sub-properties that are un-

83

CHAPTER 2. BACKGROUND

Table 2.10: Absence of solutions to some problems in Babar et al. [2005] model.

Security Attributes (Problem) Security Properties Security Patterns (Solution)

Reliability −→ Error Management No solution linked

Maintainability −→ Simplicity No solution linked

linked to both sides (problem side and solution side), while their parents are linked to one or

both sides, which raise the question about their usability in Babar et al. [2005] model.

1. Error prevention.

2. Fallback procedure.

3. Encapsulation.

4. Global information sharing.

5. User interface consistency.

6. Guidance.

7. Access verification.

8. Data protection

9. Reducing exposure to attack.

2.5.3.3 Mapping between SEI Tactics approach and Babar et al. [2005] Pattarn

approach

The achievement of high quality systems that satisfy all stakeholders, is the goal of both

approaches (SEI team and Babar et al. [2005]).

Based on the descriptions of both models and with insightful analysis and comparison,

the mapping chart between both approaches in Figure 2.30 represents some of the similarities

between both models.

Besides the nine sub-properties listed in Section 2.5.3.2 above that still persist in this case,

Table 2.11, shows new security attributes, properties, and patterns that have not been utilised by

or mapped to SEI model.

Table 2.11: Non-mapped elements between Babar et al. [2005] model and SEI model.

Security Attributes (Problem) Security Properties Security Patterns (Solution)

Reliability Error Management (Error Handling) Full view with Errors

According to Bass et al. [2013], tactics that have been produced in software architecture are

not enough and not limited. This can explain some missing links in Figure 2.30. For example,

the reliability from Babar et al. [2005] quality attributes list does not linked to any of the SEI

tactics. The same applied on the Bass Intrusion Detection tactic, which is not linked to any of

Babar et al. [2005] attributes or properties.

Whilst, Intrusion Detection tactic could be linked to one or more of Babar et al. [2005]

properties such as Global Information Sharing property to share a network intrusion detection

profiles through knowledge-base, which could store packets involved in known attacks, Kruegel

84

2.5. EVALUATING SOFTWAREARCHITECTURE

et al. [2005]. Also, the same tactic could be linked to Security Policy property to set up security

policy if intrusion happens.

However, systematic evaluation to prove the relations between the selected patterns and

selected quality attributes in both approaches has not been analysed in scientific methodology

Freitas [2009]. Due to the increasing scale and complexity of today’s systems and due to eco-

nomic considerations, there is a rising need to apply component-based methods in the construc-

tion of systems. Consequently, new component-based evaluation methods are required, which

allow reasoning about the quality of a system architecture and existing usable software styles,

Grunske [2007].

2.5.3.4 Exploring quality attributes using architectural prototyping Bardram

et al. [2005]

This approach is to explore architectural aspect through its prototypes from an analytical

standpoint. This explanation study presents two well-established quality frameworks, which are

the SEI tactics framework, and ISO-9126 framework.

They are learning vehicles for architects when envisioning and learning new architectural

constructs, patterns, and ideas. The prototyping approach, presents an opportunity to observe

conflicting qualities’ as it is not possible to implement a code that only expose a single quality

attributes. Another advantage for prototyping is that they point out to important characteristics

the architecture that set them apart from most other evaluation techniques that either formalise

(e.g. ISO approach) or simulate (e.g. Bass approach) the architecture.

Also, architectural prototypes have been treated primarily as an evaluation technique, which

forces both frameworks above to be grounded in the reality of concrete implementation, and to

overlooking architectural implications. Consequently, reducing risks, due to prototyping arti-

facts closeness from implementation. This method goal, is not to propose architectural pro-

totypes as a replacement for other techniques; rather, its to present the technique as a valuable

assessment tool for evaluation. It is important to note that the assessment aspect of this approach

is somewhat different from most other evaluation techniques.

85

C
H
A
P
T
E
R
2
.
B
A
C
K
G
R
O
U
N
D

Reliability

Security Quality (Attributes)

Authenication

Authorization

Integrity

Confidentiality

Auditability

Maintainability

Availability

Error Management

Security Properties

Error Prevention

Error Handling

Fallback Procedure

Failure Logging

Simplicity

Encapsulation

Initialization process

Security Policy

Low-level Security

Permission
Management

Global Information Sharing

User Interface Consistency

Guidence

Access Control

User Indentification

Access Verification

Least Privilege

Privacy Promotion

Defense in Depth

Data Verification

Data Protection

Private Communication/
Information Protection

Reducing Exposure to Attack

Single Access Point

Security Patterns

Check Point

Roles

Session

Limited View

Full View with Errors

Secure Access Layer

Authoritative Source of
Data

Layered Security

Security Tactics-Bass, 2003

Resisting Attacks:
1. Authenticate Users
2. Authorize Users
3. Maintain Data Confidentiality
4. Maintain Integrity
5. Limit Exposure
6. Limit Access

Recovering from an Attack:
1. Restoration (See

Availability)
2. Identification (Audit

Trail)

Detecting Attacks:
1. Intrusion Detection

Keys: Main
Properties

Sub-
Properties

Sub-
SubProperties

Figure 2.30: Similarity between Bass et al. [2013] and Babar et al. [2005] tactics.

8
6

2.5. EVALUATING SOFTWAREARCHITECTURE

Architectural prototyping is about building the architecture, not reasoning about it, for-

malizing it, or simulating it. In this way architectural prototyping is especially well-suited to

explore and experiment with architectural tactics produced by SEI-team. It is worth mention-

ing that ACME-Studio and Armani tools are considered as a prototype environment, Leavens

et al. [2000]. Tactics are considered as concrete techniques. Patterns, and ideas may enforce the

presence of a required quality attribute in the architecture. Architectural prototypes in essence

explore the validity of a given tactic (or experiment with a set of them) to actually provide the

needed quality.

Taking into account, prototyping is not that easy, if one means prototyping that can be

evaluated by machines. This is because it is almost a draft version of the real product and

missing important aspects or requirements in the architecture prototype could mean revision of

all the architecture artefacts from scratch, Reussner et al. [2005].

2.5.3.5 Garlan approaches

One of the most important research and related work associated with the scope of this thesis

is Garlan’s work regarding architecture and styles evaluation. Garlan and some other researchers

performed different analysis research for architecture and styles in particular, using various tools

such as ACME-Studio and Alloy. which will be discussed as follows:

2.5.3.5.1 Architecture-driven modelling and analysis study A formal approach to soft-

ware architecture that leads to enhancements in software quality is described by Garlan et al.

[2006a]. Improved design clarity, analysis’ support, and assurance that implementations con-

form to their intended architecture are included in this approach. They choose Component and

Connector C&C architectural structure for their research because such structure can directly

convey critical properties related to dependability, such as reliability, security, and performance,

Garlan et al. [2006a].

Illustration of the flexibility property mechanism’s to facilitate architectural analysis, and

the introduction of architectural properties, both are proposed by Garlan et al. [2006a]. How

architectural behaviour can be specified is also shown, as well as concepts of architectural style

introduced. Providing domain-specific architectural models and usingACME-Studio tool’s abil-

ity, to check for conformance of a style is also discussed. ACME does not specify architec-

ture properties’ meaning, and does not provide their analysis with native support Garlan et al.

[2006a]. However, through the use of external analysis tools to obtain insight into the archi-

tecture and assess its qualities, properties as such may be evaluated. Off the shelf theory and

algorithms can be exploited by calculations in most cases. These analyses provide a powerful

support to architectural design such as:

• identifying errors in design early in the process by architects;

87

CHAPTER 2. BACKGROUND

• architects are assisted in documenting the expected run-time properties of architectural

elements9;

• tool support for feedback provision and analysis results comparison.

Some examples are automotive control systems’, rate-monotonic analysis, security simula-

tion based on Monte Carlo style, and lining up theory-based analysis for distinguishing server

overloads.

This approach illustrates several ways on how formal architectural modelling and analysis

addresses issues related to software architecture. Important software architecture issues include:

1. clarifying design intent;

2. detecting design flaws using the support of rich forms of analysis;

3. making trade-offs between service goals and qualities;

4. guaranteeing that implementations are consistent with their intent, using several tools.

Moreover, the addition of structural constraints on architecture is enabled in ACME. It is

recognised as an ACME-Studio extension, a GUI that is used in architecture design is inde-

pendent from any ADL. Instead of handling behaviour specification, ACME uses pre and post

conditions that are transformed into their respective executable assertions at runtime. However,

the partial validation cannot be made since static analysis is not provided,Moreno et al. [2008].

The Garlan approach mainly confirms implementation correctness and maps this imple-

mentation to its architecture. This approach is an excellent step toward style analysis but needs

more effort and research. For example, if a developer does not have external tools such asMonte

Carlo-style security simulation, he/she could not check the security of the system by ACME-

studio. This is the same with other quality attributes. Also, if a specific external simulation is

used to evaluate specific quality attributes such as security, it should be ensured that this simu-

lation includes the scenarios needed. This could be solved with quality attribute analysis model

and repository components, as proposed in this thesis future work section

2.5.3.5.2 Analyzing architectural styles with Alloy – Kim et al. [2006] In this study, the

steps in mapping an architectural style into a relational model are explained by the researchers.

This can automatically be checked for properties such as whether a style is consistent, satisfies

some predicate over the architectural structure, (e.g., if two styles are compatible for compo-

sition or if one style refines another). The architectural style is expressed formally in an ar-

chitectural description language. Amodel generator called a SAT solver-based model checkers

(Alloy–Analyzer) is used to inspect critical properties of styles. This approach can also ex-

amine some of the structural properties of architectural styles such as consistency and styles

overlapping. However, this method does not handle architectural behaviour, dynamic changes

to architectural models and expressions over ACME properties, and other quality attributes.

9Elements include components, connectors, ports, roles, and all ACME elements discussed in section 2.3.4.

88

2.5. EVALUATING SOFTWAREARCHITECTURE

2.5.3.6 Model-driven performance analysis Becker [2008] andMoreno et al.

[2008]

This approach describes model-driven analysis based on reasoning frameworks. This per-

formance reasoning framework transforms a design to a model with real-time performance prop-

erties that can be analysed using different evaluation procedures, such as rate monotonic analysis

and simulation. It is described in Figure 2.31. The PACC Starter Kit10 is a development environ-

ment that can generate and analyse code from the same models. Such tools are implemented as a

package and independently deployed as an Eclipse plug-in, allowing any Eclipse-based tool that

models software systems in a parsable design notation to benefit from the framework by export-

ing their designs to ICM11 components. Some (Eclipse-based tool) examples are, the IBMRatio-

nal SoftwareArchitect, Eclipse Model Development Tools (MDT), UML 2, andACME-Studio.

To add a performance reasoning framework plug-in as amodelling tool, is by creating a class that

implements the method: AssemblyInstancetranslateDesignToIcm(IFiledesignFile).

ICM

Design-to ICM
translation

Architecture
Description

Constraints

Satisfies

Performance
Interpretation

Performance
Model

Performance
Analysis

Analysis Result
(e.g. Average +

Worst case
Latency)

RMA, Queuing
Theory

Based on

Performance reasoning Framework

Key:
Data

Representation Transformation

Dependency
Data Flow

Figure 2.31: Performance framework, Moreno et al. [2008].

The models of this method are created with Eclipse Modelling Framework (EMF), and

the Object Constraint Language (OCL), which are implemented with the OCL-EMF validation

framework. This approach has five main elements beside the architecture description element,

which are:

1. Design-to-ICM translation – translates from architecture descriptions to simplified repre-

sentations (ICM);

10The PACC Starter Kit is a set of software development tools integrated to provide unbiased confidence in system

behaviour predictions. This demonstrates how existing technologies can be used as such.
11Intermediate Constructive Model (ICM) is a model that serves as an input to the performance reasoning frame-

work, were significant architectural descriptions’ elements concerning performance analysis, are contained in this

model.

89

CHAPTER 2. BACKGROUND

2. ICM – a simplified version of the system’s original design, that serves as an input to the

interpretation;

3. Interpretation – transforms ICM architecture descriptions into analytical models;

4. Analytical (Performance) model – a model that can be analysed by different evaluation

techniques included in the performance analysis components; and;

5. Performance analysis – the element that analyses the performance model by analytic and

simulation-based predictors based on Rate Monotonic Analysis (RMA) and queuing the-

ory.

The structural model is less generic than the one of ACME (described in Section 2.3.4).

Contrary to ACME, the content of a communication point is made explicit in this model. This

model has an option to be required only or provided only. Typed input and output arguments are

also required as a part of the needed set of communication elements. Any component model that

exhibits the same bidirectional communication points is compatible with the structural model.

This characteristic can be found in many component models such as Fractal or SOFA. Fractal is

an advanced component model and is associated with growing programming and management

support, initially proposed by France Telecom and INRIA since 2001. Distributed Systems Re-

search Group at Charles University in Prague developed SOFA, a component system which

provides many advance features such as: ADL-based design, provision of transparent distribu-

tion of applications, behaviour specification, and verification based on behaviour protocols and

different communication styles that are supported by software connectors, Becker [2008].

To make their created designs non-ambiguous, meta-models with strong semantics were

used as models, therefore allowing analyses to be performed. The semantics of communica-

tion points must be clear to enable analysis tools to manipulate them. According to Moreno

et al. [2008] in ACME/Armani, the content of a communication point (called Port explained

in Section 2.3.4) is not expressed. The only possibility to add information in a communication

point is by defining properties, which have no clear semantics. For example, it is possible to

perform Wright behavioural analysis on an ACME description by adding some ACME proper-

ties, containing Communication Sequential Processes (CSP) expressions, Brookes et al. [1984],

Roscoe et al. [2011]. It is not possible to guarantee that the messages declared to be sent or

received structurally, as there is no relationship between these properties and the structure of the

architecture.

In the Moreno approach, the behavioural meta-model is strongly associated with the struc-

tural meta-model. The sent and received messages expressed in the behavioural model cor-

respond to the argument in the structural model. For example, this approach checks that the

sent (resp. received) messages in the behavioural model correspond to the output (resp. input)

arguments in the structural model. More generally, Moreno chose to have a richer structural

meta-model than ACME in order to be able to check the coherence between the different meta-

models; i.e. structural, behavioural, data flow and quality, Becker [2008]. The scope of this

90

2.5. EVALUATING SOFTWAREARCHITECTURE

approach has different aspects and concerns such as decreasing design models and the analysis

models’ semantic gaps; also, to enable the analysis tools’ utilisation together with various de-

sign languages. However, this approach is limited to one quality attribute. Thus, developing an

interpretation component for each quality characteristic for the purpose of its evaluation, is a

hard and time-consuming job. Also, reducing the component size of the original architecture to

the half number in order to evaluate quality attribute (as the case in performance model) is not

delicate; and I think it does not actually reflect the real design, which could affect the integrity

of the evaluation mechanism.

Other approaches:

Koziolek et al. [2007] used the Palladio Component Model (PCM) to illustrate component-

based architectures to include the necessary information for performance prediction. Develop-

ers and software architects will find the features of PCM very useful. Component developers

have the ability to determine the performance of their components independently from context.

Therefore, they will have the ability to enable predictions on third-party performance as well as

improving the reusability of their components. PCM, also allows software architects to analyse

the performance of their design without requiring a written code. By using the specifications,

they can analyse performance using performance specifications that are retrieved from reposi-

tories and assemble them to architectures, Rech et al. [2009].

More proposals, such as the intermediate models CSM by Petriu et al. [2004] and KLAPER

by Grassi et al. [2005], have also been made. Also, D’Ambrogio (2005) describes a frame-

work to automate the building of performance models from UML design models, Moreno et

al. [2008]. UML model based performance modelling and prediction have already been exe-

cuted by Gilmore et al. [2003]. It incorporates performance information in the state diagrams’

transition labels, Becker [2008].

Many studies have been reported, in order to identify, analyse, evaluate and explain the

relationship between quality attributes and architecture or design including their patterns. Each

research has its own scope and focus in a specific domain and quality. However, very few have

identified the relationship between quality attributes and architecture in general conceptual

schema that can be applied for most quality attributes and can automate the analysis result. For

further details and additional knowledge in this area, readers are advised to explore different

resources.

2.5.3.7 Evaluating SA using Metrics – Zayaraz [2010]

Most software pattern references explain patterns based on the expertise of the authors and

their perception, such as Fowler et al. [2003] and Schmidt et al. [2001], whilst others, such as

Kim et al. [2006] work, try to evaluate SA upon measurements and metrics.

In the work of Dr. Zayaraz, he did use different useful available methods within his eval-

uation framework. For example he applied the rules and principles of the Common Software

91

CHAPTER 2. BACKGROUND

Measurement International Consortium (COSMIC) – Full Function Points with some metrics

to measure the basic interaction parameters for some characteristics such as coupling, cohesion,

and complexity on different patterns (e.g. Pipes and Filters). Also, he utilised Analytical Hier-

archy Process (AHP) for comparisons between different pattern structures for specific quality

attributes. His work was a step forward in regard to creating the relationship between SPs and

QAs based on scientific fashion and standardisedmeasures, not just an observation or experience

of the pattern author. However, this approach has the following limitations:

• Useful standardised frameworks such as ISO-42010, were not employed during the devel-

opment of the framework.

• Useful and standardised modelling languages such as UML, ADLs, had not been employed

during the development of the models.

Both points above, couldmake the approachmore concrete, easy to understand, modifiable

by other researchers, and reusable.

• Also, the QAs are handled independently, but in the real world they are working together,

as a spider net.

2.5.4 QAs in SA Context

In this section I discuss Quality Attribute (QA) standardisation, complexity, challenges,

categorisations, sensitivity point, and trade-off in the context of Software Architecture (SA).

2.5.4.1 Complexity of quality attributes

During the 1970s, the software community already showed interest in quality attributes.

Various taxonomies and definitions have been published, many of which have their own re-

search and practitioner communities. Software quality is defined by the IEEE standard 1061

(IEEE 1998) as “the degree to which software possesses a desired combination of attributes.”.

Different schools and standards have defined and categorised QAs. This variations of QAs def-

initions and categorizations increase the complexity of the quality system.

According to Bass et al. [2013], from an architect’s perspective, there are three problems

of quality attribute descriptions:

1. Operational definitions for an attribute were not provided. Therefore, saying that a system

is modifiable is rather non-significant. Specific systems may be modifiable with respect

to one quality attribute but may not be modifiable to another.

2. Some relationships between quality attributes can fall under the same aspect. For example,

a system failure can fall under several attributes, such as availability, security or usability,

which make QAs categorisation more complex.

3. Each attribute community may consist of its own set of words that are understood by a

specific (vocabulary). Also, the same occurrence may be called by different names in each

community. For a given occurrence performance may call it “events, ” security will call it

92

2.5. EVALUATING SOFTWAREARCHITECTURE

“attacks”, availability will call it “failures” while usability will call it “user input.” As all

these refer to the same occurrence. This situation is ambiguous and confusing compara-

tively.

Using quality attribute scenarios to characterise quality attributes to solve the first two prob-

lems mentioned above (non-operational definitions and overlapping attribute concerns), is a so-

lution proposed by Bass et al. [2013]. To solve the third problem, a brief discussion of each

attribute should be presented. To demonstrate the concepts which are fundamental to the at-

tribute community, one must concentrate on each attribute’s fundamental concerns.

Judging architecture for suitability based on the names of the attributes is not sufficient.

Requirement statements, such as:

• High security is required.

• The system shall exhibit acceptable performance.

If not elaborated, statements like these may be interpreted differently and misunderstood.

Also, these interpenetrations could be based on different QAs categories and definitions, which

existed as explained in Appendix C. Another aspect is how the current literature categorises

them (QAs)? Is it based on the context of the problem, the interpretations of the quality attribute

name, problem domain, different quality dependency trees, and/or categorizations?

Quality attributes are not absolute quantities. For example, a system should be protected

from intrusions therefore a password is set to prevent unauthorised users from using the system.

However, it does not have virus protection mechanisms which results in another kind of intru-

sion. This illustrates that the existence of quality attributes is based on the context of specific

goals.

2.5.4.2 Understanding quality attributes

The architecture of non-trivial systems determines its quality attributes. A statement of

the quality attribute requirements motivated by key business goals and specification of archi-

tecture is a prerequisite of an evaluation. This prerequisite is often unmet. Quality attribute

requirements and architecture documentation are commonly incomplete, vague and ambiguous

therefore it is necessary to apply two main processes, in order to determine if the evaluation of

architectural design decisions address the quality attribute requirements as follows:

1. A precise statement of quality attribute requirements must be elicited and refined

2. A precise statement of architectural design decisions must be elicited and refined.

For the purpose of this thesis, and to achieve (partially) the objectives of the two points

above, the following are some suggestions to be applied:

• The evaluation of any quality attribute shall be based on:

– a known standardised definition for that QA;

– a clear metric with known unit;

93

CHAPTER 2. BACKGROUND

– and identification of the metric input and output.

• The use of clear notations and standardised rich languages, such as (ACME and SysML), to

create architectural models, shall help to make an accurate artefact with correct decisions.

• The use of architectural frameworks guidelines such as (IEEE-42010 and DoDAF) for

developing a new architecture, shall help during the development process, views, and the

related entities, which need to be constructed.

Styles/Patterns could be utilized much better, if they were documented well. However,

it is important to have clear and informative characterisations for each quality attribute since

architecture evaluation focuses on them. Hence, the quality attribute requirements need to be

concrete and measurable or at least observable during evaluation for adherence.

2.5.4.3 Quality attribute characterisations

The classification of QAs should follow a clear criteria, standards, and guidelines, in order

to help different disciplines to communicate easier. The more clear descriptions as to how the

categorization is done, the more the acceptance there will be, for the categorization schema.

The advantages of codifying the relationship between architecture and quality attributes are

to enhance the design and analysis process; reuse of existing analysis and determine tradeoffs

explicitly by engineer; aids in reconfiguring architectures to provide specified levels of a quality

attribute; and, to help in the newmodelling and automation approaches to apply quality analysis.

According to Bass et al. [2013], every quality attribute has different considerations to be

taken into account for its stimuli, responses, and the architectural decisions used by the design-

ers. few examples are listed below:

Stimuli

• Modifiability – a change request

• Performance – the arrival of events at the system

• Availability – a fault occurring in some portion of the system

Responses

• Modifiability – person-days or -months required to make a requested change.

• Security – intruders breaking into the system and what resources will be accessed.

Architectural decisions

• Performance – the allocation of processes to processors and priorities

• Availability – replication and fault detection and failure protocols

The quality categorization table included in the database (Chapter 3) illustrates the differ-

ences between quality attributes that are explained by three schools namely, ISO-9126, SEI,

and POSA.While, Table 2.12 illustrates another three respected approaches (as examples), with

three different views of quality characteristics (ISO/IEC 9126-1991, IEEE Standard 1061-1992,

and FURPSI, Krasner [1999] and Grady [1992]).

94

2.5. EVALUATING SOFTWAREARCHITECTURE

Table 2.12: Software quality characterisation, Futrell et al. 2002. They are basically based on

McCall Model (1977), which was developed based upon three objectives: to specify (Factors),

to build (Criteria), and to control (Metrics).

Quality ISO /IEC IEEE Standard FURPSI Krasner 1999 /

Characteristic 9126-1991 1061-1992 Grady 1992

Efficiency

Time Behaviour X X (Time Economy)

Resource Utilisation X X (Resource Economy)

Functionality

Accuracy X

Adequacy X

Compatibility X

Completeness X

Compliance X

Correctness X X

Customisability X

Evolvability X

Extensiveness X

Interoperability X X

Security X X

Suitability X

Value/Satisfaction X

Integratability

Applicability X

Compatibility X

Evolvability X

Expressability X

Integrity X

Openness X

Quality of the Parts X

Requirements Enabler X

Special Topics X

Maintainability

Analysability X

Changeability X

Correctability X

Expandability X

Stability X

Testability X X

Performance

Time-Constrained X

Resource-Constrained X

Portability

Adaptability X

95

CHAPTER 2. BACKGROUND

Table 2.12: (continued)

Quality ISO /IEC IEEE Standard FURPSI Krasner 1999 /

Characteristic 9126-1991 1061-1992 Grady 1992

Installability X X

Conformance X

Hardware Independence X

Software Independence X

Reusability X

Replaceability X

Reliability

Availability X X

Failure Rate X

Fault tolerance X X X

Maturity X

Nondeficiency X

Recoverability X X

Supportability

Maintainable X

Reusable X

Support Response X

Testable X

Usability

Understandability X X X

Learnability X X X (Easy to Learn and Use)

Communicativeness X X

Operability X X X (Easy to Operate)

Key – X: included in the standard

2.5.4.4 Sensitivity points and trade-off points

According to Bass et al. [2013], the key architectural decisions are sensitivity points and

trade-off points. An architectural decision that has elements that are parts of two or more ar-

chitectural components is called a sensitivity point. These components are critical in accom-

plishing a specific quality attribute response measure. The response measure is sensitive for

changing the decision. For example, certain levels of encapsulation determine the length and

scale of effort in person-days that is required to maintain a specific system.

When an architect, a designer, or analyst tries to comprehend the achievement of a quality

goal, they identify where to focus their attention through the help of sensitivity points.

A trade-off point is an architectural decision that affects more than one attribute by some

other attributes, and sensitivity points as well. For example, security and performance can be

greatly influenced by changing the level of encryption the predicted security can be improved by

increasing the level of encryption but processing time can take longer than usual. An example

96

2.6. RESEARCH CHALLENGES

of the trade-off between quality attributes, illustrated by Table 2.13.

Table 2.13: Set of quality attributes trade-offs, after Kan 2003.

C
ap
ab
il
it
y

U
sa
b
il
it
y

P
er
fo
rm
an
ce

R
el
ia
b
il
it
y

In
st
al
la
b
il
it
y

M
ai
n
ta
in
ab
il
it
y

D
o
cu
m
en
ta
ti
o
n

A
v
ai
la
b
il
it
y

Capability

Usability

Performance C C

Reliability C S C

Installability S S S

Maintainability C S C S

Documentation C S S

Availability C S S S S S

C – Conflict; S – Support; Blank – No relationship.

It has been apparent that in order to be able to evaluate SA, one should understand QAs, and

investigate around current quality systems, in order to be able to utilise the best of the quality

arena approaches and thus to avoid their complexity.

2.6 Research challenges

This sectionwill summarise the challenges that face SoftwareArchitecture Evaluation (SAE)

in general, and this thesis work in particular. The following three subsections uncover three main

aspects: 1) the conceptual challenges of this research; 2) the general challenges influencing the

architecture description and evaluation; and 3) the standardisation as a common problem in

software architecture.

2.6.1 Research conceptual challenges

Formal methods, modelling approaches, evaluation techniques, architecture description

languages, architectural styles, and design patterns are different aspects of software develop-

ment that contribute to software architecture maturity, either totally or partially. In order to

understand the automation mechanisms and architecture evaluation, we need to integrate the

necessary and useful knowledge as well as describe the proper methods of these development

aspects.

“We must now try to find out how we should go about getting a good fit. Where do we find

it? What is the characteristic of processes which create fit successfully?” (Alexander [1964]).

It is substantial, one understood the relationships between the aforementioned points, and

to formulate necessary aspects of SA. In order to help to evaluate the architecture accurately,

and to automate the evaluation process. It is essential but complicated, because each aspect of

the topics mentioned above is a large and growing area of research that keeps producing new

97

CHAPTER 2. BACKGROUND

ideas, approaches and techniques. At the same time, researchers in these areas sometimes do

not see out of their area or over their discipline fences. That leaves them separated from others,

decreases their opportunity of integrating different approaches from different areas/disciplines,

decreases their chances of using existing knowledge, tools and approaches to produce new ideas

and to conserve time. Open minds lead to new inventions and help researchers to cope with

technological evolutions.

Furthermore, there are many architecture evaluation approaches. However, none of them

have produced fully automated evaluation techniques for different quality attributes with ad-

justment options. Different software architectures consist of different characteristics that could

be totally different in their forms, relations and their level of abstraction, which makes architec-

ture difficult to study and to evaluate automatically.

Dragging architecture from its abstraction level to lower levels for evaluation purposes is not

a good idea and most times, when that it happens, it loses its advantage of being the software big

picturewith no unnecessary details, Clements et al. [2002a]. Software architects and developers

use patterns in practically in every aspect of the software developmental process.

The following points blend reasons from different fields that enable the SAE process to

become more challenging:

1. Formal methods and languages are important in the evaluation and automation process,

when using a novel developmental approach. Automation and new developmental ap-

proaches, such as Model Driven Architecture (MDA), base processes on machines, com-

pilers, and transformers. Amore precise and formal instructive language input is therefore

necessary for machines to understand before processing. Natural descriptive languages

such as English, are expressive languages. Even-so, they are non-rigorous and non-formal,

and they cannot be processed and interpreted bymachines correctly. Good examples of nat-

ural descriptive languages for software patterns are written in books published by Gamma

et al. [1995] and Buschmann et al. [1996]. However, Architecture Description Languages

such as the ADL family, still have some level of formalities that are not yet fully devel-

oped. Formalisation of models/patterns with architectural modelling and/or description

languages is therefore functionally limited pending the full development, such as Garlan

et al. [1997] work in (ACME Studio).

2. Model-driven methodologies are one way in which architecture evaluation can be auto-

mated. However, these approaches are also currently still in development; understanding

and applying them, for the purposes of this study, is another challenge.

3. Some quality attributes cannot be evaluated in a systematic manner within the context of

the architecture (e.g., Understandability). This may be addressed in further researches on

the subject.

4. Although various tools are available to describe architectures and patterns, map code, and

evaluate architecture, these tools are limited in number and also mostly in the growing

98

2.6. RESEARCH CHALLENGES

stages (e.g., Alloy, ACMEStudio, Armani, ArchE, and Discotect).

5. Multiple terms exist that refer to the same patterns, the descriptions of which include col-

loquial terms (e.g., some patterns included in Design of Patterns by Gamma et al. [1995]

and Pattern-Oriented SoftwareArchitecture (POSA-V1) by Buschmann et al. [1996]. This

allows interpretations to vary and thus becomes an obstacle in patterns-tracing and doc-

umentation. In this case, the issue can be resolved by applying standardised names and

formalised descriptions.

On the other hand, regarding architectures in Artificial Intelligence (AI) particularly; there

are five challenging points as follow:

1. Variations in terminologies between software engineers and artificial intelligence research

groups with regard to architecture, add to the challenges.

2. In AI groups, the lack of definitive research focus on architecture and its evaluation are

a big challenge. As a result, developing a common evaluation method that can be used

in many different AI systems is difficult. I think it will be a great contribution to AI

discipline if future research regarding evaluation methods can be channelled to the AI

arena. Furthermore, Selman et al. [1996] presented two sub-problems that that support SA

challengings in AI systems:

• First, mastering architecture and attention and, second, preferences and utility in

modelling. The first is primarily involved with where the data regarding state utility

originates, whose particular utility is optimised, and what the most practical utility

model is when evaluating finite action sequences. In utility model architecture, vary-

ing assumptions result in varying qualities (e.g. efficiencies).

• Second is primarily involved in the development of richer attention models, which

can turn the analyticmachinery of decision-theoretic inference into the task of problem-

solving, while applying satisfactory decision-making. In any case, the opportunity

exists for the application of these approaches to maximise the general configura-

tion and nature of any architecture, which includes decisions regarding the result-

gathering stage.

3. Also, one of the problems in self-adaptive systems (which considered AI systems), when

it comes to modelling dimensions is defining models that can represent a wide range of

system properties, Selman et al. [1996]. If the models are more precise, they become more

effective in supporting decision processes and run-time analysis. This brings the need for

classification and enumeration of dimensions used inmodelling, in order, to acquire precise

models; also to support runtime, reasoning, and decision-making. As a result, achieving

self-adaptability and specific quality. This point takes us back to an earlier argument about

how important it is to amalgamate different knowledge (modelling approaches, qualities

evaluation, formal descriptions, etc.) in order to develop a richer evaluation model.

99

CHAPTER 2. BACKGROUND

4. In addition, in these types of intelligent systems, one concern lies in the mapping of re-

quirements onto architecture, which involves the utilisation of patterns that could fulfil the

required quality terms. Also, challenges exist in the building of reference architectures for

self-adaptive systems that tackles structural control loop arrangements and quality trade-

offs.

5. An engineering challenge also exists in the development of evaluation approaches that

are able to automatically identify unintended interactions and specific qualities, Cheng

et al. [2009]. One solution to the aforementioned sub-problems in AI can be achieved

with the automation of architecture evaluation models using standardised languages and

mature tools if available. Furthermore, it will be a more beneficial and an intelligent model

for architecture evaluation if it can be made to be self-optimising through adaptation of a

dynamic architecture context.

2.6.2 Major architecture developments challenges and debates

2.6.2.1 General challenges influencing the architecture evaluation

In 2000, three important areas of software architecture advancement were mentioned by

Garlan [2000]. These are: development of architecture description languages and tools, emer-

gence of product line engineering and architectural standards, and codification and dissemina-

tion of architectural design expertise. In addition, three factors that impact the development

of software architecture have been introduced. It involves changing build versus buy balance

(COTS), network-centric computing, and pervasive computing.

Further investigations into factors that influence “industrial practices of software architec-

ture evaluation” were made by Babar et al. [2007]. It was discovered that; technical, socio-

political, business, managerial and organisational factors had roles to play. To be a participant

in their studies, one had to have a minimum of 5 years experience as a software architecture

designer with an average number of 8 years experience of designing and evaluating software

architecture in different industrial domains. Empirical evidence from research has confirmed

that there were some influential factors to be considered in architecture evaluation.

Most important, the technical factors that could influence this research direction are:

• Quality attributes being evaluated.

• Integration issues between evaluation model and other environments (e.g. systems to eval-

uate).

• Representing and visualising architectures.

• The languages to be used and the availability of tools, (e.g. SysML language, Artisan tool)

The practice of the product line engineering is still not common. Thus, we need to have

a better understanding of the economics, processes, and objects that could help in the use of

the product line approach to become successful. The product line approach requires different

100

2.6. RESEARCH CHALLENGES

development methods, which is an issue. When it comes to a single product approach, the

evaluation of the architecture is based on the specifications of the product itself. This has made it

easier to build several single products, which are independent from each other. Each architecture

is based on the developmental environment and many assumptions, Garlan [2000].

This challenge makes the integration of different products, from different vendors, which

can bridge the gaps between products without any mismatch in their architectures very difficult.

As a result, the evaluation process of the end product integration (if we can make the integration)

becomes harder. The general architecture evaluation method will allow evaluators to adjust the

model to the required environment. This will allow them to evaluate any architecture through

an automation process, which is not an impossible task, but we are still far from achieving this.

Architecture description language challenges:

Due to the popularity of box and line depictions for describing architecture designs, which

employ non-formal notations leads to a number of problems, such as:

• Designs in this situation cannot be analysed to see if they meet the required set of QAs.

• The architectural constraints that may have been observed at the beginning of the design

may not be implemented during the system development.

Also, tools support is important:

The use of tools that support architectural languages andmodelling techniques (e.g. ACME-

Studio by Garlan, Rational Rose by IBM, andArtisan) has been provided to facilitate developers

tasks. Utilisation of the tools involves, parsing, displaying, analysing and simulating archi-

tectural descriptions. Thus it defines the importance of tool support in architectures and their

evaluation.

The availability of good tools helps researchers to do more quality work with less time,

also to blend-in some methods, frameworks, languages, and notations into one approach, if

necessary; such as Artisan tool, which support several languages and architecture framework,

as explained in future work section (Chapter 7).

Some researchers do care about the methodology and notations of a language during their

development of any product, neglecting to pay attention to the tools that support their utilised

language, which results in:

• Time wasted, so developing architecture description using tool that supports languages and

models creation, is much faster.

• Product with no modifiability, especially if the language is not supported by any tool.

• Loss of interest by other researchers, to develop and improve the existing product.

More information about ADLs can be found in Appendix B, Section B.3

At the same time, we should note that there is a difference between what researchers see

as desirable and what can be observed from practice. For example, ADL provides tool support,

101

CHAPTER 2. BACKGROUND

but there has been some proposals that focus on areas like analysis, refinement, and dynamism,

Medvidovic et al. [2000].

Another challenge facing the SA and SAE are the limitations of some languages with no

mechanism of integrating them. For example C2, Rapide, Wright and SADL can support archi-

tectural analysis. In these areas, ADL has always left some facets unexplored and focused on a

particular technique. This has led to the use of ACME as an architecture interchange language.

In order to help during the interaction and instill cooperation between different ADLs and tools,

thus filling the gaps. SADL andRapide are the only tools that can provide support to refine archi-

tectures across multiple levels of abstraction. SADL requires the mapping of constructs between

the abstract and an architectural style, thus making its support limited. Currently, ACME can

only provide visuals and conformance of the architectures.

It has been observed that, the ADLs available emphasise is on visuals and analysis of soft-

ware architectures as compared to their refinement and dynamism. It is worth pointing out that

they are still growing. The integration of architectural based-tools used in the architecture de-

scription modelling and languages, standardisation of the notations, requirement elicitation,

and evaluation methods are still considered as a major challenges facing SA description in gen-

eral and ADLs development in particular.

2.6.2.2 Standardisation as a common problem in software architecture

There are common problems that impact the development of software architecture and its

evaluation. This brings us to standardisation. Different and common architectural factors influ-

ence the development and evaluation of software architecture today concentrating on standard-

isations, which are:

• Commercial off-the-shelf products (COTS) versus the requirements satisfaction.

• Integration of different products versus environment challenges.

• Major companies buying out small companies that face integration and tool challenges.

Garlan [2000], proposed three solutions to the three challenging factors above. The solu-

tions were as follows:

• Creation of industry standards (e.g. component based standards, UPDM).

• High-level architecture standards (e.g. IEEE-42010, DoDAF, MoDAF).

• Standardisation of notation and tools (e.g. UML, SysML, ADLs).

All his three solutions enforce standardisation in general for the architecture development

process and evaluation while taking into account environmental challenges. For example, ac-

cording to Babar et al. [2007] “Describing architectures is a big challenge. We use UML for this

purpose, and UML tools evolved to have better integration with documentation packages like

MS Word. Also, the survey reported by Malavolta et al. [2013], indicated the needs for better

standardisation, integrability, and mature tools, in order to improve the description of SA and

make its artefacts more useful in industry.

102

2.7. CONCLUSIONAND CONJECTURE

Hence, tools that enable architects to design an architecture and then put the design into

a format that is comprehensible to business people are important. Also, there is ,more need

for stable integrated environment that incorporates modelling, text composition, and knowledge

management features for supporting architectural practices, which could be improved by using

standardised languages and better tools. For instance Artisan tool can generate all the archi-

tecture description and models into World format and the table into Excel format. However,

the generated report format, needs more effort by the Artisan vendor (PTC Inc.), to be able to

produce better reports.

2.6.2.3 Architecture modelling Challenges

The use of modelling approaches, such as MDA to develop software architecture and its

evaluation has its challenges, France et al. [2007] explained the challenges that face MDE ap-

proaches (includingMDD andMDA) during the Future of Software Engineering-(FOSE) work-

shop.

The categories below show the challenges that researchers have faced when trying to make

the MDE vision a reality:

1. Modelling Language challenges; these are the problems that result as a failure to provide

support for creation, the use of problem-level abstractions in modelling languages, and

during the models analysis.

2. Separation of concerns challenges; the challenges here are as a result of problems associ-

ated with modelling systems that use multiple overlapping viewpoints to analyse hetero-

geneous languages. Thus, we should pay attention during this study, while proposing a

solution, because we could face the overlapping problem between viewpoints.

3. Model manipulation andmanagement challenge; this is as a result of problems linkedwith:

1) defining, analysing, and usage of model transformations; 2) while trying to maintain

traceability links between different model elements that support evolution and round trip

engineering; 3) maintaining consistency among different viewpoints 4) tracking versions

and lastly; 5) use of models during runtime.

More discussion about how MDE could influence the architecture evaluation has been il-

lustrated in several resources such as model driven software development, Rech et al. [2009].

This suggests that the development of an architectural evaluation model/framework/profile,

will be critically influenced by many factors that have to be considered during this research

program.

2.7 Conclusion and Conjecture

In summary, this chapter draws attention to the challenges facing software architecture de-

scription and evaluation. The effort being put into this problem area, increases the importance

of finding an optimal solution. That is still a long way off, but nonetheless reachable.

103

CHAPTER 2. BACKGROUND

Currently the precision of SA documentation, description, evaluation, tools, frameworks,

and models vary from language to another. However, there are no general standardised auto-

mated evaluation mechanisms available, which could deter the utilisation of SA artefacts. In-

formation presented in this chapter regarding the current SA standardisation, integration, eval-

uation, and modifiability increases the necessity for more investigation and proposals for new

solution concepts.

The main contribution, from this research, to addressing these issues is to i) target software

developers’ minds and knowledge to improve their awareness and develop a common vision

regarding new SA and SAE challenges; ii) offer new conceptual solutions, through the results of

deeper analysis; iii) share additional knowledge gained from employing survey and field study

methods; and iv) prove the problem involvement in industry through an analysis of a known

reference architecture.

An approach concentrating on improving human (software devel-

opers) knowledge and offering a new initial SAE concept, based on

interdisciplinary knowledge, which can be developed using several

research methods, frameworks, and standards, is sought, in order

to provide better SAE techniques to help in building better comput-

erised products.

Conjecture

104

Part

II
Contribution

105

Chapter

3
The dilemma of Software Pattern

descriptions with partial solution

It is commonly said that a pattern, however it is written, has four essential parts:

a statement of the context where the pattern is useful, the problem that the pattern

addresses, the forces that play in forming a solution, and the solution that resolves

those forces.

Fowler [1997]

107

CHAPTER 3. THE DILEMMAOF Software Pattern DESCRIPTIONSWITH…

3.1 Introduction

The aim of the development of a Software Pattern (SP) is to provide a reliable and reusable

framework for solving similar (software) problems within distinct contexts. To accomplish this

objective competently, it is imperative to document patterns effectively, in order to facilitate

the comprehension of their concepts to their users, thereby encouraging their utilisation over

and over again. Thus, the documentation of SPs needs to be explicitly explained, together with

their relationships with any QualityAttribute (QA) that they support or hinder, in order to better

satisfy the implementation of stakeholders’ requirements.

This chapter illustrates how SPs are inconsistently defined, categorised, and linked to

QAs, through deep analysis of six well-known SPs resources. Also highlighted are

some important factors that impact pattern usability, followed by a proposed solution.

In order, to provide a reliable method for maintaining and easily representing the research work,

I have created a database application containing all required information. This database should

serve future research endeavours and thence help in developing software/systems with less con-

fusion and predictable characteristics.

Is this study worthwhile?

The main SP issues in relation to Software Architecture (SA) were started with a

few questions that are illustrated in Figures 3.1a and 3.1b.

Also, this study received a positive response as per the findings of a question-

naire. The result of a bipolar scale (Likert scale) for the statement: “Studying re-

lationships between patterns and quality attributes based on the current reliable SP

references, and creating a database to store these relationships on the basis of stan-

dardised quality attribute definitions, is valuable knowledge”, is significant, where

t = 6.34, p-value < .01; hence, there is strong agreement with this statement, which

makes this work worthwhile.

3.2 Rationale of the investigation approach

This investigation of SPs description and their relations in regard to QAs was necessary for

three reasons:

i. SPs are important components to Software Architecture (SA), because developers often

utilise SPs to create their own software/system architectures.

108

3.2. RATIONALE OFTHE INVESTIGATIONAPPROACH

(a)

(b)

Figure 3.1: Visualizing the ProblemArea.

ii. To emphasise the problem concept.

iii. To increase the value of the proposed solution to (software) pattern users.

The investigation was accomplished through a phased approach as illustrated in Figure

3.2.

Figure 3.2: The main SPs investigation phases towards producing the solution.

Seven analysis steps have been carried out to satisfy the above phases as described in Table

3.1.

109

CHAPTER 3. THE DILEMMAOF Software Pattern DESCRIPTIONSWITH…

Table 3.1: Descriptions of the 7-Analysis Steps for the Targeted Resources.

Process # Investigation Steps Description

1

Pattern Resource

Selection.

Identifying the most widely and reliable resources

within the field of software patterns through extensive

literature review, so becoming the targeted resources for

this investigation study, (phase 2)

2

Pattern Categorisa-

tion Approach.
Study and compare all categorization approaches within

the selected resources, (phase 1)

3 Pattern Descriptions.

Study and compare the description of patterns between

targeted resources in the domain of quality attribute re-

lationships. This step includes the investigation of every

resource and the way they define and categorise quality

attributes in their descriptions, (phases 1 and 3)

4

Quality Attribute

Approach.

Identify and select one of the best-standardized practices

in the field for defining and categorising the quality

attributes through further literature review. Then use

the selected approach for identifying the relationship

between SPs and QAs. Also, the same approach is used

for comparisons between different quality attributes

categorization schema within the targeted resources,

(phases 1 and 3)

5

Creation of the Rela-

tionship Matrices.

Based on (SP and QA) descriptions that have been

reported by the selected resources; a (SPs-QAs) rela-

tionship matrix for each resource have been developed.

Also, general common matrix that include all individual

matrices are created for better usability, (phase 4)

6

Creation of the Qual-

ity Attributes Cate-

gorization Tables.

Based on the information collected from steps 1–5,

create comparisons tables for the QAs classifications,

between selected QAs approaches and others, within the

targeted resources, (phase 4)

7 Conflicts and Issues.

Based on the investigation steps 1–6, identify any rela-

tionship conflicts and issues within the descriptions of

patterns on targeted resources, (phases 1and 3).

The software pattern sources included in this study are:

i. Gamma et al. [1995] – the Gang of Four (GoF) book,

ii. Buschmann et al. [1996] – Pattern-Oriented Software Architectures (POSA)-V1,

iii. Schmidt et al. [2000] – POSA-V2,

iv. Kircher et al. [2004] – POSA-V3,

v. Bass et al. [1998] – Software Engineering Institute – Software Architecture in Practice,

and

vi. Schumacher et al. [2006] – Security Patterns.

110

3.3. INVESTIGATIONANALYSES

Figure 3.3 illustrates the references included in this investigation.

Figure 3.3: Examined references included – (Database snapshot).

The selection of these six pattern sources is based upon my preliminary research and re-

spondents’ answers to a survey questionnaire distributed in 2012, as part of the investigation

phase one. Almost half of the respondents identified GoF and POSA books as their reliable,

popular, and well-known software pattern references. Bass et al. [1998] and Schumacher et al.

[2006] are included in this study as they tackle architectural styles, the security domain, and are

good examples of pattern languages. Despite the age of some of the resources, they are all still

utilised today, confirming their ongoing value and suitability for inclusion in this research.

3.3 Investigation Analyses

This section and its sub-sections discuss the problem domain and illustrate the limitations

and gaps within current literature.

3.3.1 Patterns and Quality Attributes Refinement

To create or describe a pattern we should understand the concept of patterns and follow

rules or constraints to document them in the right way. To assess patterns against QAs, we

should do the same to the QA concept. The rest of this section lays out the problems that exist

within the concept and rules of creating and documenting software architecture patterns that

have a direct impact on their utilisation and evaluation. Also, this section presents justifications

for building a (SPs-QAs) relationship database, and some of the challenges that have been faced

during its construction.

111

CHAPTER 3. THE DILEMMAOF Software Pattern DESCRIPTIONSWITH…

3.3.1.1 Problems Discovered within the Current Pattern Definitions and Termi-

nologies

Numerous pattern definitions are suggested for varying contexts. It might therefore seem

difficult to define patterns in commonly acceptable terms. However, it seems sufficient to say

that a pattern is essentially the solution to a problem within a particular domain, which can be

applied to help resolve similar problems in different contexts within the same domain. The

definition of ’context’ has evolved over time. For the purpose of this study I deem Dey [2001]

definition as the most appropriate and probably the most widely accepted.

Dey defines ‘context’ as “any information that can be used to characterise the situation of

an entity. An entity is a person, place, or object that is considered relevant to the interaction

between (for example) a user and an application, including the user and the application”. Also,

Alshaikh et al. [2008] and Alshaikh [2011] PhD thesis provide a recent and deeper analytical

study of context, its use in general, and in the software domain in particular.

Gabriel found the definition of a pattern as described by the GoF is “a solution to a prob-

lem in a context,” is unacceptable, Coplien [2014]. He believed that it failed to illustrate the

significance of the concept, and may have even caused misinterpretation amongst software pro-

fessionals. Also he believed that many of the existing pattern definitions were indistinct and

did not accurately express the implications patterns have. He therefore proposed a new defini-

tion, amending an early version by Alexander [1979]: “Each pattern is a three-part rule, which

expresses a relation between a certain context, a certain system of forces, which occurs repeat-

edly in that context, and a certain software configuration which allows these forces to resolve

themselves”.

Others, such as Buschmann et al. [1996], Fowler [1997], and Riehle et al. [1996], and

Coplien [2014], have their own definition of ‘pattern’.

Most of the definitions share common key points with a few variations. Some are more

elaborate than others or include further important aspects such as forces. Defining the driver

forces and constraints in a pattern as a solution is an important step during pattern resolution,

Alexander [1979].

Having different terminologies and names in real life to explain the same thing, often due

to differences in cultural factors or language, is acceptable. However, this is inappropriate in

the context of SPs, as it leads to confusion. It is therefore considered as an absence of standard-

isation, which can cause major challenges, Garlan [2000].

The terminologies shown in the Figure 3.4 are being used within the current literature,

Graça [2017] and Fairbanks [2018]. For example, the Architectural-Styles term is used by

Bass et al. [1998], Fielding [2000], and Capilla et al. [2016]. While, Architectural-Pattern

is termed by Buschmann et al. [1996] and Richards [2015]. Also, Alexander [1964], Fowler

[1997], Bass et al. [2013], and Comyn-Wattiau et al. [2016] refer to Conceptual-Model; and

112

3.3. INVESTIGATIONANALYSES

lastly, Conceptual-Pattern is used by Riehle et al. [1996] and Grone [2006].

Thus, the terminology problem persists, while the context of developments changes as

shown in Figure 3.4, suggesting different concepts. But are they?

The philosophy surrounding the conceptual or architectural ‘model, style, and pat-

tern’ in the aforementioned terms attempts to convey a single idea through various

explanations, all of which share the concept, components, restraints, and relationships

that focus on a high abstraction level. However, the conceptual models should be

explained further through detailed descriptions, in order to be able to move from an

architectural context to a design context and so forth.

All the terminologies shown in Figure 3.4, do have the same concept of pattern, which is

to provide a solution for a specific problem context.

Although, minor differences exist, which are based on each author’s visions and usage of

patterns within various development contexts, (e.g. architecture level or design level) .

However, common terminologies surrounding patterns and concrete descriptionsmight lead

to improving the utilisation and understanding of SPs, which should minimise the confusion in

the mindst of their users. Hence, these variations are challenging factors for this study.

The same discussion also applies to the design phase as briefly discussed below.

Coding Pattern

Programming
Pattern

Idioms

Design pattern

Architectural
Style

Architectural
pattern

Conceptual
Model

Conceptual
pattern

C
onceptof
P

attern

Im
plem

entation
P

hase

Design Phase

A
rchitectural

phase
C

onceptual
phase

P
roblem

D
om

ain
(e.g.

S
ecurity)

Terminologies Development
Context

Problem
Context

Figure 3.4: Terminologies of “Pattern” within software development lifecycle.

113

CHAPTER 3. THE DILEMMAOF Software Pattern DESCRIPTIONSWITH…

Alexander defines design as “a process of synthesis, a process of putting together things, a

process of combination ”, Alexander [1979].

According to Buschmann et al. [1996], “design patterns depict frequently occurring ar-

rangements of interacting components, thus helping to resolve design dilemmas in a given frame

of reference”. What this essentially suggests is that a pattern cannot be translated into code, but

rather the pattern should be moulded in a way that it provides a solution to the problem.

Currently, software developers can select required patterns in the form of code, for example

State Pattern, coded in Java, Barth et al. [2007, pp. 187-189]. Also, there are numerous patterns

on the Internet, which are coded in different programming languages and are ready for use. In

my opinion, I think that restricts the generalization concept of pattern description.

Therefore, I agree with Buschmann et al. [1996], that patterns should be highly generic

with textual explanations in addition to block and connector diagrams, in order to support higher

reusability in multiple contexts and better understanding. However, the textual explanations and

the block and connector diagrams should not be arbitrary. Also, they should be applied within

a common standardised procedure, description language and / or a framework. Consequently,

their usability factor will increase due to the clarity of their descriptions. Also, divergences in

pattern interpretation does not take them out of their context or main objectives.

Various definitions (rules) of design patterns that convey a diversity of terminology and de-

scription are apparent when comparing the definitions of Alpert et al. [1998],Wolfgang [1994],

Coplien et al. [1995], Gamma et al. [1995], and Buschmann et al. [1996].

To conclude, the concept of ‘pattern’ can be used for describing an architecture, design, and

implementation. What’s different then? It’s the diversity of the context. Hence, reducing pat-

tern documentation conflicts, needs more research and standardised procedures, to help increase

their effective use. Possible research includes research on the practices used to apply patterns,

empirical research on industrial software projects concerning patterns usage, and empirical re-

search that compares the latest documented SPs descriptions and if they applied differently in

the real world.

3.3.1.2 Problems Discovered within Current Pattern Categorisations

One manifestation of SPs diversity is their categorisation. A categorisation outline is em-

ployed to organise the patterns as a collection so as to make them accessible for searching and

storing by users.

The classification approaches for the investigated resources are:

• The first and the second volumes of the POSA patterns are based on two primary cate-

gories: pattern and problem categories. The pattern category is subdivided into 3 types

within both volumes, while the problem category is organised into 10 types in POSA-V1,

and 4 types in POSA-V2.

114

3.3. INVESTIGATIONANALYSES

• POSA-V3 patterns are based on 3 primary categories within the domain of typical re-

source management life cycles. These categories are resource acquisition, resource life

cycle and resource release.

• POSA-V4 patterns are categorised on the basis of 13 technical topics and distributed systems.

Bear in mind, that POSA-V4 has been added into this section for the purpose of classifi-

cation study only, in order to emphasise the existence of SP categorisation problem.

• The GoF team, however, used a different approach, classifying patterns based on pur-

pose and scope. ‘Purpose’ is further sub-categorised into creational, structural, and be-

havioural, while ‘scope’ is divided into categories of classes and objects.

• The SEI book by Bass et al. [1998] contains architectural styles that are categorised on the

basis of respective subjects and relations. Bass et al. [1998] describes thirteen different

styles, of which the five primary styles are independent components, data flow, data-

centre, virtual machine, and call and return. The primary styles signify the relationships

amongst the sub-styles and their respective topics. Taking that into account, the Bass et al.

[2013] version does not mention their styles’ categories.

• The book on security patterns by Schumacher et al. [2006] comprises pattern categories

bearing reference to enterprise and system levelswithin the security domain, and its related

to engineering and operations activities at all levels.

Based on this study, the context of technical topics in (POSA-V4) is the same as the con-

text of technical problems, as well as the problem category, which are recognised within

volumes 1 and 2. For example, the ‘From Mud To Structure’, is described as a problem

category in POSA-V1, and as a technical topic in POSA-V4.

Also, another example of the categorisations confusion, is concerning the Interpreter pat-

tern, where GoF considers this pattern as a design (behavioural) pattern, but the SEI group

considers it an architectural (virtual machine) style. So, what is the Interpreter pattern, and does

this affect the reusability of this pattern? Can we use the same pattern, explained by GoF in the

context of a virtual machine as explained by SEI group, or do we need to adjust it to fit the new

context?

By comparing the targeted resources mentioned above, it is clear that there is no com-

mon approach for categorising patterns. However, the ‘problem’ as a category con-

cept, is shared between many pattern books, although under a variety of names, for

example, it is named ‘purpose’ in GoF book; ‘problem’ in POSA-V1 and V2, ‘tech-

nical topics’ in POSA-V4, and as ‘main style or related subject’ in SEI work.

This lack of a common classification, particularly for technical topics, such as software

patterns, can end up complicating things for users, researchers, and readers. Therefore, when

users seek appropriate patterns for resolving certain real-life issues, they are confronted with

115

CHAPTER 3. THE DILEMMAOF Software Pattern DESCRIPTIONSWITH…

different guides and classifications for what are essentially the same patterns. Whilst, this can

assist the users in employing the patterns in diverse contexts, it may also contribute towards

making the reuse factor of patterns more complex, unmanageable, and less efficient.

3.3.2 The Variation Concept as a Problem within QAs

There are many different schools of thought regarding the management of QA and how they

can be addressed effectively, such as ISO, SEI, U.S. Department of Defence (DoD), and IEEE)

standards, Futrell et al. [2002]. Hence, there are challenges that arise when quality has to be

defined in the real world. This section tries to demonstrate in brief the difficulties that arose

during this study from the QA documentation variation viewpoint.

According to Mitra [2008] and references therein pertaining to Juran and Gryna (1993),

the Crosby (1979), IEEE-1061, and ISO-9126 (including the superseded ISO-25010)1, each has

their own individual concept of quality. Dr. Ronald Petrasch [1999] argues that there are varia-

tions in QA definitions that are acknowledged by both the community and researchers involved.

The presence of different concepts of quality amongst different people and communities illus-

trates that there are variations within the definitions for each QA that are likely to be inconsistent.

Thus, small variations within QA definitions could increase the difficulties in defining and

evaluating software architecture including its styles/patterns.

As with SPs, variations exist in QA categories and terminologies, depending on the domain

in which they are applied. People have designed different ways to classify QAs using different

approaches.

Evidence of such variations introduced to improve the software measurement domain in-

clude:

• Quality in use: ISO-25010 has 5 characteristics instead of 4 in ISO-9126. Satisfaction,

efficiency, and usability were added to the latter, while compliance and productivity were

deleted.

• Internal and external characteristics and sub-characteristics integration with two new char-

acteristics: compatibility and security, Desharnais [2013]. Also, the comparative study of

software quality models reported by Suman et al. [2014] demonstrates a similar example.

However, these aspects will not be discussed within this research. The focus in this study is

to explore the differences in current QA and SP documentation and to demonstrate the issues

associated with these differences concerning their relationships with each other. An elaborated

example will explain this matter in Section 3.4.

1Even though, (ISO-25010) was released after this statement was published, the earlier standard is included here,

because the statement is applicable to both standards.

116

3.4. CONFLICT EXAMPLE - (PROXY PATTERN)

3.4 Conflict Example - (Proxy Pattern)

This example has been constructed to depict and illustrate the issues discussed in Sections

(3.3.1 and 3.3.2). It is a comparison between the GoF and POSA-V1 Proxy pattern documen-

tations. This comparison shows some differences that led to confusion and reduction in the

utilisation of SPs, as demonstrated in Figures (3.5 and 3.6).

Proxy pattern categorization schema, variants, and relation-
ship with quality attributes By Gamma et al. (1995) – (GoF)

Secondary
Categorization

Primary
Categorization

S
co

pe

Purpose

S
tr

uc
tu

ra
l

Object

(GoF) "Proxy pattern variants"

Virtual

Protection

Remote (Ambassdor)

Smart Reference or (Pointer)

Key:
Support Hinder

Quality Attributes

Lower Cost
Optimization

Security

Lower Cost

Lower Cost

Figure 3.5: The GoF approach for classifying and describing Proxy pattern, includes all variants

and relationships with quality attributes.

The definition of the Proxy pattern has similarities in both resources. While POSA-V1

does elaborate further in their description, there are, nonetheless, other differences between both

approaches such as:

1. Number of instances or variants.

2. Their primary and secondary categorisations.

3. The Proxy Pattern relationship with QAs.

The GoF divides Proxy Pattern into four (4) variants (Figure 3.5):

• Remote.

• Virtual.

• Protection.

• Smart Reference.

In contrast, the POSA group divides the Proxy Pattern into seven (7) variants namely

(Figure 3.6):

117

CHAPTER 3. THE DILEMMAOF Software Pattern DESCRIPTIONSWITH…

Proxy pattern categorization schema, variants, and relationship with
quality attributes By Buschmann et al. (1996) – (POSA – Volume 1)

Secondary
Categorization

Primary
Categorization

P
at

te
rn

Problem

D
es

ig
n

Access Control

(POSA V1) "Proxy pattern
variants"

Virtual

Protection

Remote (Ambassdor)

Synchronization

Cache

Firewall

Counting

Key:
Support Hinder

Quality Attributes

Lower Cost

Usability
Security

Performance

(apply to all variants)

Efficiency
(apply to all variants)

Figure 3.6: POSA team approach for classifying, describing Proxy pattern, include all variants

and relationships with quality attributes.

• Remote.

• Virtual.

• Protection.

• Cache.

• Synchronization.

• Counting.

• Firewall.

The common ’variants’ (with yellow boxes in Figure 3.5 and Figure 3.6) between both

classifications are Remote, Virtual and Protection. An important question here is, which QAs

are supported or hindered by the variants in both references?

Figure 3.5 shows that all GoF Proxy pattern variants support ‘lowering cost’ as a QA, and

Virtual and Protection variants support ‘optimization and security’ respectively.

The POSA team on the other hand considered all Proxy pattern variants, including common

ones, to be supportive of the QAs usability, security, and performance, but hindered the QA

‘efficiency’.

The above divergence in categorisations schema, variants, and relationships between

118

3.5. SUMMARYOFTHE ISSUES DISCOVERED BYTHIS STUDY

SPs and QAs, increases confusion, making it harder to predict the overall outcome

when utilising these patterns, as well as reducing pattern usability.

3.5 Summary of the issues discovered by this study

Themost important issues revealed by the above four sections (from 3.1–3.4) are listed with

a few more examples in this section, as follows.

• There are no standardised definitions or categorisations of QAs that are presented by

Gamma et al. [1995]. Their approach instead focuses on the explanation of how patterns

can be used to support claimed QAs. They used their own (largely non-standard) words

and examples to explain QAs in the context of software patterns.

• ISO-25010 standard and its predecessor ISO-9126, the POSA Books, and SEI Bass et al.

[1998], define QAs somewhat differently using varying vocabularies, although the con-

cepts of their definitions are largely similar for each QA. However, definitions vary in their

sentence structuring, terminologies and how many features or constraints are included. I

believe, that any additional features or constraints added to any QA definition should be

considered as a prerequisite that needs to be fulfilled, to achieve that QA with all it’s char-

acteristics. This could have an influence on this research evaluation framework concept in

the future. As a result, the above variations in the QA descriptions could have an impact on

the overall evaluation process for any system or structure (e.g. patterns), and may cause a

conflict between development teams if they use non-common descriptions for the desired

quality requirements.

Figure 3.7: Reliability as an example of its QAs sub-categories differences.

• ISO-25010 standard and its predecessor ISO-9126, the POSA Books, and SEI Bass et al.

[1998] present different QA categories. For example, ISO-25010, ISO-9126, and POSA

Books, each have ‘Reliability’ as one of their main categories, but they differ in their

sub-categories as illustrated in Figure 3.7. It is very likely then that we will experience

differences when trying to satisfy or validate the ‘Reliability’, using both approaches.

• One of the biggest causes of confusion and difficulty in traceability is the use of different

119

CHAPTER 3. THE DILEMMAOF Software Pattern DESCRIPTIONSWITH…

names for the same patterns or the one name for different patterns. For example, GoF

team explain thatAdapter and Decorator patterns as two different patterns, which they are.

However, both have been identified as a Wrapper pattern. It is neither logical nor user-

friendly for the same pattern to have different names or different patterns to have the same

name, making it hard to identify, trace, and apply. It is understandable to have a variety of

names if the pattern has individual instances or variants, such as the Proxy variants example

discussed earlier. There are other examples of this “documentation problem” where the

same pattern has various titles: Publisher-Subscriber, Observer, and Dependent are all

different names for the same pattern.

Indeed there are 8 different names described by Schumacher et al. [2006] for Check-Point

pattern alone!, . They are:

PolicyDefinition Point (PDP), Policy Enforcement Point (PEP),AccessVerification, Hold-

ing off Hackers, Validation and Penalization, Make the Punishment fit the Crime, Valida-

tion Screen, and Pluggable Authentication.

However, GoF and POSA books have provided something as a solution to this problem, by

introducing “Also Known As” section during their pattern descriptions. Other resources

such as Schmidt et al. [2001] and Bass et al. [1998], however do not acknowledge alter-

native names in their work.

• Some resources include the same patterns with the same names and definition, but with

different QA relationships. For example, in POSA-V1, the Piping and Filtering pattern

supports Testability and Exchangeability, whereas SEI book lists it as supportingMaintain-

ability and Usability. Questions therefore arise as to which QAs the pattern truly supports,

and how these different conclusions have been reached. Not forgetting that QA relation-

ships seem arbitrary, and the answer most probably lies with the differing experience and

observations of the pattern authors, or because there is still a lack of proper methodology

to capturing and documenting patterns, which I believe (from experience), is the case.

Using expert knowledge regarding recurring problems to provide feasible solutions to the

community relies on good standardised documentation, as recommended by Garlan [2000].

Standardisation helps decrease the challenges facing software development, preventing user

confusion. Also, representing experts’ opinions regarding SPs-QAs relationships in one place

with comparison to known QA standards should help minimise the confusion and increase de-

velopers’ understandability, as explained in the following section.

3.6 Proposed solution

A proposed solution is presented in this section, based on SP-QA investigation.

120

3.6. PROPOSED SOLUTION

The objective of this solution is to produce SPs and QAs definitions, categorisations,

and relationships discrepancies between reliable resources in a new easy representa-

tion, in order to:

1. Round up all SPs-QAs required information from all selected references into one place

providing summaries for numerous resources, to facilitate the process of comparing

their descriptions, and to increase the utilisation and evaluation of SPs by showing the

main conflicts.

2. Enthuse software developers and researchers to be able to contribute to the problem

domain, in order to improve software/systems development process by improving SPs

documentation.

3. Improve SA description and SAE domain by knowing SPs-QAs relationship discrep-

ancies before utilising SPs.

To follow standardised documentation as recommended by Garlan [2000], I include the

ISO-9126 quality model and the aforementioned resources in Section 3.2 that are the references

from which to build the relationship matrices between both SPs and QAs.

Please note that, the quality standard ISO-25010 is not included, because this investigation

was started and relationship matrices were developed before it was published.

However, the SPs-QAs relationshipswere built based on both individual QA assessment and

a hierarchy schema. Thus, the proposed solution is still applicable if the ISO-25010 standard is

used for individual QAs rather than the hierarchical relationship between a main QA category

and its sub-categories.

For example, due to the sub-category differences between the two standards, theReliability

QA in ISO-25010 will not be fulfilled (in this study) by Availability, but it will be fulfilled by

all the other three QAs as illustrated in Figure 3.8. Whereas, Reliability within ISO-9126, will

be fulfilled by all its sub-categories.

Figure 3.8: Reliability sub-categories differences between ISO-9126 and ISO-25010.

The solution main features are:

• identification and categorisation of 168 patterns, and relationships between 120 (SPs) and

50 (QAs);

121

CHAPTER 3. THE DILEMMAOF Software Pattern DESCRIPTIONSWITH…

• creation of a general matrix for (SPs-QAs) relationships, individual matrices, and pattern

categorisations tables;

• QAs description tables consisting of definitions, comments and their relationships with

related SPs;

• SPs description tables consisting of definitions, alternative names, comments and their

relationships with QAs;

• a contrast table of QA classifications between POSA, SEI and ISO-9126; and

• a sustainable representation for this study’s results provided through a database with highly

usable navigation.

To avoid repetition within the following sub-sections, I will try to explain necessary infor-

mation only, because most of the figures included are clear and self-explanatory.

To conclude, the following sub-sections describe the proposed solution through its tool

(database) pages, which provide an excellent single point of reference for all particular users

through its User Interface (UI).

3.6.1 Functionality description

The database application is a comprehensive solution for creating, editing and viewing all

information collected and described in the previous three phases.

In an endeavour to provide a “Best-in-Class” way of maintaining and representing the re-

search work, it was crucial to develop an auxiliary tool that would deliver good reporting service,

and reduce creation and editing difficulties. There was also a need to gear-up to the next level,

having a systematised and integrated monitoring interface, suitable for use in ongoing research

activities pertaining to a similar field.

Some of the proposed solution repository features and benefits are:

• Usability Impact: Enhance user satisfaction with benefit of being highly convenient; in-

formation can be accessible over intranet & internet.

• Operational Impact: increase efficiency and effectiveness.

• Reusability Impact: can be customised for any other research activities in the future.

• Security features – auditing login/logout information, comprehensive user management

and password policy.

• Can be used to host other research work results and data.

• No limitation on the number of users.

The overall database structure, matrices, tables, and graphical models are illustrated in Fig-

ure 3.9.

3.6.1.1 Pages descriptions

1. Home: The landing page for the application. It has 2 tabs as shown in Figure 3.10:

122

3.6. PROPOSED SOLUTION

Matrix Page

General

Matrix
GoF

Matrix

POSA1

Matrix

POSA2

Matrix
POSA3

Matrix
Security

Matrix

General Graphical

Matrixes Model
Matrix

Patterns Relations

Graphical Model
Categorization Table

Pages within Database

Tabs within pages

SEI
Matrix

Figure 3.9: Overall structure of matrix pages and tabs.

• Overview: describes the application in general.

• DB Schema: shows the graphical DB Schema of the research work.

Figure 3.10: Landing page, which describe the application and its pages functionalities.

2. Pattern List: landing page for the pattern list, which include the general pattern list that
shows all the patterns available in alphabetical order as shown in Figure 3.11. The pattern

list tabs include:

123

CHAPTER 3. THE DILEMMAOF Software Pattern DESCRIPTIONSWITH…

• SEI Patterns : displays pattern list for SEI matrix

• GOF Patterns : displays pattern list for GoF matrix

• POSA1 Patterns: displays pattern list for POSA1 matrix

• POSA2 Patterns: displays pattern list for POSA2 matrix

• POSA3 Patterns: displays pattern list for POSA3 matrix

• Security Patterns: Displays Pattern list for Security matrix

Figure 3.11: List of patterns, their other names, and definitions.

3. Patterns Categorisation: the categorization overview is the landing page, which shows

the general categorisation menu diagram as illustrated in Figure 3.3, Section 3.2. Figure

3.12 shows the drop down list for all individual SPs categorisation tables included.

Furthermore Figure 3.13 shows the individual categorisation table for GoF, which in-

cludes:

• Name of the reference.

• Number of patterns included (24 patterns).

• Context of use, which briefly describes the scope of the reference.

• Categorisation of patterns based on the reference classification theme, obtained dur-

ing this investigation. In this case it is based on primary and secondary categories.

One look at the table in Figure 3.13 will show it is a summary of the GoF patterns categori-

sation, which supports user efficiency, effectiveness, and usability during pattern selection.

Each pattern within the table is linked to its individual pattern description table for more

information.

4. Pattern description table: each pattern table has several fields that explain pattern

name, other names, context, references, relation types with related QAs, and a comment

field to add any comment if required, as shown in Figure 3.14 for the CheckPoint pattern.

124

3.6. PROPOSED SOLUTION

Figure 3.12: Drop down menu for SPs categorisations.

Figure 3.13: GoF categorisation table.

In the future, the patterns description tables should include all the information shown in
Table 3.2, which is an example of summarising information for the Check Point pattern.

The table gives an idea of what information may be needed to evaluate patterns. All the

table fields are modified from the original form as reported byReussner et al. [2005, p154],

except for pattern name and type fields. Such a table could be improved and also evolve

with time.

5. QA description table: each QA table has several fields that explain a named quality,

definitions from related sources, references, relation types with related SPs, and a comment

field to add notes if required, as shown in Figure 3.15.

6. Patterns Vs Quality attributes: A glimpse of the general matrix page in Figure 3.16

125

CHAPTER 3. THE DILEMMAOF Software Pattern DESCRIPTIONSWITH…

Figure 3.14: Description table for ‘Check Point’ pattern.

Figure 3.15: Efficiency (QA) description table, including definitions (SEI, POSA and ISO).

Also, the table shows the (SPs) related to Efficiency.

summarises all possible relationships between included SPs and QAs. Each pattern and

quality within the matrix is linked to its individual description table for more information.

However, individual matrices represent specific pattern and quality relationships as stated

in a particular resource.

7. Edit existing relation: this page can be used to edit the relationships and Comments on
the existing patterns /quality relationships, as illustrated in Figure 3.17.

8. Create new relation: create page can be used for the following:

126

3.6. PROPOSED SOLUTION

Table 3.2: Example of extracting the pattern data in a format suitable to assist evaluation, after

modifications.

Pattern Name Check Point

Pattern Type Security Pattern

Other Names PDP, PEP, Access Verification, Holding off hackers, Validation and pe-

nalisation, Make the punishment fit the crime, Validation Screen, Plug-

gable Authentication.

Brief description The Check Point Pattern provides effective I&A to the system including a

centralised and enforced security policy. It defines the interface to be sup-

ported by concrete implementation to provide the I&A services to other

security patterns such as Single Access point.

Context of use Helps developers to design systems with an effective I&Aand access con-

trol mechanism easy to deploy and evolve.

Problem description Secure the application from attacks, and provide appropriate actions when

under attack.
Suggested solution Encapsulate the security policy to be applied. Provide the applicationwith

an I&Amechanism.
Forces 1. Providing a method to authenticate users and validation about what

they can do is important.

2. An appropriate message should be provided when users makemistakes.

3. Too many consecutive mistakes at authentication by a user indicate an

attack and should be dealt with.
4. One place to refer to for authentication and authorisation to manage

the security and reduce the system complexity.

5. Response actions tomistakes should be dependant on the severity level.

6. Use of small proven components for security, such as this pattern. This

increases system maintainability, modifiability and reliability.

7. Encapsulation of the security policy increases system independence

and flexibility.

Available tactics 1. Create Failure algorithm mechanism with a counter, for example im-

plement security checks at the single access point (e.g. password).

2. Include Error handling mechanism, to manage mistakes based on the

severity of the error.

3. Encapsulate the security algorithms in one component and make it

configurable to be easy for maintainability and modifiability according to

changes in requirements.

Affected Attributes

Positively Flexibility, Maintainability, Modifiability, Reliability, Testability.

Negatively Simplicity in algorithms, interface, and configuration.

Supported general scenarios

S1 Warning message should be provided if the user makes non-severe mis-

take.
S2 Force an abort of the logging process or quit the program at the level of

high severity.

Sn …

• Creation of new pattern.

• Creation of new quality.

• Creation of new relationship among patterns, qualities, and matrices with addition of

specific comments; as shown in Figure 3.18

9. Search Facility: search page is used to perform the following functions:

127

CHAPTER 3. THE DILEMMAOF Software Pattern DESCRIPTIONSWITH…

Figure 3.16: Snapshot of general matrix that shows the relationships between SPs and QAs;

where - S⇒ Support, H⇒ Hinder, and B⇒ Both (conflict).

Figure 3.17: Edit existing relation page.

• Search Pattern: at the click of the search pattern button, a description table re-

garding a chosen pattern will be displayed, including its relationships with different

qualities, and specific comments.

• Search Quality: at the click of the search quality button a description table regard-

ing the chosen quality will be displayed, iincluding its relationships with different

patterns, and specific comments.

• Search Conflict: at the click of the search conflict button, all the possible conflicting

128

3.6. PROPOSED SOLUTION

Figure 3.18: Create new relationships between SP and QA-(QA information page- step 2).

relationships between qualities and patterns will be displayed, as illustrated in Figure

3.19.

Figure 3.19: Search relation page, either by pattern or by quality attribute. Also, it could search

all conflict relations within the database

Taking into account, that I am familiar with both the patterns references (books) and the

129

CHAPTER 3. THE DILEMMAOF Software Pattern DESCRIPTIONSWITH…

database, I have conducted an iteration trial to find a SP-QA relationship from both the ref-

erences and the database for comparison purpose, where the targeted SP-QA relationship is

generated randomly by me. The result is that the time taken to find a relationship in one actual

reference – (book) is more than double that to find the same relationship within the database.

To conclude this section, the proposed solution gathering of SP-QA relationships in one

repository could help pattern users to save their time and to gain other benefits and services

provided by the database.

3.7 Related work

Currently, most software pattern resources describe patterns based on authors’ experiences

and observations. Some of these resources have pointed explicitly to the relationship between

each pattern and its (apparent) QAs, i.e., Gamma et al. [1995] and Buschmann et al. [1996],

while others do not; such as Schmidt et al. [2001] and Fowler et al. [2003].

However, there are a few sources that analysed the identification of the relationships be-

tween SPs and limited QAs, by using a scientific methodology (based on measurements and

metrics), Freitas [2009], such as the work done by Kim et al. [2006] and Zayaraz [2010]. Both

these approaches have been described in Chapter 2, and both methods provide a good step

towards building a concrete framework for SPs-QAs relationships.

Also, there are different evaluation studies for patterns that concentrate on a specific aspect,

such as the development of a set of assessment criteria for a design pattern for evaluation and

comparison purposes as reported by Khwaja et al. [2013]; and the categorisation of empirical

studies that focused on software pattern application done by Riaz et al. [2015]. In addition, there

is a study that tackles the effectiveness ofAspectJ 2 and Java programming using design patterns

to capture functional and non-functional elements, Teebiga et al. [2016]; and the formalisation

and quantification guidelines approach for the Strategy design pattern developed by Hummel

et al. [2017]. However, there aren’t any other studies reported yet, that match the study scope,

objectives, process, and findings of this latter work.

3.8 Conclusion

This investigation of the relationship betweenQAs and SPs has highlighted twomain issues.

First, the conflict variations within patterns practice and documentation in the current liter-

ature, which may be caused by different factors such as authors’ (in) experience and immaturity

of the patterns in the field of software engineering. Second, there isn’t a formalised approach or

process to be followed, for describing the relationship between patterns and QAs, or for cate-

gorising them in a more sensible, and formal/verifiable way. Both these issues have led to the

2AspectJ: is an aspect-oriented programming (AOP) extension developed for Java.

130

3.8. CONCLUSION

existence of conflicting relationships between patterns and QAs, which decreases the utilisation

of patterns by users.

There is no existing study that tackles these issues, investigates this problem domain

with a clear process, and includes reliable references and standard quality models such as

this research endeavour does. As a result, this work produces important comments through

its findings, and a partial solution through its database repository, which assists users with

searching, creating, deleting, or even modifying any SPs-QAs descriptions or relationships.

In future work, the QAs and SPs description tables will need further updating, improvement,

and review for the current information , in order to enhance knowledge about patterns and QAs.

Furthermore, they should also include forces, scenarios, and quality metrics, as well as other

information deemed essential for comprehensive knowledge about software patterns and their

QA relationships.

So, this study serves as an initial phase for the possibility of the development of an evalua-

tion framework driven largely by metrics rather than individuals’ observations alone.

More research is needed and the next chapter reports of efforts to discover some of the

factors that either close or widen the gap between software developers and the SPs domain.

131

CHAPTER 3. THE DILEMMAOF Software Pattern DESCRIPTIONSWITH…

132

Chapter

4
Factors Influencing Utilisation of

Software Patterns: AQuestionnaire

Analysis Result

A pattern is described as a solution to a class of problems in a general context. When

a pattern is chosen and applied, the context of its application becomes very specific.

Bass et al. [2013, pp 247]

133

CHAPTER 4. FACTORS INFLUENCING UTILISATION OF SOFTWARE…

4.1 Executive summary

The variation in description of patterns within contemporary literature makes the explana-

tion of SPs-QAs relationships complex and difficult to follow, as discussed earlier (Chapter 3).

Doing nothing about this situation is likely to have the eventual result that developers will be de-

terred from utilising patterns and/or that they ignore quality attributes. Either of these scenarios

may hinder the process of development significantly and/or the attainment of required system

quality.

This study attempts to reveal and propose solutions for some of the current problems that

are facing the effective utilisation of SPs during the process of software development. Unfortu-

nately, there isn’t enough empirical research or evidence that is currently documented regarding

this problem domain.

This chapter reports practitioners’ perceptions (with relevant experience) regarding differ-

ent aspects of SPs, such as: 1) SPs usage trend through a survey method, in order to disclose

reasons that motivate and/or demotivate their utilisation; and 2) the process and nature of their

current documentation.

Consequently, further research is recommended to develop a framework/method and tools

to support SPs documentation and usage, based on the significant results obtained by this study.

4.2 Introduction

Various studies have attempted to detect, examine, assess, and describe the relationship be-

tween styles/patterns and QAs. Every study takes a unique focus with a scope within a particular

QA and field, such as Zayaraz [2010], Jung et al. [2006], and Zhu et al. [2004]. Nevertheless,

hardly any such studies have pointed out the relationship between architecture (including pat-

terns) and quality attributes within a broad scheme that could be used for the majority of QAs.

Thus, there is a rising need for documenting software architecture by researchers (and expert

practitioners) in order to provide more guidance on the methods used to design architectures.

Despite the recognition of this need, and the great efforts by Clements [2003], Bachmann et al.

[2005], and Bass et al. [2013] or ISO-42010 framework, there is still research and work to be

done to produce significantly better solutions for this problem context.

To avoid repetition and having laid down the background literature on this subject within

Chapters (2 and 3), this chapter and its associated Appendix D tries to address the aforemen-

tioned problems and to confirm some of Chapter 3 findings.

A survey was conducted to identify the factors that are likely to aid (as opposed to hinder)

developers with the effective use of patterns during their work. Thus the following objectives

were paramount:

134

4.3. RESEARCHMETHODOLOGYAND SURVEY PROCESS

• To establish the current trend for the utilisation of SPs in software development with

the aim of defining a clear guideline and framework to facilitate the utilisation of these

patterns in future.

• To determine the factors that facilitate or prevent developers from utilising SPs within

software development.

• To help developers by proposing solutions for establishing the best practices for docu-

menting SPs, with the additional aim of laying a foundation for further research.

4.3 Research methodology and Survey process

The following subsections are an overview of the survey methodology, process, analysis

techniques, and reporting format, which are based on the guidelines and recommendations pro-

vided by Tang et al. [2006], Denscombe [2014], Linåker et al. [2015], and Mello et al. [2016].

They also apply to the surveys presented in Chapter 5.

4.3.1 Research technique and process

Aquestionnaire method was chosen as a data collection instrument for this research, due to

its suitability in collecting feedback from a wide audience within a short time, Kitchenham et al.

[2001]. Alternative methods for the research such as personal interviews would have consumed

more time, while managing to reach out to only a small portion of the potential audience.

The research followed the processes illustrated in Figure 4.1, with the focus on uncovering

how important it is for developers to use SPs with more efficiency and with QAs in mind. The

questionnaire development, formatting, wording, number of questions, and time of compilation

by respondents went through a necessary review process by several researchers, and recommen-

dations given by the statistical unit at the ANU. A high level of confidentiality was exercised in

treatment of the responses to the questionnaire.

Figure 4.1: The survey process that applied for Chapters 4 and 5, after Kasunic [2005].

4.3.2 Instrument questions

The survey is composed of twenty questions, which are divided into three main sections as

illustrated in Figure 4.2. Each section has its own objectives as illustrated in Table 4.1.

Table 4.1: Summary of the questions and the objectives of each section

135

CHAPTER 4. FACTORS INFLUENCING UTILISATION OF SOFTWARE…

Section

number
Objective

1 (Q1–5)

Aims to form a relevant demographic of the participants, such as (field of

expertise, years of experience, work sector, their familiarity with the survey

domain).

2 (Q6–9)

Reveal the factors that influence or affect the usage of SPs within the field

of software development. Understanding these factors will shed light on the

improvements and changes that need to be made in order to meet software

developers requirements, regarding the use of SPs.

3 (Q10–20)

Targeting the documentation of SPs, which could be one of the major rea-

sons that could influence their utilisation within the process of software de-

velopment process. In order to achieve the objective of this study, it will be

necessary to determine the appropriate documentation practices that soft-

ware developers would prefer. Thus, its valuable to explore the respondents’

opinion regarding their current documentation trends. Furthermore, this

section includes four statements that propose some solutions to the prob-

lem domain.

The survey questions for the three main section are shown in Tables (4.2, 4.3, 4.4), respec-

tively.

Table 4.2: Section 1. Background Questions (Questions marked with (*) are mandatory).

This section of the questionnaire is intended to gather information about personal expertise.

Q1*

What is you general field of expertise regarding software development? You may

select more than one option.

2 Requirements elicitation / modelling /analysis

2 Project management

2 Architecture

2 Design

2 Coding

2 Testing

2 Documentation

Q2*

In which of the following sectors have you gained most of your general software de-

velopment experience?

Academia

Industry

Government

136

4.3. RESEARCHMETHODOLOGYAND SURVEY PROCESS

Q3*

How many years experience do you have in total in the software development field?

5–10 (years)

10–15 (years)

15–20 (years)

20–25 (years)

Over 25 (years)

Q4

Are you aware of software styles / patterns?

Yes

No

Q5

How often do you use software styles / patterns during your work?

Never

Infrequently (<10%)

Reasonably frequently (> 15% and < 50%)

Regularly (> 50% and < 80%)

Nearly always (> 90%)

Table 4.3: Section 2. Pattern utilisation questions.

Q6

In your opinion what are the main factors that discourage the utilization of software

patterns by developers? You may select up to two options.

2 No or few available references

2 Poor documentation of existing software patterns

2 Very little teaching of patterns in academic institutions or industry

2 No proof of the solutions provided by patterns

2 Unknown quality attributes for combining software patterns

2 Developing new solutions saves more time than searching for, and implementing

the right patterns

2 Hard to integrate with other components or existing systems within the solution

domain

2 Other - please specify:

Q7

What are the main factors that encourage the utilization of software patterns by devel-

opers? Choose up to two options.

Easy to find the right patterns that solve the problems encountered

Most available references are clear and well documented

Easy to implement

Clear identification of quality attributes possessed by patterns

Other - please specify:

137

CHAPTER 4. FACTORS INFLUENCING UTILISATION OF SOFTWARE…

Q8

During your selection of patterns did you care about or consider quality attributes?

Please provide comment, based on your answer.

Yes – Why?

No – Why?

Comments:

Q9

If you did used software patterns in the past, will you keep using them in the future?

Please provide comment, based on your answer.

Yes – Why?

No – Why?

Comments:

Table 4.4: Section 3. Documentation of Software Patterns.

Q10

What are your main software pattern references? Please provide two:

1. Reference one

2. Reference two

Q11

Do those references describe standardized process to create and explain patterns? If

you chose ”Yes”, Please explain in the comment box.

Yes, please explain?

No

Comments:

Q12

Regarding the references you mentioned at 1 (above), have the relationships between

the patterns and the quality attributes been identified and stated clearly?

Yes

No

Not sure

Q13

Has the relationship between the patterns and the quality attributes in those references

been proved scientifically or otherwise?

Yes

No

Not sure

138

4.3. RESEARCHMETHODOLOGYAND SURVEY PROCESS

Q14

Have you identified any conflicting views among any references regarding some pat-

terns and/or regarding quality attributes? (e.g., One reference might say, Proxy pat-

tern supports performance, but another might say that the same pattern hinders perfor-

mance). If you chose ”Yes”, Please provide, a Pattern name and references names

Yes – please provide pattern name and references names.

No

Comments:

Q15

Do you support having different names for similar patterns?

Yes – please explain?

No – please explain?

Comments:

Q16

Do you support standard documentation practices for software patterns?

Yes

No

Perhaps

Not sure

Please indicate your level of agreement with respect to the following statements:

Q17

Identifying the relationship between software patterns and quality attributes is very

important to software developers and the software engineering field.

Strongly Agree

Agree

Neutral

Disagree

Strongly Disagree

Q18

Identifying standard quality attribute definitions within current pattern references is a

critical for comparing the same patterns against the quality attribute they possess.

Strongly Agree

Agree

Neutral

Disagree

Strongly Disagree

139

CHAPTER 4. FACTORS INFLUENCING UTILISATION OF SOFTWARE…

Q19

Studying relationships between patterns and quality attributes based on the current

reliable software pattern references, and creating a database to store these relationships

on the basis of standardized quality attribute definitions, is valuable knowledge and

should be freely available.

Strongly Agree

Agree

Neutral

Disagree

Strongly Disagree

Q20

Developing an evaluation model to assess patterns against quality attributes is worth-

while, provided it’s not difficult to use.

Strongly Agree

Agree

Neutral

Disagree

Strongly Disagree

4.3.3 Invitation mechanism and Instrument distribution

The target group for the invitation letters was professional software engineers, and as a consequence

the letters were sent through expert referrals and personal contacts.

Participants could access the survey online, making the respondent process more efficient, easy to

participate, and less expensive.

The survey was distributed to seven organisations, from academia, industry, and government, within

six different countries, and all participated. The respondents geographical distribution is shown in Ta-

ble 4.5.

Table 4.5: Geographical distribution of the survey respondents by country.

Country Number of respondents

1 Australia 36

2 KSA (Saudi Arabia) 11

3 USA 2

4 United Kingdom 1

5 China 1

6 Greece 1

7 Total 52

4.3.4 Target population and Sampling technique

The inclusion criteria for participants were a software developer/engineer with typical work experi-

ence of five years or more, mostly in architecture, designing and programming.

In both surveys reported in (Chapters 4 and 5), the random sampling method was applied prelimi-

narily by sending an invitation to different IT organisations or departments to fill out the questionnaire.

140

4.3. RESEARCHMETHODOLOGYAND SURVEY PROCESS

Figure 4.2: The three sections of the questionnaire.

There were too few responses to analyse, partially due to time constraints, and also because less people

were likely to respond to unfamiliar sources. Hence, I used other sampling technique options ‘Availabil-

ity and Snowballing’, which are non-probabilistic methods. The Availability method operates by inviting

available people, who meet the participation criteria, to respond to the questionnaire through familiar

contact; then asking them to forward or nominate others to participate in the study, i.e., the Snowballing

method. One disadvantage of non-probabilistic sampling techniques is that the target population gen-

erality is limited. Thus, the results cannot statistically reflect the general population, Kitchenham et al.

[2001] and Tang et al. [2006]. However, due to this survey’s investigatory nature and the selected targeted

(software developers), I consider the selected sampling techniques were (at least) rational and given that

similar techniques are frequently used in software engineering studies, applicable.

The sampling technique employed being non-probabilistic, the actual target population size was

unknown and hence the sampling frame was unspecified. Therefore, the conventional sample size calcu-

lation formulas for random sampling were unusable, including the formula discussed by Cochran [1977],

which is applicable for an infinite population using random sampling. Employing non-probability sam-

pling does not depend upon a statistical computation of the sample size, instead good judgement is relied

on to understand what is passable in particular situations, Denscombe [2014]. “In practice, the complex-

ity of the competing factors of resources and accuracy means that the decision on sample size tends to be

based on experience and good judgement rather than relying on a strict mathematical formula”, Hoinville

et al. [1985, pp 73]. Also, the sample sizes (of 52 and 50 for surveys reported in Chapter 4 and 5 re-

spectively) well exceed the limit of 30 samples in order to use the central limit theorem, Wayne [2016].

Based on the opinions from Denscombe and Hoinville et al, the target population and the data collection

method used, I think the sample sizes are sufficient to meet the objectives of the two surveys.

4.3.5 Procedure of the analysis

Different analysis methods were used when applicable, such as descriptive statistics, t-test, and

Analysis of variance (ANOVA). Also, summarisation tables and figures were developed for better visu-

alisation. The Statistical Package for the Social Sciences (SPSS) tool was used during the analysis. This

has been clarified in order to facilitate the notations of tables and figures.

In order to fully understand the results gathered from respondents, it was of paramount importance

to perform a Dimensional Approach, which means not only analysis of the responses to each question,

but also analysis of the dependency or relationship between several questions. The following phases have

been carried out to analyse the questionnaire:

1. Individual Analysis (One dimensional):

Each question was analysed and the results discussed separately. Explanation for any significant

result was described. Graphs and tables were created when needed.

2. Matrices Analysis (Analysis of two or more questions together):

Based on the goal and objective of this study and in order to find any significant correlations or de-

141

CHAPTER 4. FACTORS INFLUENCING UTILISATION OF SOFTWARE…

pendency between questions, analyses between questions were performed and analysed according

to the matrix levels as follows:

� Two dimensional matrices analysis presented in Table 4.6:

Table 4.6: Two dimensional matrices analysis (only two questions will be analysed together).

Quest. 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 X1 X2 X2 X2 X2

2 X3 X4 X5 X5 X5 X5

3 X6 X7 X8 X8 X8 X8 X8 X8 X8

4 X9 X9 X9 X9

5 X10 X10 X10 X10 X11 X11 X11 X11 X11 X11 X11

6 X12 X13 X13 X13 X13

7 X14 X15 X15 X15 X15

8

9

10 X16 X16 X16 X16 X16 X16

n inXn stands for matrix number.

Example: For Question (1), two matrices can be written down as:

– Matrix 1: Q1 and Q5;

– Matrix 2: Q1 and each question from Q17 to Q20.

– Each matrix has a unique colour.

� Three dimensional matrices analysis shown in Table 4.7:

Table 4.7: Three dimensional matrices analysis (only three questions will be analysed together).

Quest. 2 3 4 5 6 7 8 9 17 18 19 20

1 X1 X2 X3 X1,2,3 X1,2,3 X1,2,3 X1,2,3

2 X4 X5 X4,5 X4,5 X4,5 X4,5

3 X6−9 X7 X8 X9 X6 X6 X6 X6

n inXn stands for matrix number.

Example: For Question (1), three matrices can be written down as:

– Matrix 1: Q1 and Q2 with each question from Q17 to Q20;

– Matrix 2: Q1 and Q3 with each question from Q17 to Q20;

– Matrix 3: Q1 and Q5 with each question from Q17 to Q20;

� Four dimensional matrices analysis illustrated in Table 4.8:

Table 4.8: Four dimensional matrices analysis (only three questions will be analysed together).

Quest. 2 3 4 5 6 7 17 18 19 20

1 X1 X1 X1 X1 X1 X1

2 X2 X2 X2 X2 X2 X2

3 X3,4 X3 X4 X3,4 X3,4 X3,4 X3,4

4

5 X5 X5 X5 X5 X5 X5

n inXn stands for matrix number.

Example: For For Question (1), one matrix can be written down as:

– Matrix 1: Q1 and Q2 and Q3 with each question from Q17 to Q20.

Moreover, a database was created to organise, sort, explore, and do some primitive analysis

regarding respondents’answers, which could help the overall analysis process. These types of

analysis couldn’t be obtained by SPSS tool, such as (Internet Protocol (IP) addresses, sorting

the number of respondents by countries, discover and eliminate duplicated IPs addresses,

sorting the answers to the questions by countries, etc.). Section D.4 shows some snapshots

of the database.

142

4.3. RESEARCHMETHODOLOGYAND SURVEY PROCESS

4.3.6 Rationale of the selected analysis methods

Several statistical methods have been used to analyse the questionnaire responses. This section

justifies the selection of the methods that have been used. Also, a professional statistician confirmed the

suitability of the analysis methods that have been employed in the analysis.

4.3.6.1 Single Dimensional Analysis Methods

Various methods of analysis were used for different types of question with the aim of achieving

the best and most accurate results. The first type of question was that with multiple choices allowing

selection of more than one choice. These included Q1, Q6 and Q7. The rationale behind the analysis was

to determine the frequency of choices and determine which were the most popular, based on the number

of participants that selected the category. Responses were coded as 1 (selected) and 0 (not selected). A

frequency table was constructed for the total count of 1 (selected) in each category and a bar chart was

used to visualise the figures for each of the multiple response variables.

The second type of question was that with categorical responses without numerical meanings. These

included Q2, Q3 and Q5. For this type of question descriptive statistics were not appropriate to provide

an adequate analysis result. Frequency tables, bar charts, and pie charts were used in analysing these

kinds of responses. Since the responses were mutually exclusive and so totalled to 100%, a pie chart

was used to represent the results. Additionally, in order to detect any general tendency of respondents

towards a specific response, a non-parametric Chi-square test was also performed on the results.

The third type of question includes questions with dichotomous responses (Yes/No). These included

(Q4, Q8, Q9, and Q11-Q16). Just like the previous category, the responses to these questions were

grouped into a frequency table and presented using pie charts and bar charts.

Finally, responses to Likert-type questions, Q17 to Q20, were analysed using descriptive statistics

after encoding them into an ordinal scale of 1 to 5 where the extreme left of the scale was reserved for the

opinion “Strongly Disagree”, extreme right of the scale was reserved for the opinion “Strongly Agree”,

and the middle of the scale was reserved for the neutral opinion. A right-tailed one sample t-test was

performed on each of these questions to figure out the trend of the participants responses.

4.3.6.2 Two-Dimensional Analysis Methods

To determine the relationship between responses to various pairs of questions, the methods selected

for this analysis were based on the types of the individual questions forming each pair. The methods used

for analysis and presentation of such results are described in full in Table D.1.

4.3.6.3 Three and Four-Dimensional Analysis Methods

Most of the variables considered in this study are of nominal scale, except for responses to the last

four questions (Q17-Q20), which have an ordinal scale. Cross tabulation was deemed most appropriate

for the nominal scale questions. In this case it was appropriate to use Chi-Square tests to determine the

level of interdependence between any two or more variables. Responses to Q17 to Q20, which are on

the ordinal scale, can be analysed using either t-tests for two variables or Analysis of Variance (ANOVA)

for more than two groups. In this case a substantial variation is required to draw meaningful results. A

variation could not have been achieved in this study, due to the limitation of 52 observations, with missing

responses after Q8. As a result, the Chi-Square tests with this small number of observations using three

and four dimensional analysis proved invalid. ANOVA tests produced non-significant results too. For

143

CHAPTER 4. FACTORS INFLUENCING UTILISATION OF SOFTWARE…

this reason, it was concluded that three and four dimensional analyses were invalid, inappropriate, and

non-significant. The Chi-square test results for cross tabulations under three dimensional analyses are

all invalid due to low cell expected frequencies. ‘The Conservative Rule’ by Lewontin and Felsenstein

in (1965), stated that no expected frequency should be less than 1. Also Cochran 1954, reported that “no

more than 20% of the expected frequencies should be less than 5”, Everitt 1977. Even though most of

the t-tests and F-test results are all valid in a statistical sense, however there were no significant results.

4.4 Findings and Recommendations

This section reports the findings of the survey based on the analysis of questionnaire responses. Dis-

cussions and important recommendations have been included for each finding in an effort to accomplish

the research’s main aim and objectives.

Some of the results from the analysis of responses show significance as far as the questionnaire

aim is concerned. Further, meaningful trends and conclusions were also drawn from some of the results,

which may not been very significant in aiding to derive the best recommendations for future efforts to

improve the utilisation of SPs.

With the study’s main objective in mind, the first step was to ensure that the basic requirements

concerning the skills/experience of the respondents were met. Thus the preliminary task of this analysis

was to establish the composition of the respondents in terms of their experience in the software devel-

opment field, the sectors in which they had expertise regarding software development, their awareness

of SPs, and their frequency of pattern usage. The credibility of the responses collected from subsequent

questions would rely heavily on the composition of the respondents in terms of their awareness of SPs,

the longevity of their expertise, and their respective work sectors.

Demographic data is illustrated in Table 4.9, which summarise the results of the (5) background

questions.

Findings show that the largest percentage (67.3%) of the respondents to the questionnaire had their

software development expertise in the field of coding. This percentage is based on the number of partici-

pants who responded to the question (N=52). The results show a broad distribution of respondents across

all the fields of software development, which make the research comprehensive, hence reliable as they

represented the opinions from most software development fields. The participation in this question was

100% because the question was compulsory for all respondents, with each one of them allowed to pick

more than one option.

Closely related to the field of expertise, is representation across the main sectors of the economywith

reference to software development. The objective was to determine any trend in the current utilisation of

SPs within each sector. The findings show that the highest representation emanated from the academic

sector, followed by Industry and Government respectively. However, a more extensive analysis using the

Chi-Square test reveals that the difference between the distributions is non-significant at a 5% level. This

leads to the conclusion that all the sectors are almost equally represented in this survey. The implication

of this finding is that the challenges identified by this study regarding the utilisation and documentation of

SPs in software development are applicable to all sectors, and the recommended solutions can be adopted

by all of them.

For reliability of the results, it was necessary that the participants should have sufficient experience

within the software development field (of no less than 5 years). The variation of the experience is sig-

144

4.4. FINDINGSAND RECOMMENDATIONS

Table 4.9: Frequency distribution of the questions regarding personal expertise and Chi-square

test result for equality of group frequencies.

Background questions Frequency (%) Chi-square (p-value)

General field of expertise (N=52)

Requirements elicitation / modelling / analysis 25 (48.1) 6.686 (0.3509)

Project management 25 (48.1)

Architecture 20 (38.5)

Design 29 (55.8)

Coding 35(67.3)

Testing 23 (44.2)

Documentation 12 (23.1)

Work sector experience (N=52)

Academia 21 (40.4) 1.885 (.3897)

Industry 18 (34.6)

Government 13 (25.0)

Developers’ experience in software development field (N=52)

5 – 10 (years) 32 (61.5) 19.077 (.0001)

10 – 15 years 12 (23.1)

Over 15 years 08 (15.4)

Developers’ awareness of software styles/patterns (N=50)

No 09 (18.0) 20.480 (.0000)

Yes 41 (82.0)

Software style/pattern utilisation amongst software developers (N=48)

Never 11 (22.9) 8.833 (0.0316)

Infrequently 16 (33.3)

Reasonably frequently 17 (35.4)

Regularly or nearly always 04 (8.4)

nificant at the 1% level as analysed using the Chi-Square test. This finding is still considered acceptable

since developers with an experience as short as 5 years are considered experienced and likely been ex-

posed to SPs, unless there are other factors that may contribute to their lack of exposure to SPs in their

work.

Having met the first criteria for the selection of participants, the next task was to establish the partici-

pants’ awareness of and experience with SPs. Given that a majority of the respondents had at least 5 years

of experience in the field of software development, they should be aware of SPs. This was confirmed by

82% of the respondents admitting to being aware of software styles/patterns. Thus, the survey overall re-

sults are more reliable. Notwithstanding, it is still surprising that 18% of the respondents were not aware

of SPs despite their years of experience in the field of software development. This raised a question about

the reasons behind their lack of knowledge regarding SPs, which could be related to the effectiveness of

software styles and patterns documentation, teaching, or other factors, which I investigate further in Q6

and Q7.

Further than mere awareness of SPs, an unexpected result is that about (23%) have never used SPs.

A Chi-Square test showed that the difference in the results was significant at the 1% level. This is a

revelation and may indicate that there must be factors that either encourage or hinder the utilisation of

SPs.

145

CHAPTER 4. FACTORS INFLUENCING UTILISATION OF SOFTWARE…

4.4.1 Discussion of Findings

This section interprets and discusses the significant and important results for both (one and two)

dimensional analyses, based on the objectives listed in Section 4.2.

4.4.1.1 Individual Analysis

Having taken into consideration all the controls listed in Table 4.9, this section discusses important

aspects of the analysis in a single dimension as reported in Table 4.10.

According to 45.7% of respondents, one of the major factors that hinder the utilisation of SPs within

software development is: “very little teaching of SPs in academic institutions”. In addition to this, 41%

believe that it is “hard to integrate patterns with other existing components in systems”. The ffirst factor

perhaps explains why nearly 20% of the respondents were not aware of SPs. Also, SPs poor documen-

tation added a difficulty when searching for the right pattern to a solution, as opposed to developing one

from scratch. Most of the factors hindering the utilisation of patterns support the findings discussed and

effort presented in Chapter 3.

Based on the factors identified in Table 4.10, it must be recommended that more attention be paid to

the incorporation of SPs and styles into the curriculum of learning institutions. This will automatically

lead to proper documentation of the patterns in literature pieces, thus solving the third factor of lack of

awareness of SPs. Once the teaching of software patterns is incorporated into curricula and documenta-

tion is done properly within a standardised framework for describing SPs, it is possible that most of the

developers will embrace their utilisation of SPs and eventually discover that using SPs makes the process

of software development much easier.

A second recommendation is to emphasise and focus on the factors that encourage the utilisation

of SPs. Among these factors, the major one identified by the respondents is the ease of implementation

of these patterns. However, the “ease of implementation” does not mean the “ease of integration” as

mentioned earlier as one of the hindering factors in Chapter 3. The former is an encouraging factor,

and the latter is a hindering factor. However, the lack of pattern interface mechanisms within the current

literature and proper exposure and knowledge of SPs, could cause the reluctance by developers to embrace

SP solutions, preferring instead to develop new solutions from scratch.

Another factor encouraging the utilisation of SPs is the clear identification of QAs that are pos-

sessed by SPs, as identified by 35.1% of the respondents. Currently, most of the relationships between

patterns and QAs are identified by observation, as opposed to using a scientific methodology and proof,

as discussed in the Chapter 3, Me et al. [2017].

Similarly, 35.1% of the respondents believe that it is easy to find the right SPs to solve an (en-

countered) problem. Nevertheless, there are some challenges which are related to pattern documentation

problems, such as duplicate names for different patterns. This has been highlighted in Chapter 3 as

well. Finally, the respondents also acknowledged that most of the available references are clear and well

documented, a factor I partially agreed with, although it was identified by the least percentage of the

developers. However, SPs documentation needs more effort especially for identifying the relationships

between them and QAs. Also, a possible reason for this could be the shortage in publicity of the avail-

able documentation. It is thus clear that in order to increase the utilisation of SPs, proper documentation,

including identifying the relationships between SPs and QAs, is a key solution.

In an effort to determine how many of the respondents cared about taking, or actually took, into

146

4.4. FINDINGSAND RECOMMENDATIONS

Table 4.10: Frequency distribution summary for (Q6 to Q16).

Questions (6-16) Frequency (%)

Main factors that discourage the utilisation of SPs (N=46)

No or few available references. 3 (6.5)

Poor documentation of existing SPs. 10 (21.7)

Very little teaching of patterns in academic institutions. 21 (45.7)

No proof of the solutions provided by patterns. 6 (13.0)

Unknown QAs for combining SPs. 9 (19.6)

Developing new solutions saves more time than searching for the right pattern. 10 (21.7)

Hard to integrate with other components or existing systems. 19 (41.3)

Other. 1 (2.2)

Main factors that encourage the utilisation of SPs (N=37)

Easy to find the right patterns that solve the problems encountered. 13 (35.1)

Most available references are clear and well documented. 12 (32.4)

Easy to implement. 15 (40.5)

Clear identification of QAs possessed by patterns. 13 (35.1)

Other. 2 (5.4)

Developers who care about or consider QAs. (N=36)

No 14 (38.9)

Yes 22 (61.1)

Usage of patterns in the future by software developers. (N=37)

No 10 (27.0)

Yes 27 (73.0)

Developers’ opinions on whether those references describe standardized

process to create and explain patterns. (N=29)

No 15 (27.0)

Yes 14 (73.0)

Have the relationships between the patterns and the QAs been identified

and stated clearly within identified references? (N=29)

No 5 (17.2)

Yes 7 (24.1)

Not sure 17 (58.6)

The relationship between the patterns and the QAs in those references

been proved scientifically or otherwise. (N=28)

No 7 (25.0)

Yes 5 (17.9)

Not sure 16 (57.1)

Developers who had identified conflicting views among any references

regarding some patterns and/or regarding QAs. (N=25)

No 24 (88.9)

Yes 3 (11.1)

Developers who support having different names for similar patterns.

(N=22)

No 21 (70.0)

Yes 9 (30.0)

Do you support standard documentation practices for SPs? (N=22)

No 1 (3.0)

Yes 21 (63.6)

Not sure 1 (3.0)

Perhaps 10 (30.3)

consideration QAs before utilising SPs, it was found out that about 61% did. The remaining 40% who

did not take this factor into consideration raises a question about the quality of developed software. In

147

CHAPTER 4. FACTORS INFLUENCING UTILISATION OF SOFTWARE…

case the developers wanted to combine many patterns in the development of a complex subsystem or

system without any understanding or consideration of the QAs, the result would be a system that does

not meet the stakeholder requirements.

Having used SPs in the past, respondents were asked about their willingness to use them in the

future. In response to that question, only 27% are willing to continue using patterns, while the rest

declined. Most of the comments given by participants to this question regarding their desire to stop using

SPs revolved around the lack of better documentation and suitability to the problem area.

According to the results shown in Table 4.10, proper documentation (21.7%) is one of the better

solutions to minimise the factors that discourage or hinder the use of SPs in software development. In-

troducing a proper framework to guide developers to create, document, evaluate, and use SPs can solve

this problem. This is one of the reasons that motivated this study, with the hope of laying down common

factors and guidelines about SPs utilisation. A substantial portion of the study was therefore dedicated

to analysing the existing references and documentation of SPs as an effort to capture ways in which this

process can be improved. Further analysis indicated that most of the known SPs references are GoF book,

and POSA team series.

In response to the question regarding current references and standardised process during pattern

descriptions, there was an almost split opinion on whether existing references describe a standardised

process to create and explain patterns. However, the majority disagreed with the statement. This reveals

an existing problem. One participant’s comment was “ References seem not to have clearly standardised

a way of creating and describing patterns”. Solving this problem could be one of the ways to ensure

that more developers will be brought on-board to use SPs during their work and producing systems with

required characteristics.

In regard to the references provided at Q10 identifying and stating the relationship between QAs and

patterns clearly, large portions of the respondents were not sure. Only 24% of the respondents agreed

with this statement, while 17% disagreed. Thus, the existing documentation may not be sufficient for

identifying these relationships as explained in Chapter 3. As a result, I recommend further research

focusing on the relationship between SPs and QAs.

Additionally, a majority of the respondents were not sure whether these relationships have been

proven scientifically or not. The reason for this significant number of respondents who were not sure

about the statement may have contributed to the developers’ ignorance about considering QAs before/or

after choosing a SP. This is a further revelation that there is a need to improve the existing references and

documentation about SPs to be more comprehensive and clear.

It is also of paramount importance to have consistency in all references for SPs. Only 11% of the

respondents identified conflicting views in references regarding some SPs and/or QAs. Therefore, such

inconsistencies are minimal in pattern documentation. However, it could also be due to the fact that many

of the respondents hadn’t taken a closer look into existing references regarding SPs andQAs relationships.

Also, it is possible the reason is because of the lack of availability/clarity of such references. Nevertheless,

such inconsistencies existed and could cost a lot of time and money. Thus, it is necessary to identify all the

inconsistencies within the references and deal with them, or to create a framework that guides developers

during their creation and documentation of patterns to produce consistent documentation as explained

earlier in this section. There are no existing studies for SPs-QAs relationships, except for what has been

reported within this dissertation.

148

4.4. FINDINGSAND RECOMMENDATIONS

Possibly due to the disadvantages arising from the inconsistencies above, almost two thirds of re-

spondents did not support having different names for similar patterns, deeming it to be more confusing.

However, a third of the respondents supported the idea, giving the reason that it would be necessary,

especially if the patterns are similar but not identical, and in the case of different contexts of application.

Therefore, as in Chapter 3 and to avoid confusion, it is suggested that the variants should be extensions to

the main pattern name for ease of identification, such as Proxy-Remote Pattern or Proxy-Virtual Pattern.

One objective of this study is to support standard documentation for SPs, in order to increase their

utilisation and ease their evaluation, with a flow-on effect being to ease the evaluation of software archi-

tecture. Another benefit is to improve the integration of SPs into other existing components, by eliminat-

ing one of the hindrances to their utilisation. 64% of respondents support the idea of having standardised

documentation practice for SPs, in line with the objectives of this study. Only one respondent was against

standard documentation but with no sufficient reasons or comments provided.

This thesis is a direct contribution towards developing systematic and standardised documentation

of SPs. I recommend more research into similar and related fields to document their findings and recom-

mendations as part of the process of achieving this objective.

Following the recommendation to embrace standard documentation practices; four statements (with

proposed solutions) were suggested by this study and presented on a Likert scale to the respondents in

order to determine how strongly they agree with the statements. The objectives were to firstly determine

the opinion of the respondents regarding each statement, and Secondly, to clarify the action points to

guide the way forward developing a SPs platform. The four statements are illustrated in the Figure 4.3.

All four statements essentially propose solutions that could help to overcome some of the issues

identified in this section. The overlapping (95% CI) error bars on the “Agree= 4” option indicate a

strong agreement by the respondents to all four statements, which support this research effort.

0 1 2 3 4

4.1

3.7

4.1

3.9

Mean

Error bars: 95 %CI

Developing an evaluation model to assess
patterns against quality attributes is
worthwhile, provided it’s not difficult to use

Studying relationships between patterns and
quality attributes based on the current reliable
software pattern references, and creating a
database to store these relationships on
the basis of standardized quality attribute
definitions, is valuable knowledge

Identifying standard quality attribute
definitions within current pattern references
is a critical for comparing the same patterns
against the quality attribute they possess.

Identifying the relationship between software
patterns and quality attributes is very
important to software developers and the
software engineering field.

Figure 4.3: The level of participants’ agreement to the four statements (proposed solutions).

4.4.1.2 Two Dimensional Analysis

In this sub-section, a two dimensional analysis is reported, in order to uncover the relationship be-

tween responses to different pairs of questions. This can reveal a trend or pattern in the responses, which

in turn reveals the need to focus on some aspects of the study or balance the dependency between different

149

CHAPTER 4. FACTORS INFLUENCING UTILISATION OF SOFTWARE…

factors based on the analysis results and the research objectives. This was the purpose of performing this

type of analysis in which every set of responses was analysed in comparison with another set of responses

to try to unearth any meaningful relationships. The selection of the question combinations is based on

the research goal and objectives.

To start off, the relationship between how frequently SPs are used by developers and their field of

expertise within software development is analysed by developing a null and alternative hypothesis. The

first variable of the hypothesis represents the mean number of times that developers used styles or patterns

in their work with expertise in a specific domain, while the second variable of the hypothesis is the mean

number of times the developers used SPs eventhough they had no expertise in software development in

that particular domain. Thus, the hypothesis was set as follows:

Null hypothesis, H0: µ1 ≤ µ2

Alternative hypothesis, Ha: µ2 > µ1

Where, µ1 is the mean number of times developers used software styles/patterns during their work with

the expertise in a specific domain (e.g., Coding), and µ2 is the mean number of times they used software

styles/patterns during their work if they don’t have expertise in the same domain (e.g., Design). The

results are summarised in Figure 4.4 and Table 4.11.

Requirements
Elicitation /
Modelling /
Analysis

YES NO

2.13

2.48

Project
Manage-
ment

YES NO

2.43
2.2

Architecture

YES NO

2.85

1.93

Design

YES NO

2.57

1.95

Coding

YES NO

2.45

2

Testing

YES NO

2.41
2.23

Documenta-
tion

YES NO

2.58

2.22

How often do you use software styles / patterns during your work?

M
ea
n

General field of expertise regarding software development

Figure 4.4: Mean response of how often developers’ uses software styles/patterns during their

work by their general field of expertise.

Six fields of expertise were considered and analysed individually against the hypothesis. Out of

the six, only two of the fields produced significant results. A Levene’s test and t-test were performed

(Table 4.11) to show the difference in the usage of SPs between respondents who had expertise in ar-

chitecture and those who didn’t. Initially, Levene’s F-test confirmed an equal variance between the two

variables. Further, an independent sample t-test was performed to statistically verify the inequality of

the means between the two variables. The test produced significant results at a 5% level, with t = 3.64.

This indicated that developers whose expertise lay in architecture utilised SPs more than developers who

didn’t have expertise in architecture.

Another field that produced significant results is design as illustrated in Table 4.11. Between two

150

4.4. FINDINGSAND RECOMMENDATIONS

hypothetical variables with equal variance as indicated by Levene’s F-test, there was a significant dif-

ference in the means of SPs utilisation between respondents who had expertise in design and those who

didn’t.

Table 4.11: Independent sample t-test for equality of two population group means of ”how often

developers used software styles/patterns during their work” by developer’s field of expertise.

Field of expertise N Mean SD

Levene’s Test for

Equality of Variances:

F (p-value)

t-test for Equality of Means

t-statistic

(p-value)

95% CI of the

difference

Requirements

elicitation /

modelling

/analysis

Yes 23 2.13 0.76
5.05 (.029)

-1.27

(.105)
(-0.90, 0.20)

No 25 2.48 1.12

Project man-

agement

Yes 23 2.43 .79
2.03 (.161)

0.83

(.204)
(-0.33, 0.80)

No 25 2.20 1.12

Architecture
Yes 20 2.85 0.88

0.10 (.749)
3.64

(0.001)
(0.41, 1.43)

No 28 1.93 0.86

Design
Yes 28 2.57 0.92

0.58 (.450)
2.28

(.014)
(0.07, 1.17)

No 20 1.95 0.95

Coding
Yes 33 2.45 1.03

3.95 (.053)
1.52

(.067)
(-0.15, 1.06)

No 15 2.00 0.76

Testing
Yes 22 2.41 0.85

1.17 (.284)
0.63

(.266)
(-0.39, 0.75)

No 26 2.23 1.07

Documenta-

tion

Yes 12 2.58 0.79
0.94 (.337)

1.12

(.135)
(-0.29, 1.01)

No 36 2.22 1.02

Similar analyses of the hypothesis for the other fields of expertise, including requirements elicitation,

project management, coding, testing, and documentation, all yielded non-significant results, indicating

that there was no significant difference in the utilisation of SPs by respondents with expertise in these

fields, as compared to those who did not possess expertise in the particular field.

According to the findings above, there is a clear deduction that software styles/patterns are utilised

mostly by respondents whose expertise lies in architecture and design, one logical reason is the close-

ness in nature between both fields. This makes sense since for some (software) fields patterns may not

yet exist, such as requirement elicitation. An Architect’s motivation is exploration and discovery of new

ideas that can make their designs unique. For this challenge, they may be willing to try even untested

ideas and tools. This could be the possible explanation why SPs have been embraced by architects and

designers more than other categories of developers, or maybe because of the availability of the large

number of patterns in their arena.

On the other hand, experts in other fields such as coding, testing and documentation have a bias

towards using well-known and well-tested technologies. They may not be known to try out new tech-

151

CHAPTER 4. FACTORS INFLUENCING UTILISATION OF SOFTWARE…

nologies, especially those of which they are not sure, or maybe the natural facts, tools, and processes of

their areas constraint the creation and utilisation of patterns. This could explain their reluctance towards

utilising SPs in their work. This realisation is another indication that to many developers and experts, the

use of SPs is still a foreign idea and more needs to be done to promote the innovation for new SPs or to

utilise the existing ones if applicable in their fields of expertise.

SPs and styles were developed to be used in all fields of software development based on context and

applicability. According to the 2 dimensional analyses above, it is clear that there could be a bias regard-

ing the utilisation of SPs across different fields of software development. This may not be desirable and

raise the question as to whether every type of developer requires knowledge about SPs? Indeed, should

they have this knowledge during their work, if and only if, it’s available can improve their missions?

This finding could also raise an alarm about a bias that may arise among some developers who may

be inclined to think that patterns and styles are actually meant only for those whose expertise is in archi-

tecture and design. However, it should be emphasised that the utilisation of SPs and styles may not lie in

just one field of expertise, but rather it is the vehicle that should be utilised in all fields of software devel-

opment where applicable and efficient. One solution is to promote awareness of SPs and encourage their

use/relevance in other parts of software development. As a consequence, interdisciplinary knowledge

share will be promoted.

A further analysis of the proposed solutions on questions 17-20 of the survey revealed a variation

in the response from respondents according to their field of expertise, as shown in Table D.2. These

questions were generally aimed at drawing a conclusion on what should be done to improve the utilisation

of SPs. According to this analysis, the strongest agreement to the four statements was from respondents

whose expertise lay in “requirements elicitation/modelling/analysis”. On the other hand, the lowest mean

of agreement responses was from those with expertise in documentation. Apart from documentation, the

mean responses from the other respondents towards all statements were significantly higher than 3% at

a 1% level of significance. The analysis showed most of the experts in documentation either agreeing or

remaining neutral about the suggestions given in the statements.

The above realisation further raised a question about the need of SPs documentation to those devel-

opers whose expertise is documentation. Developers from each software field have their own require-

ments and tools, which facilitate their work. However, the nature of each field varies, so their need for

SPs and pattern suitability varies among them, too. It would be expected that in order for respondents to

give their opinion in terms of agreeing or disagreeing with the suggested questions aimed at improving

the utilisation of SPs in software development, they would need to be well furnished with information

about systems and SPs. Based on this, it can therefore be concluded that most of the experts in docu-

mentation did not have much experience with patterns. This could explain why they decided to remain

neutral to the statements. It can therefore be concluded that SPs may be less applicable in the field of

documentation.

Despite the discrepancies above in the agreement to the four statements by respondents from differ-

ent fields of expertise, it was generally noticed that there was agreement to the four statements. Based

on this finding, the proposition that it is vital to increase the use of software patterns in software devel-

opment is confirmed. Thus, this research has proposed and developed (see Chapter 3) a solution, which

could contribute towards improving the experience of using SPs in software development, and the find-

ings prove the validity of the proposition across all fields of software development. I recommend that

all the suggestions recommended in these statements to be put into consideration for further research and

152

4.4. FINDINGSAND RECOMMENDATIONS

eventual implementation.

It was necessary to study the relationship of the respondents’ agreement between the statements and

the sector in which developers gained their experience. The detailed results of this analysis are illustrated

in Figure 4.5, while more analysis can be found in the related appendix, Section D.3.3.

A I G

4

4.1

4.2

4.3

M
ea

n
of

Id
en

tif
yi
ng

th
e
re
la
tio

ns
hi
p

be
tw

ee
n
so

ftw
ar
e
pa

tte
rn
s
an

d
qu

al
ity

at
tri

bu
te
s
is

ve
ry

im
po

rta
nt

to
so

ftw
ar
e
de

ve
lo
pe

rs
an

d
th
e
so

ftw
ar
e

en
gi
ne

er
in
g
fie

ld
.

(a)

A I G

3.5

3.6

3.7

M
ea

n
of

Id
en

tif
yi
ng

sta
nd

ar
d
qu

al
ity

at
tri

bu
te

de
fin

iti
on

s
w
ith

in
cu

rre
nt

pa
tte

rn
re
fe
re
nc

es
is

a
cr
iti
ca

lf
or

co
m
pa

rin
g
th
e
sa
m
e
pa

tte
rn
s
ag

ai
ns

t
th
e
qu

al
ity

at
tri

bu
te

th
ey

po
ss
es
s.

(b)

A I G

3.8

3.9

4

4.1

4.2

4.3

M
ea

n
of

St
ud

yi
ng

re
la
tio

ns
hi
ps

be
tw

ee
n

pa
tte

rn
s
an

d
qu

al
ity

at
tri

bu
te
s
ba

se
d

on
th
e

cu
rre

nt
re
lia

bl
e
so

ftw
ar
e
pa

tte
rn

re
fe
re
nc

es
,

an
d

cr
ea

tin
g

a
da

ta
ba

se
to

sto
re

th
es
e

re
la
tio

ns
hi
ps

on
th
e
ba

sis
of

sta
nd

ar
di
ze

d
qu

al
ity

at
tri

bu
te

de
fin

iti
on

s,
is

va
lu
ab

le
kn

ow
le
dg

e.

(c)

A I G

3.8

3.85

3.9

3.95

4

4.05

4.1

M
ea
n
of

D
ev

el
op

in
g
an

ev
al
ua

tio
n

m
od

el
to

as
se
ss

pa
tte

rn
s
ag

ai
ns
t

qu
al
ity

at
tri
bu

te
s
is

w
or
th
w
hi
le
,

pr
ov

id
ed

it’
s
no

td
iff

ic
ul
tt

o
us
e.

(d)

Figure 4.5: Mean plots (a) to (d) for each of the statements (Q17 to Q20) in Y-axis, along with

developers’ work sectors in X-axis. (A=Academia; I=Industry; G=Government).

For the first statement (Q17), Figure (a), overall mean agreement was 4.1, where the academic sector

received the highest mean agreement of 4.5, then industry, and government, respectively.

The next statement (Q18), Figure (b), overall mean agreement of the respondents was 3.7, where

the highest mean response was from the academic sector, then the industry sector, followed by the gov-

ernment sector.

The Figure (c) statement (Q19) received an overall mean agreement of 4.1, where the academic

sector showed their highest mean agreement of 4.5, followed by the respondents from industry (4.0)and

then government (3.8).

Finally, there was an overall mean agreement of 3.9 to the statement (Q20) in Figure (d), where the

respondents from the government sector had the highest mean agreement of 4.0, while the respondents

of academic sector had the least mean agreement of 3.9.

153

CHAPTER 4. FACTORS INFLUENCING UTILISATION OF SOFTWARE…

Ageneral analysis of these results indicates that the highest rate of agreement to the first three state-

ments came from developers who had gained most of their experience in the academic sector, followed

by industry and lastly government, while the agreement to the last statement is vice versa. In a statistical

sense, as illustrated in Table D.4-(Section D.3.3), all of the statements’ population mean for all sectors

are significantly higher than 3 (neutral value) at 1% level of significance.

Asensible explanation to this result is: based on propositions aimed at researching an existing prob-

lem and analysing possible solutions. The academic sector, being more research-oriented, is expected

to agree with the statements more, since the statements support their efforts to do research and analysis.

The rate of agreement is followed by developers in the industry sector, which makes sense again, since

developers in the industry sector are aimed at solving current problems by analysing and doing extensive

research, then recommending or experimenting with solutions to the problem domain. The government

sector, which had the lowest mean agreement for the first three statements, is not known to be research-

oriented. Their main task is to sustain the existing quality and ensuring that the systems they use are

stable. This explains the differences in the mean count of the total agreements.

However, the last statement presents a unique situation in which developers from the government

sector had the highest mean agreement, followed by academic then industry. The last statement proposes

the development of an evaluation model to be used to solve the problem domain, partially. It could

be expected that developers from the academic sector would support this more. On the contrary, they

showed less support for the statement, which lacks sense, because standardisation is a better approach

and is supported by many references and researchers, as explained in Chapter 3.

SPs possess different QAs. As a result, as stated earlier, the examination of QAs is of paramount im-

portance before deciding to utilise a software pattern. Thus, the relationship betweenwhether respondents

were aware of patterns and their agreement to the statements in Question 17–20, as shown in Figure 4.6

and Table D.5.

0 1 2 3 4

4.1

3.67

4.03

3.9

Mean

Error bars: 95 %CI

Developing an evaluation model to assess pat-
terns against quality attributes is worthwhile,
provided it’s not difficult to use

Studying relationships between patterns and
quality attributes based on the current reli-
able software pattern references, and creating
a database to store these relationships on the
basis of standardized quality attribute defini-
tions, is valuable knowledge

Identifying standard quality attribute defi-
nitions within current pattern references is
a critical for comparing the same patterns
against the quality attribute they possess.

Identifying the relationship between software
patterns and quality attributes is very impor-
tant to software developers and the software
engineering field.

Figure 4.6: The mean of the items for developers who are aware of software styles/patterns.

The bar chart in Figure 4.6 shows that all statements means are significantly higher than 3 (the

neutral value) for those who were aware of SPs. The error bars (95% CI) show that all of the mean

responses are not statistically different from each other, as their error bars overlaps each other. This is an

interesting result, as it would be expected that those who were not aware of SPs would either disagree

154

4.4. FINDINGSAND RECOMMENDATIONS

with the propositions or decline to respond. Contrary to this, all respondents generally agreed with the

statements regardless of their awareness due to the sound of the proposed solutions, within the four

statements. Therefore, further research is recommended.

A significant relationship was also noted between the frequency use of SPs by developers and their

care for QAs during their utilisation of patterns as represented in Table 4.12. A group descriptive statistic

and independent sample t-tests were conducted to determine the equality of the two means. They showed

that there is a significant difference between the frequency of use of SPs by developers who took into

consideration QAs during their selection of patterns as compared to those who didn’t.

Table 4.12: Independent sample t-test for equality of two population group means of “how often

developers used software styles/patterns during their work”.

Agreement (Yes/No) N Mean SD

Levene’s Test for

Equality of Variances:

F (p-value)

t-test for Equality of Means

t-statistic

(p-value)
95% CI of the

difference

Developers who care about or consider quality attributes during selection of patterns

Yes 22 2.73 0.63 2.51

(.123)

2.22

(.017)
(0.05, 1.12)

No 14 2.14 0.95

If software patterns used in the past, will keep using them in the future

Yes 27 2.93 0.73 0.00

(1.000)

5.26

(.000)
(0.81, 1.84)

No 10 1.60 0.52

Identified any conflicting views among any references regarding some patterns and/or regard-

ing quality attributes

Yes 3 3.00 1.00 0.00

(1.000)

1.02

(.317)
(-0.51, 1.51)

No 24 2.50 0.78

Support having different names for similar patterns

Yes 9 2.44 0.88

0.037 (.850)
-0.90

(.377)
(-1.04, 0.41)

No 21 2.76 0.89

The deduction from the above analysis is that developers who cared to consider QAs before selecting

SPs used the patterns more frequently than those who did not. A logical explanation beyond this is, as

developers start using patterns, they are only interested in the basic use of SPs. This changes, as the

developers continue using SPs because developers are likely to develop more interest in knowing the

features and characteristics of patterns to make their utilisation more efficient. Hence, the more frequent

use of patterns by developers, the more careful they are in considering their QAs before selecting them.

As noted earlier, the consideration of QAs when selecting SPs is very beneficial to a developer.

The result of this is the production of improved quality systems and software. This research therefore

recommends SP stakeholders to adapt or develop methods that will inform them about the output quality

of a system or software before implementing required pattern.

The last significant result in this section is the relationship between developers who used SPs in

the past and will continue using SPs in the future, and the developers’ frequency of use of SPs, as shown

in Table 4.12. According to the result, there is a significant difference in the frequency of use of SPs

between respondents who had used patterns and were willing to continue using them in the future, and

those who hadn’t. Therefore the frequency of use of SPs is higher among developers who had used SPs

and were willing to continue using them in the future.

This finding was anticipated. The frequency of usage of SPs can be directly linked to the comfort

155

CHAPTER 4. FACTORS INFLUENCING UTILISATION OF SOFTWARE…

or ease with which developers use them. It is obvious that the more a developer has spent time using

SPs, the more comfortable the developer becomes with them. As a result of this, the developer is likely

to use patterns more frequently. Whereas, developers who are not using patterns frequently could have

their reasons based on their needs and how comfortable they are with patterns. Thus, it is less likely that

they will continue using patterns in the future.

4.4.2 Important comments from some non-significant results that related

to the research goals

In this section some non-significant results worthy of comment are considered.

• The analysis between the relationship of the respondents’work place (sectors) and how frequently

they used patterns is depicted in Figure 4.7.

Never Infrequently
(<10%)

Reasonably
frequently

(>15%and <50%)

Regularly
(>50%and <80%)

Nearly always
(>90%)

0

5

10

15

4

3 5

1

1

8 5

2

6 5
7

1

C
ou

nt Academia
Industry

Government

In which of the following
sectors have you gained most
of your general software
development experience?

Figure 4.7: Developers’ work sectors vs how often they used software patterns (frequency in

stacked bar chart).

The analysis concludes that respondents whose expertise lies in academia used SPs less frequently

than those in government and industry. However, this relationship was not significant, according to

the Chi-square test, Section D.3.2. As such, there is no statistical evidence to support this relation-

ship. Nevertheless, this is an indication of yet another discrepancy in the embracement of patterns

in different sectors of the economy. It raises a question about what could cause this discrepancy?

In order to understand this, further research is needed to reveal some of the factors that could in-

fluence embracement and utilisation of SPs in different sectors of the economy.

• Other analysis, as illustrated in Table 4.13, revealed that the number of years of experience in

software development did not seem to affect the respondents’ decision to be in favour of having

different names for the same pattern, support for SPs standardised documentation, or the agree-

ment with the statements about the important knowledge that needs to be possessed by software

engineers and developers regarding SPs-QAs relationships.

• Also, there could be a possibility that the variation in SPs usage with different sectors is affected by

the approach taken by developers when using SPs. In order to use the patterns effectively and with

maximum satisfaction, it is necessary to consider their QAs. Also, to establish if this possibility

156

4.4. FINDINGSAND RECOMMENDATIONS

exists, a two dimensional analysis was performed to determine the relationship between the sectors

of economy in which the respondent developers gained most of their development experience, and

whether they considered QAs during their selection of patterns. The analysis is reported in Table

D.3.

Table 4.13: Cross tabulation of three work sectors with software styles/patterns usage and

consideration of quality attributes and Chi-square test of independence between attributes.

How many years experience do you have in

total in the software development field? Chi-square

(p-value)5-10
(years)

10-15
(years)

15-20
(years)

20-25
(years)

>25
(years)

Are you aware of software

styles / patterns?

Yes 25 9 3 1 3 3.46

(.483)No 7 1 0 1 0

How often do you use soft-

ware styles / patterns during

your work?
Never 7 3 1 0 0

19.38

(.249)

Infrequently (<10%) 12 1 0 0 3

Reasonably frequently (>15%

and <50%)
11 3 2 1 0

Regularly (>50% and <80%) 1 2 0 0 0

Nearly always (>90%) 0 1 0 0 0

Have you identified any conflict-

ing views among any references

regarding some patterns and/or

regarding quality attributes?

Yes 2 0 1 0 0 9.13

(.058)No 15 5 0 1 3

Do you support having

different names for similar

patterns?

Yes 5 3 0 0 1 2.49

(.647)No 13 3 2 1 2

Do you support standard

documentation practices for

software patterns?

Yes 12 5 2 1 1

4.69

(.968)

No 1 0 0 0 0

Not sure 1 0 0 0 0

Perhaps 6 2 0 0 2

The results of the study showed that an equal number of developers from academic and industry

consider the quality attributes of software patterns before utilisation, while less of those in gov-

ernment cared. However, this relationship was not clearly defined according to the Chi-square

test.

• Another important two dimensional analysis was between the number of years of experience that

respondents had, and their awareness about software patterns. The results of the analysis are shown

in Table 4.13 and Figure D.2. Out of the 41 respondents to the question, 61% of them had an ex-

perience of 5 to 10 years; and 78% of whom were aware of SPs. On the other hand, 89% of those

157

CHAPTER 4. FACTORS INFLUENCING UTILISATION OF SOFTWARE…

with an experience of over 10 years were aware of SPs.

Thus, a positive relationship was identified here, the more experienced the respondents were, the

more likely they were to be aware of software patterns. However, the Chi-square test indicated that

the dependency on awareness about SPs on the year of experience in software development was non-

significant. Although preliminary matrix analysis tended to show that most of the respondents who used

patterns in development had less than 15 years of experience, an hypothesised Chi-square test ruled

out the dependency of SPs usage on the years of experience. In the same way, it was noticed that the

identification of conflicting views within the documentation of SPs was not dependent on the years of

experience in software development. This makes sense since, as stated earlier in this chapter, all the

participants in the questionnaire were suitable for the research since the length of experience as short as

5 years was enough for the respondents to know about SPs. Since almost all the respondents had this

experience, the difference in awareness about patterns was expected to be non-significant, proving once

again that the choice of respondents in this survey was done effectively and the responses to the key

questions could be relied upon.

4.4.3 Inappropriateness of three and four dimensional analyses

As indicated earlier, 3 and 4 dimensional analysis of the responses in this questionnaire proved to

be non-significant. In order to prove this, an example of 3 and 4 dimensional analysis is illustrated in

Section D.3.6, This type of analysis provided a null difference among all the responses given. Based

on this, it was therefore clear that 2 dimensional analyses were sufficient to exhaust all the underlying

relationships between responses to different questions.

4.5 Related work

The use of SPs and Styles is one of the many aspects of software design. There are many other design

aspects and approaches that have been surveyed by various researchers in order to improve the overall

process of software design. Most of these studies focus on particular views of architecture or design, such

as the survey of architecture design rationale by Tang et al. [2006] that sought to discover and emphasise

the importance of systematic documentation in software design. Their research was aimed at finding

out the significance of using and capturing the design rationale among software practitioners. Also, the

work done by Malavolta et al. [2013] is noticed, which aimed at establishing the needs of architectural

languages in industry.

In addition, the effort by Zhang et al. [2013] to experience user perceptions about software design

patterns is a positive contribution towards SPs in particular. The survey gathered respondents answers

to the question: “which design patterns from the GoF do expert pattern users consider as useful or not

useful for software development and maintenance, and why?”.

Also, the design of empirical studies to evaluate software patterns, such as a survey by Abou-El-

Fittouh et al. [2012], which summarises the study designs of software patterns available in the literature

and includes evaluation criteria.

The two former works above (Tang et al. [2006] and Zhang et al. [2013]), are among a number of

others that have been conducted with the view to improving the process of software design and architec-

158

4.6. LIMITATIONS

ture. However, none of them narrowed down to focus on these study aspects to encourage development

of a systematic solution to document SPs better. The latter two surveys were too narrowed and specific

to the GoF design patterns, and an investigation of the existing patterns studies, respectively.

Therefore this survey is important and can be seen as a proper combination of the two approaches,

because it’s not too specific or too wide. Also, it is concentrated on SPs in general and from different

aspects, such as, pattern documentation, factors deterring or supporting the use of patterns, and their

relationships with QAs.

Also, good research has been conducted on “software design-pattern specification languages”,Khwaja

et al. [2016]. Their focus was on object-oriented design patterns. Their research discussed languages

based on, mathematical formalism, other modelling languages, and other languages. They did categorise

them into description, analysis, and detection patterns languages. Despite the variation between the ob-

jectives and scope of this research and their survey, one common conclusion was “the need for a unified

framework for the evaluation of design patterns across different domains”.

To sum up this section, the current research discussed, including this survey, have a common goal to

improve the process of software design and architecture (including its styles/patterns). Thus, I recommend

inclusion of the findings of this current research into the process of developing concrete solutions for

current software architecture and design challenges.

4.6 Limitations

It is worthy to note that this research has its own limitations, which calls for more research within

related fields to fill the gaps identified in the research. The first limitation of this study is the optional

questions, which allow the participants to skip some of the questions without providing answers. This

results in low cell responses in the three and four dimensional analyses (explained earlier in Section 4.3.5,

which leads to some invalid results, and minimises the chances of finding new significant relationships

between different factors that could improve pattern utilisation. Another limitation is that most questions

included in the questionnaire were close-ended. This may limit the opinions gathered from the respon-

dents. Also, the limited sample size caused some invalid analysis results, which consequently limits the

findings of this work.

Finally, this chapter only focused on SPs without considering the possibility of a better alternative

to SPs for software designing and development. Therefore, I recommend more studies, as opposed to

relying solely on the findings of this research, in order to come-up with solutions for some of the issues

pointed out here.

4.7 Conclusion

The utilisation of well-documented SPs has the potential to improve the whole process of software

evaluation and development, especially in architectural and design levels. However, in order for this

potential to be realized, there is a need to identify the factors that could be hindering the use of SPs

and come up with solutions. Research is one of the best tools to identify such factors and facilitate the

proposition of possible solutions.

Through an inductive approach, this research has made an effort to establish the current trends in

the utilisation SPs within the software development process. The research was able to capture a wide

159

CHAPTER 4. FACTORS INFLUENCING UTILISATION OF SOFTWARE…

audience across various fields of software development and collect their opinions about the factors that

encourage or discourage the utilisation of software style/patterns. It was established that one of the main

factors influencing the utilisation of SPs is documentation. This is also likely to affect how patterns

will be utilised in the future. This is the reason why part of the thesis was dedicated towards analysing

current and reliable patterns’documentation, which aimed to help in establishing a systematic framework

to provide clear guidelines for creating and documenting SPs.

Based on the findings of this study, the importance of QAs consideration within SPs cannot be

ignored, as shown by the first statement in Table 4.14. Thus, software developers who consider QAs

before using patterns are likely to be able to build better systems. It can therefore be concluded that the

effectiveness with which software patterns can be applied depends largely on their QAs.

From the study, it was also clear that the continued utilisation of patterns in the future depends

largely on the approach of their documentation. Findings also show that the respondents agreed to the

suggested solutions, which were provided partially through statements in Q17 to Q20 of the survey. I

therefore recommend that the suggestions be embraced and more research be conducted on each of them

to determine the best way in which they can be implemented, in order to develop a SPs platform.

Table 4.14: Summary of the main significant analysis results with associated tables (for better

traceability)

Findings
Analysis
Table

Statistics
(p-value)

Developers significantly agreedwith the statement “Identifying the relationship

between software patterns and quality attributes is very important to software

developers and the software engineering field”

4.10
t = 9.50

(.0000)

Developers significantly agreed with the statement “Identifying standard qual-

ity attribute definitions within current pattern references is a critical for com-

paring the same patterns against the quality attribute they possess”

4.10
t = 4.34

(.0000)

Developers significantly agreed with the statement “Studying relationships be-

tween patterns and quality attributes based on the current reliable software pat-

tern references, and creating a database to store these relationships on the basis

of standardised quality attribute definitions, is valuable knowledge”

4.10
t = 6.34

(.0000)

Developers significantly agreed with the statement “Developing an evaluation

model to assess patterns against quality attributes is worthwhile, provided it’s

not difficult to use”

4.10
t = 5.78

(.0000)

The developers who have expertise in architecture more frequently used soft-

ware styles/patterns during their work, compared to who don’t have the exper-

tise in architecture

4.11
t = 3.64

(.0005)

Designers more frequently used software styles/patterns during their work com-

pared to the developers who have other expertise.

4.11
t = 2.28

(.0070)

Programmers (Coders) more frequently used software styles/patterns during

their work compared to the developers who have other expertise.

4.11
t = 1.52

(.0335)

160

4.7. CONCLUSION

Developers who “care about or consider quality of attributes during their se-

lection of patterns” used software styles/patterns more frequently than who did

not care.

4.12
t = 2.22

(.0085)

Developers who “used software styles/patterns in the past and will keep using

them in the future”, use patterns more frequently.

4.12
t = 5.26

(.0000)

In conclusion, SA and design can be greatly improved through the application of SPs. However, this

process can also be hindered if software developers do not have the right experience and guidelines to

apply SPs correctly. This research has laid out some important observations regarding the current trends

in SPs. Further research is required as recommended within the findings section in order to ascertain how

each of the issues discovered can be handled. In the end, through this study and other related research, a

systematic framework can be achieved to guide the seamless application of software patterns in various

fields. Two of the most urgent areas that need further research as recommended in this study include

Documentation and QAs of SPs. The anticipated result of successful application of SPs in software

development is increased as developers improve the quality of their software, as well as saving time in

the development process. Table 4.14 summarises the significant findings of this chapter.

161

CHAPTER 4. FACTORS INFLUENCING UTILISATION OF SOFTWARE…

162

Chapter

5
Utilisation of Software Architecture

Artefacts and its Evaluation

The architecture of complex software or systems is a collection of hard decisions that

are very expensive to change. Successful product development and evolution depend

on making the right architectural choices. Can you afford not to identify and not to

evaluate these choices?

—Alexander Ran, Principal Scientist of Software Architecture, Noki

Clements et al. [2002a, back cover]

163

CHAPTER 5. UTILISATION OF SOFTWAREARCHITECTUREARTEFACTS…

5.1 Executive summary

The quality of a software product depends largely on the architecture and design processes. Quality

characteristics are measured and evaluated using various evaluation methods. Also, the utilisation of

various software architecture artefacts has NOT been fully embraced by software developers, as noted

from the previous questionnaire analysis in Chapter 4. This raised curiosity about the factors that could

hinder or encourage the utilisation of these artefacts. Therefore, this research reported in this chapter is

a continuing effort to the study reported in previous chapters.

Thus, one of the main aims in this chapter is to reveal the various factors that affect positively or

negatively SA model/artefact utilisation among professionals from various fields; the second aim is to

uncover any relationships between SoftwareArchitecture Evaluation (SAE) and various factors affecting

SA; in order to improve the supportive factors and decrease the impact of the hindering factors. The

research methods used during this part of the research were a survey and field study.

5.2 Introduction

Having realised the importance of SPs in Chapter 4, which form an essential part of SA artefacts,

it seems apparent that there is a need for more research regarding SA and SAE, in order to improved

their methodologies. Despite the issues concerning SP-QA relationships, the analysis in Chapter 4 re-

vealed that there is a high potential for quality improvement during the proper utilisation of SPs, with a

consequential improving of SA descriptions and assessment.

There are various studies that have tried to analyse the relationship between SA and QAs. Such

studies include the research by Bass et al. [1998], Moreno et al. [2008], Zayaraz [2010], AV Sriharsha

[2015], Khwaja et al. [2016], Lugou et al. [2016], Ribeiro et al. [2017], and Brouwers et al. [2017]. Each

of these studies focused on a specific architecture view, such as SPs, a specific QA, or modelling and

languages.

However, there is no study yet published, which combines the investigation of SA, SAE, and SA

modelling techniques, through two different approaches, as is case in this study. The two pillars of

investigation (brown boxes) reported in this chapter are illustrated in Figure 5.1.

Chapter-5

Main

Sections

Intro.
Survey

Analysis
Field Study Conclusion

Figure 5.1: The two pillars to investigate SA, SAE, and SPs relationships.

Therefore, the objectives of this chapter are:

• To explore the current trend of SA developmenta among developers from different fields

of software development. By studying these trends, the courses of action (e.g. more

164

5.3. SURVEYMETHODOLOGYAND PROCESS

teaching of SA in academia) within the fields of software development should be able

to be determined.

• To determine the factors engaging/discouraging the utilisation of modelling techniques

during SA development.

• To disclose the challenging factors that are deterring overall SAE methods’ progress,

and quantitative assessment in particular.

• To uncover the important factors that determine or influence the utilisation of software

architecture artefacts.

• To study SA and SAE overall trends, in the government and industry sectors, through a

field study.

Both methods (survey and field study) are utilised to obtain, observe, and analyse infor-

mation from different organisations and from a varied range of software developers, in order

to draw more concrete judgements and recommendations. Both methods and their findings

are described in detail in Sections (5.3 and 5.4),

aSuch trends include the familiarity of developers with software architecture descriptions, modelling

techniques, evaluation processes, their frequent use of these methods, and the future implications con-

cerning the final deliverables.

5.3 Survey methodology and process

The questionnaire for this second survey was sent to the same people and organisations mentioned

in Chapter 4, and 50 responses were received (compared with 52 for the first survey).

Mostly the survey methodology, process, and analysis techniques are the same as described in Chap-

ter 4. Thus, this section and its sub-sections will report the differences only, to avoid any repetition.

Aspects that will not be addressed here, because there is no difference from Chapter 4, are:

• Research technique and process.

• Invitation mechanism and instrument distribution.

• Target population and sampling technique.

• Rationale of the selected analysis methods.

5.3.1 Instrument questions

The survey is composed of twenty-three questions, that are divided into three main sections, as

illustrated in Figure 5.2.

165

CHAPTER 5. UTILISATION OF SOFTWAREARCHITECTUREARTEFACTS…

Figure 5.2: The three main sections of the survey.

SAE
SA

documentation

Formality of

SA description

Modelling of

SA

Standartisation

of SA

SA evaluation

tools

Figure 5.3: The main five SA elements influencing SAE.

The major part of the survey focuses on five elements that have an affect on SA, and consequently

on SAE. These elements were selected due to their high influence and relationship to both domains (as

illustrated in Figure 5.3), as determined from work experience and deep investigation of the state of the

art.

Each section of the survey has its own objectives that serve the overall survey goal as described in

Tables (5.1, 5.2, and 5.3), respectively.

Table 5.1: Section 1. Background Questions (Questions marked with (*) are mandatory).

This first section is concerned for establishing background information of participants.

Q1*

What is your general field of expertise regarding software development? You may

select more than one of the following options.

2 Requirements elicitation / modelling /analysis

2 Project management

2 Architecture

2 Design

2 Coding

2 Testing

2 Documentation

2 Other - please specify:

Q2*

In which of the following sectors have you gained most of your general software de-

velopment experience?

Academia

Industry

Government

166

5.3. SURVEYMETHODOLOGYAND PROCESS

Q3*

Howmany years’experience do you have in total in the software/systems development

field?

5–10 (years)

10–-15 (years)

15–-20 (years)

20–25 (years)

Over 25 (years)

Q4

Are you aware of any software/system architectural description/modelling languages,

(e.g. ADLs, AADL, SysML, UML)?

Yes, which language?

No

Q5

How often do you use models to describe software/system architecture during your

work?

Never

Infrequently (<10%)

Reasonably frequently (> 15% and < 50%)

Regularly (> 50% and < 80%)

Nearly always (> 90%)

Table 5.2: Section 2. Software architecture utilisation questions.

This section is mainly focused on the matters relating to SA utilisation, description, and modelling

amongst software developers. Also, it includes the factors that are likely have an affect on the util-

isation of SA modelling techniques during development process. The section went further to gather

information related to software description languages.

167

CHAPTER 5. UTILISATION OF SOFTWAREARCHITECTUREARTEFACTS…

Q6

What are the main factors that ENCOURAGE the utilization of modelling techniques

to describe software/system architecture? You may select up to two of the following

options.

2 Easier to demonstrate the software/system concept and features.

2 Most available architecture modelling references are clear and well documented,

which helps developers.

2 Understand and apply the modelling approach easily.

2 It makes the designers/programmers job much easier.

2 Makes the evaluation of stakeholders’ requirements for quality attributes possi-

ble in the early stages of the development life cycle.

2 Reliable modelling tools for describing the architecture exist, which makes the

usability factor much easier.

2 The wide range of modelling language formality (from informal models to for-

mal), makes the selection of architecture description technique more feasible.

2 Architectural models can be compiled to produce a real functioning soft-

ware/system with existing modelling languages and tools, (e.g. SysML,
X
T UML).

2 Teaching of the architecture modelling languages in the academic sectors.

Q7

What are the main factors that DISCOURAGE the utilization of modelling techniques

to describe software/system architecture? You may select up to two options.

2 Hard to integrate these models with other artefacts (e.g. Design models), so they

become standalone models, which to some degree are not that useful during the

development of software/system.

2 Lack of standardisation between existing architecture modelling techniques, no-

tations, and semantics. Current architecture description languages (including

modelling languages) are still immature.

2 Modelling the architecture has limited benefit to the whole software/system de-

velopment process, so it’s to some extent a waste of time and money.

2 Hard to evaluate architecture models against any stakeholder’s quality attributes

(e.g. Security, performance).

Q8

From your experience, what is the best language to use to describe software/system

architecture, so as to be more useful to all stakeholders, and to be easier to undertake

qualitative and quantitative assessments?

Natural language (e.g. English-text) only.

Semi-formal language (e.g. UML, SysML) only.

Formal language (e.g. ADLs, Z) only.

Formal language & Natural language together.

Semi-formal language & Natural language together.

Semi-formal language & Formal language together.

All three languages above together.

168

5.3. SURVEYMETHODOLOGYAND PROCESS

Q9

Developing software/system architecture using current architectural frameworks (e.g.

ISO/IEC 42010, DoDAF, RUP/4+1) increases the reliability, standardisation, and

reusability of the resulting architecture.

Strongly Agree

Agree

Neutral

Disagree

Strongly Disagree

Q10

Usage of software style/pattern concepts & models during architecture development,

increases the utilisation of modelling description languages, BUT decreases the sim-

plicity of the architecture valuation.

Strongly Agree

Agree

Neutral

Disagree

Strongly Disagree

Table 5.3: Section 3. SA evaluation methods and tools.

The final section consist of thirteen questions, which focused on SAE tactics, and factors that could

support or hinder SAE methods. The section also, sought to explore the effect of the current tech-

nologies, automation and tools on SAE methodologies.

Q11

Are you aware of any system/software architectural tactics or metrics that have been or

are being used for evaluating architecture description models, (e.g. detecting attacks

for security).

Yes, please provide reference:

No

Q12

Do you know or use any architectural evaluation method that can produce quantitative

measures surrounding architecture characteristics?

Yes, please name it:

No

Q13

What are the most important factors that could SUPPORT quantitative evaluation for

any SA? You may choose two.

2 The language used for describing SA.

2 Formality level of SA description.

2 Using standard language and architecture framework for describing SA.

2 Tools availability for describing and evaluating SA.

2 Documenting mechanism used during SA description.

169

CHAPTER 5. UTILISATION OF SOFTWAREARCHITECTUREARTEFACTS…

Q14

What are the most important factors that could HINDER quantitative evaluation for

any SA? You may choose two.

2 The language used for describing SA.

2 Formality level of SA description.

2 Using standard language and architecture framework for describing SA.

2 Tools availability for describing and evaluating SA.

2 Documenting mechanism used during SA description.

Q15

”Architecture is design, but NOT all design is Architecture”

Strongly Agree

Agree

Neutral

Disagree

Strongly Disagree

Q16

There is still vagueness in the current literature concerning the differences between

the architecture abstraction and high level design, which causes some confusion and

perhaps wastes time during development by architects and designers.

Strongly Agree

Agree

Neutral

Disagree

Strongly Disagree

Please indicate your level of agreement with respect to the following statements:

Q17

Most of the existing software architecture evaluation methods, produce qualitative re-

sults.

Strongly Agree

Agree

Neutral

Disagree

Strongly Disagree

Q18

It’s worthwhile to undertake an effort to develop a quantitative methodology for eval-

uating software/system architectures.

Strongly Agree

Agree

Neutral

Disagree

Strongly Disagree

170

5.3. SURVEYMETHODOLOGYAND PROCESS

Q19

Reliable tools are important for developing/or evaluating software/system architec-

tures.

Strongly Agree

Agree

Neutral

Disagree

Strongly Disagree

Q20

Current technology lacks reliable software architecture evaluation tools.

Strongly Agree

Agree

Neutral

Disagree

Strongly Disagree

Q21

Reading software/system architecture description models for automated evaluation

purposes, is a critical, difficult, and error prone task.

Strongly Agree

Agree

Neutral

Disagree

Strongly Disagree

Q22

Restricting the description of architecture to a specific modelling language during de-

velopment, should make the architecture quantitative evaluation easier.

Strongly Agree

Agree

Neutral

Disagree

Strongly Disagree

Q23

Current technology allows us to develop general software evaluation models that as-

sess any software architecture against any quality attributes.

Strongly Agree

Agree

Neutral

Disagree

Strongly Disagree

5.3.2 The analyses methods and procedure

A Dimensional Approach was used to analyse the questionnaire.

One Dimensional (or Individual) analysis - where each question is analysed individually; andMulti

171

CHAPTER 5. UTILISATION OF SOFTWAREARCHITECTUREARTEFACTS…

Dimensional (or Matrix analysis) - where more than one question is analysed together. Both (Individual

andMulti dimensional) analysis follow the samemethods and procedure that have been used in Chapter 4.

However, the matrix combinations for the Multi dimensional analysis is different. The two dimensional

matrices are shown in Table 5.4, whereas, the three and four dimensional matrix tables are not included

here due to their invalid results, as explained later in Section 5.3.3.2. Proper statistical analysis methods

were applied.

5.3.2.1 Data Distribution Normality statistics

An assumption of normality for the Likert Scale statements, for questions Q9, Q10 and Q15-Q23

was performed using the Shapiro-WilkW statistic, which confirmed that each of the answers came from a

normal population (p-value > .05), except for Q22. Thus, parametric tests are applicable to all the answers

except for Q22. For this question,W= 0.92, Z = 2.61, p-value < .01 but since the Shapiro-WilkW statistic

is close to 1, parametric tests are considered to still by applicable for Q22.

5.3.3 Findings and Recommendations

Having taken into consideration, all the controls explained above for the survey analysis, the re-

sponses were gathered from participants, analysed, and documented. The findings portray interesting

trends for SA descriptions and SAE, most of which are significant and therefore help in attaining this

study’s objectives. To avoid confusion, Figure 5.4 illustrates the organisation of the analysis sections.

Figure 5.4: The three main sections and their sub-sections of the analysis.

Requirements
elicita-

tion/modelling/analysis

Project man-
agement

Architecture Design Coding Testing Documentation Other

10

20

30

23

11

20

31
29

18

8
6

N

Figure 5.5: Respondent’s general field of expertise regarding software development.

172

5.3. SURVEYMETHODOLOGYAND PROCESS

Demographic data is illustrated through the bar chart in Figure 5.5 and Table 5.5, which summarise

the results of the background questions. The responses were received from the same countries shown

in Table 4.5. The first step of this analysis was to ensure that all the basic requirements for the survey

were met. That is a correct selection of respondents, in terms of years of experience, area of expertise,

the sector in which they have worked, as well as their familiarity with the research domain. This was the

aim of the first section of the questionnaire, which was analysed individually.
The combination of 31 designers, 20 architects, 23 analysts, and 29 programmers (Coding) is con-

sidered a reasonable diversity of ‘areas’ within the software engineering field from which to obtain re-

sponses, and which in turn could lead to credible findings, noting that one participant can select more than

one role. The analysis was done according to the actual number of respondents, not how many roles they

have occupied during their career; however, the sum of each role was valuable during the comparison

process between the respondent’s comments and their fields of experience.

The results indicate that the intent to include experts from most software development fields, in

order to report this study across a wide range of disciplines, has been met.

173

C
H
A
P
T
E
R
5
.
U
T
IL
IS
A
T
IO

N
O
F
S
O
F
T
W
A
R
E
A
R
C
H
IT
E
C
T
U
R
E
A
R
T
E
F
A
C
T
S
…

Table 5.4: Two dimensional matrices analysis (only two questions will be analysed together).

Q 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 X1 X2 X3 X4 X5 X6 X7 X7 X7 X7 X7 X7 X7 X7 X7

2 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 X22 X23 X24 X25 X26

3 X27 X28 X29 X30 X31 X32 X33 X34 X35 X36 X37 X38 X39 X40 X41 X42 X43 X44 X45

4 X46 X47 X48 X49 X50 X51 X52 X53 X54 X55 X55 X55 X55 X55 X55 X55 X55 X55

5 X56 X57 X58 X59 X60 X61 X62 X63 X64 X65 X66 X67 X68 X69 X70 X71 X72

6 X73 X74 X75 X76 X77 X78 X78 X78 X78 X78 X78 X78 X78 X78

7 X79 X80 X81 X82 X83 X83 X83 X83 X83 X83 X83 X83 X83

8 X84 X85 X86 X87 X88 X89 X90 X91 X92 X93 X94 X95 X96 X97

9 X98 X99 X100 X101 X102 X103 X104

10 X105 X106 X107 X108 X109 X110 X111 X112 X113 X114 X115 X116

11 X117 X118 X119 X120 X121 X122 X123 X124 X125 X126 X127

12 X128 X129 X130 X131 X132 X133 X134 X135 X136 X137 X138

13 X139 X140 X141 X142 X143 X144 X145 X146 X147 X148

14 X149 X150 X151 X152 X153 X154 X155 X156 X157

15 X158 X159 X160 X161 X162 X163 X164

17 X165 X166 X167 X168 X169 X170

18 X171 X172 X173 X174 X175

19 X176 X177 X178 X179

20 X180

21 X181

22 X182

n inXn stands for matrix number.

Example: For Question (1), two matrices can be written down as:

• Matrix (X1): Analysis of (Q1 and Q2) together;

• Matrix (X7): Analysis of Q1 with each answer for the questions (Q15 to Q23).

1
7
4

5.3. SURVEYMETHODOLOGYAND PROCESS

An equally significant result involves the sectors in which the participants gained their expertise. The

Chi Square (χ2) test indicates a significant difference between the three sectors at the 5% interval. It is

evident from the results, that almost half of the participants gained their experience in academia, followed

by industry and government respectively, as shown in Table 5.5. Sector variation could, therefore have

an effect on the findings of this survey.

One of the goals of this study was to collect responses from professionals with experience of no

less than 5 years. A Chi Square test was used to determine the distribution of these percentages, which

appeared to be significant. The biggest percentage of participants lay between 5 to 10 years of experi-

ence. However, the distribution of the percentages is NOT uniform, which could possibly influence the

responses of the participants in the questionnaire.

Also, with 30% having more than 15 years of experience, this may affect the survey analysis due to

the participants familiarity with SA. However, a developer with an experience of 5 years and more is still

considered to be able to evaluate SA and design. Thus, the responses collected from these participants

can be counted as valuable.

Table 5.5: Frequency distribution of single response categorical questions/items and Chi-square

test results for equality of group frequencies; (Q2-Q5, Q8, Q11, Q12).

Question/Item Frequency (%)
χ2

(p-value)

Sectors that participant’ gained most of their general software development experience (N=50)

Academia 24 (48.0)
7.84

(.020)
Industry 18 (36.0)

Government 8 (16.0)

Total years of experience in the software/systems development field (N=50)

5–10 (years) 24 (48.0)

10–15 (years) 11 (22.0)

27.80

(.000)

15–20 (years) 4 (8.0)

20–25 (years) 7 (14.0)

Over 25 (years) 4 (8.0)

Awareness of any software/system architectural description/modelling languages, e.g. ADLs,

AADL, SysML, UML, etc. (N=49)

Yes 41 (83.7) 22.22

(.000)No 8 (16.3)

How often respondents used models to describe software/system architecture during their work

(N=50)

Never 7 (14.0)

17.00

(.002)

Infrequently (< 10 %) 18 (36.0)

Reasonably frequently (>15% and <50%) 16 (32.0)

Regularly (>50% and <80%) 5 (10.0)

Nearly always (>90 %) 4 (8.0)

The best language to use to describe software/system architecture (N=46)

Natural language only 4 (8.7)

60.2

(.000)

Semi-formal language only 8 (17.4)

Formal language only 1 (2.2)

175

CHAPTER 5. UTILISATION OF SOFTWAREARCHITECTUREARTEFACTS…

Formal and Natural language together 2 (4.3)

Semi-formal and Natural language together 24 (52.2)

Semi-formal and Formal language together 1 (2.2)

All three languages 6 (13.0)

Awareness about any system/software architectural tactics or metrics that have been or are being

used for evaluating architecture description models (N=47)

Yes 7 (14.9) 23.2

(.000)No 40 (85.1)

Knowledge or use of any architectural evaluation method that can produce quantitative measures

surrounding architecture characteristics (N=46)

Yes 5 (10.9) 28.17

(.000)No 41 (89.1)

5.3.3.1 Significant Results

Significant results indicate the existence of a relationship between variables that is not likely to have

happened purely by accident. The following sections provide details of the analyses undertaken based

on the objectives of this study that serve the research’s main goal.

5.3.3.1.1 One Dimensional Analysis Results The analysis of question four (Table 5.5), provides a

backup to the validity of the results, because a vast majority of the respondents were aware of soft-

ware/system architectural description and modelling languages, which indicates that 5 years experience

is still sufficient to give valid answers to the rest of the questions. Nonetheless, the number of unaware

respondents regarding software architectural modelling languages, which includes participants with 15

years of experience, raises a concern. The are potentially many reasons for their unawareness, including

poor documentation of SA description and modelling languages, failure to include them in the educa-

tional curriculum, they have only ever coded and never having designed a software system, ...etc.. The

recommendation here for the future is to incorporate the study of such languages into academic syllabuses

to promote awareness about them. However, this question gives an important insight into the ’general

usage’ of SA modelling techniques among software developers.

Apart from the awareness regarding SA description languages, 50% of the respondents either used

models infrequently or did NOT use them at all when describing SAs. Only a total of 18% used models

regularly or nearly always, while another 32% used models reasonably frequently. The distribution

of respondents in these categories is significantly non-uniform as determined using the Chi-Square test

shown in Table 5.5.

These results are surprising, considering the number of developers who are aware of SA description

languages. The reason for infrequent use of models, may therefore NOT be due to lack of their awareness.

This factor lays strong emphasis on the need for this study, because the possibility of other (undiscovered)

influencing factors that could be discouraging the use of models during SA description apparently exist,

and if uncovered by this study will assist in determining the best solutions and to improve the rate of SA

model utilisation.

Having found that software architectural modelling languages are NOT frequently used by many

developers (50%), the responses to the next two questions (Q6 and Q7) relating to factors that could

be affecting the utilisation of these models either positively or negatively assumed some importance.

176

5.3. SURVEYMETHODOLOGYAND PROCESS

In order to assess this, thirteen factors that could possibly encourage/discourage the use of modelling

languages during SA development were proposed through questions Q6 and Q7. Analysis results are

illustrated in Figures 5.6, 5.7, and Table 5.8.

5 10 15 20 25 30 35

Easier to demonstrate the software/system
concept and features.

Most available architecture modelling refer-
ences are clear and well documented, which
helps developers understand and apply the
modelling approach easily.

It makes the designers/programers job much
easier.

Makes the evaluation of stakeholders require-
ments for quality attributes possible in the
early stages of the development life cycle.

Reliable modelling tools for describing the ar-
chitecture exist, which makes the usability
factor much easier.

The wide range of modelling language formal-
ity (from informal models to formal), makes
the selection of architecture description tech-
nique more feasible.
Architectural models can be compiled to pro-
duce a real functioning software/system with
existing modelling languages and tools, (e. g.
SysML, xtUML).

Teaching of the architecture modelling lan-
guages in the academic sectors.

30

8

14

11

4

2

6

8

Frequency

Figure 5.6: The main factors Encouraging the utilisation of modelling techniques to describe

SA.

Amajority of the respondents believe that demonstrating SA concepts and features using models is

easier, and is the main factor that encourages the utilisation of models. A further 30% attributed the util-

isation of models as making designer and programmer jobs much easier. While, 24% of the respondents,

select the statement “it makes the evaluation of stakeholders’ requirements for quality attributes possible

in the early stages of the development life cycle”. Other encouraging factors identified are illustrated in

Figure 5.6.

The implication of these findings are discussed in more detail in Section 5.3.3.3 since they form part

of the main goals of this study.

The summary of responses to 5 possible factors that discourage the utilisation of modelling tech-

niques during SA description are illustrated in Figure 5.7.

Out of the five factors listed, 38% of all the respondents believe that the main factor discouraging

the utilisation of modelling techniques is “hard to integrate these models with other artefacts (e.g. design

models), so they become stand-alone models, which to a degree is NOT that useful during the develop-

ment of software/systems”. To illustrate, the inherent difficulty (and even lack of time) to incorporate

changes in the later parts of the development cycle need to be reflected in earlier documentation. Con-

177

CHAPTER 5. UTILISATION OF SOFTWAREARCHITECTUREARTEFACTS…

8 10 12 14 16 18 20

Hard to integrate these models with other
artefacts (e. g. Design models), so they become
standalone models, which to some degree are
not that useful during the development of soft-
ware/system.

Lack of standardisation between existing ar-
chitecture modelling technique, notations, and
semantics.

Current architecture description languages
(including modelling languages) are still im-
mature.

Modelling the architecture has limited bene-
fit to the whole software/system development
process, so it’s to some extent a waste of time
and money.

Hard to evaluate architecture models against
any stakeholder’s quality attributes (e. g. Se-
curity, performance).

19

17

8

12

13

Frequency

Figure 5.7: The main factors Discouraging the utilisation of modelling techniques to describe

SA.

nectivity between architecture and design elements become increasingly fragile (or even irrelevant) when

high levels of structural and functional change in the code are not updated in the design etc.

One of the other factors that hinders the use of software models is the difficulty in evaluating the

models against the stakeholder’s QAs requirements. There is, therefore, a need for selection of an opti-

mum modelling language that can enable the models to be useful to all stakeholders as well as enabling

qualitative and quantitative evaluation. As a result, it will improve current evaluation techniques. Many

forms of language can be applied for describing SAs, including natural language, semi-formal language,

and formal language, as explained in Chapter 2, which can be used jointly in any combinations to describe

SA, or mixed in a scientific approach that could produce a better common language.

The 8th question of the survey, sought to determine the best languages to describe software/sys-

tem architecture, so as to be more useful to all stakeholders and to support qualitative and quantitative

evaluations. The analyses are shown in Table 5.5 and Figure E.1.

More than half of the respondents (52.2%) believe that the best language to use for software de-

scription is a combination of natural and semi-formal languages. A Chi-Square test performed on the

results confirms that the frequencies in each category are NOT uniformly distributed. The difference is

thus significant.

According to the results, it is observed that the best architecture/modelling description language

depends on its formality level and usability factors. Natural languages, such as texts, are easy to draft

and use during the development of SA models. Furthermore, natural languages are preferred more due

to their familiarity to stakeholders, rather than the SA modelling and description languages, with which

they are unfamiliar.

However, “Natural language” could cause a conflict between stakeholders, due to different interpre-

tation of the written text among them. Furthermore, it may NOT contain any visual aspects or precise

semantics, making the designers job arduous to follow the architect’s lead.

178

5.3. SURVEYMETHODOLOGYAND PROCESS

“Formal languages”, on the other hand, have a systematic structured, which could be effectively

used to track (software) models within later developed artefacts such as code. Also, they incorporate

visual aspects that make it easier for the developer to model complex systems while visualising each

step of their architecture clearly. However, similar to other computer languages, these languages require

knowledge and experience before using them effectively.

A trade-off between a language’s simplicity and formality must be acknowledged, in order to select

the best language to use for SA development. Thus, it makes sense regarding the respondents’ choice

between semi-formal language and natural language as their best modelling language to use for SA de-

scription, especially, after the improvements over the last decade in the field of SAs description languages

and supporting tools. A combination of the two can provide users with good features that enable them

to trace requirements through software architecture/design, but they still have their disadvantages, which

has been discussed in Chapter 2.

Since this study is aimed at contributing towards the development of a systematic architecture evalu-

ation domain, it was fundamental to determine the suitability of modern architectural frameworks within

system architecture description. There are many modern architectural standards and frameworks includ-

ing (e.g. ISO/IEC 42010, DoDAF, RUP/4+1), among others. According to the results illustrated in

Table 5.6 and the box plot in Figure E.2, there is a significant agreement with the statements being made.

However, further analysis using a one-sample T-test indicates that the median value is larger than the

neutral value (3). This indicates a high tendency of neutrality of opinion from respondents regarding a

statement.

Table 5.6: Descriptive statistics for Likert scaled items along with one-sample t-test results for

testing assumed mean of 3 (Neutral value), (Q9, Q10, Q15-Q23).

Item N mean SD

H0: µ = 3 against
Ha: µ > 3

t-statistics p-value

Developing software/system architecture using current

architectural frameworks (e.g. ISO/IEC 42010, DoDAF,

RUP/4+1) increases the reliability, standardisation, and

reusability of the resulting architecture.

45 3.47 0.76 4.14 .000

Usage of software style/pattern concepts and models dur-

ing architecture development, increases the utilisation of

modelling description languages, BUT decreases the sim-

plicity of the architecture valuation.

46 3.00 0.84 0.00 .500

”Architecture is design, but NOT all design is Architec-

ture”.
45 3.84 0.85 6.65 .000

There is still vagueness in the current literature concern-

ing the differences between the architecture abstraction

and high level design, which causes some confusion and

perhaps wastes time during development by architects

and designers.

45 3.80 0.59 9.13 .000

Most of the existing software architecture evaluation

methods, produce qualitative results.
44 3.32 0.86 2.46 .009

It’s worthwhile to undertake an effort to develop a quanti-

tative methodology for evaluating software/system archi-

tectures.

43 3.70 0.80 5.70 .000

179

CHAPTER 5. UTILISATION OF SOFTWAREARCHITECTUREARTEFACTS…

Reliable tools are important for developing/or evaluating

software/system architectures.
44 4.30 0.59 14.47 .000

Current technology lacks reliable software architecture

evaluation tools.
45 3.53 0.69 5.15 .000

Reading software/system architecture description models

for automated evaluation purposes, is a critical, difficult,

and error prone task.

44 3.43 0.79 3.63 .001

Restricting the description of architecture to a specific

modelling language during development, shouldmake the

architecture quantitative evaluation easier.

44 3.50 0.70 4.75 .000

Current technology allows us to develop general software

evaluation models that assess any software architecture

against any quality attributes.

43 2.88 0.93 -0.82 .209

It seems that such modern frameworks are more organised and can enable developers to save time

while coming up with more reliable and reusable models. However, the complexity of such modern

frameworks cannot be ignored either, which could be the possible reason why most of the respondents

tended to be neutral about the statement. In order to encourage the embracement of such modern architec-

tural frameworks, it may be necessary to promote their incorporation into academic syllabuses to enable

many developers to understand how they work, and consequently incorporate them into their work.

Apart from the use of modern architectural frameworks, the use of software patterns is also likely

to increase the usage of modelling description languages. However, as noticed from Chapter 4 analyses,

software patterns haveNOT been strongly embraced during the development of software architecture/de-

sign. Thus, this study sought to determine the level of agreement of respondents to the second statement in

Table 5.6. The respondents remained neutral about this statement. Neutral responses are hard to interpret.

However, in this case the first two statements above support previous Chapters 2 and 3 discussion. How-

ever, the complexity of using these technologies can be a hindrance factor that could prevent developers

from utilising them within software development.

Further analysis confirms that there seems NOT to be many architectural tactics or metrics in exis-

tence, with which to carry out evaluations of architectural models. Only 15% of respondents agreed that

they were aware of system/software architectural tactics or metrics that have been, or are being, used for

evaluating architecture models (e.g. detecting attacks for security).

The results are shown in Table 5.5, and Figure 5.8. The result was surprising, because about 85% of

the respondents lacked this awareness. Further research is recommended to determine the cause of such

unawareness. This result raises three points for discussion:

• Whether it is because such metrics do NOT exist, which is NOT correct because they do, such

as the work by Kan [2003], Grady [1992], Jaquith [2007], Bass et al. [2013], and AV Sriharsha

[2015].

• Is it simply the lack of awareness by developers? This could be affected by different factors, such as

current curriculum ignorance ofmetrics/tactics. Alas, no references have been given by respondents

in the comment field.

• Or are they NOT mature enough to be applied in the industry, and they lack tool support? This is

partially true, as found in this study’s preliminary research’ findings.

180

5.3. SURVEYMETHODOLOGYAND PROCESS

85.1%No
14.9% Yes, please provide reference:

Figure 5.8: The percentage of respondents who are aware of any system/software architectural

tactics/metrics that have been or are being used for evaluating architecture description models.

In order to achieve software of high quality, the architect needs a guide to select the best architectural

patterns and design tactics. A method is therefore required to analyse and quantify the interactions that

exist between QAs, patterns, and tactics. This method is called quantitative evaluation, Kassab et al.

[2012]. Hence, the survey sought to determine the extent to which quantitative evaluation methods are

known and used among developers.

Respondents were asked if they knew or used any architectural evaluationmethod that could produce

quantitative measures surrounding architecture characteristics. Only 10.9% of the respondents either

knew or used such evaluation methods as shown by the results illustrated in Table 5.5, and Figure E.3.

It seems clear that software quantitative evaluation methods have NOT been embraced by developers

compared to qualitative evaluation methods.

One of the factors that could support SA quantitative evaluation, as identified by 51% of the re-

spondents, is the availability of tools that are required to describe and evaluate SA. A second factor, is

the use of a standard language and standard architectural framework for describing SA. The formality

level of the SA languages can also influence quantitative evaluation methods. Lastly, the process can

also be improved, depending on the documentation mechanism used, as well as the language used, for

description. The full results of the analysis are listed in Figure 5.9 and Table 5.8.

The language
used for

describing SA

Formality level
of SA description

Using standard
language and
architecture

framework for
describing SA

Tools
availability for
describing and
evaluating SA

Documenting
mechanism
used during

SA description

0

5

10

15

20

7

12

20
22

9

Fr
eq

ue
nc

y

Figure 5.9: Respondents who identified the most important factors that could SUPPORT SA

quantitative evaluation.

Since evaluation is a critical process for eliminating any vulnerability in the system or software,

the right tools are needed to effect the evaluation. In addition to the proper tools for evaluation, it is

important that the language and framework used for evaluation are standardised. This makes the process

181

CHAPTER 5. UTILISATION OF SOFTWAREARCHITECTUREARTEFACTS…

easier, consequently, attracting many developers and architects to use tools or improve them to contribute

to SAE. Therefore, the findings above make sense and put more emphasises on the goal of this research,

which is to standardise the process of SAE, and to come up with a systematic framework that can be used

in the future.

As determined earlier, most of the respondents have preferred moderate levels of formality, during

SA description, to backup their quantitative evaluation in later stages. It is, thus, NOT surprising that the

correct choice of this formality level, is considered one of the major factors that support SAE.

Furthermore, the study also sought to determine the extent to which the same factors could hinder the

process of SAE, as shown in Table 5.8. This part of the survey can provide useful insight into the aspects

that currently need to be improved, and to have immediate attention given to encourage quantitative

evaluation of SAs.

Three major factors that hinder SA quantitative evaluation include:

1. The formality level of the SA description language.

2. The language used to describe the SA.

3. Tool availability for SA description and evaluation.

The findings form an interesting trend, compared to the factors that are likely to support quantitative

evaluation as described earlier. It is noted that, while 27.9% of all the respondents agreed the level of

language formality that was used for SA description is likely to support quantitative evaluation, half of

the respondents identify the same factor as an obstruction for SA quantitative evaluation. This is an

indication that there is a potential to improve quantitative evaluation utilisation, by selecting the proper

level of formality. Therefore, focusing research future on the level of the SA formality level, and its effect

on SA quantitative evaluation, is recommended.

In a similar way, while 16.3% of the respondents believe that the language used in describing SA

is likely to support the process of quantitative evaluation, another 40.5% of the respondents identified

it as one of the critical factors that hinder the process for evaluating SAs quantitatively, as illustrated in

Table 5.8.

Thus, focus should also be given to the availability of the right tools to describe and evaluate SA.

While it was identified as the most important factor that is likely to support quantitative evaluation of SA,

still there is a substantial number (35.7% of all the respondents) who believe that it is one of the factors

hindering the same process. The other factors that should NOT be ignored include the use of standard

language and architectural framework for describing SA, as well as the documentation mechanism used

in the process of SA descriptions.

More significant analysis for questions Q15-Q19 shows an agreement to all the five statements as

represented in Figure 5.10, where the mean of responses to each statement being on the right of the neutral

line. However, the strength of the agreement to each statement is variable.

Therefore, it could be concluded that all the five factors discussed above have a significant influence

on quantitative evaluation methods and their usage. In order to improve them and their utilisation, it is

paramount to give each factor attention, to increase their support towards quantitative evaluationmethods,

and to decrease their negative impact.

Finally, this study continued by analysing the effectiveness of current technologies including: (meth-

ods, tools, languages, and models) within the SAE, and its automation process. This was done through

182

5.3. SURVEYMETHODOLOGYAND PROCESS

0 1 2 3 4

3.8

3.8

3.3

3.7

4.3

Mean

Error bars: 95 %CI

“Architecture is design, but NOT all design is
Architecture”.

There is still vagueness in the current liter-
ature concerning the differences between the
architecture abstraction and high level de-
sign, which causes some confusion and per-
haps wastes time during development by ar-
chitects and designers.

Most of the existing software architecture
evaluation methods, produce qualitative re-
sults.
It’s worthwhile to undertake an effort to de-
velop a quantitative methodology for evaluat-
ing software/system architectures.

Reliable tools are important for developing/or
evaluating software/system architectures.

Figure 5.10: Means for the statements in (Q15-Q19), with error bar and assumed mean line.

analysis of the last four statements (in questions Q20-Q23 of the survey). The analysis of respondent’s

agreements are shown in Table 5.6, and Figure 5.11.

There was an agreement by more than half of the respondents to the statement given by Q20. Only

7% disputed the statement, while 38% took a neutral stand. Since, the distribution of the responses was

negatively skewed BUT mesokurtic, there was, therefore, an agreement to the statement with a mean of

3.5, and a Standard Deviation (SD) of 0.7. The results imply that more aggressive effort is required to

develop a standard evaluation framework that should be supported by better tools.

Furthermore, 43% either agree or strongly agree with the statement in Q21. The greater number of

the respondents, (48%) took a neutral stand regarding the statement, while only 9% dispute the statement.

There is significant agreement with the statement, with a mean of 3.4 and a SD= 0.8, which indicates that

this research is a challenging task (based on its objectives) and a valuable contribution to the software

community.

Also, there was significant agreement by respondents to the statement made in Q22, with more

than half of the respondents agreeing to the statement. There was a mean agreement of 3.4 with SD= 0.7,

which was statistically significant at a 1% interval. Hence, while the use of different modelling languages

for architectural description may achieve better QAs such as security, it may make the software evalua-

tion processes very complex. Alternatively, restricting SA description to a specific modelling language

elevates the consistency level, consequently, making SAE easier.

Lastly, about a third of the respondents either disagreed or strongly disagreed with the statement

shown in Q23. A further 42% remained neutral about the statement, with only 26% either agreeing or

strongly agreeing. According to this research investigation, which has been conducted progressively since

2010 until April-2018, there is no approach with supporting tools which can perform such a function yet..

Nevertheless, current technologies are making tremendous progress bringing them close to achieving the

task described in the statement above.

Generally, agreement to the first three statements above (Q20-Q22), and disagreement to the last

statement (Q23), indicates the shortage of appropriate tools for describing and evaluating SA. Thus,

183

CHAPTER 5. UTILISATION OF SOFTWAREARCHITECTUREARTEFACTS…

0 0.5 1 1.5 2 2.5 3 3.5

3.5

3.4

3.5

2.9

Mean

Error bars: 95 %CI

Current technology lacks reliable software ar-
chitecture evaluation tools.

Reading software/system architecture descrip-
tion models for automated evaluation pur-
poses, is a critical, difficult, and error prone
task.

Restricting the description of architecture to
a specific modelling language during develop-
ment, should make the architecture quantita-
tive evaluation easier.

Current technology allows us to develop gen-
eral software evaluation models that assess
any software architecture against any quality
attributes.

Figure 5.11: Means for the statements in (Q20 to Q23), with error bar and assumed mean line.

more research is recommended to determine how current technology can be used to develop such tools,

in order to improve the process of SA description and evaluation.

5.3.3.1.2 Two Dimensional Analysis Results The fundamental findings of the survey were revealed

through a one-dimensional analysis, as reported in Section 5.3.3.1.1. However, in addition to the individ-

ual analysis findings, there could be additional underlying ’correlations’ between the answers to different

pairs of questions. Based on this, several patterns and trends in the field of SA and SAE could be revealed

by analysing the answers to questions in pairs to show any correlation that could exist between each pair.

The purpose of a two-dimensional analysis was to determine:

• Any underlying relationships between the results of various pairs of questions. These trends can

aid in developing appropriate recommendations for improving aspects of the software architecture

domain.

• To uncover and/or resolve any factors or challenges that could obstruct the development of a con-

crete SAE framework1.

In the quest to discover the relationship that exists between the response/agreement to the statement

in Q9 and the general field of expertise of the respondents, a t-test was conducted to compare the equality

of the means of the two items. A significant relationship was found between the two items, with the

higher group mean for the item corresponding to the respondents whose general field of expertise was

from the “Architecture” field. Thus, the highest agreement rate to the statement comes from architects.

These results are illustrated in Table E.3.

Similarly, architects agree more to the statement “Architecture is design, BUT NOT all design is

architecture”. These results are shown in Table E.6.

1In the process of two-dimensional analyses, some results have non significant relationship. Thus, analysis of

the answers to questions that showed significant relationships, and their implications is discussed in this section.

184

5.3. SURVEYMETHODOLOGYAND PROCESS

On the other hand, most respondents whose field of expertise is “Project Management” tend to

disagree with the statement in Q17 with a mean difference = -0.67, t = -2.35, p-value < .05, as shown in

Table E.4.

For the same statement (in Q17), designers showed the second highest level of disagreement, with

a mean difference = -0.54, t = -2.1, p-value < .05. Also, they showed a higher level of agreement on the

statement in Q19, “Reliable tools are important for developing/or evaluating software/system architec-

ture”, with a mean difference = 0.37, t = 2.04, p-value < .05, as illustrated in Table E.5.

Further analysis showed that respondents whose software expertise is in coding (programmers),

have the higher level of disagreement to some statements compared to other experts as shown in Table

E.7.

1. They (programmers) disagreed more with the statement, “Architecture is design, BUT NOT all

design is architecture” – Q15.

2. They also showed a higher level of disagreement with the statement, “it is worthwhile to undertake

an effort to develop a quantitative methodology for evaluating software architectures”.

3. Finally, they tend to disagree more than other experts with the statement in Q23.

Similarly, respondents whose field of expertise is “Testing” disagree with the statements in Q15 and

Q23, as illustrated in Table E.8.

The results above highlight a difference in experts’opinions regarding SA, depending upon their area

of expertise. The results make sense, because different professions have different needs regarding the use

of SAmodels. This emphasises the importance of having a wide range of specialities (within the software

domain) included in this research, which gives more credibility to the results and their interpretation.

As stated earlier in this study, software architecture and design is a high abstraction concept com-

pared to programming. It is therefore expected that most programmers would disagree with some state-

ments or suggestions that are proposed by the researcher, which could be an indication of their lack of

architectural knowledge.

A one way ANOVA analysis was also conducted in an effort to determine whether there is any

significant relationship between the sectors in which respondents worked and the postulated statements

by researchers, as tabulated in Table E.9.

For the statement presented in Q10, a significant variation was noticed with different sectors of

the economy. An Least Significant Difference (LSD) test was therefore conducted to provide a further

analysis, such as, which sectors disagreed or agreed more with the statement. The analysis is shown in

Table E.10.

The results show that academics tend to agree more with the statement. They also make sense, since

software developers who gain most of their experience in the academic sector are probably more research

oriented compared to the rest. Therefore, they can detect improvements and changes concerning the SA

domain.

Furthermore, the analysis sought to determine the relationship between respondents’ awareness re-

garding architectural tactics or metrics and their work sectors. According to the results shown in Ta-

ble E.11, there is a significant relationship between the respondents’ sectors and awareness. Hence, most

of the respondents who gained most of their experience in industry seem to be aware of such tactics,

whereas the greatest numbers of respondents from academic seem to lack awareness about architecture

185

CHAPTER 5. UTILISATION OF SOFTWAREARCHITECTUREARTEFACTS…

tactics and metrics. This might be due to the fact that more effort has been applied in some sectors to

promote awareness about the evaluation tactics or metrics, than others. As a result, this study serves to

improve strategies to promote such awareness across all sectors and to eliminate obstacles through its

contribution.

To gather possible factors that could discourage the utilisation of modelling techniques during SA

description, the study shows that there is a significant relationship between the number of years of experi-

ence that respondents had in software development and those factors. According to the results in Table 5.7

and E.45, most of the factors seem to be identified by those who had a shorter period of experience in

software development. This makes sense, because as one starts using SA modelling techniques, they are

more likely to encounter more challenges, because they are unfamiliar with the (modelling techniques)

domain. However, with longer experience, developers are more likely to be familiar with most of the

SA concepts. Thus, they are able to eliminate most of the factors that could discourage them from util-

ising SA modelling techniques. The same relationship was also noted with the main factors that could

encourage the utilisation of modelling techniques to describe software architecture.

Table 5.7: Cross tabulation between respondents’ experiences and the main factors that DIS-

COURAGE the utilisation of modelling techniques to describe SA, (Q3 with Q7).

What are the main factors that DISCOURAGE the

utilization of modelling techniques to describe soft-

ware/system architecture? You may select up to two

options.

How many years’ experience do you have in to-

tal in the software/systems development field?

5–10
(years)

10–15
(years

15–20
(years)

20–25
(years)

Over 25
(years)

Count Count Count Count Count

Hard to integrate these models with other artefacts

(e.g. Design models), so they become standalone

models, which to some degree are not that useful

during the development of software/system

8 3 3 4 1

Lack of standardisation between existing architec-

ture modelling technique, notations, and seman-

tics

7 1 2 4 3

Current architecture description languages (in-

cluding modelling languages) are still immature
0 4 1 2 1

Modelling the architecture has limited benefit to

the whole software/system development process,

so it’s to some extent a waste of time and money

7 4 0 1 0

Hard to evaluate architecture models against any

stakeholder’s quality attributes (e.g. Security, per-

formance)

8 4 0 0 1

Asignificant relationshipwas also noted between the agreement and disagreement with the statement

in Q17, “Most of the existing software architecture evaluation methods, produce qualitative results” and

186

5.3. SURVEYMETHODOLOGYAND PROCESS

respondents’ experience. The ANOVA analysis in Table E.12 reveals that respondents who have (5–10)

years of experience tend to agree more with the statement, compared to those with 25 years of experience.

At the same time, the results also reveal that respondents with (10–15) years of experience have a greater

tendency to agree with the statement. These results are an indication that the opinions of the respon-

dents regarding the existing software evaluation methods depend on their experience. The reason why

respondents with less experience tend to agree more with the statement, is probably because the level of

required work, goes hand-in-hand with the level of their knowledge. The more experienced one becomes,

the more requirements will be assigned to him/her. Thus, respondents with over 25 years of experience

could be having much more expectations beyond existing software evaluation methods. However, based

onmy experience and through this research investigation, the SA qualitative evaluation methods are more

concrete and have been/are being applied in industry, compared to the quantitative methods that are still

immature and need more effort in order to be ready for deployment in the real world.

As noted earlier, the respondents’years of experiencemay have a direct bearing upon their awareness

of software/system architecture description/modelling languages. On the basis of such relationships, the

opinion of respondents regarding the automation of the evaluation process could also be affected. I would

expect that themost credible opinions would come from those who are aware of SA description/modelling

languages. According to the results in Table E.14, a higher rate of agreement with the statement in

Q21, “Reading software/system architecture description models for automated evaluation purposes, is

a critical, difficult, and error prone task”, was from respondents who are aware of the existence of SA

description/modelling languages, compared to those who are unaware.

This leads to the conclusion, that the agreement with the statement in Q21, is mostly right as dis-

cussed in Chapter 2. This was also the case, regarding the statement “Current technology allows us

to develop general software evaluation models that assess any software architecture against any quality

attributes”– Q20.

More analysis using one wayANOVAtest, between Q5 and Q16, shows the difference among group

means for the statement in Q16, corresponding to the categories under how often respondents used mod-

els. Tables E.15 and E.16 shows the results of the test. A significant result was realised with, F = 2.7,

p-value < .05. The multiple comparison test results using LSD method reveal that the group of respon-

dents who nearly always used models for SA description had a higher rate of agreement, compared to

those who never used them, infrequently used them, and reasonably/frequently used them. This is proba-

bly because the respondents who used models more frequently could discern the statement more clearly.

Also, it could also be due to the possibility that the more developers become familiar with the models

during their use, the clearer the distinction between architecture and design becomes. Consequently, they

can differentiate between architectural models and design models. I agree with the respondents that the

current literature still needs to be clearly documented and simplified in an organised manner to eliminate

any confusion that may be hindering software developers from utilising models during SA description.

Moreover, in relation to the models’ frequent use for SA description, the group means for the state-

ment in Q18, “It’s worthwhile to undertake an effort to develop a quantitative methodology for evaluating

software/system architectures”, exhibited a significant difference, F = 3.0, p-value .05, as illustrated in

Tables E.17 and E.18. As a result, there is a distinct relationship between mean responses to this state-

ment and their frequent use of models. This implies that the developers’ agreement to this statement

varies based on their familiarity with models. The more developers use models, the more they see the

importance of developing a quantitative methodology as proposed in the statement in Q18, thus elimi-

187

CHAPTER 5. UTILISATION OF SOFTWAREARCHITECTUREARTEFACTS…

nating discouraging factors considered as obstacles to the use of models. Hence, the agreement to the

statement could increase the usability factor of models among developers, and their knowledge, as well

as supporting the value of the proposed solution suggested within the statement at Q18.

Another interesting result in relation to how often respondents used SA models with the statement

in Q22, “Restricting the description of architecture to a specific modelling language during development,

should make the architecture quantitative evaluation easier”, as shown in Table E.20. The means are sig-

nificantly unequal for the respondents who “Infrequently (<10%)” used models to those who “Regularly

(>50% and <80%)” used them, with Mean difference = 0.9, p-value < .05.

The differences exhibited are an indicator of the effect of length of experience in software/system

development. The more experience a developer has, the more chance that he/she would use models

frequently for describing SA. That is why in this study I chose a minimum a 5 years of experience to

participate in the survey, in order to ensure that the survey answers and analysis are reliable.

More significant relationships are noted between the respondents who agree that the use of mod-

els “makes the designers/programmers job much easier” and those who think that “Reliable tools are

important for developing/or evaluating software/system architectures”, as shown in Table E.21. This

relationship is expected, since reliable tools should create consistent models that would help designer-

s/programmers do their work much easier.

As a result, NOT only does the designing work become easier, BUT a systematic model is also

developed to support easier evaluation processes. Therefore, this study emphasises an important choice

for the proper tools for SA development.

The last significant correlation in this section was noticed between responses to the statements in

Q10 and Q17, (“Usage of software style/pattern concepts & models during architecture development in-

creases the utilisation of modelling description languages, BUT decreases the simplicity of the architec-

ture evaluation” and “Most of the existing software architecture evaluation methods, produce qualitative

results”), as presented in Table E.24 and E.23. A Chi-square was used to test the independence between

their categorical variables. The test is significant, χ2 = 30.52, p-value < .05. This confirms that there is

an association or dependence between the categorical variables, which could be interpreted in different

ways.

However, one main objective of patterns is to simplify the solutions. So, SPs might increase model

utilisation within architectural levels, and consequently increase the simplicity of the evaluation process,

(if and only if ‘SPs are developed and documented well’),

Taking that into account, the qualitative evaluation methods might NOT have been affected directly

by SPs due to their nature.

While quantitative methods could be impacted by patterns (positively or negatively), if develop-

ers include them within their architectural models, they will also be affected by the patterns’ structures,

integration mechanism, and maybe their documentation. Both factors, patterns integration and docu-

mentation mechanism, are important, as described earlier in Chapter 3.

5.3.3.2 Inappropriateness of Three and Four Dimensional Analyses

As in Chapter 4, three and four dimensional analysis of the responses proved to be non-significant.

Analysis of both dimensions for some of the questions within this survey were carried out (see appendix

section E.4), but the results were inappropriate due to the same reasons explained in Section (4.3.6.3) for

188

5.3. SURVEYMETHODOLOGYAND PROCESS

the first survey.

5.3.3.3 Focused Analysis on Q6, Q7, Q13 and Q14

More emphasis on the relationship between the four questions (6, 7, 13, and 14) and other statements

within the survey is preferable, because they comprise the important factors (18 in total) that are strongly

related to the research objectives. Since, they could have an effect on SA (modelling techniques and

quantitative evaluation). These analyses are discussed more in this section, in order to contribute to the

overall research objectives, to help to identify more constraints concerning utilising the SA modelling

techniques and quantitative evaluation, and to suggest possible solutions that could aid in developing

a systematic framework, which can be used to ease the process of SAE in the future. The frequency

distributions for the 4 questions are illustrated in Table 5.8.

5.3.3.3.1 Individual Analysis One-dimensional analysis for the four questions is discussed in this

section. The distribution of the responses for the four questions in Table 5.8, are ordered as below:

1. Factors that ENCOURAGE the utilisation of modelling techniques (Q6).

2. Factors that DISCOURAGE the utilisation of modelling techniques (Q7).

3. SUPPORTIVE factors for quantitative evaluation (Q13).

4. HINDERING factors for quantitative evaluation (Q14).

The responses indicate that the discouraging factors outweigh the encouraging factors; hence, the devel-

opers are discouraged more from using models to describe SA. This also might be an indication to do

more work within this domain, in order to make the models development process more effective and easy

to use.

Table 5.8: Frequency distribution of the multiple response questions/items, (Q6, Q7, Q13, Q14)

Question/Item Frequency (%)

The main factors that ENCOURAGE the utilisation of modelling techniques to describe soft-

ware/system architecture (N=46)

Easier to demonstrate the software/system concept and features 30 (65.2)

Most available architecture modelling references are clear and well doc-

umented, which helps developers understand and apply the modelling

approach easily

8 (17.4)

It makes the designers/programmers job much easier 14 (30.4)

Makes the evaluation of stakeholders requirements for quality attributes

possible in the early stages of the development life cycle
11 (23.9)

Reliable modelling tools for describing the architecture exist, which

makes the usability factor much easier
4 (8.7)

The wide range of modelling language formality (from informal mod-

els to formal), makes the selection of architecture description technique

more feasible

2 (4.3)

Architectural models can be compiled to produce a real functioning soft-

ware/system with existing modelling languages and tools, (e.g. SysML,

UML, XT UML)

6 (13.0)

Teaching of the architecture modelling languages in the academic sectors 8 (17.4)

189

CHAPTER 5. UTILISATION OF SOFTWAREARCHITECTUREARTEFACTS…

The main factors that DISCOURAGE the utilisation of modelling techniques to describe soft-

ware/system architecture (N=45)

Hard to integrate these models with other artefacts (e.g. Designmodels),

so they become standalone models, which to some degree are not that

useful during the development of software/system

19 (42.2)

Lack of standardisation between existing architecture modelling tech-

nique, notations, and semantics
17 (37.8)

Current architecture description languages (including modelling lan-

guages) are still immature
8 (17.8)

Modelling the architecture has limited benefit to the whole software/sys-

tem development process, so it’s to some extent a waste of time and

money

12 (26.7)

Hard to evaluate architecture models against any stakeholder’s quality

attributes (e.g. Security, performance)
13 (28.9)

Important factors that could SUPPORT quantitative evaluation for any SA (N=43)

The language used for describing SA 7 (16.3)

Formality level of SA description 12 (27.9)

Using standard language and architecture framework for describing SA 20 (46.5)

Tools availability for describing and evaluating SA 22 (51.2)

Documenting mechanism used during SA description 9 (20.9)

Important factors that could HINDER quantitative evaluation for any SA (N=43)

The language used for describing SA 17 (40.5)

Formality level of SA description 21 (50.0)

Using standard language and architecture framework for describing SA 5 (11.9)

Tools availability for describing and evaluating SA 15 (35.7)

Documenting mechanism used during SA description 6 (14.3)

In addition to identifying these factors, recognised efforts have already been made in this field by re-

searchers as mentioned in Chapter 2, in order to produce solutions that could minimise the effect of some

hindering factors. Also, this research could render a positive contribution to this domain, having identi-

fied the need for further research to uncover more ways for developing, suitable solutions, to overcome

hindrances, and for promoting encouraging factors within the SA domain.

One of the interesting findings to be noted from the analyses, is the divided opinions regarding the

contribution modelling could make to SA evaluation becoming more effective. This is because the eval-

uation of SA in general, is a fundamental process of SA development, which is affected by the way SA

is described in the first place. Thus, the developers familiarity with the SA formal description languages

and modelling techniques, support them to embrace quantitative evaluation, while others who are unfa-

miliar with them will try to bypass them by choosing different approaches. It is thus important to spread

the knowledge regarding SA modelling methods and their qualitative and/or quantitative objectives.

One of the main factors that could support SA quantitative evaluation is “the availability of tools

for describing and evaluating software architecture”. The following factor (in Table 5.8) is the “use of

standard language and architecture framework for describing SA”. Other factors follow, as illustrated in

the table. A total of 39 (out of 43) respondents identified factors that are related to language used during

SA description.

190

5.3. SURVEYMETHODOLOGYAND PROCESS

Therefore, in order to influence the use of quantitative evaluation methods, one should be concerned

NOT only with the tool availability, BUT also it is important to pay close attention to the languages that

are used for describing SA, in terms of their formality, standardisation, and nature. Finally, it is also

important to improve the documentation of SA description, to increase the visibility of its artefacts.

Further analysis concerning the hindering factors, reveals that the “formality level of SA descrip-

tion” is one main reason that prevents developers from utilising quantitative SAE methods. The other

main factor, as identified by respondents, is “the language used for describing the SA”. Two main fac-

tors identified by the respondents concern tools and description languages. This seems a valid outcome,

based upon the preliminary investigation of this research in Chapter 2, and one that supports some find-

ings, such as, the attempts that have been made to classify the level of SA formality by Rushby [1993b],

in order to aid architects to know the suitable level of formality during SA development.

5.3.3.3.2 Significant Results - two dimensional (2D) analysis Significant relationships exist be-

tween the four questions and other statements within the survey, which are described in this section, (by

applying two dimensional analysis).

By comparing all the responses to questions that involved a nominal scale, one of the significant re-

lationships discovered was between “how often respondents use models”, and “the main factors that en-

couraged the utilisation of modelling techniques to describe SA” as illustrated in Table 5.9. Aχ2 test con-

ducted on this cross-relationship shows that the result is significant at 1% level (χ2 = 56.5, p-value < .01),

which shows a very strong association between the two items. Developers, who used models more than

15% in their work, supported encouraging factors more than those who used models less frequently.

Table 5.9: Pearson Chi-square test results between questions Q5 and Q6.

How often do you use models to describe soft-

ware/system architecture during your work?

What are the main factors that ENCOURAGE

the utilization of modelling techniques to de-

scribe software/system architecture? You may

select up to two of the following options.

Chi-square 56.5

df 32

Sig. .005

A similar relationship was also noticed (at 5% level) between answers to both questions shown in

Table 5.10 (χ2 = 33.5, p-value < .05). This result indicates that developers using models less than 15%

intended to identify their concerns and obstacles by choosing more discouraging factors, compared to

those who used models more frequently. The expectation of a direct relationship between the two pairs

of items analysed above is predictable.

Hence, model usability is affected by both encouraging and discouraging factors that have been

identified by questions (6 and 7). Thus, it is recommended to find solutions for the hindering factors in

order to increase and help developers use models more during their work regarding SA description.

Another significant association (χ2 = 30.44, p-value < .07)) is between “the main discourage factors

to use models” and “the years of experience”. The results of this analysis are shown in Tables 5.7 and

E.47.

This association was expected, since developers who have less experiencemight never use models to

describe SA.As a consequence, they mayNOT be able to determine the reasons (or factors) that influence

191

CHAPTER 5. UTILISATION OF SOFTWAREARCHITECTUREARTEFACTS…

modelling techniques usability, due to their lack of knowledge and brief experience with modelling, as

opposed to those who have more experience and use models more often.

Table 5.10: Pearson Chi-square test results between questions Q5 and Q7.

How often do you use models to describe soft-

ware/system architecture during your work?

What are the main factors that DISCOURAGE

the utilization of modelling techniques to de-

scribe software/system architecture? You may

select up to two options.

Chi-square 33.5

df 20

Sig. .029

As a result, in order to improve the process of identification of these factors more precisely, it is nec-

essary to encourage developers to usemodelling techniques in SA descriptionmore frequently, potentially

generating a pool of individuals with longer experience suitable for participation in similar surveys or in-

terviews in the future.. The results also reveal, that respondents with over 25 years experience identified

less hindrances to their utilisation of models during their work. This could mean, that utilisation of mod-

els becomes easier and more efficient as the developers gain more experience using them. Although, the

results could be affected by the percentage of respondents with over 25 years experience, which was too

low to be significant.

Moreover, to identify the relationship between both statements (Q7 and Q10) shown in Table 5.11; a

null hypothesis,H0 : µ1 = µ2 was developed alongside an alternative hypothesis,Ha : µ1 < µ2 where:

µ1 = the population mean of the selected item (the column variables) for the respondents who answered,

“YES” to the statement “Hard to integrate...etc”.

µ2 = the population mean for the respondents who answered “NO” to the same statement.

An independent sample t-test showed a significant results at the 5% level, t = -1.8, p-value < .05.

The lower population mean for those who answered “Yes”, compared to those who answered, with “No”.

The results are shown in Table 5.11.

The significance of the test shows that the population mean of statement-1 “Usage of software

style/pattern concepts ...etc” is significantly lower for the respondents who replied, “Yes” to statement-2

“Hard to integrate models ...etc”, than those who replied, “No”. Hence, the respondents who agreed

more with the first statement, disagreed more with the second. Thus, the respondents who believe that

SPs increase model usage and make the evaluation process harder, also believe that models are useful

and easy to integrate. One explanation for this result is that there are some SP users dealing with patterns

as small models, and that allows them to integrate those patterns with other components of the software.

Thus, they see it as easy to integrate models.

However, it’s better if the first statement is divided into two separate parts (statements) to avoid

confusion and to provide precise analysis. The first part should be “Usage of software style/pattern

concepts and models during architecture development increases the utilisation of modelling description

languages”; whereas, the second statement should be “Usage of software style/pattern concepts and

models during architecture development decreases the simplicity of the architecture evaluation”. This

important separation was identified during the analysis, because maybe people who agreed with the first

part of the statement, disagreed with the second part, which forced them to provide inaccurate answers,

and vice versa. Such remarks will be taken into account in future research.

192

5
.3
.
S
U
R
V
E
Y
M
E
T
H
O
D
O
L
O
G
Y
A
N
D
P
R
O
C
E
S
S

Table 5.11: Independent samples t-test results between both statements for Equality of Grouped Population Means corresponding to the categories

(Yes or No).

Item: Hard to integrate these models with other artefacts (e.g. Design models),

so they become standalone models, which to some degree are not that useful

during the development of software/system.

Group: “Yes” and “No”

Levene’s
Test for

Equality of
Variances

t-test for Equality of Means

95% Confidence
Interval of

the Difference

F Sig. t df
Sig.

(left-tailed)

Mean
Diffe-
rence

Std.
Error
Diffe-
rence

Lower Upper

Usage of software style/pattern concepts &

models during architecture development,

increases the utilisation of modelling de-

scription languages, BUT decreases the

simplicity of the architecture valuation.

Equal variances as-

sumed
.2 .692 -1.8 44 .038 -.448 .246 -.945 .048

Equal variances not

assumed
-1.9 42.6 .034 -.448 .239 -.930 .033

1
9
3

CHAPTER 5. UTILISATION OF SOFTWAREARCHITECTUREARTEFACTS…

Another significant correlation was noticed between the most important factors that could support

quantitative evaluation and the statement illustrated in Table E.27 (Q10 and Q13). The result reveals

the contribution of software style/patterns toward the SAE, as well as the SA modelling techniques’

domain. However, based on the investigations in Chapter 3 and Chapter 4, the emphasis on better SP

documentation, and integration mechanisms still remains.

Table 5.12: Pearson Chi-square test results for analyses of questions Q10 and Q13.

Usage of software style/pattern concepts &

models during architecture development, in-

creases the utilisation of modelling description

languages, BUT decreases the simplicity of the

architecture valuation.

What are the most important factors that could

SUPPORT quantitative evaluation for any SA?

You may choose two.

Chi-square 34.36

df 20

Sig. .024

Similarly, the evaluation of the statement that “there is still vagueness in the current literature con-

cerning the differences between the architecture abstraction and high level design...etc” around the null

hypothesis, H0 : µ1 = µ2 and alternative hypothesis, Ha : µ1 6= µ2 where:

µ1= the population mean of the selected statement (the column variables) for the respondents who an-

swered “Yes” to the item “Hard to evaluate architecturemodels against any stakeholder’s quality attributes

(e.g. Security, and performance)”.

µ2= the population mean for the respondents who answered “No”.

The results in Table E.22 show a significantly lower population mean for those who responded,

“Yes” to the statement, than those who responded, “No”, t = 1.96, p-value=.028 < .05. Thus, a higher

population mean for respondents who believes that there is no vagueness between the architecture ab-

straction and high level design, also believes it is easy to evaluate SA models. However, the research

findings disagree with their opinion, where both the confusion between architecture and high level design

and the difficulties of SA evaluation still exist within the domain and current literature.

In a similar way, Table E.26 illustrates a significant relationship at 6% level, between the most

important factors that could support quantitative evaluation, and the opinion concerning the statement,

“Current technology allows us to develop general software evaluation models that assess any software

architecture against any quality attributes” χ2(20) = 30.75, p-value < .06. This relationship is an indi-

cation of the effect of the use of current technology on factors that could support quantitative evaluation

of SA, as well as the use of modelling in SA descriptions. However, the current technologies (including

SA description languages, modelling techniques, and evaluation methods) still need more effort and re-

search to be able to allow us to develop a more concrete quantitative evaluation approach, which could

be applied and utilised among the software community.

Further, in order to determine the cross-relationship between the responses with ordinal items in Q15

to Q23 with encouraging factors for modelling methods, null and alternative hypotheses were formed,

equating the pairs of items. Interesting relationships were noticed. For example, there was a significant

relationship at the 5% level (t = 2.2, p-value < .05), pointing out that the population mean of the statement

“Reliable tools are important for developing/or evaluating software/system architectures” is significantly

higher for the respondents who replied, “Yes” to the statement, “It makes the designers/programmers’ job

much easier”. This result is an expected relationship, which shows the developers’ enthusiasm to find an

194

5.3. SURVEYMETHODOLOGYAND PROCESS

effective tool for describing and evaluating SA, in order to make their work easier, which will support

the use of models during SA description, see Table E.21.

Similar relationships were noticed in the same table (E.21), between the population means for the

statement “Architecture is design, BUT NOT all design isArchitecture”, which is significantly higher for

the respondents who replied, “Yes” to the statement “Makes the evaluation of stakeholders’ requirements

for quality attributes possible in the early stages of the development life-cycle”. The result was expected,

because most of the developers consider architecture and design as an early phase of the software life-

cycle (with which I agree).

5.3.3.3.3 Insignificant Results - two dimensional (2D) analysis Besides the significant results iden-

tified in the previous section, this section contains a brief summary of the relationships that didNOT prove

to be significant according to the findings, for the four questions (6, 7, 13, and 14). In most cases, these

non-significant results imply that there is no link or relationship between two variable questions under

consideration. However, it could be useful to comment on some independences between the various

pairs. The lack of significant relationships with these variables may help to draw meaningful insights

from the findings, as well as enabling future researchers to narrow down their focus to only the variables

that matter. Consequently, this will improve the time taken to conduct new survey, and hence, improving

the efficiency in general of such studies.

Two-dimensional analyses reveal that none of the four questions have any significant relationship

with the sectors in which the respondents gained most of their general software development experience.

The two dimensional analysis results proved non-significant as outlined in Sub-sections E.3.2.1, E.3.2.2,

E.3.2.3, and E.3.2.4.

The results were unexpected, because normally the work environments are considered to be totally

different across the sectors. Thus, one of the sectors is expected to show a significant result concerning

some of the tested relations. The non-significant results between the work sectors and the four questions

are an indicator of ambiguity regarding the reasons that cause these results. This ambiguity could be re-

solved by an interview/study in the future. The following non-significant relationships are also considered

subject to the same conclusion.

All the two-dimensional tests between the four questions and the awareness of SA description and

modelling languages in Q4 proved non-significant.

Relating to the respondents’ years of experience, Q6, 13 and 14 yielded non-significant results,

whereas model discouragement factors (Q7) do have significant results, as explained earlier.

The frequency use of models by developers (Q5) gave non-significant results when tested with the

factors that discourage modelling in Q7, which indicated that there are no relationships between both

items. This was also the case for the other remaining questions, except the modelling encouraging factors

in Q6, as explained earlier.

Furthermore, independent sample t-tests were performed to determine the association between the

statements (“Developing software/system architecture using current architectural frameworks (e.g. ISO/IEC

42010, DoDAF, RUP/4+1)...etc” and “Usage of software style/pattern concepts & models ...etc”) with

the responses to the main encouraging factors for models methods utilisation (Q6). The relationships for

both statements with all encouraging factors, were non-significant at the level of 5%. It was also recog-

nised that none of the four questions had any significant relationship with each other. Thus, the factors

195

CHAPTER 5. UTILISATION OF SOFTWAREARCHITECTUREARTEFACTS…

were independent and isolated from each other.

5.3.4 Related Work

Within the findings from this study, some important aspects concerning SPs, SA, SAE, and mod-

elling techniques have been realised. However, it is appropriate to recognise the efforts that have been

made by other researchers, which can support the goal of this study. One such study, is reported by Tang

et al. [2006], in which the researchers’ aim was to explore the respondents’ opinions about how they

perceive design rationale, and how they use it to document SA.

According to Tang et al. [2006], although many designers and architects are aware of the importance

of using design rationale, and documenting their concepts, there are still several factors that are a barrier to

their use and to documenting their architecture concept. The researchers recommended further research,

in order to come up with a methodology, as well as tools to support and capture the design rationale. This

research ‘supports’ their recommendations, and could contribute to the design of such a methodology. By

tackling the factors that hinder the use of models in software description, this research makes a positive

contribution towards the research done by Tang et al. [2006], which has already formed a firm background

for this study.

Most of the factors that were identified in this research, including hindrances or supportive factors

concerning the utilisation of modelling in SA description, should be useful for theSA language discipline.

Furthermore, the research done by Malavolta et al. [2013], has already attempted to determine the

needs of the software industry in terms of the use of architectural languages. Their research has provided

empirical evidence about the perception of developers regarding the strengths, limitations, as well as the

needs, of the existing Architecture Description Language (ADL)s. In order to extend their research, it is

important to investigate the use of ADLs, and SA modelling methods, which is provided by this study.

This will aid in the development of future generation languages that will try to solve some of the identified

problems and obstacles.

Lastly, is the survey by Ozkaya [2016], which focussed on the academia and industry domains. His

survey consisted of 20 questions, and the goal was to reveal the practitioners’ level of knowledge and

experience regarding SA.

The survey disclosed three important findings:

• Practitioners’ knowledge on software architectures is too limited.

• Lack of interest by the participants toward ADLs.

• The SAE is a new concept to participants.

There are some other surveys concerning SA and SAE, each with its own scope, that have tackled

some specific aspects of SA, but none of them is similar to this study regarding the goal, scope, and types

of question This study, and the other related work mentioned in this section, emphasise the importance of

SA artefacts as a part of software components. and that SA analysis is critical to verify software designs

for quality properties, and in detecting design errors.

5.3.5 Limitations

There are a few limitations concerning this survey. The first concerns the survey scope. The scope

of the study is too wide and includes different disciplines within the SA domain, such as, description

196

5.3. SURVEYMETHODOLOGYAND PROCESS

languages, modelling methods, and evaluation, where each discipline is worth a separate survey and

study. This broadness has advantages and disadvantages; it could be considered comprehensive, but at

the same time not precise enough.

The second notable limitation is the use of the questionnaire method, which has commonly known

limitations, such as the degree of truthfulness of the respondents, misinterpretation of questions, and the

large amount of data that is generated from the open-ended questions, which takes a long time to process

and analyse. This type of investigation (questionnaire) needs to be supported by another investigative

approach that could either backup or conflict with the questionnaire’s findings, thereby improving the

overall knowledge within the domain.

Two good approaches that could get the researcher closer to the developers and development envi-

ronment are interview and field study methods, which I have introduced in Section 5.4.

Furthermore, most of the questions included in the questionnaire were close-ended. This may limit

the variety of opinions gathered from the respondents.

5.3.5.1 Summary of significant results

This section summarises all significant results within the survey discussed in Chapter 5, in order to

facilitate the tractability between the findings and related tables, as illustrated in Table 5.13.

Table 5.13: Summary of the main analysis results with associated tables (for better traceability).

Findings
Analysis
Table

Statistics
(p-value)

More than half of the respondents choose a combination of Natural and

Semi-formal languages, as the best language to use for software archi-

tecture description.

5.5
χ2 = 60.20

(.000)

About 85% of the respondents were NOT aware of any system/software

architectural tactics or metrics that have been or are being used for eval-

uating architecture description models.

5.5
χ2 = 23.20

(.000)

Developers significantly agreed that developing SA using current ar-

chitectural frameworks increases the reliability, standardisation, and

reusability of the resulting architecture.

5.6
t = 4.14

(.000)

Developers significantly agreed that architecture is design, BUT NOT

all design is Architecture.

5.6
t = 6.65

(.000)

Developers significantly agreed that there is still vagueness in the cur-

rent literature concerning the differences between the architecture ab-

straction and high level design, which causes some confusion.

5.6
t = 9.13

(.000)

Developers significantly agreed that most of the existing SA evaluation

methods, produce qualitative results.

5.6
t = 2.46

(.009)

Developers significantly agreed that it’s worthwhile to undertake an ef-

fort to develop a quantitative methodology for evaluating SA.

5.6
t = 5.70

(.000)

Developers significantly agreed that reliable tools are important for de-

veloping/or evaluating SA.

5.6
t = 14.47

(.000)

197

CHAPTER 5. UTILISATION OF SOFTWAREARCHITECTUREARTEFACTS…

Developers significantly agreed that current technology lacks reliable

SA evaluation tools.

5.6
t = 5.15

(.000)

Developers significantly agreed that reading SA description models for

automated evaluation purposes, is a critical, difficult, and error prone

task.

5.6
t = 3.63

(.001)

Developers significantly agreed that restricting the description of archi-

tecture to a specific modelling language makes the architecture quanti-

tative evaluation easier.

5.6
t = 4.75

(.000)

Architects had significantly more degree of agreement to the statement

“Developing software/system architecture using current architectural

frameworks (e.g. ISO/IEC 42010, DoDAF, RUP/4+1) increases the re-

liability, standardisation, and reusability of the resulting architecture”

than others.

E.3
t = 1.9

(.032)

Project Managers had significantly less degree of agreement to the state-

ment “most of the existing SA evaluation methods produce quantitative

results” than others.

E.4
t = -2.35

(.012)

Designers had significantly less degree of agreement to the statement

“most of the existing SA evaluation methods produce quantitative re-

sults” than others.

E.5
t = -2.10

(.021)

Designers had significantly more degree of agreement to the statement

“Reliable Tools are important for developing/or evaluating SA” than

others.

E.5
t = 2.04

(.024)

Architects had significantly more degree of agreement to the statement

“Architecture is design, BUT NOT all design is Architecture” than oth-

ers.

E.6
t = 2.20

(.017)

Programmers had significantly less degree of agreement to the statement

“Architecture is a design, BUT NOT all design is architecture” than oth-

ers.

E.7
t = -2.20

(.017)

Programmers showed less degree of agreement to the statement “It is

worthwhile to undertake an effort to develop a quantitative methodology

for evaluating SA” than others.

E.7
t = -1.99

(.027)

Programmers showed less degree of agreement to the statement “Current

technology allows us to develop general software evaluationmodels that

assess any SA against any QAs” than others.

E.7
t = -2.50

(.008)

Respondents whose field of expertise is ‘Testing’ tend to have less de-

gree of agreement to the statement “Current technology allows us to

develop general software evaluation models that assess any SA against

any QAs” compare to other experts.

E.8
t = -2.09

(.021)

198

5.3. SURVEYMETHODOLOGYAND PROCESS

Respondents whose field of expertise is ‘Testing’ tend to have less de-

gree of agreement to the statement “Architecture is a design, BUT NOT

all design is Architecture” than other experts.

E.8
t = -1.79

(.041)

Academics tend to have more degree of agreement to the statement “Us-

age of SPs concepts models during architecture development, increases

the utilisation of modelling description languages, BUT decreases the

simplicity of the architecture evaluation” than others.

E.9 and E.10
F = 3.33

(.045)

The respondents who had more than 25 years of experiences, had signif-

icantly less mean agreement to the statement “most of the existing SA

evaluation methods, produce qualitative results” than the respondents

who have less experience.

E.12 and E.13
F = 3.76

(.011)

The mean agreement to the statement “Reading software/system archi-

tecture description models for automated evaluation purposes, is a crit-

ical, difficult, and error prone task” was higher from respondents who

had awareness about the existence of any SA description / Modelling

languages as compared to those who lacked such awareness.

E.14
t = 1.90

(.041)

The mean agreement to the statement “Current technology allows us to

develop general software evaluation models that assess any software ar-

chitecture against any quality attributes” was lower from respondents

who had awareness about the existence of any SA description / Mod-

elling languages as compared to those who lacked such awareness.

E.14
t = -2.1

(.025)

The group of respondents who nearly always used SA description mod-

els had higher mean agreement to the statement “there is still vagueness

in the current literature concerning, etc..” compared to those who never

used models at all, those who used them infrequently, or reasonably fre-

quently.

E.15 and E.16
F = 2.74

(.042)

The respondents who nearly always used models to describe SA during

their work have higher mean agreement to the factor “It’s worthwhile to

undertake an effort to develop a quantitative methodology for evaluating

SA”, compared to the respondents who never used, infrequently used,

reasonably frequently used, or regularly used models.

E.17 and E.18
F = 2.93

(.033)

The respondents who infrequently used or reasonably frequently used

models to describe SA during their work, have higher mean agreement

to the statement “Restricting the description of architecture to a specific

modelling language, etc.”, compared to the respondents who regularly

used models.

E.19 and E.20
F = 2.99

(.030)

There was an association between the sectors in which respondents

gained most of their software development experience and whether they

are aware of any system/architectural tactics or metrics that have been

or are being used for evaluating architecture description models.

E.41 and E.42
χ2 = 5.43

(.066)

199

CHAPTER 5. UTILISATION OF SOFTWAREARCHITECTUREARTEFACTS…

There was a significant association between the years of experience, and

how the developers used models to describe software/system architec-

ture during their work.

E.44 and E.43
χ2 = 26.18

(.052)

There was a significant association between the modelling discourage

factors and the years of experience.

E.45
χ2 = 30.44

(.063)

The mean of the item “Usage of software style/pattern concepts models

during architecture development, increases the utilisation of modelling,

etc.” is significantly higher for the respondents who say YES to the state-

ment “It makes the designers/programmers job much easier”, compared

to who says NO.

E.46
t = 2.00

(.030)

There is a significant association between how often respondents use

models to describe SA during their work, with the responses to the item

“the main factors that encourage the utilisation of modelling techniques

to describe software/system architecture”.

E.49
χ2 = 56.46

(.005)

There is a relationship between how often respondents use models and

the responses to the statement “the main factors that discourage the util-

isation of modelling techniques to describe SA”.

E.49
χ2 = 33.54

(.029)

5.4 Field Study Analysis

5.4.1 Introduction

Hardware and software architecture greatly affect the process of system development, because they

act as a foundation of their development. Hence, architects generally qualify as leaders of a majority of

system development groups. Architecture remains one of the leading professions within the Information

and Communication Technology (ICT) infrastructure, and technology realm.

As a continuous effort to the survey reported in Section 5.3.3, this section describes the findings that

are collected from a field study that was performed at a military organisation, in order to evaluate devel-

opers’ knowledge regarding SA, and to investigate some architectural aspects, such as SA (description,

modelling, utilisation, evaluation, and documentation), within the government and industry sectors, and

also to try to gain and/or share knowledge from/with them.

Taking that into the account, knowledge transfer is probably harder than product and service transfer.

Transferring new technologies to new areas or environments requires more than simply understanding

how a product or method works. There are several different factors that could be involved in the trans-

ferring process, such as participants’ background knowledge, time, cost, proper environment, etc..

5.4.2 Objective of the Field Study

Based on Tellis [1997] and references therein pertaining to (Yin, 1994) and (Feagin, Orum, &

Sjoberg, 1991), the case study researcher should act as a senior investigator during the field study to

obtain the necessary information needed, and as per Yin [2013] providing guidelines and reporting exam-

ples.

200

5.4. FIELD STUDYANALYSIS

During this study, the researcher was given full access to data, developers, managers, and labs, thus

providing enough resources to be able to obtain credible judgements concerning current SA development

procedure and documentation within the targeted organisation.

The main objective of this study was to:

1. Identify and observe the development, utilisation, and evaluation of the architecture artefacts in a

real world environment. This work may agree/disagree with the research argument reported in the

previous chapters surrounding SA.

2. Gather information regarding SA, by interviewing developers who are/were involved in the de-

velopment of past and current system projects, and by examining old/current SA processes, and

documentation.

3. Provide recommendations to the investigated organisation and software community, based on the

findings obtained from the aforementioned two points.

5.4.3 Study Process and Methods

This field study was conducted in two phases, each phase includes activities as illustrated in Figure

5.12.

1. Preliminary Phase (two weeks visit), which covered three different organisations. The goal of this

phase is to select the environment best suited to the research topic, so as to be able to perform the

final phase.

2. Final Phase (two months visit), involved the selected candidate/organisation from the Preliminary

Phase. The goal of this phase is to achieve the study objectives.

Figure 5.12: The Field study phases.

5.4.3.1 Organisation Location and Selection Criteria

In order to select an appropriate organisation for this study, the selection criteria were:

201

CHAPTER 5. UTILISATION OF SOFTWAREARCHITECTUREARTEFACTS…

• The organisation should be large enough in size, (No less than 500 employees).

• The organisation should have past and current IT projects.

• Project documentation should be available and accessible by the researcher.

• SA modelling techniques and evaluation should be employed by the organisation.

The above criteria were applied in order to ensure that the study environment had enough informa-

tion, developers, and documents. The projects, documentation, developers, and SA modelling methods

were largely dependent on the size of the organisation. Thus, three candidate organisations with no less

than 1,000 employees were selected for the Preliminary Phase. Also, their project costs and sizes varied

from small-embedded systems or applications, up to large-scale systems. The study’s geographic location

was in Saudi Arabia.

5.4.3.2 Communication Procedure

Communication with the three candidate organisations was official and used the following methods:

• Official letter through Saudi Arabian Cultural Mission (SACM) in Australia.

• Phone.

• Email.

• In Person.

Due to the sensitivity of the work of the three organisations, the researcher conducted all of the four

types of communication aforementioned in 2012 2.

5.4.4 Preliminary phase

This section briefly discusses the preparation steps that were carried out, in order to be able to

conduct the case study.

In order to explore the environment suitability concerning this study context, the researcher’s main

requirements to conduct this phase were:

• Approval from the organisation for a preliminary visit to the sites before conducting the field study.

• Assigning (a contact) official person who could facilitate the study.

• Interview and communicate with any developers or stakeholders of the targeted systems under

consideration.

• Gain full access to any restricted areas or confidential documents.

The three organisations approved the first three points above, and partial access to the last require-

ment was granted, which was to both parties (the hosting organisation and the researcher).

Organisation sectors: The three organisations were from the military sector (government); how-

ever, all of them have ongoing projects, civilian employees, local contractors, and international con-

tractors. Also, their international contractors are companies, such as Raytheon, Lockheed Martin, and

Oracle.

2Official communications with targeted organisations were performed one year before conducting the on-site

study, in order to be able to receive their approval within this study’s planned time-frame, which was achieved.

202

5.4. FIELD STUDYANALYSIS

The organisations are referred to here as Site 1, Site 2, and Site 3 for confidentiality purposes.

Developers within the three organisations were interviewed by the researcher, as illustrated in Table 5.14.

During this process, a prepared check-list that included several questions was used for gathering

relevant information. Discussion groups with experts from each of the organisations were organised and

conducted, and some of their documents were explored, in order to collect the necessary data to enable

assessment of each site.

Table 5.14: The Organisations Teams – preliminary phase

Site 1 Site 2 Site 3

Interviewed teams

within the three or-

ganisations

Lieutenant General –

RSADF Commander Major General Major General

Major General Brigadier General* Colonel*

Brigadier General Colonel* Colonel*

Colonel* Captain Major*

Lieutenant Colonel 2-Civilian Experts* Captain*

Major*

2-Civilian Experts*

Total people interacted with during the visit is 19.

(*) Total people interviewed is 12, (8 Military + 4 Civilians), where all of them have no less than (7) years of

experience in software development.

Confidentiality: Due to the type of work these organisations perform, confidentiality is a primary

concern. Thus, their data, and the names of their sites have been withheld. Also, there is some data that

was treated as confidential as per their request. Results of the case study will be published as an analysed

amalgamation in the form of graphs, charts and/or tables with no identification. Participants were advised

that all individual information would be kept private and unavailable to anyone other than specifically

named researcher.

However, the confidentiality imposed does not affect this study’s findings and recommendations.

5.4.5 Result of the preliminary phase

The environments of the organisations were studied, in order to check their suitability regarding this

case study. Consequently, a confidential report of the preliminary phase result was developed and sent

to each of them, including all attachments needed (through a diplomatic mail from SACM), in order to

allow them to comment on, and to approve a preliminary assessment and report.

The confidential report includes:

1. Comparison assessments and results.

2. Check-list, questions, answers, and comments.

3. Interviewed teams table.

The final comparison results (between the three organisations/sites), are presented in Table 5.15,

which were based on the analysis of their feedback regarding the check-list questions. Where, each

criterion worth (10 points), the totals are presented in the form of percentages within the last row.

203

CHAPTER 5. UTILISATION OF SOFTWAREARCHITECTUREARTEFACTS…

Table 5.15: General criteria for selecting field study environment.

Criteria Site №1 Site №2 Site №3

Reception of the Researcher by the organisation Excellent Best Excellent

Organising experts team, to involve in the interview Good Good Good

Degree of the team expertise regarding the research

topic

Fair Excellent Best

Introduction of the organisation existing usable soft-

ware development methods, which been provided

by selected team

Good Excellent Excellent

Level of the team understandability to the re-

searcher questions

Fair Excellent Best

Quality and precision of the answers given to the

researcher questions during the visit

Fair Excellent Best

Quality and precision of the organisation feedback,

that been included into the draft answer document

Good Fair Good

Access to required materials Good Excellent Excellent

General Support Fair Best Good

Willingness of the case-study reception Good Excellent Excellent

Degree of the environment suitability to apply the

case-study based on all information gathered during

the visit

54% (Not

suitable)

78%

(Suitable)

80%

(Suitable)

Key: Bad (2)–Fair (4)–Good (6)–Excellent (8)–Best (10)

The overall assessment is:

• Site 1, did not have the right environment to conduct the case study.

• Site 2 and Site 3 qualified as suitable environments for the case study.

With a score of 80% for environmental suitability to the study context, Site (3) was selected for the

case study.

A summary of the check-list findings for the preliminary phase are illustrated in Table 5.16, with

Tables (E.57, E.58, and E.59) in Appendix E showing the complete check-list feedback and comments.

Table 5.16: Summary of the Preliminary Visit Findings.

Preliminary Study
investigation points

Site-1 Site-2 Site-3

1 Organisations’

overall views about

architecture.

Architecture is NOT

their primary concern

during software devel-

opment life-cycle.

Architecture is NOT

their primary concern

during software de-

velopment life-cycle.

However, minimum

architecture artefacts

are developed by

both (customer and

contractor), within

their new projects.

Architecture is NOT

their primary concern

during software de-

velopment life-cycle.

However, minimum

architecture artefacts

are developed by

both (customer and

contractor), within

their new projects.

204

5.4. FIELD STUDYANALYSIS

2 Availability of ar-

chitects at the or-

ganisations.

None, most of the

people working with

the architecture are

designers, and they are

from contractor side.

None, most of the peo-

ple working on archi-

tecture are designers,

from both sides (cus-

tomer and contractor).

None, most of the

people working on

architecture are de-

signers, and they are

from both sides (cus-

tomer and contractor).

3 Developed systems

and systems under

development.

Both systems are exist.

Which is an advantage

for this study.

Both systems are exist.

Which is an advantage

for this study.

Both systems are exist.

Which is an advantage

for this study.

4 Evaluation methods

used.

Systems and sub-

systems are tested

after development

is complete. They

used scenarios, case

studies, and scripts

to evaluate systems.

There is no evaluation

on architectural level.

Systems and sub-

systems are tested

after development

is complete. They

used scenarios, case

studies, and scripts

to evaluate systems.

There is no evaluation

on architectural level.

Systems and sub-

systems are tested

after development

is complete. They

used scenarios, case

studies, and scripts

to evaluate systems.

There is no evaluation

on architectural level.
5 Utilisation of SA

modelling tech-

niques.

None. They just used

primitive boxes and

lines to communicate

their concepts with

each other.

Primitive modelling

used such as entity

relationships, case

study, and context

diagrams.

More advance SA

description language

used, such as UML.

6 Modelling tools

availability.

Word, power point,

and Visio.

Word, power point,

and Visio.

Word, power point, Vi-

sio, Doors, and Ratio-

nal Rose.
7 SA Evaluation tools

availability.

None None None

8 Did they follow any

standards or frame-

works for describ-

ing and document-

ing their SA?

No. No. Partially follow-

ing UML notation

and DoDAF (1.5)

framework.

9 SA simulation tools

availability.

No. No. No.

205

CHAPTER 5. UTILISATION OF SOFTWAREARCHITECTUREARTEFACTS…

10 Software product

documentation

methods.

None. They used what

they called “Packets”

to document their soft-

ware artefacts. Where

their documentation is

mostly mixed and not

organised according to

the development life-

cycle; except the “Re-

quirement”, whichwas

clear and in a separate

document.

None. Their software

product documents

were mostly mixed;

the system architec-

ture with the software

architecture, and

with design artefacts.

No clear and organ-

ised methods been

followed. Their “Re-

quirement”, document

was good, reviewed,

and easy to follow.

Their documents,

mostly organised,

based on DoDAF (1.5)

guidelines. However,

most of their document

does not pay enough

attention for SA, but

their documents still

better than Sites (1 and

2).

5.4.6 Final Phase – Conducting the Study

The final phase was conducted over two months, between December 2013 – January 2014, and the

findings are report in this section.

Based on the preliminary phase result, Site 3 was selected for the case study. However, due to logis-

tics problems between Site 3 (the customer) and their vendor, many projects ceased after my preliminary

phase visit. As a result, Site 3 was excluded from this study. Therefore, the case study was conducted

with the second candidate (as illustrated in Table 5.15), which is Site 2.

In this phase, continuous interviews, meetings, and discussions were performed with 16 military

people and 13 civilians, from both the hosting organisation and their contractors. The experiences of the

29 developers varied from 7 to 42 years, in the software development domain.

5.4.7 Findings and Recommendations

During the field study, I (the researcher) interacted with government and industry organisations,

through the hosting organisation, their local contractors, and their international contractors. According

to the Capability Maturity Model Integration (CMMI) 3 assessments published by Chrissis et al. [2007,

pp 45], the capability levels of these organisations varied between level 1 (Initial), and level 4 (Qualita-

tively Managed) for both, their capability and maturity levels. Whereas, some of them do not have such

assessments.

Their project (system) development methods are:

1. By external contractors, while the organisation (customer) works side by side with contractors, in

order to insure that their requirements are satisfied.

2. In house projects, which are developed by the organisation experts.

I have investigated, discussed, and studiedmany projects and interviewed several developers, mostly

from the organisation side. Projects involved in this study varied from small to large size, as described in

3“The Capability Maturity Model Integration (CMMI) is a globally recognised set of best practices that enable

organisations to improve performance, key capabilities, and critical business processes“, [2018]

206

5.4. FIELD STUDYANALYSIS

Table 5.17. Some projects were already developed, and others were under development, which increased

the value of the study, due to the ability to compare old with current projects, and how they varied, in

regard to SA, SAE, and SA modelling methods.

Table 5.17: Investigated Projects during the case study.

Project Size Under development Developed

1 Large 4 2

2 Medium 1

3 Small 47

Project size:

$US10, 000 < Small < $US200, 000
$US200, 001 < Medium < $US2, 000, 000
$US2, 000, 001 < Large < $US500, 000, 000

Over 100 documents from different projects were studied and compared. Advice and suggestions

were given to the organisation regarding SA.

The document comparison criteria are:

1. Their availability?

2. Are they following standards?

3. Do they contain separate chapters for SA, or are they mixed with design chapters?

4. Are there any modelling methods used for describing their SA?

5. Are there any SAE methods that have been used and documented?

6. Overall quality of the documents?

Table 5.18 summarises the most important findings from the case study. The criteria listed in this

table are based on the research objectives, and the findings of the two surveys reported in Chapters (4

and 5).

207

C
H
A
P
T
E
R
5
.
U
T
IL
IS
A
T
IO

N
O
F
S
O
F
T
W
A
R
E
A
R
C
H
IT
E
C
T
U
R
E
A
R
T
E
F
A
C
T
S
…

Table 5.18: Field study findings.

Criteria Findings Reasons

1 Developers’ awareness regarding

SA and SAE.

Most of the developers do not appreciate SA and SAE.

Also, (20 of the interviewed developers, out of 29) do not

know what SA and SAE means. This caused a problem

during the study, in that a lot of my timewas wasted trying

to explain what SA and SAE meant and where it should

be in the development life cycle. No training within the

organisation focuses on SA and SAE.

1. Very clearly, developers are confused about the dis-

tinction between SA and design. 2. Lack of knowledge,

maybe because most of the developers are programmers.

3.Lack of training

2 Developers’ awareness regarding

SA documentation in particular.

Most of the developers do not know anything about SA

documentation: how it should be done; and what arte-

facts should be produced. Some of the developers an-

swers were “I just know that there is documentation for

SA, and also there are no standards and guidelines on how

SA should be described and documented”!

1. Current developers’ lack of knowledge about SA doc-

umentation. 2. Significant shortage of human resources

who understand system architecture in general, and SA in

particular. 3. Lack of proper training that focuses on how

to document SA.

3 Developers’ awareness regarding

SA modelling and description lan-

guages.

Very few within the organisation know about UML, and

they use it in their work individually. 90% of the inter-

viewed developers (26 out of 29), did not have knowledge

about modelling languages, such as (SysML and ADLs).

Actually for most of them it was the first time they heard

of it. Developers were from different nationalities, and

their qualifications are vary from Bachelor to PhD de-

grees.

1. Lack of training regarding SA description and mod-

elling languages. 2. The organisation’s strategy does

not give attention to modelling languages to describe SA

within their projects. 3. Moreover, the organisation does

not require modelling SA from the contractors’ side. 4.

The lack of teaching of these technologies within educa-

tional institutes could be another factor that causes this

problem.

2
0
8

5
.4
.
F
IE
L
D
S
T
U
D
Y
A
N
A
L
Y
S
IS

4 SA description and SAE procedure

within all projects.

There is clear neglect of SA and SAE. Most projects’

documentation was about detailed design. There are few

about architecture. Also, their quality requirements are

included within the statement of work. For example, the

time for data transfer between two components within one

of the projects was stated, as ‘the data shall be transferred

within less than 60ms’. I have asked one of the devel-

opers, with PhD qualification in software domain, how

they test such a requirement at SA level? His answer was

‘‘We never test it at that level, we test it after the system

is finished, using test cases and procedures”.

Adding to all the above reasons, which persist here, the

following reasons: 1. Most contractors try to decrease

the amount of documentation of their projects if they can,

because, such work is time consuming, and effort that

could decreases their income. So, if the customer lacks

the knowledge to require and trace appropriate levels of

documentation, the contractors will take an advantage of

the situation and produce a minimum documentation as

possible. 2. Shortage of technical writers on both sides,

organisation and the contractors.

5 Customer requirements regarding

specific SA description or docu-

mentations.

The organisation (customer), does not require or specify

any SA description methods or artefacts that need to be

satisfied by the contractors. Thus, the organisation does

not require any assessment for their potential system ar-

chitectures.

1. Lack of knowledge and experts in architectural level.

2. Sometimes the strategic plan, vision, and goals, of

the organisation restricted by critical time to deliver some

projects on specific time-frame, which could force them

tominimise some of the documentation, as the case within

some of their projects.

2
0
9

C
H
A
P
T
E
R
5
.
U
T
IL
IS
A
T
IO

N
O
F
S
O
F
T
W
A
R
E
A
R
C
H
IT
E
C
T
U
R
E
A
R
T
E
F
A
C
T
S
…

6 SA documentation for built in-

house systems.

Forty-seven (47-small size projects) developed within the

organisations, by their own experts. I have investigated

all the 47 projects regarding their documentation. I found

only 8 documents that were created and available. All

available documents, varied between requirements, de-

sign, interface prototyping, and testing procedures. So,

the (47) working systems have only 8 documents that

were created by individual developers, with low quality,

and without following any documentation guidelines and

standards.

I have asked some developers about the reasons for such

negligence. Their answers were as follows: “1. Short-

age of human resources within their department. 2. Lack

of proper training. 3. Shortage of SA experts and sys-

tem/software design. 4. Most of the developers are

programmers and they have no knowledge about SA. 5.

The rapid and increased requests by other departments

(within the organisation) for small systems to solve par-

ticular problems within their area, decreases their time to

be able to document the product. 6. ‘The chain of stress’

from the highest management in the organisation down to

the software department management, to deliver products

‘ASAP’ , result in software’s and system’s without docu-

mentation.”
7 Available documentations regard-

ing SA and SAE for developed sys-

tems.

The best System/software architecture and design docu-

ments including SAE manuals and procedures ware built

in(May 07 1993), by Hughes Aircraft Company for

C3 systems, which followed clear documentation pro-

cedures. All other projects neglect the importance of

documenting SA and SAE. However, there is some SA

documentation within other developed projects, but with

low quality compared to the (old) documents created by

Hughes company. Also, The new developed projects do

not have any documents that evaluate or test SA in gen-

eral.

1. For the most part, this absence and neglect of SA and

SAE documentation, starts with the absence of organi-

sations’ attention to these artefacts within their projects.

However, the greater the organisation gives an attention

to these artefacts, the greater for the contractors to satisfy

their requirements. 2. There is an ethical side to this prob-

lem, which is lay on contractors. Contractors should be

honest and tell the customer if he would such documen-

tation, to help him to decide.

8 Available documentation regarding

SA and SAE for systems under de-

velopment.

Few documents were found for SA, but not for SAE.

These documents are with low quality and a mix between

SA description, design, and detailed design.

Same reasons listed in point (7) persist here. Also, some

of the contractors (companies), do have shortage of ex-

pertise on the domain of SA and SAE.

2
1
0

5
.4
.
F
IE
L
D
S
T
U
D
Y
A
N
A
L
Y
S
IS

9 The quality of SA documentation

between old developed systems and

systems under development pro-

vided by contractors.

Its obvious by comparing old and current projects doc-

umentations, that old project documentation was organ-

ised an followed clear documentation guidelines and pro-

cedures, with high quality of final outcome. The Fig-

ures and tables contained therein were sophisticated and

had all notations needed to be understandable. Repetition

of Figures and tables between SA documents and design

documents was minimal, and differentiation between ar-

chitectural diagrams and design diagrams was clear. The

new projects’ documentation was incomplete, with low

quality. Some SA documents are mixed with design doc-

uments, others do not have any SA documentation. The

Figures and tables were repeated in different documents

with no justification/reason or with more details.

1. Absence of architects, designers, and technical writers

on both sides. The organisation does not have any expert

in architecture domain, or technical writers. 2. The lack

of professional ethics is affecting the quality of the work

in many aspects of people’s lives, so as is the case here.

10 Modelling software architecture

within all projects.

There wasn’t any modelling techniques being used ef-

fectively to describe SA within any projects. There are

individual attempts to model parts of SA for small size

projects. These attempt did not evolve, to become part of

any standard /process.

1. Lack of knowledge and experts in SA modelling meth-

ods . 2. Lack of training on SA modelling methods. 3.

Resistance from some developers to learn new techniques

and new knowledge.

2
1
1

CHAPTER 5. UTILISATION OF SOFTWAREARCHITECTUREARTEFACTS…

5.5 An Experience Story

From 1998 until now (2018), I have participated in several large projects and many commit-

tees within the Saudi Ministry of Defence and Aviation (MODA)-(the customer), that were

involved in developing new systems and improving existing ones, with costs of over 500 mil-

lion US-dollars in total. All the contractors involved on these projects are internationals from

different countries, and they are considered as large known companies in (military and secu-

rity) systems. My work as a manger for communication, security, and tactical systems allowed

me to closely inspect how SA was treated during the development process, from both sides

(customer and contractors). A major advantage of this study is that I have been able to share

my knowledge and recommendations with them.

This experience is strongly related to the research and it’s part of this study. Thus, in brief, I have

summarised important points as follows:

1. In general, resistance merged with interest feelings were expressed by developers from both sides,

when SA description, modelling, and evaluation methods were discussed within these projects and

committees.

2. SA was treated with less priority and attention from both sides.

3. Primitive SA artefacts were developed (e.g. simple Component-and-Connector (CC)), ONLY to

represent and communicate the ideas and concepts between both parties and between developers

themselves (e.g. managers, system engineers, designers, and programmers).

4. Most developers are programmers, designers, system engineers, and project mangers. No profes-

sional architects are available on-site. Architects are called in only when needed.

5. SPs are utilised without considering their QAs.

6. SA Modelling techniques and languages (e.g. AADL, UML-2.0, SysML, Object-Role Modelling

(ORM), and Service-Oriented Modelling Framework (SOMF)), are not used, except in some prim-

itive use cases, sequence diagrams, entity relationship diagrams, and context diagrams with the

UML-1.5 language and Visio tool.

7. SA evaluation methods (qualitative and quantitative) are not used within architectural artefacts.

However, Scenario based methods are used to test the systems after their completion. They nor-

mally perform five tests: component test, system test, integration test, in-plant test and on-site

test.

8. SA frameworks are not utilised or followed.

9. SA documentation is not separated, but are merged within system engineering documents.

10. As per discussion with two project managers, regarding SA; I asked them to develop project soft-

ware architectures using ISO-42010 standard, and AADL, UML-2.0, and SysML languages. Also,

to apply DoDAF-2.0 views, and to evaluate architectures both qualitatively and quantitatively. Fur-

thermore, they were asked to document their activities via a proper standardised mechanism.

Budget was an obstacle, as over 500,000 US-dollars was required in order to perform the above

requirements, which did not fall within the financed statement-of-work requirements. Also, the

customer’s limited knowledge, time-frames, and carelessness regarding SA did not help to address

these requirements. The customer’s responses to these requirements, were along these lines, “if

212

5.6. CONCLUSION

the system works properly without these requirements, we are happy”. So, what happens if the

customer wants to improve these systems in the future (and they will)? They will need to hire an-

other company to do so, which is much more costly than developing systems with proper methods,

including all necessary documents and source code.

11. Unfortunately, both the customer and contractor developers overall knowledge and concern regard-

ing SA aspects are too limited.

The above eleven points support the findings of this chapter. The gap between government and

industry on one side, and academia on the other, concerning SA, is wide! The utilisation of SA as a

’concept’within software development is applied by all. But, whereas academics consider SA as a part of

the working systems by utilising new languages and methods, some government and industry sectors (as

is the case here) consider SA to be a concept on paper, just to help people involved to communicate and

understand each other. This gap could be improved by doing more empirical research, and by employing

new SA languages and methods in government and industry sectors.

5.6 Conclusion

SA has been investigated from different views: its description, modelling, documentation, evalu-

ation, and utilisation. Two important methods were used (questionnaire and field study), which were

complementary in regard to some findings. Both methods’ analyses showed very interesting findings.

One important finding is the difference between the effort that has been put into SA current research and

literature, and the ignorance utilisation of SA in the real world, as well as, the importance of QAs within

software products, which is undeniable.

Chapter 4 identified the fact that most people do NOT consider QAs when they choose their styles

as a part of any architecture artefact. One reason could be the absence of proper tools that would help

them to evaluate their SA, including contained styles.

The findings of this chapter indicate that documentation and tools have a major role to play in the

utilisation of SPs and models during SA description. Furthermore, the availability of tools and effec-

tive documentation for SPs, and SA languages might result in the creation of an effective framework

to improve quantitative evaluation methods, and to increase the utilisation of patterns and modelling

techniques, which could improve the final product’s qualities.

Furthermore, this study discussed some factors that could hinder the utilisation of models during

architecture description, as well as, SAE quantitative methods, in order to discover any issues or gaps

that could be incorporated into future research plan, and to contribute to SA domain.

Also, the results of this study identified some important factors that could impact (positively/or

negatively) SA from different angles as discusses earlier, such as:

• The awareness of new technologies that support the SA domain.

• Formality level of SA description.

• Utilisation of modelling languages and SPs, when describing SA.

• Following reliable standards and frameworks for creating a proper SA.

• Tools support.

• Realisation of the difference between SA and design among software engineers.

213

CHAPTER 5. UTILISATION OF SOFTWAREARCHITECTUREARTEFACTS…

• SA evaluation methods, and their automation possibilities.

• Employment of SPs and SA (processes, methods, languages, ...etc) in real world projects.

The gap between academia and industry regarding the overall thinking and utilisation concerning

SA, increases the need for more research and education, in order to introduce clear and reliable methods

to describe, utilise, and document SA. As a result, the SA domain could be improved, and become easy

to understand, easy to be traceable to the code level, easy to be evaluated, easy to be automated, and easy

to be documented in a proper fashion.

There are aspects of SA, including awareness, documentation, analyses, modelling etc, which deter

SA from being widely used within industry and government. Architects having adequate SA knowledge

seem few and far between, and virtually no practicing software engineer seems to have been adequately

trained, to be motivated to study or apply SA for the purposes of improving software project outcomes.

Consequently, I recommendmore research with different methods (e.g., empirical research), in order

to, unearth the importance of design rationale documentation, resolve each one of the obstacle factors,

and discuss any aspects that have NOT been covered sufficiently by this study.

214

Chapter

6
The RCS as a Case Study and

Promoting theMoreno et al. [2008]

Approach

Maintaining architectural integrity is not easy. Architectural quality requires invest-

ment and discipline.

— Dr. Bill Curtis, senior vice president and chief scientist at CAST

Mistrı́k et al. [2014, pp xxvi]

215

CHAPTER 6. THE RCSASACASE STUDYAND PROMOTING THE…

6.1 Introduction

The main aim of this chapter is to validate and complement the previous chapters’ findings through

two main sections, where each section has its own preamble. First, is the RCS examination (Section

6.2), which illustrates the strong relationships between SA, SPs, QAs, and their effectiveness on each

other. Introduced in the Second section is an abstract theoretical concept for SA evaluation (Section 6.3),

based on improving the Moreno et al. [2008] concept, in order to (contribute to, and enhance) software

development processes.

6.2 RCS under Examination-Intro

This section is a discussion and report on the architectural analysis results for the Intelligent Ref-

erence Architecture-Real-time Control System (RCS) as a case study that was built upon the knowledge

of the issues surrounding SA, SPs, and QAs relationships within discussed in previous chapters. RCS

was created at National Institute of Standards and Technology (NIST), Albus et al. [1996]. The mod-

ified version of the RCS, called 4D-RCS, was developed by Albus [1997] in order to provide a theo-

retical foundation for engineering, and architecture, for unmanned ground vehicles.1 The architecture of

(RCS/4D-RCS) is considered a reference architecture in the domain and has been proven to be applicable

in several applications, see Albus et al. [2001] and Meystel et al. [2002].

The focus of this analysis is to uncover any employed SPs within the (RCS/4D-RCS) architec-

ture and, consequently, identify any related QAs possessed by those patterns. Nonetheless, the

idea beyond this work is to prove the concept regarding the strong relationships between SA,

SPs, and QAs, as reported in Chapters (3,4, and 5). Also, to demonstrate their effectiveness

on each other, by exposing the conflicts between QAs within the RCS architecture.

The discussion and analyses of the RCS architecture reported in this section were performed based

upon the following references:

1. Albus [1997], Albus et al. [2001], Meystel et al. [2002], Albus [2002], and Russell [2011], which

describe the RCS architecture.

2. SEI team, Bass et al. [1998], Bass et al. [2003], and Bass et al. [2013] books, which describe

architectural styles.

3. The references listed in Section 3.2 that describe many patterns/styles and their QAs.

4. Mellor [2009] slides that describe his architectural styles.

5. The relationships database between SPs and QAs reported in Chapter 3.

According to Yin [2013], “A text is used to describe and analyse the case. You may augment the

text with tables as well as with charts graphics, pictures, and maps, depending upon the depth of the case

study”, which normally is used for a single-case study. This report on the RCS case study is written based

on the guidelines published by Runeson et al. [2008] and Yin [2013].

1This section concerns architecture artefacts that are owned by both RCS-versions (I, II, III) and 4D-RCS. Thus,

they are considered to be of no difference during this examination. The rest of this report will use ‘RCS’ as the main

name of the targeted architecture. Any variations within RCS versions will be indicated when required.

216

6.2. RCS UNDER EXAMINATION-INTRO

6.2.1 Case Study Process

Based on the detailed descriptions of the RCS that have been provided by the references mentioned

in the previous section, the study has been carried out using four processes as illustrated in Figure 6.1.

Figure 6.1: RCS architecture analysis steps.

The following analyses will neither explain nor describe the styles individual concepts. However,

the relationship between both styles and architecture will by discussed in detail.

6.2.2 Discussion and Findings

This section is composed of two sub-sections that provide a critique of the styles incorporated within

the RCS architecture. Both sub-sections refer to the same figures to support the arguments presented;

Figures (6.2, 6.3, and 6.4) are the main ones for this analysis. These figures illustrate the RCS overall

architecture and node structure, including the Observe, Orient, Decide and Act (OODA) loop, invented

by Boyd1977.

Each node contains four main computing modules, which are:

1. Behaviour Generation (BG), for planning and control.

2. World Model (WM), which includes the Knowledge Database (KD), for store knowledge, and

predict. Where the knowledge in (KD) includes processes, entities, attributes, maps, tasks, events,

and states.

3. Sensory Processing (SPr), for sensing, filter, recognise, detect, and interpret.

4. Value Judgement (VJ), for compute cost, benefit, and uncertainty attributes.

An example of the RCS overall architecture (for unmanned ground vehicle) is provided in Figure 6.2.

Data in the KD is shared between WM modules within the nodes, and at the same level within the same

sub-tree (see thickened black lines). On the right are examples of the functional features of the BG

activates at each level (e.g. 5 second plans). On the left, are examples of the data kinds and maps

mentioned by the WM in the KD at each level (e.g. surfaces). The interface on the right, provides input

to, and output from, the node elements. The OODA loop starts from the sensors, processed through the

217

CHAPTER 6. THE RCSASACASE STUDYAND PROMOTING THE…

nodes, then data/actions forwarded to the actuators; subsequently, sensors observe the actuators actions

then process the data again etc, Albus [2002].

Furthermore, Figure 6.3 shows the abstract relationships and activities that take place between the

RCS node elements, for both evaluation and execution phases. Whereas, Figure 6.4 demonstrates the

node elements relationships with more detail, including the planning loop and the feedback loop.

Figure 6.2: RCS overall architecture (for Military Application), after, Finkelstein [2008].

VALUE
JUDGMENT

SENSORY
PROCESSING

WORLD
MODEL

DATABASE

BEHAVIOUR
GENERATION

SENSORS

ENVIRONMENT

ACTUATORS

PERCEIVED
SITUATIONS

PLAN
EVALUATIONS

SITUATION
EVALUATION

RESULTS OF
PLANNING

COMMANDED
ACTIONS

ACTIONSEVENTS

OBSERVED
INPUT

UPDATES

PREDICTED
INPUT

PLANS

STATES

INTERNAL

EXTERNAL

Situation
Assessment

Planning and
Execution

KD

Figure 6.3: Functional relationships between modules of Elementary Loop of Functioning

(ELF), after Meystel et al. [2002].

218

6.2. RCS UNDER EXAMINATION-INTRO

6.2.2.1 RCS architecture and BCK styles

Discussion, analysis, and interpretations of the RCS architecture are demonstrated in Table 6.1,

based on SEI styles2 descriptions, in order to reveal the existing styles and QAs within the RCS architec-

ture.

Table 6.1: BCK styles and QAs within RCS architecture.

BCK
Styles

Discussion and Analysis

• Layered style helps to structure a large system that requires decompositions, as is the

case in RCS. The whole RCS architecture is an organised hierarchy, where computational

nodes are arranged in multi-layered styles like the posts in a military organisation.

C
al
l
an
d
R
et
u
rn

→
L
ay
er
ed

• The relation between JobAssignor (JA) and hisAgents is organised based on the layered

style. Also the typical planning process has a layered architecture style.

• The transition between levels of abstraction results within SPr imaging processes and

grouping entities form a layered style; (e.g. pixel entities grouped into list entities and

list entities grouped into surface entities etc). Each grouping process collects entities and

events up to the higher level entities and events, as illustrated in Figure F.2.

• Outputs from the bottom layer of BGmodules drive actuator and the inputs to the bottom

SPr layer modules conveys sensor data. “The communication system conveys commands

from BG modules to their subordinates and returns status”.

• The inner structure of the Executer (EX) within the BG shows an obvious layered style

starting by receiving input from plan selector until becoming input task to lower JA in the

next BG module or a command to the Actuator at the lowest level, as described in Albus

et al. [2001, pp 261-262].

In
d
ep
en
d
en
t
co
m
p
o
n
en
t
→

E
v
en
t
S
y
st
em

→
(I
m
p
li
ci
t
an
d
E
x
p
li
ci
t)
In
v
o
ca
ti
o
n

• Event-based styles have been applied almost right across the whole RCS architecture,

and its clear specifically in RCS typical node at level (i), where event could be top-down

such as in the Planner (PL) component, where the JA received a task command event

from the higher level then starts to process the spatial task decomposition into small tasks

and pass it to agents, which start to do their assigned job, then trigger another component

within the system to do its job based on the received information until the event passes the

desired action command to the actuator, as explained in the sensory processing chapters

by Albus et al. [2001] and Meystel et al. [2002], see Figure 6.6 (see page 223).
• Other sequences could be bottom-up events, which start (for example) from perceived

sensory input to the SPr components, in order to process their signal. Consequently, trig-

gering another components and passing information to them (such as perceived object,

event to the VJ, or the higher SPr signal). The “Top-down” defines significant goals and

priorities by the BG. “Bottom-up” defines unexpected, unusual, or threatening actions by

SPr. Both sequences are employed within RCS architecture.

• Also the event system could be a horizontal sequence between the component in the

same level or the same layer such as the relations between the SPr and WM, where the

SPr triggers the WM, requesting some information/data/image from Knowledge Database

(KD), in order to process the image recognition and comparison.

2BCK (Bass, Clements, and Kazman) styles in Table 6.1 are the same as SEI (Software Engineering Institute)

styles. BCK is short for the ‘software architecture in practice series’ authors.

219

CHAPTER 6. THE RCSASACASE STUDYAND PROMOTING THE…

• The inner structure of the EX, within the BG shows an obvious event style with layered

structure. Each EX sub-module for each agent closes a feedback control for its agent.

Also, for a discrete event system, each EX sub-module increments its controller from one

step to another, which is detected by SPr and reported again to the EX module by WM.

• RCS is a network or event system, where entities and components trigger each other,

requesting /ordering /sending commands or data. While, observed entities, events and

situations are sent by SP to VJ. More explanation of the event style appears in the mech-

anism of MVC pattern, which is just an instance of an event driven architecture, noting

that MVC is not a design pattern. MVC is considered for higher level structures and it

supports modifiability.

D
at
a
ca
n
te
re
d
→
(B
la
ck
b
o
ar
d
an
d
R
ep
o
si
to
ry
) • “The Blackboard is an architectural pattern useful for problems for non-deterministic

solution strategies. Several specialised components “assemble” their knowledge to build

a possibly partial solution, coordinated by a central controller” (Ortega et al. [2008]), as

is the case between the RCS ‘node elements’. Each component is specialised for solving

a particular part of the overall task, such as is the case in the RCS architecture. KD within

WM forms an active repository (not passive), which means the Blackboard style is in all

RCS nodes. The KD is always updated and maintained by WM in each node.
• Part of KD functions (as with Blackboard style) is to send predicted information to SPr,

while the WM and VJ update the KD information, Albus et al. [2001, pp. 198].

•Also, KD represents a passive repository that sends information to JA, EX and Scheduler

(SC).
• KD has a Short Term Memory (STM) that forms an interface/ or buffer between imme-

diate experience and Long TermMemory (LTM). The STM persists until it is overwritten.

It acts like dynamic RandomAccess Memory (RAM). Whereas, LTM furnishes a reposi-

tory of information that can accumulate and be retained over a lifetime. LTM differs from

STM primarily in the fact that the information endures over time, Meystel et al. [2002].

• Pipes and filters style provides a structure for systemswhich process a stream of data such

as is the case in RCS. In general, RCS component relationships are based on processing

input and producing output to other components. For example, the lowest SPr reads the

sensor signal, then processes it as a ‘filter’ and then sends it to the higher SPr, or other

components through ‘pipes’ and so on. At each level, the SPr modules filter and process

information derived from subordinates, Figures F.1 and 6.5.

D
at
a
F
lo
w
→
P
ip
es

an
d
F
il
te
rs

• BG receives commands from a higher level, processes it as a ’filter’ using (JA, SC, and

PL), then sends the information as input to EX (Figure 6.6). The Executer components use

the EXs outputs as an input to the lower level of BG for further processing etc.. Note that

the inner structure of EX and the PL constructed as pipes and filters style each component

processes its input and sends its output to other components, etc.,Meystel et al. [2002, pp.

303, 319, and 333].
• To conclude, the RCS uses the pipes and filters style between its components to process

the data, and to transfer the information between its components, because the pipes and

filter style emphasises the incremental transformation of data by successive components,

which is the case between several layers, nodes, and components within its architecture.

220

6.2. RCS UNDER EXAMINATION-INTRO

In
d
ep
en
d
en
t
co
m
p
o
n
en
t
→

co
m
-

m
u
n
ic
at
in
g
p
ro
ce
ss
es

• RCS could be considered as a set of communicating processes, in terms of communica-

tions between the nodes internal components such as WM and BG. Also, the communi-

cations between nodes throughout the RCS system follow the communicating processes

style. These communications could represent the concepts of clients and servers relation-

ship (style), with the client as requester component and the server as provider component,

of the information. Nodes communicate with each other by means of messaging, im-

plemented using the Neutral Messaging Language (NML), which supports a variety of

communication protocols. This communication system provides an inter-communication

system between modules within the node. Queries and task ‘Status’ are communicated

from BG modules to WM. Retrieval of information is back from WM to BG. While, pre-

dicted sensory data is sent from WM to SPr, where updated data is sent from SPr to WM,

Figure 6.3.

Figure 6.4: RCS computational node Inner-structure, after Finkelstein [2008].

Note that (conceptually) there are some other styles/patterns within the RCS architecture, which are

not included in the BCK styles collection. Two of these ‘styles’ worthy of mention are: Presentation-

Abstraction-Control (PAC) and the Microkernel styles. PAC is an interactive (software) system in the

form of a hierarchy of cooperating agents. Every agent is responsible for a specific task. An agent denotes

an information processing component, including receivers and transmitters. The style is obvious at each

node within the RCS, between higher nodes and their subordinates, including the components (BG, WM,

SPr and VJ) and their subordinates. Also, the PAC style is evident between JA and its agents. The RCS

explicitly allows for exchange of information between organisational units and agents at the same level,

or even at different levels. Command and status reports flow only between supervisor and subordinates,

but queries, replies, requests, and broadcasting of information are used to convey information between

any of the units or agents within the entire RCS, Meystel et al. [2002].

Furthermore, the structure of the RCS supports modifiability by applying the Microkernel concept

221

CHAPTER 6. THE RCSASACASE STUDYAND PROMOTING THE…

VJ

P WM BG

1
upper level
of control

G

23
lower level
of controlP

S

WM

W

BG

4

A

LOW RESOLUTION LOOP OF FUNCTIONING

HIGH RESOLUTION LOOP OF FUNCTIONING

A B

control
system (upper

level)

1

2 3 4

control
system (lower

level)

controlled
system

Figure 6.5: A top-level Elementary Loop of Functioning, with two control levels (nodes), after

Meystel et al. [2002].

(style), which separates a minimal function core from extended functionality. Also, because of its ar-

chitectural qualities, the RCS is able to be easily adapted to different environment and apparent system

types.

Nodes in the RCS are functionally independent. This allows the system to be more flexible and

modifiable. Also, adding and removing nodes is easy, and any changes do not impact the whole system.

In addition, the RCS architecture is heterogeneous in that the system is not limited to running on

specific hardware or software platform. These styles are described in Bass et al. [1998, pp 102.]

The hierarchically and simultaneously heterogeneous styles are obvious within RCS, whereas

locationally they are not. However, the overall RCS architecture works as an organisational, computa-

tional, and behavioural hierarchy control system, Albus et al. [2001, pp. 158]. Both hierarchical and

horizontal relationship styles within the RCS architecture are illustrated in Figures F.1 and 6.5. The

structure is hierarchical (multilevel hierarchical architecture). Commands and status feedback flows are

hierarchically up and down throughout a BG chain of command, and SPr - WM flows of information.

This is not classical hierarchy architecture, it is more of a tree architecture, which implements the PAC

style concept that is used as a hierarchical structure of components or agents.

It’s amulti-scale relational structure, whichmeans vertical branches have horizontal connections that

make it a more complex system. The architecture is horizontal, because the data is shared horizontally

between heterogeneousmodules at the same level. At each level the architecture is horizontally connected

by communications pathways between modules (BG, WM, SPr, VJ and KD) within the same node, and

between nodes at the same level, especially with the same command tree. Each agent acts as a participant

222

6.2. RCS UNDER EXAMINATION-INTRO

Value Judgment

SENSORY PROCESSING

SENSORS

WORLD MODELLING

WORLD

BEHAVIOR
GENERATION

ACTUATORS

LOWER RESOLUTION
SENSORY

PROCESSING

HIGHER RESOLUTION
SENSORY

PROCESSING

LOWER RESOLUTION
MODEL

• General Knowledge
• Contextual Knowledge
• Procedure Knowledge

HIGHER RESOLUTION
MODEL

PLANNER

• Job Assignment
• Scheduling
• Selector

EXECUTOR

GENERALIZATION

INSTANTATION

PLAN SIMULATION
Extrapolation, Contingencies Testing

ESTIMATION

• Generalazitation
• Prediction

Task Command from
Level i+1th

Figure 6.6: Relationships within a typical node of RCSArchitecture, after Meystel et al. [2002].

of a group in scheduling and organising with peers at the same level, while simultaneously acting superior

to its subordinate unit at the next lower level. The RCS architecture is formed by five main styles (see

dominating styles below) that are interrelated with each other, communicate with each other, and overlap

each other, which makes it a mix of all these styles. Therefore, based on the analysis above, the RCS

architecture could be considered as a hierarchically and simultaneously heterogeneous style.

Based on the above discussion and analysis, the RCS architecture consists of several different styles,

but some styles dominate more than others within the architecture. The dominating styles within the RCS

architecture: are:

1. Layered.

2. Pipes and Filters.

3. Event System.

4. Blackboard.

5. Hierarchically and Simultaneously Heterogeneous Styles.

6.2.2.2 The RCS architecture and Mellor Styles

In this Section, observations and analysis concerning the RCS architecture are discussed based on

the style descriptions reported by Mellor [2009], as illustrated in Table 6.2. There are some similarities

betweenMellor [2009] styles andBCK styles, which arementioned during the analysis without repetition.

223

CHAPTER 6. THE RCSASACASE STUDYAND PROMOTING THE…

Table 6.2: Mellor [2009] styles and QAs within RCS architecture.

S.Mellor Styles Discussion and Analysis

Event based • The analysis of the Event System (Implicit and Explicit) invocation style in

Table 6.1 is pertinent here, because it is the same style, and will not be repeated.
M
o
n
it
o
r
an
d
co
n
tr
o
l

Based on Stephen Mellor’s recorded session-3 (ANU course, 2010), this style

should be periodical. Its data should be in one place for fast access and it could

be monitored or controlled (not both) in some cases. This style has related

control links and loops, in order to set control points or measures, read values,

make comparisons or displays, and perform computations.

So, based on this description, the following points relate to the RCS architec-

ture:

• The BIG PICTURE of the RCS architecture exhibits monitor and control style,

where the system reads the sensor values and processes information within all

layers and components, then controls the actuators with a signal, then other

sensory information comes, and so on, in a monitor and control loop. All these

processes are periodically timed. Furthermore, the operator interface function

is to provide monitors at all levels of the system, including lowest level, by

sending a command such as (Halt system), then receives feedback from the

system in the operator interface display, which closes monitor and control loops

between the system hardware components feedback (sensors and actuators) and

the operator interface through the system components and layers.

• Monitor and control style reads values from hardware for comparison or dis-

play as Mellor stated. The structure of the nodes as parent - child relations are

considered the same in concept, where each node sends a control command to

the lower level node to be processed, and receive information from lower level

to be displayed or compared.

• The SPr receives predicted image data fromWM tomake comparison with the

observed image, then sends the information to WM to update the KD with the

current state of the world, and forward the world state to the EX. EX receives

this feedback through the comparison and monitoring module, in order to com-

pute the difference between the estimated state feedback from WM and the

current planned sub-goal. Also, in order to compare and monitor sub-module

progress to achieve the current sub-goal and feed, the action will be forwarded

to the lower level or (the actuator) in the lowest level. This process closes loops

as per the monitor and control style.

224

6.2. RCS UNDER EXAMINATION-INTRO

• Each EX sub-module closes a feedback control for its agent and increments

its controller from one step to another, while detected by SPr, and reports again

to theEX module by WM. This makes it a control style.

• A close control loop within planner entities is clear, where the sequential

searches of the spatial and temporal plans are evaluated and compared in or-

der to choose the best plan; if not, the search continues.

• The relationship between SPr and sensors could be considered as an indepen-

dent monitor style. Whereas, the relationship between EX and actuator forms

an independent control style. This concept could be useful, sometimes, as a

separation of concerns, or decoupling, which usually helps to increase main-

tainability, flexibility, and modifiability.

T
ra
n
sp
o
rt
er
s

• Transporters style involves the transfer of data from one point to another with

no change of the data contents. The main concept, based on Mellor’s descrip-

tion (session-3), is that the output of a component should be the same input,

and should reflect the correct status of the real world. Transporters contain

computational processes, decomposition of the data, and reassembling of the

data.

• The overall RCS architecture sends data from layer to layer, from node to

node, from module to module, from component to component which means

the RCS mechanism follows a transporters style.

• WM with its KD acts as a transporter style. RCS modules (SPr, WM, and

VJ) update KD with all information needed for the system, while KD provides

information to different RCS components as they receive it. So, it is transferring

data from components to another (from one point to another). For example,

WM updates its KD short memory with current state by SPr, and then sends

this information to EX, Albus et al. [2001].

• JA receives task commands from its parent and decomposes it into subtasks

to its agents with no changes, so the data is then processed and transferred from

component to component within each agent, until producing an output task.

These data movements within the planner are considered as transporter style.

• SPr processes sensor information from the real world object, then forwards it

to higher levels, and so on. This illustrates a transporter style to represent the

same real world object on the operator display,Meystel et al. [2002].g

• The transporters approach is close to the pipes and filters architecture style

with one important constraint, no content should be changed within the trans-

porter. Whereas filters can enrich, refine or transform its input data. Fur-

thermore, the transporters style provides a structure for systems that process

a stream of data such as is the case in 4D/RCS. In general the RCS component

relationships are based on processing input and producing output to other com-

ponents. For example, the lowest SPr reads the sensor signal and processes it

as a transporter, then sends it to the higher SPr or other component, etc.

•As a result, the RCS architecture uses transporter style between its components

to process the data and transfer the information between its components.

225

CHAPTER 6. THE RCSASACASE STUDYAND PROMOTING THE…

T
ra
n
sa
ct
io
n
s

• This style maintains a picture of the real world, requests and updates that

picture, does some computations, and sends responses to the outside world. All

kinds of simulators form a transaction style. (Mellor session-3)

• The RCS architecture is a transactions style, as illustrated by its components

being in an hierarchy, such as SPr, WM, VJ, BG, and KD, which are distributed

throughout the set of RCS Nodes. At all levels of RCS architecture, SPr and

WM processes work together to maintain the world picture in the KD for the

same node, keeping it current and consistent. The KD in each node contains the

information required to support the BG and SPr processes and requests within

that node.

Also, KD information contains the resolution over the range in space and time

required by decision making, which is controlled by VJ and BG processes in

that node. BG completes the cycle with a response command output (based on

the computational process done by all the node components) to be sent to the

outside world (actuator) to do their tasks. All requests, responses, updates, sim-

ulations, and computational processes within the RCS components as a whole,

and its nodes in particular, satisfy Mellor transaction style characteristics.

• Consider the closed loop from BG-Planner to WM-simulator to VJ evaluator,

with the evaluation feedback which results when VJ sends it to BG-Planner. To

illustrate, a request from BG to WM, in order to simulate the plan and forward

the result of the simulation (predicted plan) to the VJ for evaluation, with the

response returned to the planner. This process forms a transaction style.

• Maintaining a picture of the world by updating the KD information mecha-

nism is considered a transaction style. For example, SPr compares the observed

image with the predicted image andWM uses the differences to update the KD,

which makes it a transaction style.

• Requesting information by SPr (such as Predicted Image) and by BG (such

as current state) and the knowledge from KD for the planning process, through

the WM satisfies the transaction style features.

226

6.2. RCS UNDER EXAMINATION-INTRO

6.2.3 Manifestation of QAs within RCS architecture

The overall realisations for some of the QAs that are embedded within the RCS architecture are

discussed in this section, noting that the RCS architecture encompasses more QAs thanwhat are presented

here.

The QAs that have been mentioned in the RCS documents and other respective references are listed

below:

1. Functionality

2. Modifiability

3. Reliability

4. Extensibility

5. Portability

6. Efficiency

7. Integrability

8. Interdependency

7. Performance

8. Space and time

9. High precision

10. Availability

11. Usability

12. Re-usability

13. Simplicity

13. Interchangeability

14. Maintainability

15. Flexibility

16. Customisability

17. Exchangeability

18. Fault tolerance

19. Scalability

The rest of this section explains the most visible QAs within the RCS system. “Architecture is

critical to the realisation of many of the qualities of interest in a system, and the qualities should be

designed in and evaluated at the architecture level”, Bass et al. [1998].

1. Functionality:

The RCS system defines functional modules at each level, each one embodies a set of responsibili-

ties and priorities, and the structure of the nodes and the components coordination of the whole RCS

architecture support the functionality and the ability of the system to complete its mission. With all

its components and knowledge sources (VJ, WM and KD), the RCS system has been developed to

support a vehicle that is capable of carrying out missions with low data rate communications, and

to operate for extended periods without human intervention. The detection processes for errors at

SPr and the computational process for errors at EX help the system to do its functions in the most

efficient ways. This is explained more in Fault tolerance (at point 6 below).

2. Modifiability:

RCS is a reference architecture model that has to be adaptable to new technology in the future, so it

must be a modifiable architecture. Modifications to the system, extensibility, and adapting to new

environments are all forms of modifiability. Modifiability could be the QA that most closely aligns

with the architecture. RCS contains an independent component architecture, which consists of a

number of computational nodes and agents that communicate with each other through messages. In

general, the whole RCS architecture supports modifiability, starting from the nodes construction to

the smallest module within a node. The RCS architecture is based on an independent components

style where the basic component is the node, and each node comprises different modules, BG,

SPr, VJ, WM, and KD. Also, each one of these modules contains other internal modules. Making

modifications to the RCS is done by adding or deleting modules, extending the system to add new

nodes to do new functions, and to assign new responsibility to those nodes without extensive effort

to modify the significant parts of the system being required.

Also, all elements within the RCS node may have an operator interface within the interface layer,

which makes it easy to add new operational interfaces for new functions, and new elements within

the node modules without affecting the whole structure. Using Layers and Pipes-and-Filters styles

227

CHAPTER 6. THE RCSASACASE STUDYAND PROMOTING THE…

gives the architecture the major benefit of recombination, enabling greater flexibility and modifi-

ability.

It is worthmentioning that one of the BCKbusiness’qualities, which is related to ‘Time tomarket’,

is the ability to insert components or products, such as into COTS, depends on the decomposition of

the system into well-defined components, such as the case with RCS. On this basis, an architecture

such as RCS is useful now and could be ascendant in the future.

3. Portability:

It’s the ability of the RCS to run under different computing environments (Hardware and Software),

which makes it a valuable reference model. Local dependencies between layers and decoupling

components, usually ‘constrain’ the effect of code changes, hardware changes, special data formats,

operating systems, etc., which often affects only the layer to which changes are made. This supports

portability and testability as well, since you can test particular layers or components independently

of other components in the system. The RCS architecture gives the opportunity to implement the

same architecture in different ways, because it’s a reference and general architecture.

These modifiability and portability quality attributes are evidenced by the fact that the RCS has

been used in several quite different applications, such as horizontal machine workstations, a con-

trol systems for the US postal service, an autonomous mobile vehicle, and others, Albus [2002, pp

26]. These applications have different hardware and software environments; however, the success

of RCS in these applications is clear evidence of the high portability of RCS to run in different

environments. Also, the encapsulation principle within the nodes and modules in the RCS layers,

affords an adaptable and replaceable architecture across different operating environments. That

gives an abstract interface to the environment. The lower layer allows different sensors and actu-

ators to be implemented, and it does not specify the types of sensor or actuator that RCS should

use.

4. Re-Usability:

Reference models, such as RCS, should be reusable, and allow and help the architect/designer

to solve similar conceptual problems in different contexts and in different ways. According to

its flexibility and intelligent construction, the RCS architecture is considered as a proof of the

successes of the re-usability.

According to Buschmann et al. [1996] (POSA-V1), if an individual layer embodies a well-defined

abstraction and documented interface, the layer can be used in different contexts. The RCS sys-

tem has a well defined layered and components. All its nodes have been clearly identified and

decomposed. Also, using filters to support recombination, results in re-use of filter components

and support interchangeability as quality attributes of the RCS architecture.

5. Performance:

Performance concerns timing and event concerns, such as interrupters, messages, requests, etc..

The RCS is a real-time control system, while the 4D/RCS is a reference model that integrates RCS

with the 4-D approach to dynamic machine vision, in order to get the best performance for the

Unmanned Ground Vehicle (UGV) in the battlefield, where time affects life and death or winner

and loser. Each layer within the RCS should respond to the received events in a specific time, based

on the functionality of the layer and the responsibilities of its components.

The RCS architecture has been structured with high performance aspects. Also, it is organised,

such that the JA decomposes each input command task into a set of jobs, which will be assigned to

SC’s for subordinates BG units. This is a spatial decomposition to achieve better performance.

228

6.2. RCS UNDER EXAMINATION-INTRO

The planning of behaviour, the control of action, and the focus of computational resources, help

functional modules at each level to process limited specific manageable tasks, which reduces the

complexity factor at each level, and, as a consequence, improving the responses among components

and eliminating the overload in order to have a high-performance system.

As soon as a level one planner submits a plan to EX, it begins replanning immediately. At a min-

imum re-planning must be completed before the current plan is completely executed. “The RCS

BG process is designed to support both real-time and off-line planning. Versions (I and II) of the

RCS used off-line planning exclusively”, Albus et al. [2001, pp 181]. Whereas RCS V-III supports

both processing times.

6. Reliability, Fault Tolerance and Availability:

These three QAs are combined because they are strongly related to each other. A system needs

the ability to maintain its functionality reliably (reliability) and to ensure correct behaviour in the

event of errors (fault tolerance), in order to be a functional system. Failure should be prevented,

detected whenever it occurs, and should be recovered as fast as possible (Availability).

According to Bass et al. [2013], availability tactics are fault detection, fault recovery and fault

prevention. Redundancy is to be considered as a tactic to achieve specific QAs. Redundancy

of the components, at every level within the RCS architecture, helps to achieve reliability, fault

tolerance, and availability, which are required by most military and manufacturing systems.

The RCS system is reliable, because one of the VJ functions is to assesses the reliability, and gener-

ate rewards and punishments. Moreover, within its nodes at each level, feedback loops are closed to

provide reactive behaviour. Also, at each level in the RCS hierarchy, SPrs detect errors and makes

comparisons between what is expected, and what is observed. Small errors are used to update the

WM. Large errors indicate the need to assume new entities or objects for more discrepancies be-

tween predicted and observed sensory input. EX within BG computes errors at each level between

the current planned sub-goal (i.e. desired state) and the observed state of the world. Also, EX

computes error compensates and modifies output command parameters to correct errors.

Furthermore, RCS errors are detected at lower-levels first, where they can be addressed most

quickly. The lower level sensory processing functions are the first to detect states and events,

that indicate problems or emergency conditions ,such as velocity, acceleration forces, etc.

It is worth noticing that the use of independent styles (event style, for instance) within the RCS

architecture helps the reverse engineering process (even if the original source code is unavailable),

which can be done by extracting architecture events from a running system via instrumentation,

such as monitoring middle-ware. The event based architecture and the call tree can be extracted

by debugging software, Donohoe [1999]. QAs are important aspects within architectural styles and

design patterns.

In some cases, it is hard to evaluate an entire architecture’s quality characteristics, especially if it’s

a heterogeneous architecture, such as the RCS, but it is not impossible. This evaluation difficulty

is because of the existence of discrepancies between QAs that are possessed by different styles that

form the overall architecture. However, the recommended evaluation mechanism is to divide the

overall architecture into smaller sub-architectures that could be evaluated easily.

For example, the conflict relationships between the identified architecture styles embedded within

the RCS and their QAs are summarised in Table 6.3. However, there is no qualitative or quantitative

evidence provided by those references. While, most of the current SP/styles and QA relationships

are based upon the authors observations and experience.

229

CHAPTER 6. THE RCSASACASE STUDYAND PROMOTING THE…

Table 6.3 demonstrates some QA conflicts by summarising five styles that are included

within the RCS architecture (as an example). The highlighted (sky-blue) columns in-

clude QAs which are affected, supported or hindered, by styles utilised by the RCS

architecture. For example, the Layers style supports five QAs and hinders two. Con-

sequently, the complexity of SAE and the relationship between SA, SPs, and QAs are

apparent, which motivates researchers to develop an approach that accommodates in-

dividual pattern evaluation with an overall architecture evaluation.

Note: The patterns sequence numbers within the database (explained in Chapter 3) are

shown between parenthesis ‘()’, under each pattern name.

In addition, creating a system architecture (software and hardware) knowing in advance what

styles/patterns could be useful, and what QAs they could support or hinder, is much better than

creating an architecture missing this knowledge, which could lead to an architecture that utilises

patterns/styles with conflicts in different aspects. As a result, the final product could be unexpected

and with unsatisfied requirements. However, predicting the overall qualities of an architecture

as a whole, is an arduous task but beneficial.

Table 6.3: QAs trade-offs within RCS Styles.

Quality Attributes

Patterns C
h
an
g
ea
b
il
it
y

E
ff
ic
ie
n
cy

M
ai
n
ta
in
ab
il
it
y

P
o
rt
ab
il
it
y

In
te
g
ra
b
il
it
y

U
sa
b
il
it
y

R
e-
u
sa
b
il
it
y

A
v
ai
la
b
il
it
y

E
ff
ic
ie
n
cy

(d
ea
l

w
it
h

la
rg
e

am
o
u
n
t
o
f
d
at
a)

E
x
ch
an
g
ea
b
il
it
y

S
im
p
li
ci
ty

E
x
te
n
si
b
il
it
y

F
le
x
ib
il
it
y

In
te
rd
ep
en
d
en
cy

M
o
d
if
ia
b
il
it
y

P
er
fo
rm
an
ce

S
ca
la
b
il
it
y
(s
iz
e)
co
n
fi
g
u
ra
ti
o
n

Blackboard

(71)

↑ ↓ ↑ ↑ ↑ ↑ ↑

Layers (31) ↓ ↑ ↑ ↑ ↑ ↑ ↓
Microker-

nel (171)

↑ ↑ ↑ ↑ ↓ ↑

PAC (145) ↑ ↓ ↑ ↑
Pipes & Fil-

ters (53)

↑ ↑ ↓ ↓ ↑ ↑ ↓ ↑

Key:

↑ – Support
↓ – Hinder

To conclude thismain section, an apparaisal process involving four phases is followed (as illustrated

in Figure 6.1), using critical analysis during the entire process.

The first three phases include the following activities:

(a) Study, absorb, and fully understand the concepts and detailed description for the RCS archi-

tecture, and SEI and Mellor styles, from different resources.

(b) Comparison of the information derived, in order to discover the styles that are encompassed

230

6.3. INCIPIENT CONCEPT TO PROMOTE cite]Moreno, G.Moreno et al.…

by the RCS architecture, and thence identify the styles actually included within the RCS

architecture.

The fourth phase is not as complex as the first three, because the data employed in this step con-

cern the relationships between SPs-QAs were identified and stored in the database as described in

Chapter 3, and as illustrated in Figure 6.7.

The RCS entire appraisal process is presented as a case study, in order to prove the existing conflict

within the SPs-QAs relationships through a real, existing, and utilised architecture. Also, to show

how to discover the existing QAs within any architecture, and to identify any relationship conflicts

between them. Further investigation and more development within this domain will be worthwhile.

6.3 Incipient Concept to PromoteMoreno et al. [2008] approach-

Intro

Latency is the delay encountered in communicating a message from an input point to a required

output point. Processing Time is the amount of time taken to process a given request by a system, with-

out including the message transfer time (latency time). Consequently, (Latency + Processing Time =

Response Time⇒ Performance of a System), Iqbal [2015].

The approach presented byMoreno et al. [2008] (explained in Section 2.5.3.6) was developed

to measure performance. A new preliminary concept to extend and improve the Moreno et al

approach has been identified, in order to minimise its limitations, gain from its advantages,

and by the use of SP and QA tactics support the SAE processes.

Figure 6.7: The link between the entire RCS appraisal process and Chapter 3 findings.

6.3.1 Patterns and QAs conceptual schema

One of software development’s most important issues is to deliver products with required ’quali-

ties’. The intent of the approach presented here is to provide an evaluation concept for SA, including

231

CHAPTER 6. THE RCSASACASE STUDYAND PROMOTING THE…

its patterns/styles, to ensure that quality issues are addressed immediately during the first stages of the

software development life cycle.

Evaluating architecture should go hand-in-hand with developing architecture during the software

life cycle. The representation of the general relationship between the model driven engineering path and

the model driven analysis path, is illustrated in Figure 6.8, Becker [2008].

The main goal of using patterns is to design architecture with known QAs, Buschmann et al. [1996].

Various techniques that capture and represent QA and their relations to architectural solutions have been

assessed and discussed in Chapter 2, and they form an important source of knowledge regarding the

development of this new concept.

Model of the
System

T1 T2 Tn
Generated
Artefacts

Translation Analytic Model Analysis
Results of
Analysis

Key:
Data

Representation Transformation Data Flow

Figure 6.8: Modelling Development Engineering (MDE) and Model Driven Analysis. Becker

[2008].

The concept described in this section is similar to the patterns re-factoring concept. Kerievsky [2005]

used patterns as a starting point, but when the ‘the pattern’ did not work as is, he and some others started

using re-factored patterns, referred to here as the patterns re-factoring concept.

For example, the Model View Controller (MVC) pattern has been widely used, but cannot be exe-

cuted properly even with a clear concept of MVC in mind, mainly because of its implementation com-

plexity, as established by Kerievsky.

Thus, the effort and findings reported in the previous chapters regarding SPs inspired the idea of,

and provided the motivation for, developing this new conceptual paradigm.

6.3.1.1 Conceptual schema description and steps

In order to make the conceptual schema easy to understand, the textual description is represented

graphically in Figure 6.9.

The following steps explain the conceptual framework:

1. Understand and document the ‘context of use’ for an architectural pattern and its variety of imple-

mentations by the evaluators. For example, the Check Point pattern information reported in Table

3.2, represents a minimum sample of the required data, Reussner et al. [2005, p154].

2. Identify the supported and hindered QAs that will be affected by the selected pattern. The database

232

6.3. INCIPIENT CONCEPT TO PROMOTE cite]Moreno, G.Moreno et al.…

Figure 6.9: Conceptual patterns evaluation schema.

developed during this research and reported in Chapter 3 is the starting source.

3. Identify the main forces associated with the selected patterns. The forces are “a way of exploring

the indications and contra-indications for the pattern”, Fowler [2006]. The presence of the forces

within the pattern’s context are illustrated in Figure 6.10. Also, Table 3.2, shows some examples

of the forces that drive the developers to use the Check-Point pattern.

Figure 6.10: The forces within Pattern ingredients, after Tešanovic [2005].

4. Use and enhance the applicable existing set of architectural tactics, or develop new tactics if needed

for the intended problem domain (e.g. Table 3.2). QA analysis studies, such as the identified tac-

tics by Bass et al. [2013] or properties by Babar et al. [2005] (discussed in Chapter 2), may help

to develop the best-fit evolution methods, theories, scenarios, and metrics to be used by Analysis

Model during the evolution process. For example, if the security of an architecture is to be eval-

uated, different tactics may be used to define measurable metrics. The security tactics’ path from

Bass et al. [2013] demonstrates the idea:

security⇒ recovering from attack⇒ identification⇒ audit trail.

233

CHAPTER 6. THE RCSASACASE STUDYAND PROMOTING THE…

Consequently, Audit Trail evaluation, from ISO 25010, can be used for external or internal security

metrics. Figure 6.11 represents ISO security metrics as an example. Also, it shows that the right

metrics can be identified starting from the root of the security tactics (e.g. Recovering from Attack).

Security Tactics - Bass, 2003

Resisting Attacks Detecting Attacks Recovering from
an Attack

Intrusion
Detection

Restoration
(go to

Availability)

Indentification
(Audit Trail)

Authenticate
Users

Authorize
Users

Maintain
Data Condi-

dentiality

Maintain
Integrity

Limit
Exposure

Limit
Access

Metric name
Purpose of the
metrics

Method of appli-
cation

Measurement, formula and
data element computations

Interpretation of measured
value

Access auditabil-
ity

How to complete
is the audit trail
concerning the
user access to the
system and data?

Evaluate the
amount of
accesses that the
system recorded
in the access.

X=B/A; where A: potential
number of accesses to system
and data;
B: Actual number done
during evaluation.

0 ≤ X ≤ 1. The closer to 1 is
better.

Access auditabil-
ity

How auditable is
access login?

Count the num-
ber of access
types that are
being logged
correctly as in the
specifications and
compare with the
number of access
types that are
required to be
logged in the
specifications.

A – Number of access types
that are being logged as in the
specifications; B – Number of
access types required to be
logged in the specifications.

0 ≤ X ≤ 1. The closer to 1,
the more auditable.

ISO Metrics For Auditability

External Metric Internal Metric

Figure 6.11: Derived evaluation metrics starting from the right tactics.

5. Develop the necessary scenarios for functionality checking, or for evaluation purposes, concerning

(SA/or SP). “Scenarios are brief narratives of expected or anticipated system uses from both user

and developer views and they provide a look at how the system satisfies quality attributes in various

use contexts”, Kazman et al. [1996].

As an example, a few scenarios for the Check-Point pattern are presented in Table 3.2. Figure 6.12,

illustrates the main activities of the scenario-based approach during SA analysis. Scenario-based

methods are a broad topic; however, the main scenario methods were discussed earlier in Chapter 2.

Also, there are many references that explain the development process for scenario generation and

234

6.3. INCIPIENT CONCEPT TO PROMOTE cite]Moreno, G.Moreno et al.…

how they should be applied, such as Armour et al. [2001], Clements et al. [2002a], Lewis [2016],

and SEI [2018], which could be useful to construct the scenarios during this step.

Figure 6.12: Brief of the scenario-based dependencies and activities during SAE, after Kazman

et al. [1996].

6. ACME andACME-studio are used (as an example of tools and languages utilisation) to check the

structural conformance of the architecture components, in order to produce the input for the QAs

reasoning framework. ACME as an architectural language has been discussed earlier in Section

2.3.4. Figure F.5, represents a sample ofPipe and Filter family architecture using theACME-studio

tool. Other languages and tools can be used as required, such as AADL, SysML, and Artisan tool.

Figure 6.13: Pipe and Filter family illustrated through ACME-Studio tool.

7. The QA reasoning framework (Figure 6.9) includes: Input architecture, Reasoning components

235

CHAPTER 6. THE RCSASACASE STUDYAND PROMOTING THE…

(yellow box), Output (analysis results), where Reasoning components has its relations and proper-

ties and a collection of QA models that can belong to each QA reasoning mechanism.

The following three phases explain the concept framework’s main processes:

(a) Create the input architecture – Develop an architecture (or pattern concept), using for ex-

ample ACME language and its tool, SysML and Artisan tool, or other languages and tools.

Defining domain-specific architectural styles and plug-in analysis tools that may be invoked

by the analyst is possible here, because ACME-studio is written as a plug-in to the Eclipse

framework. However, the structural constraints that are already built into some tools such as

ACME-studio and Artisan must be satisfied by a pattern structure. It should also satisfy the

analytical constraints, which depend upon a specific quality reasoning framework that needs

to be added into the pattern architectural description using the same tool.

The pattern descriptions (e.g., Figure F.5) that have been created usingACME-studio are the

input for the Interpretation component, which transform the architecture/pattern description

into a specific quality model corresponding to the QA that has been selected for evaluation.

The limitations and challenges of the Interpretation elements are reported briefly during the

analysis of Moreno et al. [2008] performance model in Section 2.5.3.6.

(b) Analytical phase –The interpretation component extracts theQuality Model from the original

architecture/pattern description to be used by the evolution model (Analysis Model). The

Analysis Model uses the framework repository, which contains analytical theories, metrics

and scenarios. Expert knowledge is needed to create a proper interpretation component to be

able to produce sufficient information within the quality model for each required QA.

TheMoreno et al. [2008] approach used an additional step, which was to transfer the original

architecture into an ICM meta-model that forms the input to the reasoning framework (inter-

pretation component). This is to simplify their original architecture for analysis processes,

which could cause a problem as explained later in the limitation section.

(c) Analysis results – Based on the repository information identified for each quality, such as the

evaluation theory, scenarios, simulations, and metrics, the information on the quality model

is used by the Analysis model for evaluation processes. Scenario triggers are also included in

this model. This analysis model could use different scenarios that had been included in the

repository and can activate them by using scenario triggers (see next section).

6.3.1.2 Prospect of the conceptual schema

A classification of a set of wide-ranging scenarios for which a reasoning framework is relevant is

called a scenario trigger. These scenarios are recommended to be included within the patterns description

table.

Formalising different analytical theories, metrics, and scenarios, and subsequently categorising them

based on a specific quality and storing them in a repository, will result in reusable data that will be

produced by professionals from different domains. As a result, productivity should be increased, the

cost and time consumption should be minimised, and the automation for the evaluation process will be

encouraged.

In addition, the ATAM approach could be used as a hybrid technique for both scenarios and pre-

existing questions. Also, using the ABAS library (created by SEI group) could be very helpful in creating

an analysis model and in choosing the right evaluation methods.

236

6.3. INCIPIENT CONCEPT TO PROMOTE cite]Moreno, G.Moreno et al.…

An external simulator could be hooked to ACME-Studio/or Artisan tool for evaluation purposes. In

order to ensure that the simulator receives the appropriate information, a repository can serve as a source

of knowledge, where different types of information, scenarios, metrics, or simulation packages/scripts are

included. This repository can bemodified according to any required assessment. If in case, a new scenario

or simulation is produced, it should be tested for applicability, and then added to the repository. The

information explained earlier within Chapter 3 database, Sub-section 6.3.1.1, and Table 6.4 are examples

of the different types of data that could be useful and included within the repository.

237

C
H
A
P
T
E
R
6
.
T
H
E
R
C
S
A
S
A
C
A
S
E
S
T
U
D
Y
A
N
D
P
R
O
M
O
T
IN
G
T
H
E
…

Table 6.4: Reliability/availability evaluation, methods, data, and the generic framework, after Grunske 2007.

Method Encapsulated Evaluation Method Operational Profile Composition Algorithm Evaluation Algorithm

Hamlet,

Mason,

Woit

Reliability measures, independent

from the operational profile of

components, profile mappings are

used to obtain the reliability mea-

sures in a specific deployment con-

text.

Operational profiles at the system

level (also known as trail profiles).

Composition of the evaluation

models based on the system-

control flow.

The system reliability is calcu-

lated based on traditional reliabil-

ity equations (extended by equa-

tions for conditional cases and

loops).

Yacoub,

Ammar

Dynamic reliability metrics. Description of the operation profile

with sequence diagrams.

Generation of component depen-

dency graphs, that describe prob-

abilistic call sequences as Markov

models.

Assessment of the reliability-based

risk of a component by travers-

ing the Component Dependency

Graph (CDG).

Reuss-

ner,

Poer-

nomo,

Schmidt

Parametric contracts, a generalisa-

tion of the design-by-contract prin-

ciple based on the Quality of Ser-

vice Modelling Language (QML)

Frølund et al. 1998

Service effect automata, that de-

scribe the call probabilities of ser-

vices, these service effect automata

are also used to describe the envi-

ronment of a single component.

Composition of service effect au-

tomata + identification of the ac-

cepted language (traces) of the

composed service effect automa-

tion.

For each trace the reliability of a

service can be determined with tra-

ditional methods, the final reliabil-

ity is the sum of the individual trace

reliabilities.

2
3
8

6.3. INCIPIENT CONCEPT TO PROMOTE cite]Moreno, G.Moreno et al.…

To achieve a required QA, it’s recommended to create the architecture by utilising patterns from the

same domain (e.g. Pattern Language). As an example, a catalogue of related patterns that are known as a

Security Pattern language presents a solution description to some common security problems. . However,

different patterns’ weaknesses and strengths should be known, well-documented, and summarised so as

to be addressed and accessible by software designers. For instance, Figure 6.14 shows a subset of the

security pattern language for system access control and their relationships,

Check Point

Access Control
Requirements

Sa
tis

fy

Single Access Point Initialize
Use

Sati
sfy

Security SessionCreates

Satisfy

Full Access with
Errors Limited Access

D
efi

ne

Define

Use
Use

Figure 6.14: Subset of the security pattern language For Access Control, after Schumacher et al.

[2006].

By using the patterns in Figure 6.14, the outlines of a design process can be seen.

To evaluate a pattern against QAs using this approach, the suggested process is to:

1. Select the target pattern that needs to be evaluated.

2. Identify the related QAs by using reliable references, such as the relational database (explained in

Chapter 3), or from a set of architectural tactics.

3. Create the pattern architecture using a proper language, such as ACME, SysML or AADL;

4. Choose a reasoning framework concerned with the quality under evaluation;

5. Input the pattern architecture description into the interpretation component to produce an appropri-

ate specific quality model for the evaluation process;

6. Choose suitable evaluation methods and/or scenarios (general and concrete with mapping mecha-

nism) from repository for analysis process;

7. Finally, evaluate the quality model by using the analysis model, which incorporates the necessary

and appropriate evaluation methods, and then transform the results into readable data.

In order to demonstrate the processes of the conceptual model, Figure 6.15 shows a simple example

of measuring object coupling, through the utilisation of SysML profile and Artisan tool. The output

of the three main phases that are described in Section 6.3.1.1 are depicted within the figure. Also, the

structural and analytical constraints included, were based on the Tibermacine [2014] study for measuring

object coupling. The result (line graph) illustrated within the example is based upon Coupling Between

Objects (CBO)metric, as defined byChidamber et al. [1994]. Tacking into account that the interpretation

and quality components are not developed, their functionality concepts are clearly described within the

diagram.

239

C
H
A
P
T
E
R
6
.
T
H
E
R
C
S
A
S
A
C
A
S
E
S
T
U
D
Y
A
N
D
P
R
O
M
O
T
IN
G
T
H
E
…

Figure 6.15: Example of the model processes for (coupling measure), by utilising SysML and Artisan-tool.

2
4
0

6.3. INCIPIENT CONCEPT TO PROMOTE cite]Moreno, G.Moreno et al.…

Development and implementation of this new concept is not as easy as it might seem. It needs a

lot of work and research. This general approach provides a conceptual basis for evaluatingQAs

within architecture/patterns, by demonstrating the concept outline for the main components,

and the model processes within Figures 6.9 and 6.15, which could be able to aid during the

software development and evaluation processes. Full implementation of the outlined concept

is recommended for future research.

The extension of this abstract concept to include multiple QAs reasoning frameworks, solid repos-

itory, fully developed models, and test procedures processes are dependient upon further research to

uncover the best and latest modelling languages, theories, integration mechanisms, tools, evaluation

approaches that could support the evolution of this concept in the future.

6.3.2 Conceptual schema limitations

The QAs and SPs issues should be taken into account during architecture design, because it is also

difficult and costly to retrofit a required quality into an implemented system. A gap is noticed between

analysis engineering and architecture engineering knowledge. The use of different sources to identify and

capture architecturally sensitive quality knowledge and present it in an easy and understandable format

might help to close the gap between both disciplines analysis and architecture engineering.

However, this first attempt for the proposed solution has its limitations. So, the use of advanced

architecture description languages is important for developing better evaluation models. For example,

ACME as a language description for this proposed approach will result in ACME disadvantages being

imposed on the approach as a whole. Where Section 2.3.4, discussed ACME in general; the following

drawbacks of ACME emphasise the importance of language selection:

• ACME dynamic configuration of components and connectors is not strongly supported.

• ACME describes a weak typing system with a small permanent set of types, such as the seven

architectural elements described earlier in section 2.3.4 and its core ontology and data types do not

support associations that need new data types, taking into account that data types are an important

aspect for evaluating software architecture from different aspects, Kamal et al. [2007].

• The absence of better tools that support ACME and architecture description standardisation, make

it hard to develop and implement all aspects of the proposed solution components. Other languages,

profiles, frameworks, and tool could be more advanced and more promising, such as UML(2.5),

SysML(1.4), AADL-2, DoDAF(2.02), UPDM(2.1), Artisan-tool, as illustrated in Figure 6.15.

Notwithstanding the drawbacks of ACME, the new concept does have disadvantages:

1. The use of interpretation components in the approach makes it difficult to generalise the solution

to evaluate different QAs, because each QA needs specific interpretation components, which may

make it costly and time consuming.

2. The components of the conceptual model are not fully developed and tested.

To conclude, this is the first trial to establish a concept to assess the quality characteristics of an

architecture through the evaluation of SPs. included is a description of the complexity of the quality

241

CHAPTER 6. THE RCSASACASE STUDYAND PROMOTING THE…

assessment and the necessity to overcome this complexity during the architecture evaluation. Finally, the

proposed solution is still theoretical and is not fully developed or tested for applicability to the problem

domain. As a result, further research needs to be done.

6.4 Conclusion

The aim of the two case studies described in this Chapter 6 was to validate and complement the

findings from the review of literature and the examinations of current practice, as established via two

surveys and a field study, in relation to SAs, SPs and QAs and their relationships. The first case study,

based on an appraisal of part of the RCS Architecture, demonstrated i) that there are existing conflicts

within SP and SA relationships, and ii) how to identify existing QAs within an architecture and any

relationship conflicts between them.

The second case study sought to establish if the Moreno et al. [2008] performance model could

be better utilised in the context of SA evaluation. An improved Moreno model was created through

incorporation of six additional components and its use demonstrated via application across a number of

different aspects (patterns, tactics, matrices, languages, and tool utilisation).

In considering the outcomes of these two case studies, I realised that there was the potential for two

new concepts to be developed in relation to i) the evaluation of system architecture, and ii) quantitative

evaluation of software architecture. My initial exploration of these two new concepts, referred to as

SysAE and SAQEF, is provided in Appendix G as the basis for future research.

242

Part

III
Wrapping up

243

Chapter

7
Discussion and conclusion

Understanding of mind and brain will enable the creation of new species of intelli-

gent machine systems that can generate economic wealth on a scale hitherto unimag-

inable.

Albus et al. [2001, pp 377]

245

CHAPTER 7. DISCUSSIONAND CONCLUSION

7.1 Introduction

The main objective of the research reported in this thesis was to explore SA description, modelling,

and evaluation techniques across several engineering interdisciplinary domains, in order to enhance and

improve the SA arena. This objective has been accomplished through the contributions reported in the

previous chapters.

The rest of this chapter provides a summary of the contributions, findings, limitations, and recom-

mendations arising from the research, before wrapping up with suggestions for potential future research.

7.2 Summary of the research contribution

Different aspects of SA (including patterns) have been investigated and discussed, through the study

of, and comparisons between, various current SP resources, SA description languages, and SAE ap-

proaches, with a view to answering two important questions:

1. What effect do description languages, standardisation, evaluation methods, modelling techniques

and their documentation have on ‘SPs and SA’ utilisation and evaluation?

2. How can ‘SPs and SA’ utilisation and evaluation be improved, including minimising the effect of

any hindrances?

The grey box below summarises the answer to these questions.

By undertaking various ‘inspections’ of the state-of-the-art material, significant limitations,

gaps, and conflicting information were uncovered. Also identified was the existence of some

strong relationships between several areas (within the software engineering field), such as SPs,

QAs, SA, evaluation methods, description languages, modelling techniques, standardisation,

and documentation procedures, which have an effect on ‘SPs and SA’ utilisation and evalua-

tion.

First perceptions of the literature indicated inconsistencies. Thus, a critique style inves-

tigation and analysis of some of the current reliable references was performed to verify the

inconsistencies. As a result, several problems such as differences, inconsistencies, omissions,

gaps, and limitations, were proven to exist within SP descriptions. A partial solution to the

identified problems is illustrated through Chapter 3, together with recommendations to exam-

ine the other identified problems.

Two surveys and a field study were executed to confirm (or not) these findings and to an-

swer some aspects of the research questions. The approaches used did confirm the findings and

views regarding targeted areas (Chapters 4 and 5). This confirmation provided some insight

into user views concerning both ‘SPs and SA’, through the current state-of-the-art materials,

and the usefulness of those materials in their own work, including views on their refusal/or

willingness to embrace SPs, SA, or modelling methods more often. Several problems have

been identified through both Chapters 4 and 5, and solutions to these problems recommended

(e.g. more teaching for both SPs and SA in academia).

Proof of the existing relationships between SA, SAE, SPs, and QAs and their impact

246

7.2. SUMMARYOFTHE RESEARCH CONTRIBUTION

on each other were accomplished through a case study in Chapter 6. The conflicts between

qualities within the RCS architecture support the findings from previous chapters, and also pro-

vided proof of the usability advantage of the ‘SPs-QAs’ database that was developed (Chapter

3). Moreover, the development of the conceptual evaluation model (including its example in

Chapter 6) illustrates how we can improve the way of thinking concerning SA evaluation.

In Chapter 3, I proposed a partial solution to the problems that have been identified regarding

SPs, such as their description, conflicts, minimal usage, and documentation methods, (e.g. instead of

searching for specific pattern relationships with quality attributes within thousands of pages, researcher

can find this relationships within a seconds by typing the pattern name in the database). I argued that

improving the documentation of SPs and their relationships with QAs could also improve the evaluation

of SP; hopefully to improve the SA domain in general.

The main problems discovered concerning SPs were the inconsistencies and absence of common

standard documentation procedures, description methodologies, categorisation variance, inconsistent

definitions, and discrepancies in their relationship with QAs. As a consequence there is confusion among

users, leading to difficulties with pattern selection, unknown quality (before use) of employed patterns and

discouragement of developers to utilise them. The solution proposed was to create a common database

that contains all patterns from six different reliable resources, including: their definitions, categorisa-

tions, and relationship with QAs, and with an easy search method in order to help pattern users quickly

select required patterns, compare their definitions, view their category, and to see which qualities they

support or hinder. For example, the method and documentation of SPs can be see in Checkpoint pattern

description Table 3.2, and by gathering several definitions in one place for comparisons; while standardi-

sation are shown by the use of ISO-42010 standard as the base for the (SPs -QAs) relationship. Whereas,

relationship Table 6.3 in Chapter 6 between identified SPs and QAs illustrates, how we extracted these

relationships from the database during the RCS analysis. However, it is important to recognise that the

database information needs a continuous work, which includes improvement and update in regular basis,

in order to be useful and current.

Further research within the same area was recommended, by means of applying a survey, which was

carried out and reported in Chapter 4.

The survey undertaken gathered software engineers’ opinions regarding SP’s current documenta-

tion, description procedures, and their utilisation. A primitive database was developed to facilitate the

questionnaire’s preliminary analysis, followed by a full analysis of the information obtained. The analy-

sis results support Chapter 3 findings (mentioned above), and identified further problems concerning the

SP domain:

• Conflict between pattern descriptions within the current literature.

• Lack of integration mechanisms between patterns.

• The lack of pattern exposure to the required audience through academic institutions.

• Absence of a scientific method to prove pattern relationships with QAs.

• The difficulties of pattern selection processes, without knowing which QAs they do support before

employing them.

• Documenting patterns with no common standard or methodology.

• Lack of effort and research to improve all the aspects mentioned in the above points.

247

CHAPTER 7. DISCUSSIONAND CONCLUSION

The survey questions include some proposed solutions (in the form of statements–within the last

four questions), which were strongly supported by many of the questionnaire respondents. One of these

proposed solutions is to create a database for SPs; a database was developed as part of this study, and

reported on in Chapter 3.

Further, the analysis findings indicated the need for more research concerning SA and SAE, which

is addressed in Chapter 5. Two different methods were employed, in order to seek further information

regarding SA descriptions, documentation, and evaluationmethods. The first method is ‘a questionnaire’,

which examined the most important aspects that are related to SA and SAE. The second method is ‘a field

study’ that was professionally organised and carried out on-site within a large government organisation in

SaudiArabia. The information gathered from both methods (the survey and the field study) was analysed

scientifically. Most of the findings from both methods support each other, such as:

• Few developers used SA modelling languages.

• The developers wide nescience regarding SA description languages, and evaluation methods.

The finding indicate that SA description, modelling, utilisation, and evaluation are important, but

not yet practised enough by developers on real life projects, as was expected.

Also, and unfortunately, software engineers awareness and usage of SA and SAE methods are low.

Contributing factors identified include:

• Deficiency of ‘software engineers’knowledge concerningmodelling techniques, and SA in general;

• Limited teaching of these approaches in academia;

• Few SA and SAE documents of a high quality standard, and with clear full examples of both

approaches, exist and are openly available to developers; and

• Lack of tool support.

Chapter 5 also contains the report on the current architectural procedures and documentation from

different large-scale projects derived from a field study. Problems, proposed solutions, recommendations,

and limitations from this study are provided. Part of the field study involved interacting with developers

from three different organisations, working side by side with them on diverse projects, which varied

from (small to large) in size. As a result, my practical knowledge, and skills surrounding SA are greatly

enhanced.

Based on my research findings in Chapters 2-to-5, I proposed two important “pillars of practice”

for implementation into the research problem domain (SA arena), as in Chapter 6:

1. Examination and analysis of an existing and reliable SA reference model, called the (Real-time

Control System (RCS)), Albus et al. [2001], in order to “show the influential dependencies”, be-

tween SPs, SA, SAE, and QAs, which were realised during the previous chapters’ arguments and

findings. The trade-offs, and conflicts between QAs within the RCS architecture were demon-

strated.

2. Developing a preliminary concept, to improve an existing performance evaluation model, the

Moreno et al. [2008] performance model, in order to generalise that model to be applicable to

several QAs, not just for evaluating performance.

Six components were added to the the Moreno et al. [2008] model, in order to form a potentially

248

7.3. LIMITATIONSAND DRAWBACKS OFTHE CONTRIBUTION

improved model. How the “improved” model works is explained in Sections (6.3.1.1 and 6.3.1.2), and

examples of patterns (e.g. Pipe and Filter), tactics (e.g. Security), matrices (e.g. audit trail), and tool

utilisation (e.g. ACME-Studio) illustrated.

Furthermore, another example was illustrated through a description of objects coupling evaluation

processes, for a small portion of the RCS architecture (RCS Node), in order to demonstrate and simplify

the model process and concept. The resulting “improved” model, considered as an initial concept given

its limitations, is explained in Section 6.3.1.2. It was while undertaking this particular evaluation that

I began to think about developing a better framework and models to evaluate SA. These thoughts are

explained briefly in Section 7.4, and Appendix G.

7.3 Limitations and Drawbacks of the contribution

In 1998, Sir. Morwenna Griffiths denied the existence of perfection for any research in any field of

study, stating “there is no hope of doing a perfect research”,Griffiths [1998]. I concur with his statement,

because research is expected to produce a novel concept or improve existing ones, resolve new problems

or existing ones, in order to promote the life of mankind, which could be affected by many (controllable

and uncontrollable) factors, such as, type of research, data type, reliability of the data, knowledge of the

researchers, tools support, time, cost, research environment,etc.

Therefore, this research has its limitations, as is the case with practically any other research. Some

of the research limitations were discussed within each chapter, thus, this section will briefly explain the

general limitations and drawbacks, as follows:

• Both questionnaires, reported on in Chapters 4 and 5, inherited the common disadvantages of sur-

veys, such as differences in interpretation, dishonest answers, non-conscientious responses, hard

to convey feelings, and questions that were hard to analyse. Moreover, both questionnaires tried to

cover more topics than perhaps they should have, such as patterns documentation, utilisation, and

their relationship with QAs (Chapter 4) and SA description languages, modelling techniques, and

SAE (Chapter 5). As a result, both questionnaires while comprehensive and advantageous to their

domains, were perhaps not focused enough concerning each of their sub-topics.

• Regarding the field study in Chapter 5, the involved organisations are not familiar with such

research, or researchers coming from outside their organisations, which added some challenges

throughout the study processes from organising-to-performing. I was the first person to undertake

such a study in these organisations. However, the final outcome, and the results and recommenda-

tion gained are important and beneficial for both the organisations and research. The study gener-

ally lacked quantitative results and precise measures, due to the scattered and pressed environments

of many projects, time limitation, and the confidentiality of the projects and sites; hence, limiting

the declaration of some information.

• The analysis of the RCS and the evaluation model initial concept that are reported in Chapter 6,

are described with all necessary processes, examples, and arguments. However, the attempt to

improve the Moreno et al. [2008] model, shows some limitations that are mostly in accordance

with the improved version, as described in Section 6.3.2. Consequently, another SA generalised

evaluation framework idea has evolved that could overcome some of the Moreno et al. [2008]

model disadvantages, which are explained briefly in Section 7.4.

249

CHAPTER 7. DISCUSSIONAND CONCLUSION

7.4 Recommendations and Future work

The challenges and gaps that are influencing different aspects of SA have been demonstrated in this

thesis, together with suggested solutions for some of these challenges, such as:

• Gathering different SA quantitative metrics in one repository for public use.

• Developing automated quantitative methodology to evaluate SA.

• Developing a comprehensive reliable tool for SAE purposes.

There are a few recommendations that could be given, in order to avoid some of the limitations

identified. Also, there are opportunities to extend this study and to promote some of its concepts, models,

suggestions, and solutions. So, this section illustrates some of these directions.

1. I recommend narrowing the scope in any similar study, or to divide the overall scope into sub-

scopes, so as to be able to cover all the study objectives from all angles, and to be fully able to

develop necessary artefacts – especially if time is constrained.

2. Narrowing the scope of questions is also recommended – ‘especially’ for questionnaires similar to

the ones presented in Chapters 4 and 5.

3. It is advisable to refine and improve the SPs database, with a more concrete and better architecture,

interface, and with more functionality. This should include: completing the information of (SPs

andQAs) tables, such as the forces, general scenarios, and metrics. The database design should be

able to interface with external models and/or tools.

4. Regarding the model illustrated in Chapter 6, full development, implementation, and testing of

the model components, its interface mechanisms with the database illustrated in Chapter 3, and

requesting and processing procedures for the scenarios, matrices, etc, for each quality characteristic

(from the database), is recommended.

The trial of improving the Moreno et al. [2008] model (Chapter 6), leads to another direction of

research as follows:

5. To develop, implement, and test, a general standard SA evaluation approach and models that re-

quire two important components; a SystemArchitecture Evaluation (SysAE) concept, and Software

Architecture Quantitative Evaluation Framework (SAQEF)). Both, concepts are explained briefly

in Appendix G, with some examples.

The following components should be developed and implemented, in order to fulfil both theoretical

and concept goals:

• Full SPs – QAs database, with integration mechanism to SysAE.

• Full SAQEF framework.

• Architecture data extraction mechanism.

• Full SysAE Components.

• Result visualisation mechanism for SAQEF output.

• Internal integration mechanism between SysAE components.

• External integration mechanism between SysAE and the external environment.

250

7.5. OVERALLCONCLUSION

The SysAE and SAQEF approaches need to be up-to-date with current technology. Thus, they should

be designed with self-upgrading capabilities.

The knowledge encompassed in this thesis could serve as a foundation to facilitate the development

of the above seven components, which also could be accomplished by utilising current professional and

reliable languages, standard, framework, and tools to develop all artefacts (e.g. AADL, SysML language,

DoDAF profile, ISO-42010 quality standard, and the Artisan-studio tool).

In order for the proposed evaluation system to fully achieve its objectives and to be applicable in

industry, it should be able to answer questions, such as:

1. Are there any constraints for SA (description, notations, and semantics)/ or how it’s presented, to

be evaluated by the (SysAE and SAQEF) approaches?

2. How efficiently, and to what levels, will the SysAE components evaluate complex systems?

3. Is the SysAE approach inbuilt with enough capabilities to evaluate a range of system architectures

from different and/or multi-domains?

4. How best can the SysAE approach builds its components with capabilities that meet future industry

needs?

7.5 Overall conclusion

A combination of investigatory techniques, proposed solutions, and conceptual models, have been

developed and presented within this study, which leads to novel findings that contribute to the SA and

SAE fields.

In addition, the uniqueness of this study, as compared to other research found in the current litera-

ture and industry, relies upon its process, diversity of methods used, and the knowledge that has been

merged/linked between different interdisciplinary domains, which should improve SA understanding

among the software engineering community.

There is slight knowledge and employment of SPs, SA, and SAE methods by current software

engineers.

Thus, the key outcomes of this study are:

1. The development, description, and documentation of SPs and SA, need to be improved

to be used by the software community.

2. SPs, SA description languages, modelling method, evaluation techniques, and QAs,

should be considered during SA development.

3. The academic sector needs to include: SPs, SA, SAE within their curriculums, in order

to educate future students about the value of knowing these subjects, and to prepare them

to be able to (contribute and enhance) the overall software domain.

4. Industry and government sectors need to hold workshops for their employees to achieve

the same objective as in point (3).

5. More improvement of SA description tool and SAE tool could increase the deployment

of SA concepts within software projects in the future.

6. More research needs to be done, on how to read/interpret SA for its (specific and general)

251

CHAPTER 7. DISCUSSIONAND CONCLUSION

evaluation purposes.

7. A full example of SA development processes, including: all associated artefacts, ver-

ification (method and results), and validation (method and results), needs to be devel-

oped and published. Also, the example should be explained and documented completely

based on a standard, or a clear procedure, and to be open source, in order to increase soft-

ware engineering community’s knowledge regarding the SA domain.

The clear roadmap for future research, presented by Section 7.4, is a ‘useful’ outcome of this study,

which needs to be attended to with utmost care.

7.6 Closing remarks

Keeping this work within a relevant context, when carrying-out more research in the future, will en-

hance the viability and visibility of the SPs concept, QAs evaluation, and overall SA domain. The overall

arguments, contributions, findings, and suggested future thoughts, could be considered as an interdisci-

plinary approach that will help in steering researchers to improve and resolve some of the problems

identified here. The long term aim being to help stakeholders select the best architecture candidate for

their intended systems, through their realisation of the full architectural potential and limitations, which

will lead to the production of better systems.

252

Bibliography

(2018).

Abou-El-Fittouh, H., T. D. Breaux, L.A.Williams, and J.Niu (2012). “On the design of empirical

studies to evaluate software patterns: a survey”. Acm sigsoft’12, fse-20, november 10–17,

2012, research triangle park, north carolina, usa. North Carolina State University. Dept. of

Computer Science.

Abowd, G., L. Bass, P. Clements, R. Kazman, L. Northrop, and A. Zaremski (1997). Recom-

mended best industrial practice for software architecture evaluation. Tech. rep. CMU/SEI-

96-TR-025.

Abrial, J.-R. (1996). The B-book: assigning programs to meanings. NewYork, NY, USA: Cam-

bridge University Press.

Adrion,W. R. (1993). “Researchmethodology in software engineering”. Summary of the dagstuhl

workshop on future directions in software engineering, ed. tichy, habermann, and prechelt,

ACM software engineering notes, SIGSoft. Vol. 18. 1: pp. 36–37.

Albus, J. S. (2002). “4-D/RCS a reference model architecture for intelligent unmanned ground

vehicles”. Proceedings – SPIE. International Society for Optical Engineering: pp. 303–310.

Albus, J. (1997). “4-D/RCS: a reference model architecture for demo III, NISTIR 5994, gaithers-

burg”. MD.

Albus, J. and A. Meystel (1996). “A reference model architecture for design and implementa-

tion of intelligent control in large and complex systems”. International Journal of Intelligent

Control and Systems 1: pp. 15–30.

— (2001). Engineering of mind: an introduction to the science of intelligent systems. NewYork,

NY, USA: John Wiley & Sons.

Alebrahim, A. (2017). Bridging the gap between requirements engineering and software archi-

tecture. Springer Vieweg. DOI: 10.1007/978-3-658-17694-5.
Alexander, C. (1964).Notes on the synthesis of form. Presidents and Fellows of Harvard College.

— (1979). The timeless way of building. USA: Oxford University Press.

— (2005). The nature of order: an essay on the art of building and the nature of the universe.

book three. Vol. 3. Oxford University Press.

Alexander, C., S. Ishikawa, and M. Silverstein (1977). A pattern language: towns, buildings,

construction. USA: Oxford University Press.

Allen, R. andD.Garlan (1997). “Aformal basis for architectural connection”.ACMTransactions

on Software Engineering and Methodology 6: pp. 213–249.

Alpert, S. R., K.Brown, andB.Woolf (1998). The design patterns smalltalk companion.Addison-

Wesley Longman Publishing Co., Inc.

253

https://doi.org/10.1007/978-3-658-17694-5

BIBLIOGRAPHY

Alshaikh, Z. (2011). “Notes on the synthesis of context”. PhD thesis. Australian National Uni-

versity.

Alshaikh, Z. and C. Boughton (2008). “Context centralised method for software architecture: a

pattern evolutionary approach”. Dcsoft.

Armour, F. and G. Miller (2001). Advanced use case modeling: software systems. Addison-

Wesley.

Athar, A., R. M. Liaqat, and F. Azam (2016). “A comparative analysis of software architecture

evaluation methods.” Journal of Software 11.9: pp. 934–942.

AV Sriharsha, A. R. (Aug. 2015). “Empirical analysis of design pattern metrics for building

modest formalized catalog”. International Journal of Information Research and Review 2:

pp. 1232–1236.

Babar, M., X.Wang, and I. Gorton (2005). “Supporting security sensitive architecture design”.

Proceedings of the 1st international conference on the quality of software architectures

(QoSA 2005) and 2nd international workshop on software quality (soqua 2005), erfurt, ger-

many, september 20-22. Berlin Heidelberg: pp. 140–154.

Babar, M.A., L. Bass, and I.Gorton (2007). Factors influencing industrial practices of software

architecture evaluation: an empirical investigation. DOI: 10.1007/978-3-540-77619-
2_6.

Babar, M., L. Zhu, and R. Jeffery (2004). “A framework for classifying and comparing soft-

ware architecture evaluation methods”. Software engineering conference, 2004. proceed-

ings. 2004 australian. IEEE: pp. 309–318.

Bachmann, F., L. Bass, M. Klein, and C. Shelton (2005). “Designing software architectures to

achieve quality attribute requirements”. IEE Proceedings - Software 152.4: pp. 153–165.

DOI: 10.1049/ip-sen:20045037.
Bachmann, F., L. Bass, D. Garlan, J. Ivers, R. Little, P.Merson, R. Nord, and J. Stafford (2011).

Documenting software architectures: views and beyond. Vol. 2. Addison-Wesley Profes-

sional.

Badreddin, O., T. C. Lethbridge, A. Forward, M. Elaasar, H. Aljamaan, and M. A. Garzon

(2014). “Enhanced code generation from uml composite state machines”. Proceedings of the

2nd international conference on model-driven engineering and software development - vol-

ume 1:modelsward. INSTICC. SciTePress: pp. 235–245. DOI: 10.5220/0004699602350245.
Bardram, J. E., H. B. Christensen, A. V. Corry, K. M.Hansen, and M. Ingstrup (2005). “Explor-

ing quality attributes using architectural prototyping”. Proceedings of the 1st international

conference on the quality of software architectures (QoSA 2005) and 2nd international work-

shop on software quality (SOQUA2005), erfurt, germany, september 20-22. Ed. by R.Reuss-

ner, J.Mayer, J. A. Stafford, S. Overhage, S. Becker, and P. J. Schroeder. Vol. 3712. Lecture

Notes in Computer Science. Berlin Heidelberg: Springer-Verlag: pp. 155–170.

254

https://doi.org/10.1007/978-3-540-77619-2_6
https://doi.org/10.1007/978-3-540-77619-2_6
https://doi.org/10.1049/ip-sen:20045037
https://doi.org/10.5220/0004699602350245

BIBLIOGRAPHY

“Design Patterns for e-Science” (2007). Ed. by J. T. Barth, M. Griebel, E. D. Keyes, M. R.

Nieminen, D.Roose, andT. Schlick. Berlin, Heidelberg: Springer Berlin Heidelberg. Chap. e-

Science and EScope: pp. 3–13. DOI: 10.1007/3-540-68090-X_1.
Bass, L., P. Clements, and R. Kazman (1998). Software architecture in practice. 1st. SEI Series

in Software Engineering. USA: Addison Wesley Longman Inc.

— (2003). Software architecture in practice. 2nd. SEI Series in Software Engineering. USA:

Pearson Education, Inc.

— (2013). Software architecture in practice. 3rd. SEI Series in Software Engineering. USA:

Pearson Education, Inc.

Becker, S. (2008). “Coupled model transformations”. Proceedings of the 7th international work-

shop on software and performance. ACM: pp. 103–114.

Bendı́k, J., N. Beneš, J. Barnat, and I. Černá (2016). “Finding boundary elements in ordered

sets with application to safety and requirements analysis”. Software engineering and for-

mal methods. Ed. by R. De Nicola and E. Kühn. Cham: Springer International Publishing:

pp. 121–136.

Bengtsson, P., N. Lassing, J. Bosch, and H. van Vliet (2004). “Architecture-level modifiability

analysis (alma)”. Journal of Systems and Software 69.1: pp. 129–147.

Blanchard, B. S. andW. J.Fabrycky (1990). Systems engineering and analysis. 2006th ed.Vol. 4.

Pearson Education, Inc. 0131869779. Prentice Hall Englewood Cliffs, New Jersey.

Booch, G. (2005). Generations of software architecture.

Bosch, J., M. Gentleman, C. Hofmeister, and J. Kuusela (2002). Software architecture: system

design, development and maintenance: IFIP 17th world computer congress – TC2 stream/3rd

working IEEE/IFIP conference on software architecture (WICSA3), august 25-30, 2002,

montréal, québec, canada. Kluwer Academic Publishers.

BouckÃ, N., D. Weyns, R. Hilliard, T. Holvoet, and A. Helleboogh (2008). “Characterizing re-

lations between architectural views”. Software architecture: second european conference,

ecsa 2008 paphos, cyprus, september 29-october 1, 2008 proceedings. Ed. by R. Morri-

son, D. Balasubramaniam, and K. Falkner. Berlin, Heidelberg: Springer Berlin Heidelberg:

pp. 66–81. DOI: 10.1007/978-3-540-88030-1{_}7.
Boyer, R. S. and J. S.Moore (1988). “A computational logic handbook”. Proceedings of the 10th

international conference on automated deduction (cade-10). Academic Press.

Breivold, H. P., I. Crnkovic, and M. Larsson (2012). “A systematic review of software architec-

ture evolution research”. Information and Software Technology 54.1: pp. 16–40.

Brookes, S. D., C. A. R. Hoare, and A. W. Roscoe (June 1984). “A theory of communicating

sequential processes”. J. ACM 31.3: pp. 560–599. DOI: 10.1145/828.833.
Brouwers, N., M. Hamilton, I. Kurtev, and Y. Luo (2017). “Language architecture: an archi-

tecture language for model-driven engineering”. Proceedings of the 5th international con-

ference on model-driven engineering and software development - volume 1: modelsward,

INSTICC. SciTePress: pp. 147–156. DOI: 10.5220/0006206001470156.

255

https://doi.org/10.1007/3-540-68090-X_1
https://doi.org/10.1007/978-3-540-88030-1{_}7
https://doi.org/10.1145/828.833
https://doi.org/10.5220/0006206001470156

BIBLIOGRAPHY

Buede, D. M. andW. D.Miller (2016). The engineering design of systems: models and methods.

John Wiley & Sons.

Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal (1996). Pattern-oriented

software architecture - a system of patterns. Vol. 1.Wiley Series in Software Design Patterns.

Chichester, UK: John Wiley & Sons.

Cabot, J. (2014). Clarifying concepts: mbe vs mde vs mdd vs mda.

Capilla, R., A. Jansen, A. Tang, P. Avgeriou, and M. A. Babar (2016). “10 years of software

architecture knowledge management: practice and future”. Journal of Systems and Software

116: pp. 191–205. DOI: https://doi.org/10.1016/j.jss.2015.08.054.
Carroll, S. and T. Daughtry (2007). Fundamental concepts for the software quality engineer.

Vol. 2. Milwaukee, USA: American Society for Quality.

Cheng H.C., L., P.Holger Giese Inverardi, and J.Magee (2009). “Software engineering for self-

adaptive systems: a research roadmap”. Self adaptive systems. Springer-Verlag: pp. 1–26.

Chidamber, S. R. and C. F. Kemerer (1994). “Ametrics suite for object oriented design”. IEEE

Transactions on Software Engineering 20: pp. 476–493. DOI: 10.1109/32.295895.
Chrissis,M. B.,M.Konrad, and S. Shrum (2007).CMMI for development: guidelines for process

integration and product improvement. 2nd. Pearson Education.

Clements, P. (2003). Documenting software architectures: views and beyond. Boston, USA:

Pearson Education.

Clements, P., R. Kazman, and M. Klein (2002a). Evaluating software architectures – methods

and case studies. SEI Series. Addison-Wesley.

Clements, P. and L. Northrop (2002b). Software product lines. Addison-Wesley.

Cochran, W. G. (1977). “Sampling techniques”.

Cochran, W. G. (1954). “Some methods for strengthening the common and 2 tests”. Biometrics

10.4: pp. 417–451. DOI: 10.2307/3001616.
Company, H. A. C. (1993). Communications, command, and control (C3) - top level system

design. Confidential – Though The Royal Saudi Air Force.

Comyn-Wattiau, I., K. Tanaka, I. Song, S. Yamamoto, and M. Saeki (2016). Conceptual model-

ing: 35th international conference, er 2016, gifu, japan, november 14-17, 2016, proceedings.

Lecture Notes in Computer Science. Springer International Publishing: p. 352.

Coplien, J. O. (2014). A pattern definition.

Coplien, J. O. and D. C. Schmidt, eds. (1995). Pattern languages of program design. NewYork,

NY, USA: ACM Press/Addison-Wesley Publishing Co.

Dashofy, E. M., A. van der Hoek, and R. N. Taylor (2005). “A comprehensive approach for the

development of modular software architecture description languages”. ACM Transactions

on Software Engineering and Methodology 14: pp. 199–245.

Denscombe, M. (2014). The good research guide: for small-scale social research projects. Open

UP study skills. McGraw-Hill Education.

Desharnais, J. (2013). Analysis of iso-iec 9126 and 25010.

256

https://doi.org/https://doi.org/10.1016/j.jss.2015.08.054
https://doi.org/10.1109/32.295895
https://doi.org/10.2307/3001616

BIBLIOGRAPHY

Dey, A. K. (2001). “Understanding and using context”. Personal and ubiquitous computing 5.1:

pp. 4–7.

Dick, J., E. Hull, and K. Jackson (2017). Requirements engineering. 4th. Vol. 1. Originally pub-

lished in the series ”Practitioner Series” 978-3-319-61073-3. Springer International Publish-

ing Switzerland: Springer International Publishing.

Dissaux, P., M. F. Amine, and F. Vernadat (2005). Architecture description languages: IFIP TC-

2 workshop on architecture description languages (WADL), world computer congress, aug.

22-27, 2004, toulouse, france. Vol. 176. Springer.

Dobrica, L. and E. Niemelä (2002a). “A survey on software architecture analysis methods”.

IEEE Transactions on Software Engineering: pp. 638–653.

Dobrica, L. and E. Niemela (2002b). “A survey on software architecture analysis methods”.

IEEE Transactions on software Engineering 28.7: pp. 638–653.

Dogru,A. H. (2010).Modern software engineering concepts and practices: advanced approaches:

advanced approaches. IGI Global.

Donohoe, P. (1999). Software architecture – TC2 first working IFIP conference on software

architecture. San Antonio: Kluwer Academic Publishers.

Ejiogu, L. O. (1991). Software engineering with formal metrics. QED Information Sciences, Inc.

Ejiogu, L. O. (2005). Software metrics: the displine of software quality. Softmetrix, Inc.

Everitt, B. S. (1977). The analysis of contingency tables. Monographs on applied probability

and statistics. Chapman and Hall: p. 128.

Fairbanks, G. (2018). Conceptual model of software architecture.

Feiler, P. and D. Gluch (n.d.). Model-based engineering with aadl: an introduction to the sae

architecture analysis & design language. SEI Series in Software Engineering. Pearson Ed-

ucation.

Feiler, P., D. Gluch, and J. Hudak (2006). The architecture analysis & design language (aadl):

an introduction. Tech. rep. CMU/SEI-2006-TN-011. Pittsburgh, PA: Software Engineering

Institute, Carnegie Mellon University.

Fielding, R. T. (2000). “Architectural styles and the design of network-based software architec-

tures”. Doctor of Philosophy. University of California, IRVINE.

Finkelstein, R. (2008). “An autonomous intelligent control system for robots and complex sys-

tems of systems”. 3019834194. RobertFinkelstein@compuserve.com: University of Mary-

land University College.

Fitzgerald, J. (1973). Validated designs for object-oriented systems. Springer-Verlag.

Flint, S. (2006). “Aspect-oriented thinking – an approach to bridging the disciplinary divides”.

PhD thesis. Australian National University.

— (2008). Model driven development and aspect-oriented thinking. ANU seminar.

Foster, H. (Jan. 2011). Functional verification study, by wilson research group and mentor

graphics.

Fowler, M. (Aug. 2006). Writing software patterns.

257

BIBLIOGRAPHY

Fowler, M. (2010). Domain-specific languages. Addison-Wesley Signature Series (Fowler).

Pearson Education.

Fowler,M. (1997).Analysis patterns: reusable object models. Object Technology Series.Addison-

Wesley.

Fowler, M., D. Rice, M. Foemmel, E. Hieatt, R.Mee, and R. Stafford (2003). Patterns of enter-

prise application architecture. Addison-Wesley.

France, R. and B. Rumpe (2007). “Model-driven development of complex software: a research

roadmap”. 2007 future of software engineering. FOSE ’07. Washington, DC, USA: IEEE

Computer Society: pp. 37–54.

Freitas, R. (2009). “Scientific research methods and computer science”. MAP-I SeminarsWork-

shop 2009.

Frølund, S. and J. Koistinen (1998).QML: a language for quality of service specification. Tech.

rep. HP Laboratories.

Futrell, R. T., D. F. Shafer, and L. I. Shafer (2002). Quality software project management. Soft-

ware Quality Institute Series. Upper Saddle River, USA: Prentice-Hall Inc.

Gamma, E., R.Helm, R. Johnson, and J. Vlissides (1995).Design patterns: elements of reusable

object-oriented software. Professional Computing Series. USA: Addison-Wesley.

Garlan, D., R. Monroe, and D. Wile (1997). “Acme: an architecture description interchange

language”. Proceedings of the 1997 conference of the centre for advanced studies on col-

laborative research. IBM Press: p. 7.

Garlan, D. and B. Schmerl (2006a). “Architecture-driven modelling and analysis”. 11th aus-

tralian workshop on safety related programmable systems (SCS ’06), melbourne. Ed. by T.

Cant. Conferences in Research and Practice in Information Technology. Australian Com-

puter Society.

Garlan, D. (2000). “Software architecture: a roadmap”. Proceedings of the conference on the

future of software engineering. ICSE ’00. Limerick, Ireland:ACM: pp. 91–101. DOI: http:
//doi.acm.org/10.1145/336512.336537.

Garlan, D. and B. R. Schmerl (2006b). “Architecture-driven modelling and analysis”.

Gilmore, S. and L. Kloul (2003). “A unified tool for performance modelling and prediction”.

Computer safety, reliability, and security. Vol. 2788. Lecture Notes in Computer Science.

Berlin Heidelberg: Springer: pp. 179–192.

Glass, R. L. (1995). “A structure-based critique of contemporary computing research”. Journal

of Systems and Software 28.1: pp. 3–7.

Gogolla, M. (2004). “Benefits and problems of formal methods”. Reliable software technologies

- ada-europe 2004. Ed. byA. Llamosı́ andA. Strohmeier. Berlin, Heidelberg: Springer Berlin

Heidelberg: pp. 1–15.

Graça, H. (July 2017). Architectural styles vs. architectural patterns vs. design patterns.

Grady, R. B. (1992). Practical software metrics for project management and process improve-

ment. New York: Prentice Hall.

258

https://doi.org/http://doi.acm.org/10.1145/336512.336537
https://doi.org/http://doi.acm.org/10.1145/336512.336537

BIBLIOGRAPHY

Grassi, V., R. Mirandola, and A. Sabetta (2005). “From design to analysis models: a kernel

language for performance and reliability analysis of component-based systems”.WOSP ’05:

proceedings of the 5th international workshop on software and performance. Palma, Illes

Balears, Spain: ACM: pp. 25–36.

Greenfield, J., K. Short, S. Cook, and S. Kent (2004). Software factories: assembling applica-

tions with patterns, models, frameworks, and tools. USA: John Wiley & Sons, Inc.

Griffiths, M. (1998). Educational research for social justice: getting off the fence. Doing quali-

tative research in educational settings. Open University Press.

Grone, B. (2006). “Conceptual patterns”. 13th annual ieee international symposium and work-

shop on engineering of computer-based systems (ecbs’06): pp. 246–252. DOI: 10.1109/
ECBS.2006.31.

Grunske, L. (2007). “Early quality prediction of component-based systems – a generic frame-

work”. The Journal of Systems and Software.

He, J., Z. Qin, and X. Jia (2005). “An ontology-based e-commerce knowledge description lan-

guage”. Acta Electronica Sinica 33: pp. 297–300.

Hewitt, C., P. Bishop, and R. Steiger (1973). “A universal modular actor formalism for artificial

intelligence”. Proceedings of the 3rd international joint conference on artificial intelligence.

IJCAI’73. Stanford, USA: Morgan Kaufmann Publishers Inc.: pp. 235–245.

Hilken, C., J. Peleska, and R. Wille (2015). “A unified formulation of behavioral semantics for

sysml models”. Proceedings of the 3rd international conference on model-driven engineer-

ing and software development - volume 1: modelsward. INSTICC. SciTePress: pp. 263–271.

DOI: 10.5220/0005241602630271.
Hoare, C. A. R. (2004). Communicating sequential processes. Prentice Hall.

Hoinville, G. and R. Jowell (1985). Survey research practice. Aldershot: Gower.

Hummel, O. and S. Burger (2017). “Analyzing source code for automated design pattern rec-

ommendation”. Proceedings of the 3rd acm sigsoft international workshop on software an-

alytics. SWAN 2017. Paderborn, Germany: ACM: pp. 8–14. DOI: 10.1145/3121257.
3121259.

Iqbal, Z. (June 2015). Latency, processing time ,and response time.

Ivkovic, I. and K. Kontogiannes (2006). “Framework for software architecture refactoring using

model transformations and semantic annotations”. Proceedings of the conference on soft-

ware maintenance and reengineering (CSMR ’06): pp. 135–144.

Jaquith, A. (2007). Security metrics: replacing fear, uncertainty, and doubt. Addison-Wesley

Upper Saddle River.

Jones, C. B. (1990). Systematic software development using VDM. 2nd. Englewood Cliffs.

Jung, S. K. and G. David (2006). “Analyzing architectural styles with alloy”. In proceedings of

ROSATEA’06, ISSTA. ACM Press: pp. 70–80.

259

https://doi.org/10.1109/ECBS.2006.31
https://doi.org/10.1109/ECBS.2006.31
https://doi.org/10.5220/0005241602630271
https://doi.org/10.1145/3121257.3121259
https://doi.org/10.1145/3121257.3121259

BIBLIOGRAPHY

Kamal, A. W. and P. Avgeriou (2007). “An evaluation of adls on modeling patterns for soft-

ware architecture”. Proceedings of the 4th international workshop on rapid integration of

software engineering techniques (RISE 2007).

Kan, S. (2003). Metrics and models in software quality engineering. 2nd ed. Addison-Wesley

Professional.

Kassab M.and El-Boussaidi, G. and H. Mili (2012). “A quantitative evaluation of the impact

of architectural patterns on quality requirements”. Software engineering research, manage-

ment and applications 2011. Ed. by R. Lee. Vol. 377. Studies in Computational Intelligence.

Springer Berlin Heidelberg: pp. 173–184.

Kasunic, M. (2005). Designing an effective survey. Tech. rep. CMU/SEI-2005-HB-004. Soft-

ware Engineering Institute.

Kaufmann, M. (1998). “ACL 2 support for verification projects”. Proceedings of the 15th inter-

national conference on automated deduction (cade-15). Ed. by C.Kirchner and H.Kirchner.

Vol. 1421. Lecture Notes in Artificial Intelligence. Springer-Verlag: pp. 220–238.

Kazman, R., G. Abowd, L. Bass, and P. Clements (1996). “Scenario-based analysis of software

architecture”. IEEE Software 13: pp. 47–55. DOI: 10.1109/52.542294.
Kazman, R., G.Abowd, L. Bass, andM.Webb (1994). “Saam: a method for analyzing the proper-

ties of software architectures”. Proceedings of the 16th international conference on software

engineering. sorrento, italy, may 16-21. LosAlamitos, CA: IEEE Computer Society: pp. 81–

90.

Kazman, R., M. Barbacci, M. Klein, S. J. Carriére, and S. G. Woods (1999). “Experience with

performing architecture tradeoff analysis”. 21st international conference on software engi-

neering (ICSE ’99). Los Alamitos, CA, USA: IEEE Computer Society: p. 54.

Kazman, R., M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Carriere (1998). “The archi-

tecture tradeoff analysis method”. Proceedings of the 4th IEEE international conference on

engineering of complex computer systems (ICECCS ’98). Monterey, CA: IEEE Computer

Society: p. 68.

Kazman, R., L. Bass, M. Klein, T. Lattanze, and L. Northrop (2005). “A basis for analyzing

software architecture analysis methods”. Software Quality Journal 13.4: pp. 329–355.

Kelly, J. (1997). “Formal methods specification and analysis guidebook for the verification of

software and computer systems. volume II: a practitioner’s guide”. NASA. http://techre-

ports.jpl.nasa.gov/1997/97-0202.pdf.

Kerhervé, B., K. K. Nguyen, O. Gerbé, and B. A. Jaumard (2006). “Framework for quality

driven delivery in distributed multimedia systems”. Proceedings of the advanced interna-

tional conference on telecommunications and international conference on internet and web

applications and services (AICT/ICIW) 2006: pp. 195–205.

Kerievsky, J. (2005). Refactoring to patterns. Addison-Wesley.

Kerzner, H. R. (2013). Project management: a systems approach to planning, scheduling, and

controlling. John Wiley & Sons.

260

https://doi.org/10.1109/52.542294

BIBLIOGRAPHY

Khwaja, S. and M. Alshayeb (2013). “A framework for evaluating software design pattern spec-

ification languages”. 2013 ieee/acis 12th international conference on computer and infor-

mation science (icis): pp. 41–45. DOI: 10.1109/ICIS.2013.6607814.
Khwaja, S. and M. Alshayeb (June 2016). “Survey on software design-pattern specification lan-

guages”. ACM Comput. Surv. 49.1: 21:1–21:35. DOI: 10.1145/2926966.
Kim, H.-k., M. K. Khan, A. Kiumi, W.-c. Fang, and D. Ślȩzak (2010). Advances in software

engineering: international conference, asea 2010, held as part of the future generation in-

formation technology conference, fgit 2010, jeju island, korea, december 13-15, 2010. pro-

ceedings. Vol. 117. Springer.

Kim, J. S. and D. Garlan (2006). “Analyzing architectural styles with alloy”. ROSATEA ’06:

proceedings of the ISSTA 2006 workshop on role of software architecture for testing and

analysis. New York: ACM: pp. 70–80.

Kircher, M. and P. Jain (2004). Pattern-oriented software architecture - patterns for resource

management. Vol. 3. John Wiley & Sons.

Kitchenham, B. and S. Pfleeger (2001). “Principles of survey research: part 1: turning lemons

into lemonade”. ACM SIGSOFT Software Engineering Notes 26: pp. 16–18.

Klarlund, N. and A. Moller (1998). Brics technical report. Denmark: University of Aarhus.

Klassen, T. P., A. R. Jadad, and D. Moher (1998). “Guides for reading and interpreting sys-

tematic reviews: i. getting started”. Archives of pediatrics and adolescent medicine 152.7:

pp. 700–704.

Klein, M. and R. Kazman (1999). Atribute-based architectural styles. Tech. rep. CMU/SEI-99-

TR-022, Pittsburgh.

Klein, M., T. Ralya, B. Pollak, R. Obenza, and M. G. Harbour (2012). A practitioner’s hand-

book for real-time analysis: guide to rate monotonic analysis for real-time systems. Springer

Science & Business Media.

Kleppe, A., J. Warmer, W. Bast, and A. Watson (2003a). MDA explained. Addison-Wesley.

Kleppe, A. G., J. Warmer, and W. Bast (2003b). The model driven architecture: practice and

promise.

Koziolek, H., S. Becker, and R. Reussner (2007). “Model-based performance prediction with the

palladio component model”. Proceedings of the 6th workshop on software and performance,

WOSP ’07. ACM Press: pp. 56–67.

Krasner, H. (1999). “Teamwork considerations for superior software development”. Construct-

ing superior software. Indianapolis: MacMillan Technical Publishing.

Kruegel, C., F. Valeur, and G. Vigna (2005). “Computer security and intrusion detection”. Intru-

sion Detection and Correlation: Challenges and Solutions: pp. 9–28.

Kurtev, I. (2005). “Adaptability of model transformations”. PhD thesis. Enschede, the Nether-

lands: University of Twente.

Lamancha, B. P., M. P. Usaola, and M. P. Velthius (2010). “An automated model-driven testing

framework - for model-driven development and software product lines”. Proceedings of the

261

https://doi.org/10.1109/ICIS.2013.6607814
https://doi.org/10.1145/2926966

BIBLIOGRAPHY

fifth international conference on evaluation of novel approaches to software engineering -

volume 1: enase. INSTICC. SciTePress: pp. 112–121. DOI: 10.5220/0002999901120121.
Lange, C. F. J. andM. R. V.Chaudron (2005). “Managingmodel quality in UML-based software

development”. 13th IEEE international workshop on software technology and engineering

practice, 2005: pp. 7–16.

Larman, C. (2004). Applying UML and pattern. 3rd. USA: Prentice Hall.

Lassing, N., D. Rijsenbrij, and H. van Vliet (1999). “On software architecture analysis of flex-

ibility, complexity of changes: size isn’t everything”. English. Proceedings of the second

nordic software architecture workshop (nosa’99) ronneby, sweden, 1999.

Leavens, G. and M. Sitaraman (2000). Foundations of component based systems. Cambridge,

UK: Cambridge University Press.

Leavens, G. T., J.-R. Abrial, D. Batory, M. Butler, A. Coglio, K. Fisler, E. Hehner, C. Jones, D.

Miller, S. Peyton-Jones, and et al (2006). “Roadmap for enhanced languages and methods

to aid verification”. Proceedings of the 5th international conference on generative program-

ming and component engineering. ACM: pp. 221–236.

Lewis, W. (2016). Software testing and continuous quality improvement, third edition. CRC

Press.

Linåker, J., S. M. Sulaman, R.Maiani de Mello, and M. Höst (2015). Guidelines for conducting

surveys in software engineering. eng. Tech. rep. [Publisher information missing].

Lugou, F., L. W. Li, L. Apvrille, and R. Ameur-Boulifa (2016). “Sysml models and model trans-

formation for security”.Proceedings of the 4th international conference on model-driven en-

gineering and software development - volume 1:modelsward, INSTICC. SciTePress: pp. 331–

338. DOI: 10.5220/0005748703310338.
Lung, C.-H., S. Bot, K.Kalaichelvan, and R.Kazman (1997). “An approach to software architec-

ture analysis for evolution and reusability”. Proceedings of the 1997 conference of the centre

for advanced studies on collaborative research. CASCON ’97. Toronto, Ontario, Canada:

IBM Press: pp. 15–.

Malavolta, I., P. Lago, H. Muccini, P. Pelliccione, and A. Tang (2013). “What industry needs

from architectural languages: a survey”. IEEE Transactions on Software Engineering 39.6:

pp. 869–891.

Manolescu, D., M. Voelter, and J. Noble (2006). Pattern languages of program design 5. Vol. 5.

Addison-Wesley Professional.

Markovic, S. and T. Baar (2005). “Refactoring OCL annotated UML class diagrams”. Proceed-

ings of the 8th international conference on model driven engineering languages and systems.

Ed. by L. Briand and C. Williams. Vol. 3713. Lecture Notes in Computer Science. Heidel-

berg: Springer: pp. 280–294.

Mårtensson, F. (2006). Software architecture quality evaluation : approaches in an industrial

context.

Martin, J. and J. J. Odell (1994). Object-oriented methods. Prentice hall PTR.

262

https://doi.org/10.5220/0002999901120121
https://doi.org/10.5220/0005748703310338

BIBLIOGRAPHY

Mavridou, A., E. Baranov, S. Bliudze, and J. Sifakis (2016). “Architecture diagrams:Agraphical

language for architecture style specification”. Proceedings 9th interaction and concurrency

experience, ICE 2016, heraklion, greece, 8-9 june 2016. Pp. 83–97. DOI: 10.4204/EPTCS.
223.6.

Me, G., G. Procaccianti, and P. Lago (Apr. 2017). “Challenges on the relationship between

architectural patterns and quality attributes”. 2017 ieee international conference on software

architecture (icsa), april 3-7, gothenburg, sweden. Gothenburg, Sweden: pp. 141–144. DOI:

10.1109/ICSA.2017.19.
Medvidovic, N. and R. N. Taylor (1997). “A framework for classifying and comparing architec-

ture description languages”. Software Engineering–ESEC/FSE’97: pp. 60–76.

— (2000). “A classification and comparison framework for software architecture description

languages”. IEEE Transactions on software engineering 26.1: pp. 70–93.

Mello, R.M. de andG.H. Travassos (2016). “Surveys in software engineering: identifying repre-

sentative samples”. Proceedings of the 10th acm/ieee international symposium on empirical

software engineering and measurement. ESEM ’16. Ciudad Real, Spain: ACM: 55:1–55:6.

DOI: 10.1145/2961111.2962632.
Mellor, S., M. Balcer, and I. Jacobson (2002). Executable UML: a foundation for model-driven

architecture. Boston, USA: Pearson Education.

Mellor, S. J. (2009). Software architecture. Comp8150, Course Slides. Australian National Uni-

versity.

Merilinna, J. (2005). A tool for quality driven architecture model transformation. VTT Publica-

tions.

Merilinna, J. and M. Matinlassi (2004). “Evaluation of UML tools for model-driven architec-

ture”. 11th nordic workshop on programming and software development tools and techniques

(nwper 2004) held in turku, finland, august 17-20. Citeseer: p. 155.

Meystel, A. M. and J. S. Albus (2002). Intelligent systems – architecture, design and control.

New York, NY, USA: John Wiley & Sons.

Milicev, D. (2009).Model-driven development with executable UML. Indianapolis: Wiley Pub-

lishing.

Mistrı́k, I., R. Bahsoon, P. Eeles, R. Roshandel, and M. Stal (2014). Relating system quality and

software architecture. Morgan Kaufmann.

Mitra, A. (2008). Fundamentals of quality control and improvement. 3rd. New Jersey: John

Wiley & Sons.

Molter, G. and G. Molter (1999). “Integrating saam in domain-centric and reuse-based devel-

opment processes”. DOI: 10.1.1.42.4049.
Moreno, G. and P. Merson (2008). “Model-driven performance analysis”. Quality of software

architectures: models and architectures. Springer: pp. 135–151.

Noyer, A., P. Iyenghar, E. Pulvermueller, F. Pramme, J. Engelhardt, B. Samson, and G. Bikker

(2014). “Tool independent code generation for the uml - closing the gap between proprietary

263

https://doi.org/10.4204/EPTCS.223.6
https://doi.org/10.4204/EPTCS.223.6
https://doi.org/10.1109/ICSA.2017.19
https://doi.org/10.1145/2961111.2962632
https://doi.org/10.1.1.42.4049

BIBLIOGRAPHY

models and the standardized uml model”. Proceedings of the 9th international conference

on evaluation of novel approaches to software engineering - volume 1: enase. INSTICC.

SciTePress: pp. 117–125. DOI: 10.5220/0004870701170125.
Obbink, H., P. Kruchten, W. Kozaczynski, R. Hilliard, A. Ran, H. Postema, D. Lutz, R. Kazman,

W. Tracz, and E. Kahane (2002). “Report on software architecture review and assessment

(SARA)”.

Ölveczky, P. C., A. Boronat, and J.Meseguer (2010). “Formal semantics and analysis of behav-

ioral aadl models in real-time maude”. Formal techniques for distributed systems. Ed. by

J. Hatcliff and E. Zucca. Berlin, Heidelberg: Springer Berlin Heidelberg: pp. 47–62.

Oquendo, F. (2004a). Software architecture. Berlin Heidelberg: Springer.

— (2004b). “Π-ADL: an architecture description language based on the higher-order typed π-

calculus for specifying dynamic and mobile software architectures”. ACM SIGSOFT Soft-

ware Engineering Notes 29: pp. 1–14.

— (June 2016). “Formally describing the software architecture of systems-of-systems with

sosadl”. 2016 11th system of systems engineering conference (sose): pp. 1–6. DOI: 10 .
1109/SYSOSE.2016.7542926.

Ortega, J. L. and E. B. Fernandez (2008). “The secure blackboard pattern”. Proceedings of

the 15th conference on pattern languages of programs. Nashville, Tennessee, USA: ACM:

22:1–22:5. DOI: 10.1145/1753196.1753223.
Overhage, S., C. A. Szyperski, R. Reussner, and J. A. Stafford (2007). Software architectures,

components, and applications: 3rd international conference on quality of software architec-

tures, qosa 2007, medford, ma, usa, july 11-23, 2007: revised selected papers. Vol. 4880.

Lecture Notes in Computer Science. Berlin: Springer-Verlag.

Ozkaya, M. (2016). “What is software architecture to practitioners: a survey”. 2016 4th inter-

national conference on model-driven engineering and software development (modelsward):

pp. 677–686.

Pastor, O. and J. C.Molina (2007).Model driven architecture in practice – a software production

environment based on conceptual modeling. Berlin: Springer-Verlag.

Pereira, V., L. Baresi, and M. E. Delamaro (2015). “Mapping formal results back to uml semi-

formal model”. Proceedings of the 17th international conference on enterprise information

systems - volume 2: iceis. INSTICC. SciTePress: pp. 320–329. DOI: 10.5220/0005372603200329.
Petrasch, R. (1999). “The definition of software quality: a practical approach”. Proceedings of

the 10th international symposium on software reliability engineering: pp. 33–34.

Petri, C. A. (1962). “Kommunikation mit automaten”. ger. PhD thesis. Universität Hamburg.

Petriu, D. and M. Woodside (2004). “A metamodel for generating performance models from

UML designs”. The Unified Modelling Language: pp. 41–53.

Pons, C., R. Giandini, and G. valo (Jan. 2012). “A systematic review of applying modern soft-

ware engineering techniques to developing robotic systems”. Ing. Inv. 32.ISSN= 0120-5609:

pp. 58–63.

264

https://doi.org/10.5220/0004870701170125
https://doi.org/10.1109/SYSOSE.2016.7542926
https://doi.org/10.1109/SYSOSE.2016.7542926
https://doi.org/10.1145/1753196.1753223
https://doi.org/10.5220/0005372603200329

BIBLIOGRAPHY

Potts, C. (1993). “Software-engineering research revisited”. Software, IEEE 10.5. DOI: 10.
1109/52.232392.

Pressman, R. (1997). Software engineering – a practitioner’s approach. McGraw Hill.

— (2006). Software engineering – a practitioner’s approach. 6th. McGraw Hill.

Punter, T., J.Voeten, and J.Huang (2008). “Quality ofmodel driven engineering”.Model-Driven

Software Development: Integrating Quality Assurance.

Qin, Z., J. Xing, and X. Zheng (2008). Software architecture (advanced topics in science and

technology in china). Hanzhou & Berlin: Zhejiang University Press & Springer-Verlag.

Qumer, A. and B. Henderson-Sellers (2008). “An evaluation of the degree of agility in six agile

methods and its applicability for method engineering”. Information and software technology

50.4: pp. 280–295.

Rech, J. and C. Bunse (2009). Model-driven software development – integrating quality assur-

ance. Hershey: IGI Global.

Rensink, A. and J. Warmer (2006). Model driven architecture – foundations and applications,

2nd european conference, ecmda-fa 2006, bilbao, spain, july 10-13, 2006 proceedings. Vol. 4066.

Lecture Notes in Computer Science. New York, NY, USA: Springer-Verlag.

Reussner, R., J.Mayer, J.A. Stafford, S.Overhage, S. Becker, and P. J. Schroeder (2005). “Qual-

ity of software architectures and software quality”. 1st international conference on the qual-

ity of software architectures, qosa 2005 and 2nd international workshop on software quality,

SOQUA 2005, efurt, germany, proceedings. Berlin: Springer-Verlag.

Riaz, M., T. Breaux, and L.Williams (2015). “How have we evaluated software pattern applica-

tion? a systematic mapping study of research design practices”. Information and Software

Technology 65: pp. 14–38. DOI: https://doi.org/10.1016/j.infsof.2015.04.002.
Ribeiro, F. G. C., C. E. Pereira, A. Rettberg, and M. S. Soares (Apr. 2016). “Model-based re-

quirements specification of real-time systems with uml, sysml and marte”. Software and

Systems Modeling. DOI: 10.1007/s10270-016-0525-1.
Ribeiro, Q. A. D. S., F. G. C. Ribeiro, and M. S. Soares (2017). “A technique to architect real-

time embedded systems with sysml and uml through multiple views”. Proceedings of the

19th international conference on enterprise information systems - volume 2: iceis, INSTICC.

SciTePress: pp. 287–294. DOI: 10.5220/0006294802870294.
Richards, M. (2015). Software architecture patterns. O’Reilly Media, Inc.

Riehle, D. and H. Züllighoven (1996). “Understanding and using patterns in software develop-

ment”. TAPOS 2.1: pp. 3–13.

Roscoe, A. and J. Davies (2011). “Csp (communicating sequential processes)”. Encyclopedia of

parallel computing. Springer: pp. 478–482.

Röttger, S. and S. Zschaler (2004). “Model-driven development for non-functional properties:

refinement through model transformation”. The Unified Modelling Language: pp. 275–289.

265

https://doi.org/10.1109/52.232392
https://doi.org/10.1109/52.232392
https://doi.org/https://doi.org/10.1016/j.infsof.2015.04.002
https://doi.org/10.1007/s10270-016-0525-1
https://doi.org/10.5220/0006294802870294

BIBLIOGRAPHY

Rozier, K. Y. (2016). “Specification: the biggest bottleneck in formal methods and autonomy”.

Verified software. theories, tools, and experiments. Ed. by S. Blazy and M. Chechik. Cham:

Springer International Publishing: pp. 8–26.

Runeson, P. and M. Höst (2008). “Guidelines for conducting and reporting case study research

in software engineering”. Empirical Software Engineering 14: p. 131. DOI: 10 . 1007 /
s10664-008-9102-8.

Rushby, J. (1993a). Formal methods and digital systems validation for airborne systems. Tech.

rep. CSL-93-7. SRI.

— (1993b). Formal methods and the certification of critical systems. Tech. rep. SRI-CSL-93-

07. Menlo Park, Calif.: SRI International.

Russell, D. (Mar. 2011). Rcs: the real-time control systems architecture.

Safwat, A. and M. Senousy (2015). “Addressing challenges of ultra large scale system on re-

quirements engineering”. Procedia Computer Science 65.Supplement C. International Con-

ference on Communications, management, and Information technology (ICCMIT’2015):

pp. 442–449. DOI: https://doi.org/10.1016/j.procs.2015.09.116.
Schlosser, H. (Mar. 2017). Jaxenter survey results.

Schmidt, D., M. Stal, H. Rohnert, and F. Buschmann (2000). Pattern-oriented software archi-

tecture: patterns for concurrent and networked objects. 2nd. Vol. 2. John Wiley & Sons.

Schmidt, D. C. and L. Rising (2001). Design patterns in communications software. Vol. 19.

Cambridge University Press.

Schmidt, D. C., M. Stal, H. Rohnert, and F. Buschmann (2013). Pattern-oriented software ar-

chitecture, patterns for concurrent and networked objects. Vol. 2. John Wiley & Sons.

Schumacher,M., E.Fernandez-Buglioni, D.Hybertson, F.Buschmann, and P. Sommerlad (2006).

Security patterns: integrating security and systems engineering. Wiley Series in Software

Design Patterns. Chichester, UK: John Wiley & Sons.

Schumann, J. M. (2001). Automated theorem proving in software engineering. Berlin: Springer-

Verlag.

SEI (2010). Architecture trade-off analysis method. Tech. rep. Software Engineering Institue,

Carnegie Mellon University.

— (2018). Tools and methods for evaluating the architecture. Tech. rep. Software Engineering

Institue, Carnegie Mellon University.

Selman, B., T. Rodny A. Brooks Dean, T. M. M. Eric Horvitz, and N. J. Nilsson (1996). “Chal-

lange problems for artificial intelligence”. Aaai-96 proceedings. Menlo Park CA: AAAI

Press.

Shaw, M. andD.Garland (1996). Software architecture: perspectives on an emerging discipline.

USA: Pearson Higher Education.

Shreelekhya, G., S. U. Yazhini, and N. Manikandan (2016). “Methods for evaluating software

architecture-a survey”. International Journal of Pharmacy and Technology 4.ISSN: 0975-

766X.

266

https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/https://doi.org/10.1016/j.procs.2015.09.116

BIBLIOGRAPHY

Silingas, D. and R. Butleris (2011). UML-intensive framework for modeling software require-

ments.

SilvaMelo,M. da andM. S. Soares (2014). “Model-driven structural design of software-intensive

systems using sysml blocks and uml classes”. Proceedings of the 16th international confer-

ence on enterprise information systems - volume 2: iceis. INSTICC. SciTePress: pp. 193–

200. DOI: 10.5220/0004871301930200.
Silverston, L. and P. Agnew (2009). The data model resource book: universal patterns for data

modeling. Vol. 3. Wiley Publishing.

Simpson, J. A., E. S. C. Weiner, et al. (1989). The oxford english dictionary. Vol. 2. Clarendon

Press Oxford.

Sottet, J. S., G. Calvary, and J. M. Favre (2006). “Mapping model: a first step to ensure usability

for sustaining user interface plasticity”. Proceedings of the moldes 2006 workshop on model

driven development of advanced user interfaces.

Stahl, T. and M. Völter (2006). Model-driven software development: technology, engineering,

management. Chichester, UK: John Wiley & Sons.

Storey, N. (1996). Safety-critical computer systems. Addison-Wesley.

Suman, M. and M.Wadhwa (2014). “A comparative study of software quality models”. Interna-

tional Journal of Computer Science and Information Technologies 5: pp. 5634–5638.

Tang, A., M.A. Babar, I.Gorton, and J.Han (2006). “A survey of architecture design rationale”.

Journal of Systems and Software 79.12: pp. 1792–1804.

Taylor, D. S. (1990). “A beginner’s strategy guide to the larch prover”. PhD thesis. Dept. of

Electrical Engineering and Computer Science, MIT.

Taylor, R. N., N. Medvidovic, K. M. Anderson, E. J. Whitehead Jr, J. E. Robbins, K. A. Nies,

P. Oreizy, and D. L. Dubrow (1996). “A component- and message-based architectural style

for GUI software”. IEEE Transactions on Software Engineering 22.6: pp. 390–406.

Teebiga, R. and S. S. Velan (2016). “Comparison of applying design patterns for functional and

non-functional design elements in java and aspectj programs”. 2016 international confer-

ence on advanced communication control and computing technologies (icaccct): pp. 751–

757. DOI: 10.1109/ICACCCT.2016.7831740.
Tellis, W. (1997). “Application of a case study methodology”. The qualitative report 3.3: pp. 1–

17.

Tešanovic,A. (2005). “What is a pattern”. Dr. ing. course DT8100 (prev. 78901/45942/DIF8901)

Object-oriented Systems.

Tibermacine, C. (2014). “Software Architecture: Architecture Constraints”. Software Architec-

ture: principles, techniques and tools. Ed. by M. Oussalah. Vol. Chapter 2. John Wiley &

Sons 2014.

Völter, M., M. Kircher, and U. Zdun (2004). Remoting patterns: foundations of enterprise, in-

ternet and realtime object middleware. John Wiley & Sons.

Walker, P. M. B. (1988). Chambers science and technology dictionary. Chambers-Cambridge.

267

https://doi.org/10.5220/0004871301930200
https://doi.org/10.1109/ICACCCT.2016.7831740

BIBLIOGRAPHY

Wayne, W. (2016). Central limit theorem. Boston University.

Weilkiens, T. (2007). Systems engineering with SysML/UML: modeling, analysis, design. Mor-

gan Kaufmann.

Wolfgang, P. (1994).Design patterns for object-oriented software development. Reading, Mass.:

Addison-Wesley.

Wortmann”, A. (2016). An extensible component and connector architecture description infras-

tructure for multi-platform modeling. Shaker Verlag.

Xia, S., J. Li, and J. You (Jan. 2012). “A survey on formal methods using in software develop-

ment”. IET Conference Proceedings: 2.40–2.40(1).

Yin, R. (2013). Case study research: design and methods. SAGE Publications.

Zachman, J. A. (1996). “Enterprise architecture: the issue of the century”. Database program-

ming and design magazine.

Zamansky, A. and E. Farchi (2015). “Exploring the role of logic and formal methods in infor-

mation systems education”. Software engineering and formal methods. Ed. by D. Bianculli,

R. Calinescu, and B. Rumpe. Berlin, Heidelberg: Springer Berlin Heidelberg: pp. 68–74.

Zayaraz, G. (2010).Quantitative approaches for evaluating software architectures. VDMVerlag

Dr. Müller.

Zhang, C. and D. Budgen (2013). “A survey of experienced user perceptions about software

design patterns”. Information and Software Technology 55.5: pp. 822–835.

Zhu, L., M. Babar, and R. Jeffery (2004). “Mining patterns to support software architecture

evaluation”. Fourth working ieee/ifip conference onsoftware architecture, 2004. Pp. 25–34.

DOI: 10.1109/WICSA.2004.1310687.
Zimmermann, O., U. Zdun, T.Gschwind, et al. (2008). “Combining pattern languages and reusable

architectural decision models into a comprehensive and comprehensible design method”.

Software architecture, 2008. wicsa 2008. IEEE: pp. 157–166.

Zou, Y. and K. Kontogiannes (2003). “Quality driven transformation framework for OO migra-

tion”. Proceedings of the 2nd ASERC workshop on software architecture. Banff, Canada:

pp. 18–24.

The end

268

https://doi.org/10.1109/WICSA.2004.1310687

Part

IV
Appendices

269

Appendix

A
Publications

This Appendix introduces the thesis published papers in its original format. The order of the papers

presented here, based their chapters order. The relation between the papers in this appendix and the

chapters in the main thesis body, as follows:

1. First paper related to Chapter 3

2. Second paper related to Chapter 4

3. Third and fourth papers related to Chapter 5

271

International Advanced Research Journal in Science, Engineering and Technology
Vol. 1, Issue 1, September 2014

Copyright to IARJSET www.iarjset.com 1

SOFTWARE PATTERNS vs QUALITY

ATTRIBUTES

(INVESTIGATION APPROACH)

Hassan Almari
1
, Clive Boughton

2

Australian National University (ANU), Research School of Computer Science, Canberra, Australia
1,2

Abstract: The development of software patterns (SPs) is aimed at providing a reliable and reusable framework for

resolving similar problems within distinct contexts. To accomplish this objective competently, it is imperative to

document these patterns effectively to facilitate the comprehension of their concepts to users, thereby encouraging their

use over and over again. Thus, the documentation of patterns needs to explicitly explain their relationship with the

quality attributes (QAs) that they support, or hinder, in order to satisfy the implementation of stakeholders”

requirements. The variation in patterns descriptions in contemporary literature renders the explanation of the above

relationship complex and difficult to follow. This eventually deters developers from employing patterns or causes them

to overlook their QAs. Either of these scenarios may result in significant expense in terms of development time and

cost, and/or attaining required system quality. This paper tries to address the aforementioned problem by comparing

and analysing six well known software pattern resources, pinpointing the aspects of variation amongst authors

descriptions, which lead to different relationships between patterns and QAs, which in fact cause confusion among

users. Once the variance concept amongst these six resources in terms of terminology and description has been

addressed, we derive a relationship matrix between the software patterns (included in these resources) and the standard

ISO-9126 QAs. We believe that this research work is a positive contribution to the enhancement of techniques for

documenting software patterns. It further helps improve pattern selection by users via improved prediction of output

quality. Thus, to provide a reliable method for maintaining and representing the research work, we have created a

database application that identifies the above relationship. This database also includes discrepancies among the

documentation approaches of the six resources that we have studied, as well as the variance in pattern categorisations

and terminologies. The pattern database should also serve future research endeavours. This research study received a

positive response as per the findings of a questionnaire aimed at software professionals and based on the context of the

preceding problem. 97 precent of the participants, from six different nations, answering the questionnaire supported this

study.

Keywords: Software engineering, Software architectures, Patterns, Quality concepts, Quality analysis and evaluation,

Documentation

I. INTRODUCTION

Currently, most software pattern resources describe

patterns based on the authors “experiences and

observations. Some of these resources have pointed

explicitly to the relationship between each pattern and

their (apparent) quality attributes QAs, i. e., [1], [2] while

others do not; i.e., [3] and [4]. However, there are a few

works analysing the identification of the relationships

between software patterns and quality attributes in a

scientific methodology [5], based on measurements and

metrics, such as that of the work done by [6] and [7]. The

former mentioned work of Kim/Garlan used (Alloy-

Analyser) as a tool. They tried to create models using

some patterns, and to evaluate some quality

characteristics. Their work focused on mapping rules

between architectures and models, while maintaining the

properties like consistency, style compliance, reliability.

Whereas the latter work is concerned about the evaluation

of software architecture by metrics, which is applicable to

software patterns too. In the work of Dr Zayaraz [7], he

did use different available methods within his evaluation

framework. For example he applied the rules and

principles of the Common Software Measurement

International Consortium (COSMIC) Full Function Points

with some metrics to measure the basic interaction

parameters for some characteristics such as coupling,

cohesion, and complexity on different patterns (e.g. Pipes

and Filters). Also, he did use Analytical Hierarchy Process

(AHP) for comparisons between different pattern

structures for specific quality attributes. Both approaches

are a good step forward to building a concrete relationship

between patterns and QAs based on scientific methods and

measurement, not just an observation or experience of the

pattern author. More research effort needs to be done to

answer some of the questions that have been illustrated in

Figures 1a and 1b.

This paper attempts to highlight some important factors

that impact pattern usability within the software

engineering discipline, that are caused by conflicts

between several pattern resources regarding relationships

between patterns and their quality attributes (Patt-QAs).

APPENDIXA. PUBLICATIONS

272

International Advanced Research Journal in Science, Engineering and Technology
Vol. 1, Issue 1, September 2014

Copyright to IARJSET www.iarjset.com 2

a b

Fig. 1 Visualizing the Problem Area.

A. Rationale Of The Investigation Approach

This investigation was necessary for two reasons: (1) to

emphasize the problem concept, (2) to increase the

proposed solution value to pattern users. This

accomplished based on three processes shown in Figure 2.

The first process is, to highlight the differences between

definitions, terminologies and categorisation as factors that

challenge identifying relationships between software

patterns and QAs (Patt-QAs). Seven analysis steps have

been carried out to satisfy the first process as described in

Table I.

Fig. 2 Investigation approach processes

Second process is, to discuses some survey questionnaire

results, which support the existence of the problems

described in the first process. Also, it supports our

proposed solution to build a database of the relationships

between patterns and QAs. Thirdly are, generating a

metrics suite designed to express the investigation

undertaken for six credible and definitive sources of

patterns with respect to their characteristics. The software

patterns sources included in this study are:

1. [1] – the Gang of Four (GoF) book,

2. [2] – POSA-V1,

3. [8] – POSA-V2,

4. [9] – POSA-V3,

5. [10] – Software Engineering Institute – Software

Architecture in Practice, and

6. [11] – Security Patterns.

The Selection of these sources is based on the authors

preliminary research, also by supportive respondent's

answers to a questionnaire done in 2012, (by the

researchers). Almost half of the respondents identified

GoF and POSA books as their reliable, popular and known

pattern references. While the [10] and [11] included in this

study as important part that tackle architectural and

Security patterns, which is valuable to the research main

goal.

The rest of the paper is organized as follows: Section 2

discusses the problems associated with differing pattern

definitions, terminologies and categorisation, then briefly

argues how QA definitions, terminologies, and

categorisation cause problems in identifying their

relationship with software patterns. Section 3 introduces

an example that supports our claims in Section 2. Section

4 lists issues arising from variation on both domain

software patterns and QAs. Finally, in section 5. We

introduce some important findings from our survey that

supports this investigation and our proposed solution, then

summarise the database information and structure in

section 6. Followed by the conclusions Section 7.

II. PATTERNS AND QUALITY ATTRIBUTES REFINEMENT

To create or describe a pattern we should understand the

concept of pattern and follow rules or constraints to

document them in the right way. To assess patterns against

QAs, we should do the same to the QAs concept. The rest

of this section lays out the problems that existed within the

concept and rules of creating and documenting patterns

within software engineering, that have a direct impact on

their utilization and evaluation. Also, this section presents

justifications as to why we built a (Patt-QAs) relationships

database, and some of the challenges that have been faced

during this process.

A. Problems Discovered Within Current Pattern

Definitions And Terminologies

Numerous pattern definitions are being suggested for

varying contexts. It is therefore difficult to define patterns

in commonly acceptable terms. However, it seems

273

International Advanced Research Journal in Science, Engineering and Technology
Vol. 1, Issue 1, September 2014

Copyright to IARJSET www.iarjset.com 3

TABLE I DESCIPTIONS OF THE 7-ANALYSIS STEPS FOR THE TARGETED RECOURSES

Process

Investigation Steps Description

1 Pattern Resources Selection
Identifying the most widely and reliable resources within the field of software patterns through

concrete literature review, which become the targeted resources for this investigation study.

2 Pattern Categorization Approach Study and compare all categorization approaches within the selected resources.

3 Pattern Descriptions

Study and compare the description of patterns between targeted resources in the domain of quality

attribute relationship. This step includes the investigation of every resource and the way they

define and categorize quality attributes in their descriptions.

4 Quality attribute Approach

Selection Identifying one of the best-standardized practices in the field for defining and

categorizing the quality attributes through a literature review. Then we use the selected approach

for identifying the relationship between patterns and (QAs). Also, we use it for comparisons

between different quality attributes categorization schema within the targeted recourses.

5
Creation of the Relationship

Matrixes

Based on the pattern descriptions within the targeted resources, and the description of QAs by the

selected approach, we built relationship matrix for each resource and a common matrix for all of

the resources that identified the relationship between patterns and QAs.

6
Creation of the Quality Attributes

Categorization Tables

Based on the information collected from steps 1–5, we created comparisons tables for the QAs

classifications, between selected QAs approach and others within the targeted resources.

7 Conflicts and Issues
Based on the investigation steps 1–6, we have identified any relationship conflicts and issues

within the descriptions of patterns on targeted resources.

sufficient to say that a pattern is essentially the solution to

a problem within a particular domain which can be applied

to help resolve similar problems in different contexts

within the same domain. The definition of ‘context’ has

evolved over time, for the purpose of this paper/study we

believe that Dey’s definition is the most appropriate and is

probably the most widely accepted.

Dey’s defines the ‘context’ as «any information that can

be used to characterize the situation of an entity. An entity

is a person, place, or object that is considered relevant to

the interaction between (for example) a user and an

application, including the user and the application», [12].

The definition of a pattern as described by GoF is «a

solution to a problem in a context». This definition,

however, was unacceptable to Dick Gabriel [13], who

believed that it failed to illustrate the significance of the

concept, and may even cause misinterpretation amongst

software professionals. Gabriel also believed that many of

the existing pattern definitions were indistinct and did not

accurately express the implications patterns have. He

therefore proposed a new definition, amending an early

version by [14]: «Each pattern is a three-part rule, which

expresses a relation between a certain context, a certain

system of forces which occurs repeatedly in that context,

and a certain software configuration which allows these

forces to resolve themselves».

Likewise, [2], [15], [16], and Gabriel[13], each one have

his own pattern definition.

Most of the definitions above share common key points

with a few variations. Some are more elaborate than others

or include some further important aspects such as forces.

Defining the forces that drives and constraints the most

appropriate solution to a problem in the form of a pattern

is an important step during pattern creation [14].

Fig. 3 Terminologies of "Pattern" within software development lifecycle.

Furthermore, having different terminologies and names in

real life to explain the same thing, often due to differences

in cultural factors or language, is acceptable. However,

this is improper in the context of software patterns, as it

leads to confusion. It is therefore considered as an absence

of standardization, which can cause major challenges,

[17]. Therefore this research aims to minimize some of

these challenges by explaining the problem area and

introducing the (Patt-QAs) database with its benefits and

features, (see Section 6).

Terminologies shown in the Figure 3are being used within

the current literature. For example, the Architectural-

Styles termed by [18] and [10], Architectural-Pattern by

[2] and [19], [20] and [15] name it a Conceptual-Model,

APPENDIXA. PUBLICATIONS

274

International Advanced Research Journal in Science, Engineering and Technology
Vol. 1, Issue 1, September 2014

Copyright to IARJSET www.iarjset.com 4

and a Conceptual-Pattern by [16]. Many software

developers use patterns in different stages of the software

development lifecycle. We believe that the problem

context persists, while the context of developments

changes as described by Figure 3.

More (redundant) terminology increases the challenge of

patterns’ usability. It appears to same readers that the

terms described in Figure 3 suggest different concepts. But

are they?

The philosophy surrounding the conceptual or

architectural ‘model, style, and pattern’ in the

aforementioned terms attempts to convey a single idea

through various explanations. All of which share the

concept, components, restraints, and relationships that

focus on a high abstraction level. However, the conceptual

models should be explained further through detailed

descriptions, in order to be able to move from an

architectural context to a design context and so forth.

We believe that all terminologies shown in Figure 3 do

have the same concept of pattern, with minor differences,

to fit into the various development contexts. Also, less

terminology surrounding pattern, and a concrete

description of a common formal term, lead to better

utilization and understanding of software patterns, which

shall minimize the confusion in the midst of its users. So,

many existing definitions and terms for the same concept

(as illustrated above) was a challenging factor during this

study. As a result, and based on this study, the relationship

database has been created for all patterns included in the

selected resources. All patterns for all levels of the

development life cycle are gathered in one place, with an

indication of their names, definitions, and categories, to

help developers to compare and find relevant information

regarding the included patterns and their relations with

QAs with little time.

The same discussion above also applies to the design

phase as briefly discussed below:

Alexander defines design as «a process of synthesis, a

process of putting together things, a process of

combination, [14].

According to [2], design patterns depict frequently

occurring arrangements of interacting components, thus

helping to resolve design dilemmas in a given frame of

reference. What this essentially suggests is that a pattern

cannot be translated into code, but rather the pattern

should be moulded in a way that it provides a solution to

the problem.

Whilst, currently software developers can select a pattern

as an available code artefact, alter it to match his/her

problem context and finally convert the entire package

into code. Nonetheless, we agree with [2], that patterns

should be highly generic with textual explanations in

addition to block and connector diagrams, in order to

support higher reusability in multiple contexts and better

understanding. However, the textual explanations and the

block and connector diagrams should not be arbitrary.

Also, should be applied within a common standardized

procedure or a framework.

Various definitions (rules), of design patterns that convey

the diversity of terminology and description can be noticed

by comparing between the definitions of [1], [2], [21]–[23]

To conclude, the concept of a repetitive 'structural' pattern

theme can be used for describing the architecture, design,

and implementation, and what's different then? Is the

changed context. So, reducing pattern documentation

conflicts, needs more research and standardised

procedures, to helps increase the effective use of patterns.

Same concept been discussed earlier in architectural level

within Figure 3 describtion.

B. Problems Discovered Within Current Pattern

Categorisations

Coupled with the expansion of pattern diversity, there is a

corresponding rise in the emphasis on the obligation to

categorize patterns. To meet this end, a categorization

outline is employed to organize the patterns as a collection

so as to make them accessible for searching and storing by

users. For the purpose of this section we have add POSA-

V4 with other resources from section 1A).

The classification approaches for the investigated

resources are:

 The first and the second volumes are based on two

primary categories: ‘pattern’ and ‘problem’ categories.

The pattern category is subdivided into 3 types in both

volumes, while problem category is organized into 10

types in POSA-V1, and 4 types in POSA-V2.

 POSA-V3 were based on 3 primary categories

within the domain of typical resource management

lifecycle. These categories were resource acquisition,

resource lifecycle and resource release.

 POSA-V4, the patterns were categorized on the

basis of 13 technical topics and distributed systems.

 GoF team, however, used a different approach,

classifying patterns based on purpose and scope. The

‘purpose’ has been further sub-classified into creational,

structural, and behavioural categories, while ‘scope’ into

categories of classes and objects.

 SEI book by [10] contains architectural styles that

are categorized on the basis of respective subjects and

relations. [10] describe thirteen different styles, of which

the five primary styles are independent components, data

flow, data-centre, virtual machine, and the call and return.

The primary styles signify the relationships amongst the

sub-styles and their respective topics.

 The book on security patterns by [11] comprises

pattern categories bearing reference to enterprise and

system levels within the security domain, and is related to

engineering and operations activities at all levels.

Based on this study we found that the description of the

technical topics (POSA-V4) are the same as «technical

problems», which shares the same concept of the

«problem category» that have been recognized in volumes

1 and 2. For example, the From Mud To Structure, have

been described as a problem category in POSA-V1, and as

a technical topic in POSA-V4.

From comparing the targeted resources mentioned above,

it is clear that there is no common approach for

categorising patterns. However, we believe that the

‘problem’ category as a concept, is shared between many

275

International Advanced Research Journal in Science, Engineering and Technology
Vol. 1, Issue 1, September 2014

Copyright to IARJSET www.iarjset.com 5

pattern books, although under a variety of names, for

example, it is named ‘purpose’ in GoF book; ‘problem’ in

POSA-V1 and V2 and ‘technical topics’ in POSA-V4, and

as ‘main style or related subject’ in SEI.

Also, as an example of confusing categorisation schema

used in these books is that of the Interpreter pattern, where

GoF considers this pattern as a design (behavioural)

pattern, but the SEI group consider it an architectural

(virtual machine) style. So, what is the Interpreter pattern,

and does this affect the reusability of this pattern? Can we

use the same pattern, that explained by GoF in the context

of a virtual machine, as explained by SEI group, or do we

need to adjust it to fit the new context?

This lack of a common classification, particularly for

scenarios that are technical, such as software patterns, can

end up complicating things for users, researchers and

readers. Therefore, when users seek appropriate patterns

for resolving certain real-life issues, they are confronted

with different guides and classifications for what are

essentially the same patterns. Whilst, this can assist the

users in employing the patterns in diverse contexts, it may

also contribute towards making the reuse factor of patterns

more complex, unmanageable, and less efficient. To assist

with minimising such confusion, this study provides a

database with information regarding 168 pattern (in-total)

names and classification, helping developers compare and

choose the most appropriate patterns for their problem

domain.

C. The Variation Concept As A Problem within QAs

There are many different schools of thought regarding the

management of QAs and how they can be addressed

effectively such as, ISO, SEI, DoD STD, and IEEE, [24].

Hence, there are challenges that arise when quality has to

be defined in the real world. This section tries to

demonstrate in brief the difficulties that arose during this

study from the QAs documentation variation viewpoint.
, include all variants and relationships with quality attributes.

According to Mitra 2008 and reference therein pertaining

to Juran and Gryna (1993), Crosby (1979), IEEE-1061,

and ISO-9126, each have their own individual concept of

quality. Doctor Ronald [25], argues that there are

variations in QA definitions that are acknowledged by

both the community and researchers involved. The

presence of different concepts of quality amongst different

people and communities illustrates that there are variations

within the definitions for each QA that may share some

characteristics and differ in others. However, small

variation within QA definitions could increase the

difficulties in defining and evaluating software patterns

against them.

Likewise, the terminological variations concept persists

with QA categorisations, same as the pattern

categorisations issue discuessed earlier. So, depending on

the domain, people have designed different ways to

classify QAs using different approaches. The needs for

further research and study increased; however this will not

be discussed in this paper. The focus here is to explore the

differences in QA categorisations within our six sources

and demonstrate the issues elucidated by these differences,

which will be discussed in section 3 and 4. However, the

Fig. 4 GoF team approach for classifying, describing

Proxy patterns

relationships database included all the QAs definitions and

categorisations for ISO 9126, because this a standards

represents a broad agreement of QAs. Also, QAs

definitions and categorisations for all targeted resources

where applicable is included in the database, to help the

users to make their comparisons between different

approaches.

III. CONFLICT EXAMPLE - (PROXY PATTERN)

This example for illustrative purposes of the issues

discussed in Section 2. It is a comparison of the Proxy

pattern documentation approach, between the GoF and

POSA-V1.This comparison shows some of the differences

that we think lead to confusion and that minimize the

utilisation of software patterns.

The definition of the Proxy pattern has similarities in both

resources. While, POSA-V1 did elaborate further in their

description. However, there are more differences within

the Proxy pattern such as: (1) their instances or variants,

(2) their primary and secondary categorisations, (3) their

relationships with QAs. Figure 4 and Figure 5, visualize

the above three differences.

The GoF divides Proxy patterns into 4 variants: remote,

virtual, protection and smart reference as presented in

Figure 4 Contrastingly, the POSA group divide the Proxy

pattern into 7 variants, namely remote, protection, cache,

synchronization, counting, virtual, and firewall as seen in

Figure 5 The common variants between both methods of

classification are remote, virtual and protection. The

important question being, which QAs are supported or

hindered by those variants in both references.

Fig. 5 POSA team approach for classifying, describing Proxy patterns,

include all variants and relationships with quality attributes.

APPENDIXA. PUBLICATIONS

276

International Advanced Research Journal in Science, Engineering and Technology
Vol. 1, Issue 1, September 2014

Copyright to IARJSET www.iarjset.com 6

Figure 4 shows that all GoF Proxy pattern variants support

‘lowering cost’ as a QA, and Virtual and Protection

patterns supporting optimization and security

respectively.

The POSA team on the other hand considered all Proxy

pattern variants, including common ones such as Remote,

Virtual and Protection patterns, to be supportive of

usability, security, and performance. Unlike the GoF

scheme, efficiency and lower-cost are supported only by

the Virtual pattern. Whereas, efficiency is hindered by all

other variants, as shown in POSA team approach, Figure 5

The above divergence in the categorisations schema and

relationships between patterns with QAs increase

confusion, making it harder to predict outcome quality

when utilizing these patterns, as well as reducing pattern

usability.

IV. ISSUES DISCOVERED BY THIS STUDY

 There are no specific definitions or

categorisations of QAs that are presented by [1]. The

approach taken instead focuses on the explanation of how

patterns can be used to support claimed QAs. They used

their own words and examples to explain QAs in the

context of software patterns.

 ISO-9126, POSA Books, and SEI [10], defined QAs

with various differences using various vocabularies.

Although the concepts of their definitions are largely

similar for each QA. However, they do varied in their

sentence structuring, terminologies and how many features

or constraints are included within their definitions. We

believe, that any additional (features or constraints) added

to any QA definition should be considered as a

prerequisite that needs to be fulfilled, to achieve that QA

with all it’ s characteristics. As a result, the above

variations in the QAs descriptions could have an impact on

the overall evaluation process for any system or structure

(e.g. patterns), and cause a conflict between development’

teams if they use non-common descriptions for the

intended requirements (e.g. QAs).

 ISO-9126, POSA Books, and SEI [10] present

different QA categories. For example, ISO-9126 and

POSA Books, each have ‘Reliability’ as one of their main

categories, but they differ in their sub-categories as

illustrated in Figure 6It is clear then that we will

experience differences when trying to satisfy or validate

the ‘Reliability’ QA using both approaches. For more

information, see the QAs categorisation table in the

database.

 One of the biggest causes of confusion and

difficulty in traceability is the use of different names for

the same patterns or one name for different patterns. For

example, GoF team explained Adapter and Decorator

patterns as two different patterns, which they are.

However, both have been identified as Wrapper pattern. It

is neither logical nor user-friendly for the same pattern to

have different names or different patterns have the same

name, making it hard to identify, trace and apply. It is

understandable to have a variety of names if the pattern

has individual instances or variants, such as the Proxy

variants example discussed earlier. There are other

examples of this «documentation problem» where the

same pattern has various titles: Publisher-subscriber,

Observer and Dependents are all different names for the

same pattern. Indeed there are 8 different names described

by [11] for Check-Point pattern alone, which are (Policy

Definition Point (PDP), Policy Enforcement Point (PEP),

Access Verification, Holding off hackers, Validation and

Penalization, Make the Punishment fit the Crime,

Validation Screen, Pluggable Authentication). However,

GoF and POSA books have provided something as a

solution to this problem, by introducing «Also Known As»

section. Other resources such as [3] and [10], however do

not acknowledge alternative names in their work.

Some resources include the same patterns with the same

names and definition, but with different QA relationships.

For example, in POSA-V1, the Piping and Filtering

pattern supports Testability and Exchangeability, whereas

SEI book lists it as supporting Maintainability and

Usability. Questions therefore arise as to which QAs the

pattern truly supports, and how these different conclusions

have been reached. Not forgetting that QA relationships

seem arbitrary, and the answer most probably lies with the

differing experience and observations of the pattern

authors, or because there is still a lack of proper

methodology to capturing and documenting patterns, as

we believe.

TABLE II: METHODS SELECTED DURING THIS ANALYSIS.

Individual analysis methods Multi-dimensional analysis methods

Several types of graphs (e.g. bar chart, pie chart), frequency tables,

descriptive statistics, a nonparametric Chi-square, and numerical

measurement for the (Likert) type questions.

Several types of graphs (e.g bar charts, scatter plots) , one sample t-test, a

cross tabulation with Chi-squares, and descriptive

statistics.

277

International Advanced Research Journal in Science, Engineering and Technology
Vol. 1, Issue 1, September 2014

Copyright to IARJSET www.iarjset.com 7

Fig. 6 Reliability as an example of the differences within QAs

categorisation.

Using expert knowledge regarding recurring problems to

provide feasible solutions to the community relies on good

standardized documentation, as recommended by [17],

that standardisation helps decrease the challenges facing

software development, preventing user confusion. To

follow Garlan advise, we used the ISO-9126 model as the

reference from which to build the relationship matrices

between patterns and QAs, using the information

described in all 6 resources studied.

V. PATTERN QUESTIONNAIRE AND ANALYSIS

In this section the researchers report the results of a survey

designed to establish the reasons affecting the utilization

of software patterns. A (secondary) goal of the survey was

to obtain the agreement of survey respondents to some

proposed solutions that could help developers with

understanding better the effective use of patterns during

the process of selecting and deploying them. A high level

of confidentiality was applied during gathering and

analyzing responds. The following sections outline the

process and methods used in the analysis of the responses

to the questionnaire. Section 5C shows an important

portion of the questionnaire that is related to the scope of

this paper. During this analysis the Statistical Package for

the Social Sciences (SPSS) tool, was used. This

explanation is to facilitate tables and figures notations.

A. ANALYSIS PROCEDURE

The survey was divided into three different sections as

follows:

The first section focused on gathering information

regarding respondents personal expertise. The second

section centred on determining the reasons that affect the

usability factor of software patterns during development

processes. The last section was aimed at discovering issues

that are related to current software patterns documentation,

and also, to obtain the respondents' agreement regarding

some proposed solutions by the researches.

The analysis procedure was carried out in two steps as

follows:

1. One-dimensional Analyses. Each question was

analyzed and summarized in the form of graphs and tables

where needed.

2. Multi-dimensional Analyses. In this step we

analyzed more than one question together (matrix-cross-

correlational), to see if there are any relationships or

dependences between various factors. The selections of

the questions were based on the overall objective of the

investigation.

B. JUSTIFICATIONS OF THE METHODS USED

DURING THIS ANALYSIS

Several techniques were used to carry out this analysis, the

selection of the methods based on best technique that suit

the type of questions, such as questions with ordinal scale,

t-tests were employed, and for dichotomous variables a pie

charts were used etc. However, due to the paper

limitations we briefly named the methods that been used

for each category, see Table II.

C. RELATED ANALYSIS

In this section we will show the statistical results of the

general agreement amongst the questionnaire respondent

towards the four mentioned statements that shown in

Table \ref{tab:4Q. These questions was proposed as a

solutions to some of the issues discussed in sections 2, 3,

and 4

Each of the statements responses were of Likert scale,

variables are of ordinal scale, so numerical measurements

are meaningful. Assigning 1= Strongly Disagree to

5 = Strongly Agree, the neutral option was assigned to 3 as

it is value. So, one interesting matter is to see whether

there any tendency to «Strongly Agree» or «Strongly

Disagree». A one sample right tail t-test will be useful to

see the general agreement of the respondents(see

Table IV).

So, our hypothesis will be based on the neutral selection

(Neutral value = 3), as follows:

Null hypothesis, Ho: µ≤3

Alternative hypothesis, Ha: µ≥3,

where, µ is the mean score of each of the statements.

Statistical analysis results are:

The overlapping (95 percent CI) error bars on the

(Agree=4, option) indicated that most of the respondent

agreed with all four statements as illustrated by Figure 7.

TABLE III: THE 4 QUESTIONS – THAT SUPPORTS THIS STUDY.

Please indicate your level of agreement with respect of the following statements:

Q17

Identifying the relationship between software patterns and

quality attributes is very important to software developers

and the software engineering field.

o Strongly

Agree
o Agree o Neutral o Disagree

o Strongly

Disagree

Q18

Identifying standard quality attribute definitions within

current pattern references is a critical for comparing the same

patterns against the quality attribute they possess.

o Strongly

Agree
o Agree o Neutral o Disagree

o Strongly

Disagree

Q19 Studying relationships between patterns and quality attributes o Strongly o Agree o Neutral o Disagree o Strongly

APPENDIXA. PUBLICATIONS

278

International Advanced Research Journal in Science, Engineering and Technology
Vol. 1, Issue 1, September 2014

Copyright to IARJSET www.iarjset.com 8

based on the current reliable software pattern references, and

creating a database to store these relationships on the basis of

standardized quality attribute definitions, is valuable

knowledge.

Agree Disagree

Q20

Developing an evaluation model to assess patterns against

quality attributes is worthwhile, provided it’s not difficult to

use.

o Strongly

Agree
o Agree o Neutral o Disagree

o Strongly

Disagree

Fig. 7 Distribution of the Mean with Error bars: 95% CI.

TABLE IV: ONE SAMPLE RIGHT TAIL T-TEST.

Test Value = 3

95 % Confidence

Interval of the

Difference

t df
p-

value
Mean

Difference
Lower Upper

Identifying the relationship between software patterns and quality attributes is very

important to software developers and the software engineering field.
9.5 33 .000 1.1 .9 1.4

Identifying standard quality attribute definitions within current pattern references

is a critical for comparing the same patterns against the quality attribute they
possess.

4.3 31 .000 .7 .4 1.0

Studying relationships between patterns and quality attributes based on the current

reliable software pattern references, and creating a database to store these

relationships on the basis of standardized quality attribute definitions, is valuable
knowledge.

6.3 31 .000 1.1 .7 1.4

Developing an evaluation model to assess patterns against quality attributes is

worthwhile, provided it’ s not difficult to use.
5.7 30 .000 .9 .6 1.2

Aslo, to investigate the respondents agreement

significance with 95 percent confidence interval towards

the four mentioned statements, one sample (right tailed) t-

tests were performed. The test is significant for all of the

statements as described in Table IV.

To sum up, this paper presents the work that satisfied part

of the respondents' wishes in Q17 and Q19 (see Table III)

and to contributes to software patterns community, by

identifying the relationships between some existing

software patterns and QAs. Also, by developing a database

to represent this information in easy way for the users.

More research needed to provide solutions to the

statements presented in Q18 and Q20 above, (see Table

III).

VI. BRIEF DESCRIPTION OF DATABASE OF PATTERNS VS

QUALITY ATTRIBUTES RELATIONSHIPS

It is recognized the importance of software patterns and

QAs relationships to the software development processes.

Investigating, and analyzing of these relations were carried

out to help users to locate their desired relationship in

short time and easy way through the developed database.

There are several tabs, each one have many services. We

recommend users to start with the overview tab to

understand the overall structure of the database, and to

facilitate their navigation process.

In total, we categorised 168 patterns and

identified/systematised the known relationships between

120 patterns and 50 QAs within our database. Our

database contains these relationships as well as other

features such as search functions that can be used to easily

find any patterns, conflict relationship or QA. Users can

therefore explore each reference included in this study in

an individual matrix, or view the pattern categorisation

table for an individual resource. Each pattern has a

description table consisting of definitions, alternative

279

International Advanced Research Journal in Science, Engineering and Technology
Vol. 1, Issue 1, September 2014

Copyright to IARJSET www.iarjset.com 9

names, comments and relationships. A contrast tables of

QAs classifications between POSA, SEI and ISO-9126 is

also included.

In the future, the description table will needs further

updating in order to enhance knowledge about patterns

and QAs. Furthermore, they will also include forces,

scenarios, quality tactics and quality metrics, as well as

other information deemed essential for comprehensive

knowledge about software patterns and their QAs

relationships. In addition, the database built to be easier to

explore as well as navigate through the user-friendly

interface and menu. Users are therefore in a position to

create, delete or even modify any relation. This database

means that all the information on this subject is gathered

into one place, providing summaries for numerous

resources. The importance of the database comes from its

ability to effectively save users time and effort, especially

those who are concerned with finding a brief summary

about particular patterns. To conclude this section,

developing the database was very hard and time

consuming, due to all processes involved from

investigating to representing the information included. As

a result, the database application was produced in such

manner that it will be practical to other researchers and

analyst. The database could be navigated with a proper

access authorization through the researchers.

VII. CONCLUSION

This investigation of the relationship between QAs and

software patterns has highlighted two main issues. Firstly,

there are differences between pattern documentation

within the current literature, which may because of

different factors such as, authors experience and the

maturity of the patterns in the field of software

engineering. Secondly, there isn't concrete approach or

process to be followed for describing the relationship

between patterns and quality attributes, or for categorizing

them in a more sensible formal/verifiable way. Both points

above have led to the existence of conflict relationships

between patterns and QAs, which decreases the utilization

of patterns by users. Our major research objective is to aid

software engineering community to see and help overcome

the pattern documentation problem that we have

identified. Also, to help patterns users to build better

software by selecting patterns without ignoring their

quality attributes, through visualizing this relationships

within presented database, which been identified by

several credible resources in the field. We believe that

mining software patterns and pointing to any issues within

their descriptions is an important step to improve pattern

documentation, which already have a major affect on

distilling and documenting software artifacts during

software development lifecycle as discussed in Sections 1,

2 and 3.

REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:

Elements of Reusable Object-Oriented Software. USA: Addison-
Wesley, 1995.

[2] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M.

Stal, Pattern-Oriented Software Architecture - A System of
Patterns, vol. 1. Chichester, UK: John Wiley & Sons, 1996.

[3] D. C. Schmidt and L. Rising, Design patterns in communications

software, vol. 19. Cambridge University Press, 2001.
[4] M. Fowler, D. Rice, M. Foemmel, E. Hieatt, R. Mee, and R.

Stafford, Patterns of Enterprise Application Architecture. Addison-

Wesley, 2003.
[5] R. Freitas, “Scientific Research Methods and Computer Science,”

2009.

[6] J. ~S. Kim and D. Garlan, “Analyzing architectural styles with
alloy,” in ROSATEA ’06: Proceedings of the ISSTA 2006 workshop

on Role of software architecture for testing and analysis, 2006, pp. 70–80.

[7] G. Zayaraz, “Quantitative Approaches For Evaluating Software
Architectures,” Pondicherry Engineering College, Puducherry,

India, 2010.

[8] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-
Oriented Software Architecture - Patterns for Concurrent and

Networked Objects, vol. 2. Chichester, UK: John Wiley & Sons, 2000.

[9] M. Kircher and P. Jain, Pattern-Oriented Software Architecture -
Patterns for Resource Management, vol. 3. John Wiley & Sons, 2004.

[10] L. Bass, P. Clements, and R. Kazman, Software Architecture in

Practice, 1st ed. USA: Addison Wesley Longman Inc., 1998.
[11] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F.

Buschmann, and P. Sommerlad, Security Patterns: Integrating

Security and Systems Engineering. Chichester, UK: John Wiley &
Sons, 2006.

[12] A. K. Dey, “Understanding and using context,” Pers. ubiquitous

Comput., vol. 5, no. 1, pp. 4–7, 2001.
[13] J. O. Coplien, “A Pattern Definition, http://st-

www.cs.illinois.edu/patterns/definition.html.” .

[14] C. Alexander, The Timeless Way of Building. USA: Oxford
University Press, 1979.

[15] M. Fowler, Analysis patterns: reusable object models. Addison-

Wesley, 1997.
[16] D. Riehle and H. Züllighoven, “Understanding and using patterns in

software development,” TAPOS, vol. 2, no. 1, pp. 3–13, 1996.

[17] D. Garlan, “Software architecture: a roadmap,” in Proceedings of
the Conference on The Future of Software Engineering, 2000, pp. 91–101.

[18] R. T. Filding, “Architectural Styles and the Design of Network-

based Software Architectures,” University of California, IRVINE, 2000.
[19] L. Bass, P. Clements, and R. Kazman, Software Architecture in

Practice, 3rd ed. USA: Pearson Education, Inc., 2013.

[20] C. Alexander, Notes on the Synthesis of Form. Presidents and
Fellows of Harvard College, 1964.

[21] P. Wolfgang, Design patterns for object-oriented software

development. Reading, Mass.: Addison-Wesley, 1994.
[22] J. O. Coplien and D. C. Schmidt, Eds., Pattern Languages of

Program Design. New York, NY, USA: ACM Press/Addison-

Wesley Publishing Co., 1995.
[23] A. Sherman, K. Brown, and B. Woolf, The Design Patterns

Smalltalk Companion, vol. Pearson Ed. 1998.

[24] R. ~T. Futrell, D. ~F. Shafer, and L. ~I. Shafer, Quality Software
Project Management. Upper Saddle River, USA: Prentice-Hall Inc., 2002.

[25] R. Petrasch, “The definition of software quality: a practical
approach,” in Proceedings of the 10th International Symposium on

Software Reliability Engineering, 1999, pp. 33–34.

BIOGRAPHIES

Hassan Almari (1971) received his

MSE and ME (hons) degrees in

software engineering and engineering

from the Australian National

University - ANU, Canberra, in 2009

and 2010, respectively, and he is

currently working toward the PhD

degree in software engineering field.

He have over 17 years of experience in computer and

operational department in RSADF, he is Lieutenant

colonel in the RSADF until now. His work experience

includes developing and maintaining C3 and C4I systems.

In 1998 he worked for 6 years in the PHI project, to

APPENDIXA. PUBLICATIONS

280

International Advanced Research Journal in Science, Engineering and Technology
Vol. 1, Issue 1, September 2014

Copyright to IARJSET www.iarjset.com 10

integrate several weapons into one command and control

center (C3) with RSADF and Colsa Corporation. His main

research interest and current work focused on architectural

level, and it is modeling and evaluation techniques.

Clive Boughton (1956) possesses a

PhD in Molecular Physics from the

Australian National University (ANU).

Clive is a professional who possesses

over thirty years of practical experience

in varying roles as scientist, engineer,

software engineer, consultant,

academic, and project and company

manager. His collective experiences have given him the

opportunity to observe and contribute to commerce and

defence industries using contemporary techniques,

languages and management methods. His extensive

industry experience led to him attaining tenure in

Computer Science at ANU, where he finalised a four year

degree in Software Engineering, and set up a Masters in

Software Engineering. His teaching and research interests

include requirements elicitation and analysis, project

management, quality management and systems/software

modelling and architecture. He has supervised several PhD

and Masters students surrounding topics in Software

Engineering.

281

Questionnaire Report on Matters Relating to
Software Patterns

Hassan Almari
Australian National University,
CSIT Building 108 North road
Canberra, ACT 0200, Australia
email: hassan.almari@anu.edu.au

Clive Boughton
Australian National University,
CSIT Building 108, North road
Canberra, ACT 0200 Australia

Chairman and Director of Software Improvements
GPO Box 1928, Canberra, ACT 2601, Australia

email: clive.boughton@anu.edu.au

Abstract—The development of software patterns is aimed
at providing a reliable and reusable framework for resolving
similar problems within distinct contexts. For this objective to be
accomplished competently, the patterns have to be documented
effectively to enable users to comprehend their concepts, and
encourage their frequent use. Included within the documentation
of patterns must be explicit explanation of their relationship with
the known quality attributes (QAs) that they support or hinder,
in order to fully satisfy the implementation of the requirements
of stakeholders.
The variation in description of patterns in contemporary

literature makes the explanation of the relationship given above
complex and difficult to follow. The eventual result is that
developers are deterred from utilizing patterns or that they
ignore quality attributes. Either of these scenarios may render the
process of development significantly expensive in terms of time
taken, and/or attaining required system quality. This paper tries
to address the aforementioned problem by identifying the factors
that could facilitate or hinder the utilisation of software patterns
through an on line questionnaire targeting participants with
relevant experience in the field of software/systems development.

Index Terms—Software Patterns, Quality Attributes, Utiliza-
tion, Evaluation.

I. INTRODUCTION

VARIOUS studies have attempted to detect, examine, assess,
and describe the relationship between styles/patterns and

quality attributes (QAs). Every study takes a unique focus with
a scope within a particular QA and field, such as [1], [2], and
[3]. Nevertheless, hardly any such studies have pointed out
the relationship between architecture (including patterns) and
quality attributes within a broad scheme that could be used
for the majority of the (known) quality attributes.
The Research School of Computer Science in Australian

National University conducted research aimed at determining
the factors that influence the utilization of patterns in software
development and some of the challenges faced by developers
while selecting and deploying software patterns. A (secondary)
goal of the research was to identify the factors that are likely
to (as opposed to prevent) aid developers with the effective
use of patterns during the process of software development.
The research began by drafting a questionnaire the focus

of which was to uncover how important it is to developers

to use software patterns with more efficiency and with quality
attributes in mind. A high level of confidentiality was exercised
in treatment of the responses to the questionnaire and this
papers reports the analyses of the findings surrounding those
responses. The following section presents an overview of
the procedure used in the analysis of the responses to the
questionnaire. The Statistical Package for the Social Sciences
(SPSS) tool, was used during this analysis. This clarification
is to facilitate tables and figures notations.

II. ANALYSIS PROCEDURE

The questionnaire was divided into three different sections
as illustrated in Figure 1.

Background
information

Pattern utilization
and factors

Patterns
Documention

Fig. 1. The three sections of the questionnaire.

The first section was intended to gather information about
personal expertise of the different respondents. The second
section was aimed at discovering the different factors that af-
fect the use of software patterns during software development,
while the third and last section was aimed at finding out how
documentation of software patterns could affect the utilization
of software patterns during software development.
The analysis of the responses was carried out in two steps

as follows:

1) Individual analysis, treated in one dimensional. The re-
sponses to each question were summarized and presented
in graphs and tables where necessary.

2) Various sets of questions were analyzed collectively.
The choice of the questions was based on the gen-
eral objective of the research – to find the strength of
dependences/relationships between various results. This
matrix (cross-correlational) form of analysis meant that
two or more questions were analyzed together. This was
carried out in two, three, and four dimensions respectively
depending on the number of questions involved.

978-1-4799-4441-5/14/$31.00 ©2014 IEEE

APPENDIXA. PUBLICATIONS

282

III. RATIONALE OF THE ANALYSIS METHOD SELECTED

Various methods were used to analyse the questionnaire
responses as described below.

A. Individual analysis methods

For the individual analyse all responses with Yes/No were
presented on a bar graph to show the total count for every
group. A frequency table was also produced showing the
response count and percentage for each group.
Descriptive statistics were used to analyze questions with

categorical responses but without numerical values. The results
were presented using a frequency table, pie chart and a non-
parametric Chi-square test to discover any general tendency of
respondents to certain questions. Questions with dichotomous
variables were displayed on a pie chart.
’Likert’ type questions provided numerical measurement

responses where the middle number was treated as the Neutral
value.

B. Multi-dimensional analysis methods

Two dimensional questions were also analyzed in various
ways ranging from a one sample t-test to a cross tabulation
with Chi-squares, bar charts, scatter plots and descriptive
statistics among others. Since most of the questions were of
nominal scale and only four were in the ordinal scale, cross
tabulation was considered the most important method. For
those with ordinal scale, t-tests were used.
The analysis of results using more than two dimensions

was seen likely to produce insignificant results as illustrated
by analyzing of different sets of questions such as (Q1, Q2
and each question from Q17 to 20, as well as Q1, Q3 and
each question from Q17 to Q20) later in the report. Hence
no 3-dimensional or 4-dimensional analyses were done in this
study.

IV. STUDY FINDINGS

This section reports the findings of the various analyses
carried out on the questionnaire responses, using the categories
of analysis described above.

A. One dimensional Analyses

According to the responses to the first question (Q1),
the largest percentage of respondents specialized in coding,
representing 67 percent of all the respondents to the question
and 20.7 percent of the total number of respondents. Design,
Project Management and Recruitment follow in that order.
Most of these experts have gained most of their general
software development experience in academia, followed by
industry and government respectively (Q2), as shown in Ta-
ble I.

TABLE I
SECTORS WHERE RESPONDENTS GAINED MOST EXPERIENCE

Academia Industry Government

40.1 34.6 25

TABLE II
CHI-SQUARED TEST STATISTICS FOR Q2.

In which of the following sectors have you
gained most of your general software devel-
opment experience?

Chi-square 1.885

df 2

Asymp. Sig. .390

However, at 5 percent significance level of the Chi-square
test the differences are insignificant, leading to the conclusion
that no sector is dominating. The results are tabulated as shown
in Table II.
The study results also indicate that most of the developers,

(61.5 percent) have 5–10 years of experience and only 15.4
percent have more than 15 years experience. According to the
Chi-square test, these results are significant at the 1 percent
level. This fact should not affect the study since even those
developers with only 5 years experience had enough exposure
to at least know about software patterns, ignoring other factors
such as lack of interest that may affect this, as illustrated in
Figure 2.

5–10
(years)

10–15
(years)

15–20
(years)

20–25
(years)

Over 25
(years)

0

10

20

30
32

12

3 2 3

C
ou

nt

Fig. 2. Respondents level of experience in software development.

Most of the developers that responded were aware of
software styles/patterns. This is an indicator that the questions
pertaining to software patterns in the questionnaire could be
answered from a knowledge point of view. However, the
minority that were not aware of software patterns may still
pose a problem regarding the knowledge and utilization of
software patterns - largely because if we consider unaware
participants educational time in the software field (typically
three to four years) plus the survey minimum experience
of five years, then they’ve had a total of about nine years
experience in the software field without knowing what a
software pattern is! (see Figure 3).
Out of the respondents, only 8 percent used software

patterns in their work frequently, while 30 percent of the
developers never used software patterns and 16 percent used
them infrequently. The Chi-Square test points out that the
difference in the frequency of use of patterns is significant
at 1the percent level (Chi-square = 22.42, p−value 001).
This indicates that there could be factors that affect the
frequency of use of software patterns in the developers’ work.

283

18.0% Unaware
82.0%Aware

Fig. 3. Proportion of developers aware/unaware of software style/patterns.

As identified by the respondents, some of the main factors
that discourage the utilization of software patterns include very
little teaching of the topic in learning institutions (as identified
by 46 percent of the respondents) and the difficulty to integrate
software patterns with other components or existing systems
(as identified by 41 percent). This indicates that there is still a
lot to be done to increase the patterns usability factor, which
will in turn increase the utilization of software patterns.
Nonetheless, 40.5 percent of the respondents identified that

one of the main factors that encourage the utilization of
patterns in software development is ease of implementation.
The other factors which are also significantly important in-
clude the ease to find the right patterns to solve a problem
encountered (35.1 percent), clear identification of quality
attributes possessed by software patterns (35.1 percent) and
proper and thorough documentation in references (32.4 per-
cent). All these factors are therefore important in encouraging
the utilization of software patterns.
Keen consideration of the quality of software patterns before

utilization is key during the whole development process. It is
therefore important for the developer to consider the quality
of patterns before utilizing them. Although the majority of
the respondents considered the quality of software patterns
before use, a significant portion of the developers did not;
Figure 4 illustrates the result. This latter behaviour could have
a major impact on the development process. If developers
were to combine several patterns in system development,
understanding the pattern qualities is important in order to
build a system with concrete qualities.
A majority (73 percent) of the respondents who had used

software patterns in the past were willing to continue using

38.9%

Do not consider QAs beforehand

61.1%

Consider QAs beforehand

Fig. 4. Proportion of respondents who consider QAs before using patterns.

51.7%

Nostandardised process apparent

48.3%

Standardised process apparent

Fig. 5. Proportion of respondents who agreed/disagreed that ”Current
references described standardized process to create and explain patterns”.

them in future. Some of the comments entered by those who
were not willing to continue using software patterns are key to
revealing some of the drawbacks encountered in the utilization
of software patterns. One major drawback identified from this
was poor documentation and suitability to the problem area.
Regarding standardization of existed software pattern ref-

erences (Q11), there was an almost equally split opinion
as to whether their descriptions present a standardized way
for creating and explaining software patterns. A majority
however indicated that software pattern references do not
follow a standardized procedure of documenting patterns, as
demonstrated in Figure 5.
In relation to the identification and clear statement(s) of

relationships between patterns and quality attributes in the
software pattern references, only 24 percent of the respondents
were in agreement that relationships have been clearly identi-
fied and stated, while 17 percent disagreed. Fifty eight percent
were not sure, maybe because of the lack of description within
the references they used or because of their (low) level of
knowledge concerning references.
In relation to the analysis above, only 18 percent further

agreed that the relationships had been proven scientifically or
otherwise, while 25 percent disagreed. The rest (57 percent)
were not sure about this. We believe that there are some
attempts within software engineering domain to prove the
above relationship scientifically. However, these efforts remain
immature and we support the ’disagreement’ group in this
matter.
Eleven percent of the respondents also identified conflicting

views among the references regarding patterns and quality
attributes. According to some of the respondents, the cause
of inconsistencies may be due to the differing views among
authors about when the patterns will be used. These inconsis-
tencies can make the process of software development very
ineffective in terms of cost and time. This identifies a need
for software engineering professionals to apply more effort to
systemize the documentation of software patterns to eliminate
such inconsistencies.
Possibly due to the disadvantages arising from the inconsis-

tencies above, almost two thirds of respondents did not support
having different names for similar patterns, terming it to be

APPENDIXA. PUBLICATIONS

284

70.0%

Do not support different names

30.0%

Do support different names

Fig. 6. Proportion of respondents who do/do not support different names for
similar patterns.

more confusing, as elucidated in Figure 6.

However, a third supported the idea, giving the reasons that
it would be necessary, especially if the patterns are similar but
not identical, and in case of different contexts of application. It
could therefore be important to have variant names for patterns
used to solve different issues. However, to avoid confusion it
is suggested that the variants should be extensions to the main
pattern name for ease of identification, such as Proxy-Remote
pattern or Proxy-Virtual pattern.

Sixty-four percent of respondents support the idea of having
standardized documentation practice for software patterns.
Only one respondent was against this but with no sufficient
reasons, as can be seen in Figure 7.

Within responses to the last four questions (the Likert type
questions) there was strong agreement about the importance
of software engineers and developers acquiring knowledge on
patterns; which could be improved by the following contribu-
tions:

a) the identification of the relationship between software
patterns and quality attributes based on the current reliable
software pattern references; b) in order to identify the relation-
ships in (a) above, it is important to identify standard quality
attribute definitions within the current pattern references; c) it
is important to create a database for storing the relationships
identified based on (a) and (b) above ; and finally, d) develop
and provide an evaluation model to assess software patterns
against quality attributes. This model should be easy to use.

No Yes Not sure Perhaps
0

20

40

60

3%

63.6%

3%

30.3%

Pe
rc

en
t

Fig. 7. Comparison of respondents opinions concerning support for standard-
ised documentation practices for software patterns.

B. Two dimension Analyses

Two dimensional analysis was applied in order to find
out whether/how different attributes depended on each other.
First of all, the relationship between how frequently software
patterns were used by developers and their field of expertise
in software development. It was concluded that the two are
connected, and the analysis showed that software styles/
patterns were utilized mostly by those whose expertise lies
in architecture and design. This makes sense since in some
fields, software patterns may not yet exist. The reason could
be lack of clear documentation in some software domains
The analysis of the relationship between the respon-

dents’ work place (sectors) and how they used software
patterns/styles tended to indicate that academics used software
patterns less frequently than those in government and industry.
However, this relationship was not very significant, according
to the Chi-square test. The study also shows that developers
from academia and industry consider the quality attributes
of software patterns before utilization compared to those in
government. However, this relationship was not clearly defined
either according to the Chi-square test.
In analyzing the three statements about important knowl-

edge needed by software developers (as analyzed earlier), the
matrix analysis shows that those with experience in govern-
ment agree strongest, followed by those in industry and finally
those in academia. Those in government and industry agree
more with the survey statements that suggested solutions to
the problem that has been identified in this paper abstract. This
agreement makes reasonable sense in pointing to the problem
and providing a solution for it. Those in academia on the
other hand are more research oriented and thus tend to focus
on identifying the problem, while those in government and
industry are keen to provide a practical solution to problems..
A positive relationship was identified between the years of

experience for developers and their awareness about software
patterns. The more experienced the respondents were, the more
likely they were to be aware of software patterns. However,
the Chi-square test indicated that the dependence on awareness
about software patterns on the year of experience in software
development was insignificant.
Although preliminary matrix analysis tended to show that

most of the respondents who used software patterns in devel-
opment had less than 15 years of experience, a hypothesized
Chi-square test ruled out the dependence of usage of software
patterns on the years of experience. In the same way, it
was noticed that the identification of conflicting views in the
documentation of software patterns was not dependent on the
years of experience in software development.
Generally, the number of years of experience in software

development did not seem to affect the respondents’ decision
to be in favor of different names for the same software patterns,
support for standardized documentation of software patterns
references, or the agreement with the statements about the
important knowledge that needs to be possessed by software
engineers and developers.

285

To analyse the dependency between (software pattern)
awareness by developers’ (Q4) and if the relationship between
software patterns and quality attributes have been proven
scientifically (Q13), this study found no bearing between the
two because all of the respondents who responded to that
question were aware of software patterns. In a similar way, the
developers awareness did not seem to affect the respondents’
opinions about the four statements (Q17 to Q20) regarding the
knowledge that is key for improving software developers.
The next part of the study was to analyse the effect of

how often the developers used software patterns. There is no
direct relationship between the frequency of use of software
patterns and the respondents’ opinion on the main factors that
discourage the utilization of software patterns. Similarly, the
frequency of use did not seem to be related to the respondents’
opinion on which are the main factors that encourage the
utilization of software patterns. This leads to the conclusion
that there is no significant impact of the main factors that either
encourage or discourage the utilization of software patterns or
how frequently the developers use software patterns.
There is however a clear difference among the frequency of

use of software patterns, for those developers who consider the
quality attributes of software patterns before utilizing them.
This is a clear indication that developers who consider the
quality attributes of software patterns before use, tend to use
software patterns more frequently compared to those who do
not consider the QAs. This makes sense because as developers
use software patterns more and more, they also develop the
need to know their characteristics.
Another significant relationship was identified between de-

velopers who have used software patterns in the past and will
continue using software patterns in the future and the current
frequency of use. It indicates that those who are willing to
use, or have used software patterns before, use them more
frequently. Further,analysis indicates that there is no significant
relationship between the ability to identify conflicting views on
software patterns and their frequency of use. This also was the
case when different names for the same software patterns were
supported by respondents,and when standard documentation of
software patterns were supported. Finally, no relationship was
identified between the criteria used to sample the opinions of
respondents on the four statements about what could improve
software developers knowledge and their frequency of use of
software patterns.
In evaluating the relationship of different responses to

the developers’ opinion on the main factors that discourage
the utilization of software patterns, there was seen to be
no significant relationship between those opinions and the
developers’ support for standard documentation. However, a
significant variation was noticed with the responses to the four
statements trying to create a solution to some of the existing
issues in software patterns field. This variation supports the
survey proposed solutions stated in the last four questions (the
Likert type questions), which were discussed earlier. Similar
findings were also noted in the case of the main factors that
encourage software pattern utilization.

C. Three and Four Dimensional Analyses

As indicated earlier, 3 and 4-dimensional analysis of the
responses in this questionnaire proved to be ineffective. This
was established by trying to determine the relationship be-
tween the respondents area of expertise, where they gained
most of their experience in software development, and their
opinion on the four statements to aid in coming up with a
solution to the issues that affect software patterns utilization.
This 3-dimensional analysis provided a null difference among
all the responses given. This was also the case when relating
the respondents’ field of specialization, their total number of
years of experience in the software development field, and the
response to the four statements.

V. CONCLUSION AND RECOMMENDATION

The analysis of the responses to a questionnaire concerning
various matters relating to software patterns indicates that that
the results can be relied upon to draw at least some conclusions
about various issues affecting developers in their utilisation
of software patterns. The trends noticed in the study are key
to establishing courses of action, and areas where there is
urgent need for a solution to some of the issues affecting
the use of software patterns in software development such as,
documenting, teaching, evaluating, and modelling patterns.
Although the utilization of software patterns in software

development has been embraced by a significant number of
developers, this study identifies some of the crucial factors
that encourage/discourage developers to/not to use software
patterns in software development. Finally, the study suggests
some solutions that can be embraced to increase the proper
utilization of software patterns in software development.
It is thus our recommendation that all the critical issues

identified in this study be taken into consideration to ensure
that more developers embrace the use of software patterns to
ease their challenges with software development and to make
them more efficient in the field. This study raises important
questions about the impact of software styles/patterns on
software architecture evaluation, especially for architects who
are one of the most important developers and who use patterns
most frequently. A continuation of the work is therefore
necessary to gather the opinion of, and pertinent informa-
tion from, developers concerning the relationship between
styles/patterns and their affect on software architecture in a
future questionnaire.

REFERENCES

[1] G. Zayaraz, Quantitative Approaches for Evaluating Software Architec-
tures. VDM Publishing, 2010.

[2] J. S. Kim and D. Garlan, “Analyzing architectural styles with alloy,” in
In Proceedings of ROSATEA06, ISSTA. ACM Press, 2006, pp. 70–80.

[3] L. Zhu, M. A. Babar, and R. Jeffery, “Mining patterns to support software
architecture evaluation,” in in 4th Working IEEE/IFIP Conference on
Software Architecture (WICSA), (2004), IEEE, 2004.

APPENDIXA. PUBLICATIONS

286

Questionnaire Report on Matter Relating to
Software Architecture Evaluation
Hassan Almari

Australian National University,
CSIT Building 108 North road
Canberra, ACT 0200, Australia

email: hassan.almari@anu.edu.au

Clive Boughton
Australian National University,
CSIT Building 108, North road
Canberra, ACT 0200 Australia

Chairman and Director of Software Improvements
GPO Box 1928, Canberra, ACT 2601, Australia

email: clive.boughton@anu.edu.au

Abstract—Evidence of the relationship between software ar-
chitecture including it’s styles/patterns and quality attributes
continues to grow, but largely remains an art rather than a
science in terms of being able to predict a relevant architecture
from (known) quality attributes.

The aim of this paper is to point out those aspects that influence
utilization of software architecture artefacts and their evaluation
by software developers, and is part of a continuing study the
results of which are intended to aid professional software/system
developers with their decisions surrounding choice of (concrete)
software architectures.

The earlier part of the study produced an analysis report based
on a survey titled “Questionnaire on matters relating to Software
Patterns - 2012”. The survey was issued to software developers
possessing more than 5 years experience, and produced significant
results which, in turn, led to the need for this second survey.
Ninety seven (97%) percent of the participants, from six different
nations, answering the first questionnaire supported this further
investigation.

Index Terms—Software Architecture, Quality Attributes, Eval-
uation, Utilization.

I. INTRODUCTION

THE utilization of software/system architecture and asso-
ciated evaluation methods in industry is influenced by a

number of factors. Varied studies have tried to detect, examine,
assess, and describe the link between software architecture
(SA), and quality characteristics/attributes, such as work done
by [1], [2], [3], and [4]. Every study takes a unique focus
scoped to a particular quality attribute or a view of the
architecture. In order to discover more about these factors
that influence the relationship between SA and QAs, a ques-
tionnaire was produced to target experienced software/system
developers to determine their views on the applicability of
existing SA artefacts and their associated evaluation methods,
as well as to identify the challenges to utilization of these
artefacts and methods in the development lifecycle. This
paper summarises the result from the second quastionnare on
matters relating to Software Architecture Evaluation (SAE).
The analysis of the responses to the survey was performed
using the Statistical Package for the Social Sciences (SPSS)
application. These facts have been mentioned in order to help
simplify table and figure symbolizations. In this paper, the

use of figures and tables have been minimized due to page
limitation. Full analyses of the survey (311 pages) is available
upon request, through contacting the authors via email.

II. ANALYSIS PROCEDURE

The questionnaire surrounding SAE comprised of 23 ques-
tions which were grouped into various sections such that each
section focussed on a specific objective as described below.

The first section of the questionnaire consisted of five
questions aimed at gaining better background knowledge of
the participants. In the second section, a further five questions
focussed on the factors that affect utilization of SA modeling
techniques. This was incorporated in an effort to make the
utilization of SA artefacts together with all its modelling
descriptions a cost-effective and time-saving process. The final
section focused mainly on SAE and its challenging factors.

In analyzing the responses both one dimensional analysis
and two dimensional analysis were used. In one dimensional
analysis, the responses to each of the 23 questions were
analyzed individually and the results were illustrated using
proper statistical methods, depending on the nature of each
question. In order to draw more vivid conclusions, the de-
pendencies between different SA utilization factors were also
analysed. This was achieved by carrying out a two-dimensional
analysis, where some of the questions were analyzed as pair
combinations in order to satisfy some of intended objectives
by researchers. The methods used for both one and two
dimensional analysis are described in the next section.

III. RATIONALE OF THE ANALYSIS METHOD
SELECTED

Several methods were used to analyse survey responses. The
rationale for the methods used is given below:

A. Individual (One dimensional) analysis methods

For individual or one dimensional analysis, the method
of analysis used depended on the type of questions being
asked. Questions which required respondents to select a single
response from a list of choices, such as Q1, were analysed
by presenting all responses on a single bar chart showing
the total count for each choice. The bar chart was derived

978-1-4799-5604-3/14/$31.00 copyright 2014 IEEE
SNPD 2014, June 30-July 2, 2014, Las Vegas, USA

287

from a frequency table which was used to represent the same
information as percentages.

‘Descriptive statistics’ was the method used to analyze
questions for which responses were divided into categories
without numerical values. The results were presented using a
frequency table to show the percentage for each respondent
as well as the cumulative percentage of the responses. In
addition to the frequency table, for questions which required
the respondent to make a choice from numerical responses, a
Chi Square Test was performed to show the distribution of the
responses in each category in order to draw a more accurate
conclusion.

Questions which involved dichotomous variables were pre-
sented on a pie chart for easy visualization. It was convenient
to do this since for these types of questions, there wasnt
any overlap of responses. Thus the total percentage from all
categories of responses was100%.

Responses to types of questions involving statements for
which some level of the agreement was required were pre-
sented on a Likert scale to show the strength of agreement
or disagreement. For these questions, the analysis was done
by employing descriptive statistics. A one sample t-test was
performed on the resultant mean for each of the questions
in order to determine and confirm the significance of the
concluding agreement level.

B. Multi-dimensional analysis methods

Multi-dimensional methods involving analysis responses to
questions as a block, or in matrices, were employed to de-
termine whether a relationship existed between the responses
of the various combinations of questions chosen. The analysis
methods included sample t-tests, cross tabulation, Chi square
tests, Tukey’s? HSD method, scatter plots, descriptive statistics
and bar charts among others. Cross tabulation was preferred
in most cases since most of the questions involved a cardinal
scale, with only four questions lying on the ordinal scale. T-
tests were used to analyze the latter category.

Three-dimensional and four-dimensional analyses were in-
valid, inappropriateness, and insignificance. The Chi-square
test results for cross tabulations under three dimensional anal-
ysis are all invalid due to low cell (data) expected frequencies.
Also, most of the t-tests and F-test results are all valid in
statistical sense, though there were no significant results. So,
they were excluded from this paper.

IV. STUDY FINDINGS

The findings of this study uncover many factors affect-
ing the utilization of system/software architecture artefacts
by system/software developers across various sectors (work
place), during the development lifecycle . The findings are
summarized in this section according to the analysis method
used.

A. One dimensional Analyses

This research was conducted based on responses to a
questionnaire distributed to participants from various fields of

expertise, the majority of whom were designers, programmers,
analysts, and architects among other fields as illustrated in
Table I. A majority of these professionals have gained their
expertise in academia, followed by industry, and Government
as shown in Figure 1.

48.0%

Academia

36.0%

Industry

16.0%

Government

Fig. 1. Work sectors for the survey participants

The Chi-Square test confirms the significance of the results
at 5% level, Chi-square = 7.84, p-value< .05. The findings of
the research can thus be considered credible due to the varied
areas of expertise of the respondents to the questionnaire.

In order to increase the reliability of the results, it was also
necessary to ensure that the participants had enough familiarity
or experience in a (particular) field of software/system devel-
opment. The experience of the majority of the participants
ranged between 5 and 10 years (48 percent), with about 30
percent having an experience of more than 15 years and
22% having experience of 10 to 15 years. Thus, the years of
experience considered sufficient to gain familiarity with the
trends in software/system development.

More than 83 percent of all the participants indicated that
they were aware of software/system architectural description/
modelling languages, which increases the reliability of the
responses given in the questionnaire, because they do have
knowledge about the survey field, which help them to select a
proper answers based on their experiences. At the same time,
considering the experience levels, the finding raises a question
about 17 percent of the participants in the software/system
development industry who were not aware of software/system
architectural description/ modelling languages, which could be
affected by different factors such as the lack of teaching SA
in academic institutions.

Despite the majority awareness of software/system architec-
tural description/ modelling languages, an alarming 50 percent
of the respondents either used models infrequently or did not
use models at all. This justified the need for a further ques-
tionnaire to unearth the reasons that could be encouraging or
discouraging the use of system/software architecture modelling
languages.

The two major (out of 8) factors that encourage the uti-
lization of models to describe software/system architecture as
identified by the respondents include, “the ease to demonstrate
the software/system concept and features” (65.2 percent), as
well as its contribution in “making the designer/programmers’
job easier” (30.4 percent). On the other hand, one of the two
main factors (out of 5) that discourage the utilization of mod-
elling techniques to describe software/system architecture is

APPENDIXA. PUBLICATIONS

288

TABLE I
PERCENTAGE FREQUENCY TABLE REGARDING RESPONDENTS FIELD OF EXPERTISE.

What is your general field of expertise re-
garding software development? Responses Percentage based on total

responses (N’=50)

Percentage based on who
responds to the question

(N=50)
Requirements elicitation/modelling/analysis 23 46.0% 46.0%
Project management 11 22.0% 22.0%
Architecture 20 40.0% 40.0%
Design 31 62.0% 62.0%
Coding 29 58.0% 58.0%
Testing 18 36.0% 36.0%
Documentation 8 16.0% 16.0%
Other 6 12.0% 12.0%

“the difficulty in integrating these models with other artefacts
(e.g Design models)”, which makes them standalone models
rendering them less useful in the process of software/ system
development”. The other factor is “the lack of standardiza-
tion between the existing architecture modelling techniques,
notations and semantics”, among other factors.

In an effort to determine the best language to use to describe
software/system architecture in order to increase its usefulness
to all stakeholders as well as the ease of qualitative and quanti-
tative assessment, it was found out that a combination of semi-
formal language and natural language used together would be
preferred by the majority (52.2 valid percentage). Semi-formal
language alone is the second most preferred (17.4 percent
valid), while 13 percent prefer all three languages (formal,
semi-formal and natural languages). The results above were
expected, based on the researcher’s observations to several
current projects documentations, within the Royal Saudi Air
Force (RSAF). We think its a good combination to have semi-
formal and natural language, due to the ease with which non-
developer stakeholders can understand these languages as well
as the ease of the evaluation processes.

There is a general agreement that developing soft-
ware/system architecture using current architectural frame-
works (e.g. ISO/IEC 42010, DODAF, RUP/4+1) increases
the reliability, standardisation, and reusability of the result-
ing architecture. On the other hand, there is neither agree-
ment nor disagreement about whether “the usage of soft-
ware style/pattern concepts & models during architecture
development increases the utilisation of modelling description
languages, BUT decreases the simplicity of the architecture
evaluation or not”. This is confirmed by a one-sample t-test
as described in Table II.

In an attempt to gather the level of awareness surround-
ing system/software architectural metrics, an overwhelming
85 percent denied having any awareness about any sys-
tem/software architectural tactics or metrics that have been or
are being used for evaluating architecture description models,
(e.g. detecting attacks for security). This uncovers the great
need to increase awareness about the existing tactics such as
the effort done by [5], as well as the metrics such as the work
done by [6] for security measurements, and [7] for applying
metrics to assess software artefacts, and document them. Ar-
chitectural evaluation methods suffer the same fate, with more

than 89 percent of the respondents lacking awareness about
any architectural evaluation method that can produce quanti-
tative measures surrounding architecture characteristics. The
questionnaire therefore attempted to uncover the reasons that
may be encouraging or discouraging this knowledge and/or
use of software/system architectural evaluation methods.

According to the statistics gathered from the questionnaire,
the two most important factors that could support quanti-
tative evaluation for any software architecture (SA) include
“availability of tools for describing and evaluating SA” (iden-
tified by 44 percent of the respondents) and “the use of
standard language and architecture framework for describing
SA” (identified by 40 percent of the respondents). On the
other hand, two of the most important factors that hinder
quantitative evaluation for any SA include the “formality level
of SA description” as identified by more than half of the
respondents, followed by “the language used for describing
the SA” as identified by 40.5% of the respondents. These are
the factors that need to concentrate on in order to improve the
knowledge and use of system/software architectural artefacts
and its evaluation methods that can produce qualitative and
quantitative results.

The general agreement to the suggestions given by re-
searchers in this questionnaire regarding important matters
affecting architectural evaluation, and how we could aid re-
solving these issues, was measured as shown in Figure 2.

According to the analysis, there was a significant agreement
to all the statements in Figure 2, except on the statement

0 1 2 3 4

3.8

3.8

3.3

3.7

4.3

Mean

Error bars: 95 %CI

“Architecture is design, but NOT all design is
Architecture”.

There is still vagueness in the current liter-
ature concerning the differences between the
architecture abstraction and high level de-
sign, which causes some confusion and per-
haps wastes time during development by ar-
chitects and designers.

Most of the existing software architecture
evaluation methods, produce qualitative re-
sults.
It’s worthwhile to undertake an effort to de-
velop a quantitative methodology for evaluat-
ing software/system architectures.

Reliable tools are important for developing/or
evaluating software/system architectures.

Fig. 2. Means for the five statements included - with error bar and assumed
mean line.

289

TABLE II
ONE SAMPLE T-TEST RESULTS FOR SPECIFIED MEAN VALUE REGARDING THE TWO STATEMENTS INCLUDED

Items
Test Value = 3

95% Confidence Interval
of the Difference

t df Sig.
(2-tailed)

Mean
Difference Lower Upper

Developing software/system architecture using current archi-
tectural frameworks (e.g. ISO/IEC 42010, DODAF, RUP/4+1)
increases the reliability, standardisation, and reusability of the
resulting architecture.

4.14 44 .000 .47 .24 .69

Usage of software style/pattern concepts & models during ar-
chitecture development, increases the utilisation of modeling
description languages, BUT decreases the simplicity of the
architecture valuation.

.00 45 1.000 .00 -.25 .25

that “most of the existing software architecture evaluation
methods, produce qualitative results”, to which the majority
of the respondents remained neutral. However, the one-sample
t-test on the agreement to that statement (µ > 3) is statistically
significant at 1% level, t = 2.46, p-value< .01 implying a
general agreement to the statement.

Finally, the agreement to the statements in Figure 3 were
also tested using descriptive statistics.

From the figure it is clear that there was a general agreement
to the first three statements presented. However, in regard
to the last statement, about one third of the respondents
(14 out of 43) either disagreed or strongly disagreed to the
statement that stated that “current technology allows us to
develop general software evaluation models that assess any
software architecture against any quality attributes”. According
to a continuing study done by the researchers since 2010, we
believe that there is no existence of such a tool yet. However,
the current technologies are becoming closer to achieve the
above statement, and many gaps have been closed during the
last decade by improving SA description languages and tools.
Furthermore, the above results indicated that more research
needs to be done to improve and contribute to SA evaluation
filed.

In addition, a significant number of the respondents (18
out of 43) representing 42 percent remained neutral regarding
the statement and only 26% (11 out of 43) either agreed or
strongly agreed to this statement. The responses were mostly

0 0.5 1 1.5 2 2.5 3 3.5

3.5

3.4

3.5

2.9

Mean

Error bars: 95 %CI

Current technology lacks reliable software ar-
chitecture evaluation tools.

Reading software/system architecture descrip-
tion models for automated evaluation pur-
poses, is a critical, difficult, and error prone
task.

Restricting the description of architecture to
a specific modelling language during develop-
ment, should make the architecture quantita-
tive evaluation easier.

Current technology allows us to develop gen-
eral software evaluation models that assess
any software architecture against any quality
attributes.

Fig. 3. Means for the four statements included - with error bar and assumed
mean line.

skewed around the neutral axis and a one-sample t-test on
the agreement to the statement (µ > 3) showed significance
at 5% level with t = -.80, p-value> .05, indicating a general
disagreement to the statement.

B. Two dimension Analyses

In order to establish the credibility of the responses as well
as important trends in the responses given to the questionnaire,
the questions were cross-tabulated in pairs to determine the
association between each question in the pairs. This section
summarizes the findings.

It was noted that the general field of expertise regarding
software development did not have any association with most
of the other questions in the questionnaire. However, it was
noticed that the most of the respondents whose field of
expertise was Project management did not think that most of
the existing software architecture evaluation methods, produce
qualitative results, compared to other areas of expertise (t = -
2.35, p-value< .05). On the other hand, Architects, more
than other fields of expertise, tend to think that “Architecture
is design, but NOT all design is Architecture” (t = 2.20, p-
value< .05). Furthermore, there is significant inequality in
means between Architects and experts in other fields regarding
the statement that “Architecture is design, but NOT all design
is Architecture” (t = 2.20, p-value< .05). This shows that Ar-
chitects embrace this statement more than developers in other
areas of expertise. Whereas, those whose field of expertise is
coding tend to disagree more than others to the same statement
above, which is very important indication to the variation in
understanding the architecture concept between both architects
and programmers. As a result, architectural artefacts utilisation
by programmers could be decrease due to their understanding
of SA concept, which we believe its not correct.

Regarding software evaluation methods, experts in Project
Management showed a much less significant result com-
pared to those who have other expertise on the statement
that “Most of the existing software architecture evaluation
methods produce qualitative results”. While, designers showed
a significantly less population mean than other experts to
the same statement, (t = -2.10, p-value< .05). However, they
also showed a greater population mean on the statement that
“Reliable tools are important for developing/or evaluating
software/system architectures” (t = 2.04, p-value< .05).

APPENDIXA. PUBLICATIONS

290

On the other hand, experts in Coding showed a less signif-
icant population mean on the statement that “It’s worthwhile
to undertake an effort to develop a quantitative methodology
for evaluating software/system architectures” (t = -1.87, p-
value = .035< .05). These results are a clear evidence of how
the field of expertise of the respondents to the questionnaire
affected their opinion regarding evaluation methods used in
system/software architecture.

There are many reasons that could cause the above varia-
tions, such as developers SA background knowledge, the level
of developers involvement in SA evaluation process etc.

A similar variation in opinion was also noticed in matters
relating to current technology as related to system/software
evaluation methods. For example, the population mean for
responses from experts in “Coding” to the item “Current
technology allows us to develop general software evaluation
models that assess any software architecture against any
quality attributes” is significantly less than that of other
experts (t = -2.50, p-value = .008< .01). This is also the case
for the population mean of responses from experts in “Testing”
towards the same statement (t = -1.79, p-value = .041<.05).
These relationships led us to appreciate the varied nature of
needs in the software/system development industry according
to the expertise, hence concluding that a careful consideration
about the area of expertise while implementing any sugges-
tions offered in this study is vital to make the implementation
more impactful.

The number of years of experience of the respondents was
seen to affect their opinion on the statement that “most of
the existing software architecture evaluation methods, produce
qualitative results”. Turkey’s HSD method was used to deter-
mine the variation in the responses and the association that
exists between the two. The analysis uncovers a significant dif-
ference (Mean difference = 1.33, p-value = .011¡.05) between
respondents with 5-10 years’ experience and those with over
25 years’ experience, with the agreement favouring the earlier
group.

There is a higher rate of agreement among those who
had awareness of modelling languages compared to those
who didn’t, on the statements that “Reading software/system
architecture description models for automated evaluation pur-
poses, is a critical, difficult, and error prone task”, (t = 1.9,
p-value = .04<.05) and “Current technology allows us to de-
velop general software evaluation models that assess any
software architecture against any quality attributes”, (t = 2.1,
p-value = .03< .05). We agree with the respondents for their
for the first statement, but not to the second one, due the same
reasons discussed earlier a round Figure 3.

There seems to be a variety of relationships between the
opinions of respondents regarding qualitative and quantitative
system/software evaluation methods and how often these re-
spondents use software/system models in the description of
software/system architecture. For example, there is a signifi-
cant statistical difference between group means corresponding
to various categories of how often respondents use models
to describe software/system architecture for the item “There

is still vagueness in the current literature concerning the
differences between the architecture abstraction and high level
design, which causes some confusion and perhaps wastes time
during development by architects and designers”, (F = 2.7, p-
value< .05). The group means for this item exhibit a dif-
ference among respondents who “Nearly always (>90%)”
used models to describe software/system architecture during
their work compared to those who “Never” used them at
all, Mean Difference = 1.2, p-value< .01. Similarly, there is
also a difference in the group mean for the item among
those who “Nearly always (>90%)” used models to describe
software/system architecture during their work, compared to
those who “Infrequently (<10%)” use models, (Mean Dif-
ference = 0.7, p-value< .05). The last difference is exhibited
between those who “Nearly always (>90%)” used models to
describe software/system architecture during their work and
those who “Reasonably frequent (>15% and <50%)” used,
Mean Difference = 0.7, p-value< .05.

Also, the test is significant for the item “It’s worthwhile
to undertake an effort to develop a quantitative method-
ology for evaluating software/system architectures”, F = 2.7,
p-value<4 .05. So, the group means corresponding to the
categories of how often respondents used models to describe
software/system architecture during their work are statistically
different for the item “It’s worthwhile to undertake an effort
to develop a quantitative methodology for evaluating soft-
ware/system architectures”.

These differences are an indicator of the effect of length of
experience in software/system development on the responses
received from respondents. This is the reason why we chose
to use only respondents with above 5 years of experience in
the questionnaire, in order to ensure that the opinions and
experiences expressed are based on familiarity in the field of
system/software development.

Another significant relationship noted was between the
respondents who agree that use of models “makes the de-
signers/programmers job much easier” and those who think
that “Reliable tools are important for developing/or evaluating
software/system architectures”. This positive relationship is a
confirmation that the identification of the factors encouraging
the use of models in software/system description is interdepen-
dent, depending on the general preferences of the respondents.

In a similar way, independent sample t-tests Chi-Square
and ANOVA tests performed on various hypotheses revealed
interesting relationships between various responses, reflecting
the wide variety of preferences by the respondents. For ex-
ample, an independent sample t-test the hypothesis (µ > 3)
for the item ”Reliable tools are important for developing/or
evaluating software/system architectures ” showed signifi-
cance at 5% level, t = 2.2, p-value< .05. This reveals that the
population mean of the item “Reliable tools are important
for developing/or evaluating software/system architectures” is
significantly higher for the respondents who replied “Yes”
to the item “It makes the designers/programmers job much
easier”, compared to those who disagreed.

In a similar way, an independent sample t-test revealed a

291

direct relationship between the statements “Current technology
allows us to develop general software evaluation models that
assess any software architecture against any quality attributes”
and “Yes” responses to the item “Reliable modelling tools for
describing the architecture exist, which makes the usability
factor much easier”. The test is significant at 5% level, t = 2.0,
p-value = .049 < .05.

A positive result was similarly noticed between the pop-
ulation mean for the item “Current technology allows us to
develop general software evaluation models that assess any
software architecture against any quality attributes” and “Yes”
response to the item “The wide range of modelling language
formality (from informal models to formal), makes the selec-
tion of architecture description technique more feasible”. The
test is significant at 5% level, t = 2.1, p-value< .05. Similarly,
this was the case between the population mean for the item
”Current technology allows us to develop general software
evaluation models that assess any software architecture against
any quality attributes” and “Yes” responses to the item “Archi-
tectural models can be compiled to produce a real functioning
software/system with existing modelling languages and tools”.
The test is significant at 5% level, t = 2.5, p-value< .05.

Once again, the above results point out clearly the relation-
ship in opinion between matters relating to the use of current
technology in software/system architecture and evaluation
methods, which can aid in clear judgement when implementing
the recommendations of the study in the software/system
development industry.

Another significant relationship was noted via an indepen-
dent sample t-test conducted to test the hypothesis µ > 3
for the item ”There is still vagueness in the current literature
concerning the differences between the architecture abstraction
and high level design, which causes some confusion and
perhaps wastes time during development by architects and
designers” and those who admitted that it is “Hard to evaluate
architecture models against any stakeholder’s quality attributes
(e.g. Security, performance)”, t = -1.96, p-value = .028<.05.
This was the case as well for the item “Most of the existing
software architecture evaluation methods, produce qualitative
results” at 5% when using a two-tailed test, (t = 1.94, p-
value> .05).

In order to test the dependence between two categorical
variables, a Chi-square test was used. For the relationship
between the variables “Usage of software style/pattern con-
cepts & models during architecture development, increases the
utilisation of modelling description languages, BUT decreases
the simplicity of the architecture valuation” and “Most of
the existing software architecture evaluation methods, produce
qualitative results”, the Chi-square test showed significance,
χ2(16) = 30.52, p-value< .05. This is proof of an association
between the two categorical variables. A similar dependence
was deduced between the categorical variables “Usage of
software style/pattern concepts & models during architecture
development, increases the utilisation of modelling description
languages, BUT decreases the simplicity of the architecture
valuation” and “Current technology allows us to develop

general software evaluation models that assess any software
architecture against any quality attributes” χ2(16) = 60.10, p-
value< .01.

The above are some of the relationships established between
categorical variables, aiding further to deduce the trend in
opinion amongst software/system developers in industry with
the aim of improving their experience with system/software
architecture in the future. In a similar way, other positive
relationships were discovered between various pairs of cat-
egorical variables including the “awareness of respondents
about any system/software architectural tactics or metrics
that have been or are being used for evaluating architectural
description models” and the opinion of respondents on the
statement that “Most of the existing software architecture
evaluation methods, produce qualitative results”, χ2(4) = 9.55,
p-value = .4< .05, among others highlighted in the full analysis
document.

V. CONCLUSION AND RECOMMENDATION

Description and evaluation of software/system architecture
largely depends on how it has been embraced by developers.
This study reveals the great effort that is needed to increase the
awareness, knowledge and use of system software architecture
in industry, academic institutions, and government sectors.

Various factors that encourage and hinder the embracement
of architectural modelling in the software industry were also
identified. The researchers recommend further research to de-
termine how to standardize the languages used in architectural
modelling to make the models compatible with other models
that are already existing. There is also a need to increase
awareness of system/software architecture description by doc-
umenting more literature on the subject and incorporating it
in the curricula of various learning institutions.

REFERENCES

[1] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
1st ed., ser. SEI Series in Software Engineering. USA: Addison Wesley
Longman Inc., 1998.

[2] G. Moreno and P. Merson, “Model-driven performance analysis,” in
Quality of Software Architectures: Models and Architectures. Springer,
2008, pp. 135–151.

[3] A. Diaz-Pace, H. Kim, L. Bass, P. Bianco, and F. Bachmann, “Integrating
quality-attribute reasoning frameworks in the arche design assistant,” in
Quality of Software Architectures. Models and Architectures. Springer,
2008, pp. 171–188.

[4] G. Zayaraz, “Quantitative approaches for evaluating software architec-
tures,” Ph.D. dissertation, Pondicherry Engineering College, Puducherry,
India, 2010.

[5] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
3rd ed., ser. SEI Series in Software Engineering. USA: Pearson
Education, Inc., 2013.

[6] A. Jaquith, Security metrics: replacing fear, uncertainty, and doubt.
Addison-Wesley Upper Saddle River, 2007.

[7] C. Jones, Applied software measurement: global analysis of productivity
and quality. Mcgraw-hill New York, 2008, vol. 3.

APPENDIXA. PUBLICATIONS

292

The Five Factors influencing Software
Architecture Modeling and Evaluation Techniques

Hassan Almari
Australian National University,
CSIT Building 108 North road
Canberra, ACT 0200, Australia

email: hassan.almari@anu.edu.au

Clive Boughton
Australian National University,
CSIT Building 108, North road
Canberra, ACT 0200 Australia

Chairman and Director of Software Improvements
GPO Box 1928, Canberra, ACT 2601, Australia

email: clive.boughton@anu.edu.au

Abstract—Two of the most important aspects that help
architects to describe, automate, and evaluate architecture
artefacts with precision include the use of Software Ar-
chitecture (SA) modeling languages, and the selection of
SA evaluation methods. Accurate, verifiable architecture de-
scriptions are more likely to result in successful software
development outcomes. There appears to be an unnatural
and significant disconnect between SA artefacts and both pre-
and post-architecture development artefacts. The disconnect
seems to exist for various, sometimes unrelated, reasons not
all of which have yet been fully investigated. In an effort to
confirm (some of) the factors that influence effective utilization
of software/system architecture artefacts in the process of
software/system development, the author(s) of this paper
try to address the aforementioned problem by focusing on
the investigation of five factors that influence SA evaluation
and its automation process. These factors include: Formality
of SA descriptions; modelling of SA; SA documentation;
standardisation of SA; and current SA evaluation tools.
Contributing to the identification of these five influential
factors, and their discussion, is a section of a questionnaire
which was broadly aimed at discussing matters relating to
software/system architecture descriptions and evaluation in
industry.

Index Terms—Automation, Documentation, Evaluation,
Languages, Measurement, Software Architecture (SA), Stan-
dardization, Utilization Factors.

I. INTRODUCTION

THERE are many factors that influence the utilization of
software/system architecture and its evaluation method

in industry today. So a questionnaire was drafted to gather
the experiences of software/system developers with soft-
ware architecture artefacts, and identify the evaluation
methods that they use in their work.

Most importantly, the questionnaire’s aim was to identify
the factors that encourage or hinder the utilization of
software architecture by the developers as well as their
evaluation methods; and also, to point to some aspects that
could improve the automation of SA. This report analyses
five particular factors in an effort to arrive at applicable
solutions to increase awareness and improve the utilization
and automation of software/system architecture artefact in
industry.

Fig. 1. The five factors influencing Software Architecture Evaluation
(SAE)

II. ANALYSIS PROCEDURE

The original questionnaire used in this research com-
prised 23 questions. The questions were grouped into
various sections such that each section could focus on a
specific objective.

The first section focused on learning more about who
responded to the questionnaire in terms of their area of
expertise, the sectors in which they have worked, the length
of experience and their familiarity with software/system
architecture. This was important in regard to analysing
their responses to the main questions more accurately.
The next section pertains to the first part on which this
report focuses: discovering the factors that encourage and
discourage the utilization of system/software architecture
by developers in their work. Finally, the third section
mainly concentrated on the evaluation methods used by
developers for system/software architecture artefacts. The
main task here was to gather the experience of participants
with evaluation methods, hence determine the main factors
that could support or hinder the use of SA artefacts and
their quantitative evaluation.

Both single dimensional and two dimensional analysis
were used to achieve the objective outlined in this report.

Four questions out of 23 in the questionnaire were
picked and analysed to draw conclusion about the factors
that influence SA artefacts’ utilization as well as factors
that affect automation of SA quantitative evaluation. These
include Q6, Q7, Q13 and Q14. The two former ques-

978-1-4799-6541-0/14/$31.00 ©2014 IEEE

293

tions focused on software/system architecture utilization
and automation, while the latter two questions focused on
software/system evaluation.

In order to draw more meaningful conclusions, an eval-
uation of how the various factors and opinions obtained
from the responses to each individual question in the
questionnaire affect, or relate to each other, was conducted.
This meant carrying out a two-dimensional analysis, where
selected questions were analysed as pairs in different
combinations based on the study objectives. Appropriate
analysis methods were used to draw conclusions on the
cross- relationship between the various aspects presented
by each question.

All of the four questions were multiple choice in which
the researchers proposed some of the possible factors and
the participants were to choose at most two of the factors
according to their experience. The analysis in the single di-
mension thus involved tabulating the results in a frequency
table to determine the percentage of respondents who
chose each of the suggested (main) factors. The conclusion
was arrived at by comparing all the factors according to
the number of respondents who chose them. A majority
percentage was translated to be a suggested main factor
the choices presented. These results were also illustrated
on a bar chart for ease of visualization, where the height
of each bar corresponded to the count of respondents who
chose the factor under consideration.

In order to determine how other factors presented in
all the questions of the questionnaire affected the re-
sponses above, a two dimensional analysis was also em-
ployed as in Table I, where each matrix is a combination
of two questions.

Due to the length of analysis of the four questions (Q6,
Q7, Q13 and Q14) which surpasses the page limitation,
only the significant results in the analysis were chosen
and discussed for all the two dimensional analyses in
this report. The main method used to analyse the cross-
relationship in this case was cross-tabulation. Other tech-
niques such as the Pearson χ2 test, independent sample t-
test and ANOVA were also used to analyse the significance
of the relationships.

Normality of the items were tested using Shapiro-Wilk
W test as this test has the best power for a given signifi-
cance, followed closely by Anderson-Darling when com-
paring the ShapiroWilk, KolmogorovSmirnov, Lilliefors,
and Anderson-Darling test, [1]. The randomness of missing
values were tested using Little’s MCAR test.

III. RATIONALE OF THE ANALYSIS METHOD
SELECTED

There were many ways that the data from the ques-
tionnaire could have been analysed in order to arrive at
some conclusion. However, careful consideration was given
to selecting the methods of presenting and analysing the
responses to the questionnaire in order to ensure that the
conclusions arrived at were accurate and reliable. The

following section discusses some of the factors that were
considered in choosing the methods to perform the analysis.

A. Individual analysis methods
For one dimensional analysis, the method chosen to

analyse the responses to each question in the questionnaire
depended largely on the type of question. All of the four
questions analysed for this paper involved multiple choices
in which the respondents were allowed to pick any two.
It is important to note that there are many factors that
could influence the utilization of modelling techniques in
system/software architecture description. Similarly, there
are many factors that could influence quantitative evalu-
ation for software architectures. Given the diversity of the
respondents who participated in the questionnaire, it could
therefore be expected that the factors they identified varied
widely. If the questions were left open-ended, it would be
hard to analyse the responses quantitatively. For this reason,
the questionnaire was designed in such a way that the most
common factors were identified by the researchers based
on past experience and analysis.

The identified measures discussed above enabled quan-
titative analysis in which the importance of a factor was
gauged by the number of respondents who chose it. Thus,
it was appropriate to analyse the results using a frequency
table for each of the questions. A pie chart was not
appropriate for representation of these results pictorially
since respondents were allowed to identify more than one
factor, therefore the results did not total up to 100%. For
this reason, a bar chart was more appropriate.

B. Multi-dimensional analysis methods
Since the four questions were close-looped, one dimen-

sional analysis alone would not have been sufficient to draw
meaningful conclusions. It was necessary to identify the
trend in the responses given by the various respondents
based on their responses to the rest of the questions. For
this purpose, all significant results from all combinations
in the two dimensional analysis that included any of the
four questions relevant to in this paper were analysed
alongside the selected questions in the survey (see Table I),
to determine the relationships that could be present, thus
contributing to this study’s objectives.

For cross-comparison with questions which involved a
nominal scale such as Q2–Q8, Q13 and Q14, cross tabula-
tion was considered more appropriate. In order to determine
the level of dependency between the two questions under
examination in each case, a Pearson-Chi Square test was
conducted on each of the pairs too.

Questions 9 and 10 as well as Q15 to Q23 in-
volved an ordinal scale. For this category of questions,
it was necessary to use independent sample t-tests to
deduce a cross-relationship with the chosen question in
two dimensional analysis.

In the two dimensional analysis, most of the questions
did not yield any significant results regarding the relation-
ship between them. This led to the conclusion that three

APPENDIXA. PUBLICATIONS

294

TABLE I
TWO DIMENSIONAL MATRICES

Quest. # Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12Q13Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23

Q6 X1 X2 X3 X4 X5 X6 X7 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18

Q7 X19 X20 X21 X22 X5 X23 X24 X24 X25X26 X27 X28 X29 X30 X31 X32 X33 X34 X35

Q13 X36 X37 X38 X39 X8 X25 X40 X41 X42 X43 X44 X45 X46 X47 X48 X49 X50 X51 X52 X53 X54

Q14 X55 X56 X57 X58 X9 X26 X59 X60 X61 X62 X63 X45 X46 X47 X48 X49 X50 X51 X52 X53 X54

Where:
• Xi – is the matrix number;
• empty cell: No combinations been selected.

dimensional or 4-dimensional analyses were all invalid due
to low cell expected frequencies.

IV. STUDY FINDINGS

Taking into consideration all the analysis precautions
above, this study yielded the following results regarding the
most important factors that influence the use of modelling
techniques in the description of system/software architec-
ture, as well as the most important factors that either
support or hinder automation for SA.

Before proceeding to analysis, missing value analysis
was performed to see whether the pattern of missing values
were completely random. None of the main questions Q6,
Q7, Q13 and Q14 do not have any missing values. All of
the Likert scaled statements (Q9, Q10, Q15 Q23) had less
than 15 percent missing values, the percentage of missing
values were within the range of (8 12) percent except
Q18 and Q23, they had 14 percent missing values. The
Little’s MCAR test was insignificant, (χ2 = 40.72, df = 62,
p-value = .983> .05). So, the missing value patterns were
completely random and hence they would not create any
biasedness in test results.

A. One dimensional Analyses

As shown in Figure 2, according to the majority of
respondents, the main factor that encourages the utiliza-
tion of modelling techniques in describing software/system
architecture is the fact that it is “easier to demonstrate
the software/ system concepts and features” as identified
by 60% of the respondents. A further, 28% noted that
“it makes designers’/programmers’ job much easier”. The
remaining factors were all considered as less important
even though participants were able to select two of the
available choices.

Four out of 50 respondents did not respond to this
question. The possible reason for this could be that the re-
spondents had no experience working with system/software
architecture, and so (in all honesty) they could not comment
on the factors that influence or hinder their use.

Figure 2, depicts clearly that the use of models indeed
makes it easy to demonstrate the software/system concepts
and features. This is a major factor that supports the use of
models in system/software architecture description.

The respondents also singled out “the difficulty in inte-
grating system/software models with other artefacts such

5 10 15 20 25 30 35

Easier to demonstrate the software/system
concept and features.

Most available architecture modelling refer-
ences are clear and well documented, which
helps developers understand and apply the
modelling approach easily.

It makes the designers/programers job much
easier.

Makes the evaluation of stakeholders require-
ments for quality attributes possible in the
early stages of the development life cycle.

Reliable modelling tools for describing the ar-
chitecture exist, which makes the usability
factor much easier.

The wide range of modelling language formal-
ity (from informal models to formal), makes
the selection of architecture description tech-
nique more feasible.
Architectural models can be compiled to pro-
duce a real functioning software/system with
existing modelling languages and tools, (e. g.
SysML, xtUML).

Teaching of the architecture modelling lan-
guages in the academic sectors.

30

8

14

11

4

2

6

8

Frequency

Fig. 2. Encouraging factors for the utilization of models to describe soft-
ware/system architecture.

as Design Models” as the main factor that discourages
the use of modelling techniques in system/software archi-
tecture description. Closely following this is “the lack of
standardization between the existing architecture modelling
techniques, notions and semantics”. This SA standardiza-
tion challange was identified by [2]. Furthermore, 22%
acknowledged in the previous question that the use of
models “makes the evaluation of stakeholders requirements

8 10 12 14 16 18 20

Hard to integrate these models with other
artefacts (e. g. Design models), so they become
standalone models, which to some degree are
not that useful during the development of soft-
ware/system.

Lack of standardisation between existing ar-
chitecture modelling technique, notations, and
semantics.

Current architecture description languages
(including modelling languages) are still im-
mature.

Modelling the architecture has limited bene-
fit to the whole software/system development
process, so it’s to some extent a waste of time
and money.

Hard to evaluate architecture models against
any stakeholder’s quality attributes (e. g. Se-
curity, performance).

19

17

8

12

13

Frequency

Fig. 3. Discouraging factors for the utilization of models to describe
soft- ware/system architecture.

295

TABLE II
IMPORTANT FACTORS THAT COULD SUPPORT QUANTITATIVE EVALUATION FOR ANY SA

What are the most important factors that could
SUPPORT quantitative evaluation for any software
architecture (SA)? You may choose two.

Responses Percentage based on who responds
to this question (N’=43)

Percentage based on total
responses (N=50)

The language used for describing SA 7 16.3% 14.0%

Formality level of SA description 12 27.9% 24.0%

Using standard language and architecture framework
for describing SA 20 46.5% 40.0%

Tools availability for describing and evaluating SA 22 51.2% 44.0%

Documenting mechanism used during SA description 9 20.9% 18.0%

for quality attributes possible in the early stages of the
development life cycle”, 26% reckon that it is “hard to
evaluate architecture models against any stakeholder’s qual-
ity attributes (e. g. Security, performance)”. A further 24%
think that “modelling the architecture has limited benefit
to the whole software/system development process, so it’s
to some extent a waste of time and money”. Finally,
16% of the respondents pointed out that “current architec-
ture description languages (including modelling languages)
are still immature”.

As can be observed in Figure 3 all the factors iden-
tified above carry some weight as hindrances to the use
of modelling in software/system architecture description.
All the five factors thus need to be taken into careful
consideration in efforts to encourage developers to use
models in their work. Although, there are a recognised
effort done to improve some of the areas that hinder the use
of, frameworks and models to describe and document SA,
such as [3], [4], [5], [6], and [7]. However, More research
and effort need to be made, to improve the utilization and
usability factors of SA modeling techniques.

Comparing the responses to the two questions, we believe
that the factors that discourage the use of models in SA
description far outweigh the factors that may support or
encourage their use. This leads us to conclude that even
though the use of modelling techniques in system/software
architecture description is important, there is still a lot that
needs to be done to make the process more effective and
easier to use for developers.

As identified above, it is clear that there is a divided view
about the contribution of modelling in making the process
of evaluation effective. This is because evaluation of soft-
ware architecture in general, is a fundamental component
of development that should be embraced by all developers.
While some of the developers have embraced quantitative
evaluation for SA, there are still many others who haven’t
used it. This is influenced by a number of factors.

According to the analysis of responses which are shown
as percentage frequency in Table II, the main factor that
could support quantitative evaluation for any SA is “the
availability of tools for describing and evaluating software
architecture”. This is closely followed by the “use of stan-

dard language and architecture framework for describing
SA”. Some attempt been done to improve the area of
both factors above such as, modeling tool by [8], also the
architecture description interchange language by [9], and
the architectural model-based language by [10]. However,
it not been spread out within industry so far.

The other factors that could support quantitative evalua-
tion for SA include the formality level of SA description,
documentation mechanism used during SA description, and
the language used for describing SA.

We therefore believe that in order to influence the use
of quantitative evaluation for SA, not only do the tools for
describing SA need to be availed, but it is also important to
pay close attention to the language that is used in describing
SA in terms of its formality, standardization and nature. As
seen from Table II, a total of 39 (out of 43) respondents
identified factors that have to do with the language used in
describing SA. Finally, it is also important to improve on
the documentation of SA description.

Further, analysis on the main factors that discourage the
use of quantitative evaluation for SA reveals that one of
these factors is the “formality level of SA description”
used. We think that some improvement and adjustment of
Rushby’s four levels of formalization [11], to suit SA will
help Architects to know how far they should formalize SA.

The other main factor as identified by respondents is
“the language used for describing the SA”. Others include
the availability of tools for describing the SA, the docu-
mentation mechanism used during SA description and the
use of standard language and framework for describing
SA. It is noted that two factors were identified as the
major by the respondents surrounding hindrances - tools
and description languages. This seems a valid expectation
based on researchers preliminary investigation, showing the
reliability of the results.

A closer analysis of these results with the results for the
factors that could support the use of quantitative evaluation
for SA shows that there is a similarity in the factors
identified. As seen from Table III, the three main factors
that hinder the use of quantitative evaluation in SA still
revolve around the availability of tools, formality level of
SA description, as well as the language used in description
of SA. We therefore believe that a solution must involve

APPENDIXA. PUBLICATIONS

296

TABLE III
IMPORTANT FACTORS THAT COULD HINDER QUANTITATIVE EVALUATION FOR ANY SA

What are the most important factors that could HINDER
quantitative evaluation for any software architecture
(SA)? You may choose two.

Responses Percentage based on who
responds to this question (N’=43)

Percentage based on total
responses (N=50)

The language used for describing SA 17 40.5% 34.0%

Formality level of SA description 21 50.0% 42.0%

Using standard language and architecture framework for
describing SA 5 11.9% 10.0%

Tools availability for describing and evaluating SA 15 35.7% 30.0%

Documenting mechanism used during SA description 6 14.3% 12.0%

TABLE IV
CROSS TABULATION BETWEEN RESPONDENT’S (FREQUENT USAGE OF MODELS) AND THE (MAIN FACTORS THAT DISCOURAGE THE

UTILIZATION OF SA MODELLING TECHNIQUES)

What are the main factors that DISCOURAGE the
utilization of modelling techniques to describe soft-
ware/system architecture? You may select up to two
options.

How often do you use models to describe software/system architecture during your
work?

Never
Infrequently

(¡10%)
Reasonably frequent

(¿15% and ¡50%)
Regularly (¿50%

and ¡80%)

Nearly
always
(¿90%)

Hard to integrate these models with other artefacts (e.g.
Design models), so they become standalone models,
which to some degree are not that useful during the
development of software/system

1 8 8 1 1

Lack of standardisation between existing architecture
modelling technique, notations, and semantics 0 7 4 4 2

Current architecture description languages (including
modelling languages) are still immature 0 2 3 2 1

Modelling the architecture has limited benefit to the
whole software/system development process, so it’s to
some extent a waste of time and money

5 3 3 0 1

Hard to evaluate architecture models against any stake-
holder’s quality attributes (e.g. Security, performance) 3 2 6 1 1

TABLE V
CROSS TABULATION BETWEEN RESPONDENT’S (YEARS OF EXPERIENCE) AND THE (MAIN FACTORS THAT DISCOURAGE THE UTILIZATION OF

SA MODELLING TECHNIQUES)

What are the main factors that DISCOURAGE the utilization of modelling
techniques to describe software/system architecture? You may select up to two
options.

How many years of experience do you have in total in the
software/systems development field?

5–10
(years)

10–15
(years)

15–20
(years)

20–25
(years)

Over 25
(years)

Hard to integrate these models with other artefacts (e.g. Design models), so they
become standalone models, which to some degree are not that useful during
the development of software/system

8 3 3 4 1

Lack of standardisation between existing architecture modelling technique,
notations, and semantics 7 1 2 4 3

Current architecture description languages (including modelling languages) are
still immature

0 4 1 2 1

Modelling the architecture has limited benefit to the whole software/system
development process, so it’s to some extent a waste of time and money 7 4 0 1 0

Hard to evaluate architecture models against any stakeholder’s quality attributes
(e.g. Security, performance) 8 4 0 0 1

297

TABLE VI
CROSS TABULATION BETWEEN (MOST IMPORTANT FACTORS THAT COULD SUPPORT QUANTITATIVE EVALUATION) AND THE STATEMENT

“CURRENT TECHNOLOGY ALLOWS US TO DEVELOP GENERAL SOFTWARE EVALUATION MODELS THAT ASSESS ANY SOFTWARE ARCHITECTURE
AGAINST ANY QUALITY ATTRIBUTE”

What are the most important factors
that could SUPPORT quantitative eval-
uation for any software architecture
(SA)?

Current technology allows us to develop general software evaluation models
that assess any software architecture against any quality attributes.

Strongly Disagree Disagree Neutral Agree Strongly Agree

Count Count Count Count Count

The language used for describing SA 0 3 2 2 0

Formality level of SA description 3 2 3 4 0

Using standard language and architec-
ture framework for describing SA 0 7 6 5 1

Tools availability for describing and
evaluating SA 2 5 10 2 1

Documenting mechanism used during
SA description 0 1 7 1 0

these three factors.

B. Two dimensional Analyses

In order to check for any relationship between the
responses to the questions under consideration in this paper,
a two dimensional analysis of all combinations of questions
that involve any of Q6, Q7, Q13 or Q14 was performed.
This section reports the findings of these analyses for
meaningful conclusions. Assumption of normality for the
Likert scaled statements (Q9, Q10, Q15 to Q23) were
performed using Shapiro-Wilk W statistic. Shapiro-Wilk W
test confirms that each of the item was come from a normal
population (p-value> .05) except Q22. So, parametric tests
are applicable to all these items except Q22. The W test
result for Q22 is , W = 0.92, Z = 2.61, p-value< .01 but
since Shapiro-Wilk W statistic is close to 1, parametric tests
are still applicable.

In comparing all the questions that involved a nomi-
nal scale, one of the significant relationships that were
noted was between “how often respondents use models”
to describe software/system architecture during their work
and “the main factors that encourage the utilization of
modelling techniques to describe software/system archi-
tecture”. A χ2 test conducted on this cross-relationship
shows that the results are significant at 1% level (χ2 = 56.5,
p-value< .01), which shows a very strong association be-
tween the two items.

Similarly, it was noticed that a significant association (at
the 5% level) between “the main factors that discourage
the utilization of modelling techniques in system/software
architecture description” and “the frequency of use of
software/system architecture by developers in their work”
(χ2 = 33.5, p-value< .05). The full analysis of the results
is shown in Table IV.

Another significant association was noted between results
of “the main factors that discourage the utilization of
modelling techniques in SA description” and “the years
of experience” in total in the field of software/system

development (χ2 = 30.44, p-value< .07). A cross tabulation
of the results is shown in Table V.

These associations were expected since developers who
never use models to describe software architecture may
not be able to point to the reasons that influence them, as
opposed to those who use models more often. This extends
to developers who have not stayed in the development
industry for long to identify the trends in the use of models
in SA description.

We therefore believe that in order to improve the process
of identification of these factors, it is necessary to encour-
age developers to use modelling techniques in SA descrip-
tion more frequently. More efficiency may be obtained by
choosing respondents who have gained a long-time expe-
rience in system/software development for similar surveys
in the future. The results also reveal less respondents with
over 25 years of experience identified the factors listed as
hindrances to the use of modelling in SA description. This
could mean that utilization of modelling becomes easier
and more efficient as the developers stay in the industry
longer, or it could mean that the percentage of respondents
with over 25 years experience was too low for results to be
significant.

In identifying two dimensional relationships around the
factors that may discourage the utilization of modelling
techniques in SA description, a null hypothesis, H0: µ1 =µ2

was developed alongside an alternative hypothesis, Ha:
µ1<µ2 where, µ1 = the population mean of the selected
item (the column variables) for the respondents who an-
swered “YES” to the item “Hard to integrate these models
with other artefacts (e. g. Design models), so they become
standalone models, which to some degree are not that
useful during the development of software/system” and µ2

= the population mean of the selected item (the column
variables) for the respondents who answered “NO” to the
same statement above. An independent sample t-test used to
test the above hypothesis with the item “Usage of software
style/pattern concepts & models during architecture devel-

APPENDIXA. PUBLICATIONS

298

opment, increases the utilisation of modelling description
languages, BUT decreases the simplicity of the architecture
evaluation” showed a significance at the 5% level, t=−1.8,
p-value< .05, power = .60. To achieve 80 percent power
a sample of n1 = n2 = 51 needed. This shows a lower
population mean for those who answered “Yes” to the
hypothetical statement compared to those who answered
“No”.

This also shows the contribution of (software patterns)
which were evaluated in the previous questionnaire in
an effort to minimize the hindrances to the utilization
of modelling techniques in system/software architecture
description. Also, the result above could be due to the
respondents’ disagreement to the second part of the pattern
statement, which is (Usage of software style/pattern con-
cepts & models during architecture development, increases
the utilisation of modelling description languages, BUT
decreases the simplicity of the architecture evaluation).

A significant relationship was also noticed between the
most important factors that could SUPPORT quantitative
evaluation for any software architecture (SA) and the opin-
ion that “Usage of software style/pattern concepts & models
during architecture development, increases the utilization
of modelling description languages, BUT decreases the
simplicity of the architecture evaluation”, χ2(20)= 34.36,
p-value< .05. This further reveals the contribution of soft-
ware style/patterns on both SA evaluation as well as the
use of modelling techniques in SA descriptions.

TABLE VII
PEARSON CHI-SQUARE TEST RESULTS FOR ANALYSES OF QUESTIONS

Q13 AND Q22.

What are the most impor-
tant factors that could SUP-
PORT quantitative evaluation
for any SA? You may choose
two.

Current technology allows us
to develop general software
evaluation models that as-
sess any software architecture
against any quality attributes.

Chi-square 30.75

df 20

Sig. .059

Similarly, the evaluation of the statement that “there
is still vagueness in the current literature concerning the
differences between the architecture abstraction and high
level design, which causes some confusion and perhaps
wastes time during development by architects and design-
ers” around the null hypothesis, H0: µ1 =µ2 and alternative
hypothesis, Ha: µ1 6= µ2 where µ1 = the population
mean of the selected item (the column variables) for
the respondents who answered “Yes” to the item “Hard
to evaluate architecture models against any stakeholder’s
quality attributes (e. g. Security, performance)” and µ2 = the
population mean of the selected item (the column variables)
for the respondents who answered “No” to the item “Hard
to evaluate architecture models against any stakeholder’s

quality attributes (e. g. Security, performance)” showed a
significantly lower population mean for those who re-
sponded “Yes” to the item than those who responded “No”,
t=−1.96, p-value = .028 < .05, power = .46. To achieve 80
percent power, a sample size of n1 = n2 = 76 needed. The
results are arrived at by considering a left-tailed population.

Also, more analysis reveals that the relationship was also
detected for the factor “Most of the existing software ar-
chitecture evaluation methods, produce qualitative results”,
t= 1.94, p-value = .03 < .05, power = .72. To achieve 80
percent power, a sample size of n1 = n2 = 34 needed.

In a similar way, a significant relationship was estab-
lished at 6% level, between the most important factors that
could SUPPORT quantitative evaluation for any software
architecture (SA) and the opinion about the statement “Cur-
rent technology allows us to develop general software eval-
uation models that assess any software architecture against
any quality attributes” χ2(20)= 30.75, p-value< .06. The
results of the cross-comparison are shown in Table VI,VII.
This relationship is an indication of the effect of the use
of current technology on factors that could support quan-
titative evaluation of SA, as well as the use of modelling
in SA descriptions.

Furthermore, independent sample t-tests performed to
determine the association in the agreement to the statements
“Developing software/system architecture using current
architectural frameworks (e. g. ISO/IEC 42010, DODAF,
RUP/4+1) increases the reliability, standardization, and
reusability of the resulting architecture” and “Usage of
software style/pattern concepts & models during architec-
ture development, increases the utilization of modelling
description languages, BUT decreases the simplicity of the
architecture valuation” as compared with the responses to
the main factors that encourage the utilization of modelling
techniques to describe software/system architecture. Both
statements’ relationships (above) with all encouraging fac-
tors are insignificants at the level of 5%. This independence
in opinion is expected and it shows the genuineness of
the responses given in this study to evaluate the factors
that influence the use of modelling as well as quantitative
evaluation in SA description.

In order to determine the cross-relationship between
the responses with ordinal items in Q15 to 23, null and
alternative hypotheses were formed equating the pairs of
items. Interesting relationships were noted. For example,
there was a significant relationship at the 5% level (t= 2.2,
p-value< .05), power = .74, pointing out that the popu-
lation mean of the item “Reliable tools are important for
developing/or evaluating software/system architectures” is
significantly higher for the respondents who replied “Yes”
to the item “It makes the designers/programmers’ job much
easier”. This is an expected relationship, showing the zeal
of developers to find effective tools to make their work
easier, thus supporting the use of models in SA description.

Similar relationships were noted between the population
means for the item ”Architecture is design, but NOT all

299

design is Architecture” which is significantly higher for the
respondents who replied “Yes” to the item “Makes the eval-
uation of stakeholders requirements for quality attributes
possible in the early stages of the development lifecycle”.

Generally, the responses to some of the items in the
ordinal questions have identified critical factors that influ-
ence the use of models and quantitative evaluation in SA
description, which required more attention from software
engineers to improve the current state of the art in the
domain of SA. As a result, the above improvements will
impulse SA automation process in the industry.

V. CONCLUSION AND RECOMMENDATION

This study has helped to uncover and then confirm some
of the most important factors that encourage or hinder the
utilization of models in SA description as well as the use
of SA quantitative evaluation. These factors include the use
of SA standardized frameworks and description languages,
the level of SA description formality, interface mechanism
(integration) between SA artefacts and other phases within
the development lifecycle (e.g requirements and design).
Also, tools for describing SA are important, as well as SA
documentation process.

We believe that the above factors are key to improve
SA deliverables, evaluation processes, and automation pro-
cedures. It is of paramount importance to encourage the
use of models in the description of system architecture due
to the fact that have been identified above. Unfortunately,
most of the developers don’t often use models in SA de-
scriptions, due to the reasons that have been identified. We
recommend further research to focus on the solutions that
could be implemented for the hindrances, while devising
ways of encouraging the use of models by enhancing the
encouraging factors identified above.

As identified by the two dimensional analysis, most of
the experiences of developers with the use of models in
their work are influenced by other factors. For example,
it is clear that people have a need for tools which can
make their work easier in software development. It has
been clearly identified in this research that one of the most
important factors that encourages the use of models in
software architecture description is the ability to ease the
developers’ work. Thus, more emphasis needs to be given to
the use of models in the developers’ work. The first step to
achieving this and encouraging more developers to embrace
it, is to find solutions to the hindrances identified above.
This is also the case for the use of quantitative evaluation
of software architectures.

REFERENCES

[1] N. M. Razali and Y. B. Wah, “Power comparisons of shapiro-wilk,
kolmogorov-smirnov, lilliefors and anderson-darling tests,” Journal
of Statistical Modeling and Analytics, vol. 2, no. 1, pp. 21–33,
Retrieved 5 June 2012. 2011.

[2] D. Garlan, “Software architecture: a roadmap,” in Proceedings of
the Conference on The Future of Software Engineering, ser. ICSE
’00. New York, NY, USA: ACM, 2000, pp. 91–101. [Online].
Available: http://doi.acm.org/10.1145/336512.336537

[3] P. Clements, Documenting Software Architectures: Views and Be-
yond. Boston, USA: Pearson Education, 2003.

[4] D. Milicev, Model-Driven Development with Executable UML. In-
dianapolis: Wiley Publishing, 2009.

[5] J. R. U. G. Graham Bleakley, Matthew Hause, “Updm – unified
profile for dodaf/modaf.”

[6] T. Weilkiens, Systems engineering with SysML/UML: modeling,
analysis, design. Morgan Kaufmann, 2007.

[7] T. Stahl and M. Völter, Model-Driven Software Development: tech-
nology, engineering, management. Chichester, UK: John Wiley &
Sons, 2006.

[8] “http://www.atego.com/products/atego-modeler/.”
[9] D. Garlan, R. Monroe, and D. Wile, “Acme: An architecture descrip-

tion interchange language,” in Proceedings of the 1997 conference
of the Centre for Advanced Studies on Collaborative research. IBM
Press, 1997, p. 7.

[10] P. H. Feiler and D. P. Gluch, Model-based engineering with AADL:
An introduction to the sae architecture analysis & design
language. Addison-Wesley, 2012.

[11] J. M. Schumann, Automated theorem proving in software engineer-
ing. Berlin: Springer-Verlag, 2001.

APPENDIXA. PUBLICATIONS

300

Appendix

B
Complementary background

information for Chapter 2

B.1 Introduction

This appendix contains some sections, which include information, figures, and tables that might

support my arguments, analysis, and discussion presented in the background chapter, (Chapter 2). The

following sections of this appendix does not designed as an isolated entities that can be understandable

without their links to the main related sections on Chapter 2 where they have been cited.

B.2 MDAAdvantages and Disadvantages

Marking model

’Directives’ to control the
model transformation process

UML Platform
Independent Model

(PIM)

Application model with no
dependecies on any spe-
cific target

Transform
PIM to for
separate PSM

UML Platform
Specific Model

(PSM)

Application model for a
specific target platform

Generate im-
plementation

Implementation
Artefacts

e. g.:
source code
HDLs
text cases

Automation Automation

Flexible control over PIM-PSM transformation

Clear separation of concerns

Figure B.1: MDA advantages, After Flint [2008].

301

APPENDIX B. COMPLEMENTARY BACKGROUND INFORMATION FOR…

Marking model

’Directives’ to control the
model transformation process

UML Platform
Independent Model

(PIM)

Application model with no
dependecies on any spe-
cific target

Transform
PIM to for
separate PSM

UML Platform
Specific Model

(PSM)

Application model for a
specific target platform

Generate im-
plementation

Implementation
Artefacts

e. g.:
source code
HDLs
text cases

Mixed Concerns
UML is huge and

poorly defined

Difficult to generate 100%
implementation

Hard coded concerns such
as User Interface and

Security

Figure B.2: MDA limitations, After Flint [2008].

B.3 More about ADLs

The architecture of a software application is a high level description of its structure made up of

individual independent components and is an important part of the success of the system. Along with

the system structure, the architecture also describes features and properties such as interactions between

the components, security and auditing frameworks, performance variables, accuracy, failure resistance,

compliance to standards and quality. Several factors, like reusability, flexibility of modification and

requirement compliance, need to be taken into account while choosing the architecture of a system to

ensure that the system is reliable and scalable. Inappropriate design of the architecture is responsible

for several software development related issues and sometimes can even lead to the failure of the entire

process.

Despite being extremely critical for the success of the system, most of the architecture descriptions

are based on informal methods without any tool support and hence are often vague, inconsistent, unver-

ified and open to misinterpretation. Many of the boundary assumptions made during the architecture

design are overruled during the development process. To overcome all these problems, formal methods

and notations have been proposed some common examples of which include ADLs and DSLs.

1. Components: These are the individual computational objects or elements of the system and are

the main participating entities of the system. A system is made up of several simple or composite

components interacting with each other.

2. Operators: The operators are used to describe the relationships between the individual components

and to represent the connectivity between components.

3. Patterns: The patterns describe the way in which the components are connected to each other.

These are more commonly known as design patterns and are templates for the design. Sometimes,

the patterns are also known by other names, like behavioural patterns and architecture patterns, but

overall the concept remains the same. These patterns are reusable and each pattern aims to solve

a specific design problem. The actual instances of the design are created during the design phase.

The template provides the blueprint for the element properties and interactions Qin et al. [2008].

The patterns can also be called as concepts instead of templates, which can evolve and produce

new patterns designed specifically to solve certain problems. This element emphasize the robust

relationship between Software Pattern (SP) and Software Architecture (SA).

4. Closure: It symbolises the data encapsulation property and is an entity, which has hidden data and

properties within it. The entity can be used as a normal function to achieve certain goals.

5. Specification: This includes the functional rules apart from other type of specifications like perfor-

mance and fault-tolerance.

302

B.3. MOREABOUT ADLS

Apart from the above mentioned elements, there are also other views related to ADLs along with

their elements, like properties, ports, roles, red-maps and bindings, which have been proposed by other

researchers like Garlan, Monroe and Wile. Even though the different ADLs available have different

capacities and functionalities, they are tied together on the basis of a common design concept of archi-

tectural description. According to Shaw et al. [1996],Medvidovic et al. [1997], the main elements of this

basis are as follows:

1. Components are the individual elements of the system and connectors represent the way they in-

teract with each other.

2. A system is made up of components and connectors. A system may be made up of several hierar-

chical sub-systems each of which is made up of components and connectors. A component can also

have its own architectural description known as sub-architecture used to describe the finer details

of the component if needed. The overall structure of the system can be described independent of

the components and connectors that make it up.

3. Information about the system characteristics is stored in fields known as properties. Each ADL has

its own set of important properties but all of them provide some way of storing and analysing some

extra-customised properties as well. For example, there are properties that hold calculated system

throughput based on performance measures, Shaw et al. [1996].

4. Constraints are the system boundaries, which remain constant over time and system evolution.

Some typical constraints are the range of allowable values and topology. For example, some ad-

ministrative applications might restrict the number of clients that can connect to the server to a

minimum value to ensure changes made by one administrator are not being overwritten by another.

5. Architectural styles basically define the way elements are composed and connected to each other.

For example, data-flow architecture is composed of pipes and lines connected together with spe-

cific graphical notations. Similarly, blackboard architecture is comprised of knowledge banks (re-

sources) and systems working together with a central control mechanism. Afew architectural styles

even provide a framework library that can be customised according to the needs of an application.

Some typical examples are the resource management style schema, networking style schema.

B.3.0.1 ADL elements

The usage of ADL is similar to the use of any other programming languagewherein the programming

can be done either by entering data in the form of text or by using supporting graphical tools. According to

the classic theory of Shaw et al. [1996] proposed in Shaw et al. [1996], the main elements of an ADL are

defined as components, operators, patterns, closure and specification; each of which is outlined below:

B.3.0.2 Design goals of ADLs

As mentioned before, there are several ADLs available in the market. However, before choosing a

particular ADL, it is important that the ADL meets certain design goals and criteria. First and foremost,

the ADL should support dynamic analysis of the architectural structure during run time. All the elements

of the system, like components, connectors and configuration elements, should be modifiable dynam-

ically. The architectural structure may be made up of a combination of components, connectors and

configuration elements, none of which is mandatory. In any architecture, the components and connectors

interact with the external environment through interfaces. The connector elements also interact with the

components and connect and disconnect with them regularly through these interfaces. The configuration

files hold design and runtime information about the structure and hierarchy of the architecture and are

also used for validation purposes.

Secondly, an ADL should allow hierarchical system descriptions so that the system can be described

at multiple levels in terms of several interrelated subsystems with separate configuration settings for each

subsystem. This makes the overall system easier to understand and flexible. The ADL should also allow

styles to be defined and extended as needed. This allows the system to be described at as abstract a level

as needed.

Thirdly, an ADL should use formal methods and tools for system verification purposes irrespective

303

APPENDIX B. COMPLEMENTARY BACKGROUND INFORMATION FOR…

Table B.1: ADL design goals

ADL Language Design goal

C2 Taylor et al. [1996] Primarily used in Graphical User Interface (GUI) development and

supports reusability in development. GUI development forms a large

fraction of any software development cycle, yet reusability is a rare

functionality in GUI design. C2 also allows dynamic component

changes.

WRIGHTAllen et al. [1997] This provides support for customised vocabularies along with regular

functionalities like specification, analysis, description, validation etc.

It provides special attention towards the specification of interactions

between the components of the system and allows for the analysis of

these interactions at a high level.

ACME Garlan et al. [1997] This is primarily an interchange ADL. See (Section 2.3.4 - Chapter 2)

.
Darwin This is primarily used to describe systems which are made up of vary-

ing components and interactions in a declarative manner and supports

distributedmessaging. The notations for these diverse systems are kept

as general as possible.

π-ADL Oquendo [2004b] This is meant primarily for dynamic and mobile architectures wherein

the dynamic architecture components can change in real-time.

xADL Dashofy et al. [2005] This enables faster ADL constructions and provides better scalability.

KDLHe et al. [2005] This is a domain specific ADL used mainly for E-commerce (EC)

knowledge description.

Aesop This ADL provides style support.

Meta-H This is a domain specific ADL used in the description of real time

avionics control software.
Rapide This provides design simulation and analysis tools for architecture de-

scriptions. The simulation outputs can also be analysed using the tools.

SADL This lays the foundation for refining architectural descriptions.

UniCon This provides support for combined heterogeneous component and

connectors and uses a high level compilation tool.

of whether it is a general purpose ADL or domain specific. General purpose ADLs should ensure that

the design and the features are kept as simple and minimal as possible. If the ADL is domain specific,

it should also allow domain related notations and terms to be employed within it to support specific

functionalities.

Overall, the purpose of ADL is to provide an extensible framework as well as syntax library for

describing various types of system architectures along with supporting tools for various functions like

parsing, display, compilation, simulation and any other architecture description related activities. Table

B.1 describes some common ADLs, their design goals and their behaviour. There are also other parame-

ters for ADL comparison like behaviours and supported interfaces. Some of these common characteristic

comparisons are illustrated by Table B.2. Both tables mentioned above are a critique summary about the

current state of the art, such as Bass et al. [2013], Qin et al. [2008], Garlan et al. [2006b], Dissaux et al.

[2005], Oquendo [2004b], Bosch et al. [2002], Medvidovic et al. [2000], Medvidovic et al. [1997], and

Garlan et al. [1997].

Table B.2: ADL characteristics

Modelling

Connectors

Some of the commonADLmodel connectors areACME, C2,WRIGHT, xADL

and π-ADL model connectors. Connectors, which are represented by Darwin,

where the bindings are fixed and cannot be sub typed or reused. They use inline

modelling and are generally unnamed.

304

B.3. MOREABOUT ADLS

Table B.2: (continued)

Interfaces Connector interfaces are generally available only for connectors modelled at

the first level of hierarchy. There is no difference in component and connector

interfaces except in the way they are referred. In some ADLs like ACME and

WRIGHT connector interfaces are called roles, in some others like xADL they

are called interfaces. All of them allow type definitions for these interfaces. In

WRIGHT ADL, the interaction protocols at each stage in the Communicating

Sequential Processes (CSP) remains uniform.

Types Connector types and instances are considered to be different only in those

ADLs in which the connectors are modelled at the first level of hierarchy

and hence Darwin does not come into picture whereas ACME, C2, WRIGHT,

xADL, π-ADL etc. distinguish between the two. These ADLs model connec-

tor types on the base of interaction protocols. Also, ACME and xADL allow

connector instances, which do not have a type definition.

‘ACME and π-ADL’ provide parameter support which means that the connec-
tor signatures can be specified in a customised format along with any applica-

ble constraints. This allows for flexible interfaces. Similarly, WRIGHT allows

connector parameterization based on its behaviour.

Behavioral

Specifications

C2 allows certain specifications and semantics through the use of invariants.

WRIGHT also supports component and connector behavioural specifications

through a language called CSP. Darwin and π-ADL use π-calculus to describe
specifications and properties. π-calculus is an important concept in the descrip-
tion of behaviour specifications. Random complex specifications are treated as

continuous annotations inACME and xADL. The behaviour specifications are

different for each type of ADL.

Modelling,

Configurations,

Compositionality

Most ADLs allow hierarchical descriptions of systemswith subsystem configu-

rations. The hierarchies can be described in the samemanner as configurations.

In case of Darwin such systems are modelled as composite components instead

of using configuration elements. ACME supports hierarchical description for

both components and connectors and calls it representations. WRIGHT also

allows composite components and connectors along with configuration sup-

port. A composite component is again represented by a separate configuration

segment.

In π-ADL, components and connectors can be used to construct further com-
posite elements, components or connectors and vice versa. Also, it supports

decomposition and recomposition.

Implementation Only some ADLs provide implementation support and even those are tightly

coupled to some programming language. For example, Darwin allows deploy-

ment of components developed in C++. C2 supports elements developed using

C++,Ada, and Java, while xADL supports elements coded using Java. This de-

pendency on language sometimes reduces their flexibility and makes the usage

limited to certain platforms.

305

APPENDIX B. COMPLEMENTARY BACKGROUND INFORMATION FOR…

Table B.2: (continued)

Dynamism Darwin, C2 and π-ADL all allow the system and the configuration elements to

change at runtime. Darwin supports this by virtue of lazy and dynamic instan-

tiation where instantiation is done as and when needed. This is similar to the

lazy loading concept in Object Oriented analysis. C2 has its own architecture

modification language which allows dynamic modification of elements of the

architecture at runtime. The modification language known as AML supports

insertion, deletion and rewiring of new elements at specific locations with the

help of 4 pre-defined functions called AddComponent, RemoveComponent,

Weld and Unweld. π-ADL allows dynamic behaviour based on certain run-

time parameters and conditionsOquendo [2004a] and also supports description

of mobile architecture Qin et al. [2008].

However, since most of the information is known only at design time and not

actually at run time, most ADLs are static which diminishes their applicability

and efforts are on to create new andmore dynamicADLs. For example, the new

versions of xADL might include new modelling constructs which will support

distributed and dynamic architectures.

B.3.0.3 The Most ADLs that are still supported

Table B.3: TheMost KnownADLs that still supported: the table contains also approaches which

are considered non-conventional ADLs, since they might neglecting fundamental aspects, After

Rech et al. 2009, pp 267 .

ADL
Born
Data Tools

Still
Supported

Notes

Rapide 1990 Rapide NO ADL and simulation

Darwin 1991 LTSA + SAA YES Focus on dynamic SA

Weaves 1991 Weaves NO Data-flow-architectures

with high-volume of data
Adage 1992 – NO Avionics navigation and

guidance Architecture

Description
LILEANNA 1993 LILEANNA NO Modeles connection lan-

guage
MetaH & MetaS 1993 MetaH YES ADL for avionic domain

ArTek 1994 – NO Non conventional ADL

Resolve 1994 Resolve NO Focus on Components

Specification
Wright 1994 Wright NO Focus on communications

ACME 1995 ACMEStudio Armani YES Interchange Language be-

tween ADLs
SADL 1995 Sadl tool NO Focus on Refinement

UniCon 1995 Unicon NO Focus on connectors and

Styles
C2 SADEL & C2AML 1996 Dradel, SAAGE Arch-

Studio

NO ADL based on C2 style

GenVoca 1996 P3 NO ADL based on C2 style

Fujaba 1997 Fujaba YES Non conventional ADL

Jacal 1997 Jacal 2 YES Focus on prototyping SA

Koala 1997 Koala tools YES ADL for product families

Little-JIL 1998 Little-JIL 1.0 NO Non conventional ADL

Maude 1998 Maude 2.0 YES Non conventional ADL

ADML 2000 ADML Enabled Tools YES XML-based ADL

xArch/xADL 2000 xADL 2.0 YES XML-based ADL

AADL 2001 Osate YES Embedded real-time sys-

tems / Avionics systems
xArch/xACME 2001 ACMEStudio YES ACME in XML

306

B.3. MOREABOUT ADLS

ABC/ADL 2002 ABC tool (prototype) YES ADL for component com-

position
Prisma 2002 PrismaCase YES Component-based systems

DAOP-ADL 2003 DAOP-ADTools YES Component and Aspect-

based ADL

307

APPENDIX B. COMPLEMENTARY BACKGROUND INFORMATION FOR…

308

Appendix

C
Database application

As extra information for the readers, this appendix includes the Database (DB) technical description,

extra snapshots, development changes, and difficulties, which seems to appropriate to be here rather than

in the main body of the thesis.

C.1 Technical description

• The application has been developed using Microsoft .NET Framework 3.5 and hosted on high

performance Internet Information Service (IIS).

• The programming language is C#.

• Implementation of ITIL framework.

• For storing data SQL server 2005 is used as DB.

• Basic HTML is used for presentation and as user interface.

• Real time display of data.

• All the data processing is done in SQL Server 2005.

• Hosted on a state-of-the-art infrastructure.

• From front end store procedure SP or simple query is used to fetch or update the data in SQL Server.

• For making connection to database, i.e. SQL, first of all once connection element has to created

syntax:

SqlConnection con = new SqlConnection(@``Server = TOSHIBA-PC\MSSMLBIZ;
Database=master; Integrated Security = SSPI'')

• After connection object is created command object is used to instruct SQL whether SPor general

query is being processed.

• Once connection is made query or SP is processed by SQL server, i.e., DB and result is returned.

After processing the result the connection is closed.

C.1.1 DB tables

1. Pattern table – MstPattern
txtPatName txtOtherName txtContext

VARCHAR (SIZE) 150 1000 2000

• txtPatName will be primary key.
• txtPatName will be used as foreign key.

2. Quality table – MstQuality

309

APPENDIX C. DATABASEAPPLICATION

txtQAName txtQADefinition
Varchar (150) Varchar (1000)

• txtQAName will be primary key.

• txtQAName will be used as foreign key.

3. Relation definition table – MstPatQualRelation
txtRelType (varchar (50))

S

H

B

No Effect

• txtRelType will be primary key.

• txtRelType will be used as foreign key.

• find out size of txtRelType individual text column.

• Check whether relation type can in future.

4. Matrix List – MstMatrix
txtMatrixName
varchar (500)

• txtMatrixName will be primary key.

• txtMatrixName will be used as foreign key.

5. Quality Pattern relation table – TrnPatQualRel
txtMatrixName txtPatName txtQAName txtRelType txtComment
varchar (500) varchar (150) varchar (150) varchar (50) varchar (5000)

• txtMatrixName will be used as foreign key.

• txtPatName will be foreign key.

• txtQAName will be foreign key.

• txtRelType will be foreign key.

6. Pattern categorization table:

• spAddMatrix – SP to add matrix details.

• spAddPattern – SP to add pattern details.

• spAddQuality – SP to add quality details.

• spCheckPattern – SP to check whether pattern details exist or not.

• spCheckQuality – SP to check whether quality details exist or not.

• spCheckRelation – SP to check relation between pattern and quality.

• spGetConflict – SP to fetch all conflicting relationship.

• spGetMatrixDetails – SP to get matrix details.

• spGetPattern – SP to get pattern details.

• spGetPatternCommentSearch – SP to fetch comments for pattern.

• spGetPatternMat – SP to get pattern and matrix details for specific matrix id. passed.

• spGetPatternQualitySearch – SP to fetch comments for quality.

• spGetPatternSearch – SP to get details for pattern id. passed.

• spGetQuality – SP to get quality details.

310

C.1. TECHNICALDESCRIPTION

• spGetQualityDefSearch – SP to fetch comments for quality.

• spGetQualityPatterSearch – SP to fetch comments for quality.

• spGetQualitySearch – SP to search quality.
• spPatternQualMatRelation – SP to get quality and matrix details.

• spUpdateRelation – SP to update relation.

C.1.2 Database Snapshots

This section introduces some of the database pages. Each Figure with a title that is sufficient to

convoy the snapshot meaning.

Figure C.1: Create new relation between SP and QA, Pattern information page.

311

APPENDIX C. DATABASEAPPLICATION

Figure C.2: Layers pattern description table, including definition, and related (QAs).

Figure C.3: Overview page

C.1.3 Brief description of development changes and difficulties

During the database development process, a number of changes to the requirements of the application

have occurred, as well as a number of difficulties have been notable. These are briefly listed as below:

Changes

• Create drop-down menu to navigate all the database pages easily

• Solid grid-lines for the matrices.

312

C.1. TECHNICALDESCRIPTION

• Merge three functions (with three steps), which are adding pattern, adding quality attribute, and

adding matrix, in one page titled ’Create New Relation’

• Edit Page: Put the frame and add title on the frame.

• Increase the width for quality definition.

• Increase the width for pattern definition.

Difficulties

• Creation of individual matrix display.

• Pushing data from excel sheets into DB tables.

• Fixing general matrix problem and duplications.

• Creating pattern and quality table displays.

• Enabling mouse over property for patterns and qualities names.

Table C.1: Database application revisions.

Ver. Rev. Date Author Reviewers Description

0.0a 3-Apr-2011 Hassan Almari Hassan Draft Version

0.0b 9-May-2012 Hassan Almari Hassan Draft Version

1.0 1-Dec-2014 Hassan Almari Hassan Draft Version

1.1 24-Oct-2017 Hassan Almari Hassan Final (with some bug fixes)

313

APPENDIX C. DATABASEAPPLICATION

314

Appendix

D
Complement information for the SPs

Survey

D.1 Introduction

This appendix represents supportive materials to Chapter 4, where tables, figures, and sections are

ordered based on their citation on the main chapter, in order to facilitate their traceability.

D.2 Rationale of the Two-dimensional analysis method used – by
details

The following table explains and justify reasons behind our selection of the analysis methods that

were used for Two-dimensional analysis.

Table D.1: Two dimensional matrices analysis methods.

Matrix Analysis methods used

Q1 and Q5 Student’s t-test was used to see whether developers with ex-

pertise in specific fields used software styles/patterns more

frequently than who didn’t have same expertise. Choice of

t-test either equal or unequal variances are fixed by a Lev-

ene’s F-test of equality of two variances. If P-value ≤ 0.05,
the test is significant (5% level of significance). A bar chart

represents the mean of the two groups.

Q1 and each of Q17 to Q20 A one sample t-test was used, to test whether the mean value

for the statements was ≥ 3 (neutral value), to determine the
general agreement of the developers who have the expertise

in specific software development field.

Q2 and each of Q5, Q8; Q3 and each

of Q4, Q5; Q6 and Q16

A cross tabulation with Chi-square test was used for test-

ing independence of two categorical variables. Stacked bar

charts were created to visualise the relationship between both

criteria more easily.

315

APPENDIX D. COMPLEMENT INFORMATION FOR THE SPS SURVEY

Q2 and each of Q17 to Q20 A one sample t-test was used, to test whether the mean value

for the statements was ≥ 3 (neutral value), to determine the
general agreement of developers who gained their experi-

ence in different software development sectors. A stacked

bar chart was created, with each bar representing each sector

and the mean stacked in each bar.

Q3 and each Q14 to Q16; Q5 and

each of Q6, Q7, Q16; Q3 and each

Q14 to Q16; Q5 and each of Q6, Q7,

Q16

A cross tabulation with Chi-square test was used for testing

independence between two categorical variables and to de-

termine if this dependence is statistically significant.

Q3 and each of Q17 – Q20 Pairs of ordinal variables were arranged in a scatter plot and

Pearson’s correlation coefficients calculated to determing the

correlation between variables. T-tests were also used to test

the significance of correlation coefficients. P-values ≤ 0.05
signify a significant relationship between both question vari-

ables.

Q4 and Q13 A relationship table between both questions was created and

percentages/proportion used to describe the relationship be-

tween them.

Q4 and each of Q17 – Q20 Descriptive statistics with bar chart were used, with bars rep-

resenting the mean value of each statement for developers

who were aware of software styles/patterns. Error bars (95%

confidence interval) were also displayed for each of the state-

ments, to determine whether there is a general equality in

means for the statements.

Q5 and Q8; Q5 and Q9; Q5 and

Q14; Q5 and Q15

Independent sample t-tests were used, for testing equality of

two population means corresponding to two groups.

Q5 and each of Q17 – Q20 The two options (Those who “used software styles/pat-

terns infrequently or not (less than 15%)” and those who

“used software styles/patterns reasonably frequently to al-

ways (more than 15%)”) were analysed using t-tests to de-

termine the equality of two population means..

Q6 and Q16; Q7 and Q16 A cross tabulation with Chi-square test was used for testing

the independence of the two categorical variables.

Q6 and each of Q17 – Q20 T-tests were used to see whether the population mean for each

of the statements was equal to a hypothesised value of 3 (neu-

tral value) for each possible response (“the main factors that

discourage developers from the utilizing software patterns”.)

Q7 and each of Q17 – Q20 T-tests were used to see whether the population mean for each

of the statements was equal to a hypothesised value of 3 (neu-

tral value) for each possible response (“the main factors that

encourage developers from the utilizing software patterns”.)

D.3 Two dimensions supportive analysis

This section includes all information, tables, and figures that should support the 2-dimension de-

scriptions demonstrated in Chapter 4.

316

D.3. TWO DIMENSIONS SUPPORTIVEANALYSIS

D.3.1 Analyses of (Q1 and each of Q17–Q20)

The highest mean out of all the statements was form “Requirements elicitation/modelling/analysis”,

the lowest being form the “Documentation” field of expertise. Means for all statements (except “Docu-

mentation”) were significantly higher than 3 at (1% level of significance). The developers with expertise

in “Documentation” either disagreed or were neutral about the statements. For example, the statement

“Identifying standard quality attribute definitions within current pattern references is critical for com-

paring the same patterns against the quality attribute they possess”, they disagreed with it at (5% level

of significance), however they agreed with the other three statements at (5% level of significance).

In general, the results mostly indicated a common agreement about the four statements, as shown in

Table D.2.

D.3.2 Analyses of (Q2 and both (Q5 and Q8)

Table D.3: Cross tabulation of three work sectors with software styles/patterns usage and con-

sideration of quality attributes and Chi-square test of independence between attributes.

In which of the following sectors have you

gained most of your general software devel-

opment experience
Chi-square

(p-value)
Academia Industry Government

How often do you use software styles / pat-

terns during your work?

Never 6 1 4 8.82

Infrequently (<10%) 5 8 3 (.358)

Reasonably frequently (>15% and

<50%)
7 5 5

Regularly (>50% and <80%) 0 2 1

Nearly always (>90%) 1 0 0

During your selection of patterns did you

care about or consider quality attributes?

No - Why? 4 4 6 2.60

Yes - Why? 9 9 4 (.273)

D.3.3 Analyses of (Q2 and each question from Q17 to Q20)

The highest mean for each of the first three statements comes from those with expertise coming from

“academia”, followed by “industry” then “government”.

317

APPENDIX D. COMPLEMENT INFORMATION FOR THE SPS SURVEY

T
ab
le
D
.2
:
D
escrip

tiv
e
statistics

an
d
co
m
p
ariso

n
o
f
th
e
p
o
p
u
latio

n
m
ean

to
a
h
y
p
o
th
esized

n
eu
tral

v
alu

e
o
f
(3
),
u
sin

g
t-tests

fo
r
each

o
f
th
e
statem

en
t

w
ith

th
e
g
en
eral

field
o
f
ex
p
ertise

reg
ard

in
g
so
ftw

are
d
ev
elo

p
m
en
t.

W
h
at
is
y
o
u
g
en
-

eral
field

o
f
ex
-

p
ertise

reg
ard

in
g

so
ftw

are
d
ev
elo

p
-

m
en
t?

Id
en
tify

in
g
th
e
relatio

n
sh
ip
b
etw

een

so
ftw

are
p
attern

s
an
d
q
u
ality

attrib
u
tes

is
v
ery

im
p
o
rtan

t
to
so
ftw

are
d
ev
elo

p
ers

an
d
th
e
so
ftw

are
en
g
in
eerin

g
field

.

Id
en
tify

in
g
stan

d
ard

q
u
ality

at-

trib
u
te
d
efin

itio
n
s
w
ith
in
cu
rren

t

p
attern

referen
ces

is
a
critical

fo
r

co
m
p
arin

g
th
e
sam

e
p
attern

s
ag
ain

st

th
e
q
u
ality

attrib
u
te
th
ey

p
o
ssess.

S
tu
d
y
in
g
relatio

n
sh
ip
s
b
etw

een
p
attern

s
an
d
q
u
ality

attrib
u
tes

b
ased

o
n
th
e
cu
rren

t
reliab

le
so
ftw

are
p
attern

referen
ces,

an
d
creatin

g
a
d
atab

ase
to
sto

re
th
ese

rela-

tio
n
sh
ip
s
o
n
th
e
b
asis

o
f
stan

d
ard

ized
q
u
ality

attrib
u
te

d
efin

itio
n
s,
is
v
alu

ab
le
k
n
o
w
led

g
e.

D
ev
elo

p
in
g
an

ev
alu

atio
n

m
o
d
el
to
assess

p
attern

s

ag
ain

st
q
u
ality

attrib
u
tes

is

w
o
rth
w
h
ile,

p
ro
v
id
ed

it’s
n
o
t

d
ifficu

lt
to
u
se.

R
eq
u
irem

en
ts

elicitatio
n
/
m
o
d
e-

lin
g
/an

aly
sis

(N
=
1
5
)

4
.3

.6.0
0
0

4
.1

.9.0
0
0

4
.3

.9.0
0
0

4
.2

.8.0
0
0

P
ro
ject

m
an
ag
e-

m
en
t
(N
=
1
7
)

4
.2

.7.0
0
0

3
.8

.9.0
0
1

4
.1

1
.1

.0
0
0

4
.1

.9.0
0
0

A
rch

itectu
re

(N
=
1
5
)

4
.1

.7.0
0
0

3
.9

.9.0
0
1

4
.1

1
.1

.0
0
1

4
.1

.9.0
0
1

D
esig

n
(N
=
2
2
)

4
.1

.7.0
0
0

3
.7

1
.0

.0
0
2

4
.0

1
.0

.0
0
0

4
.1

1
.0

.0
0
0

C
o
d
in
g
(N
=
2
4
)

4
.0

.7.0
0
0

3
.6

.9.0
0
3

3
.9

1
.0

.0
0
0

3
.9

1
.0

.0
0
0

T
estin

g
(N
=
1
6

4
.1

.6.0
0
0

3
.7

.8.0
0
2

4
.1

1
.1

.0
0
0

4
.1

.9.0
0
0

D
o
cu
m
en
tatio

n

(N
=
9
)

3
.9

.6.0
0
1

3
.3

.9.1
4
1

3
.8

1
.2

.0
4
4

3
.8

1
.0

.0
2
2

T
ab
le
K
ey
:

•
M
ean

•
S
tan

d
ard

D
ev
iatio

n

•
p
-v
alu

e
co
rresp

o
n
d
in
g
to
a
t-test

w
ith

n
u
ll
h
y
p
o
th
esis

µ
≤

3
an
d
altern

ativ
e
h
y
p
o
th
esis

µ
>

3
.

318

D.3. TWO DIMENSIONS SUPPORTIVEANALYSIS

Academia Industry Government
0

2

4

6

8

10

12

14

16

18

4

3.9
4.1

4.5

4
3.8

4
3.7 3.5

4.5 4.1 3.9

C
ou

nt
Identifying the relationship
between software patterns
and quality attributes is
very important to software
developers and the software
engineering field.
Identifying standard qual-
ity attribute definitions
within current pattern
references is a critical for
comparing the same pat-
terns against the quality
attribute they possess.
Studying relationships be-
tween patterns and qual-
ity attributes based on the
current reliable software
pattern references, and cre-
ating a database to store
these relationships on the
basis of standardized qual-
ity attribute definitions, is
valuable knowledge
Developing an evaluation
model to assess patterns
against quality attributes
is worthwhile, provided it’s
not difficult to use.

Figure D.1: Stacked bar chart: Agreement with the four statements by different sectors.

319

APPENDIX D. COMPLEMENT INFORMATION FOR THE SPS SURVEY

T
ab
le
D
.4
:
D
escrip

tiv
e
statistics

an
d
test

o
f
th
e
p
o
p
u
latio

n
m
ean

to
a
h
y
p
o
th
esized

n
eu
tral

v
alu

e
at
(3
),u
sin

g
t-test

fo
r
each

o
f
th
e
statem

en
ts
w
ith

th
e

secto
rs
o
f
w
o
rk
ex
p
erien

ce.

In
w
h
ich

o
f
th
e

fo
llo
w
in
g
secto

rs

h
av
e
y
o
u
g
ain

ed

m
o
st
o
f
y
o
u
r

g
en
eral

so
ftw

are

d
ev
elo

p
m
en
t

ex
p
erien

ce?

Id
en
tify

in
g
th
e
relatio

n
sh
ip
b
e-

tw
een

so
ftw

are
p
attern

s
an
d
q
u
ality

attrib
u
tes

is
v
ery

im
p
o
rtan

t
to
so
ft-

w
are

d
ev
elo

p
ers

an
d
th
e
so
ftw

are

en
g
in
eerin

g
field

.

Id
en
tify

in
g
stan

d
ard

q
u
ality

attrib
u
te
d
efin

itio
n
s
w
ith
in

cu
rren

t
p
attern

referen
ces

is
a

critical
fo
r
co
m
p
arin

g
th
e
sam

e

p
attern

s
ag
ain

st
th
e
q
u
ality

attrib
u
te
th
ey

p
o
ssess.

S
tu
d
y
in
g
relatio

n
sh
ip
s
b
etw

een
p
attern

s
an
d
q
u
al-

ity
attrib

u
tes

b
ased

o
n
th
e
cu
rren

t
reliab

le
so
ftw

are

p
attern

referen
ces,

an
d
creatin

g
a
d
atab

ase
to
sto

re

th
ese

relatio
n
sh
ip
s
o
n
th
e
b
asis

o
f
stan

d
ard

ized

q
u
ality

attrib
u
te
d
efin

itio
n
s,
is
v
alu

ab
le
k
n
o
w
l-

ed
g
e.

D
ev
elo

p
in
g
an

ev
alu

atio
n

m
o
d
el
to
assess

p
attern

s

ag
ain

st
q
u
ality

attrib
u
tes

is
w
o
rth
w
h
ile,

p
ro
v
id
ed

it’s
n
o
t
d
ifficu

lt
to
u
se.

A
cad

em
ia

4
.3

.7.0
0
0

3
.8

1
.1

.0
3
3

4
.3

.9.0
0
2

3
.8

1
.1

.0
3
3

In
d
u
stry

4
.1

.7.0
0
0

3
.7

.9.0
0
3

4
.1

1
.2

.0
0
2

3
.9

.9.0
0
2

G
o
v
ern

m
en
t

4
.0

.7.0
0
1

3
.5

.8.5
0
2

3
.8

.5.0
0
2

4
.1

.6.0
0
1

T
ab
le
K
ey
:

•
M
ean

•
S
tan

d
ard

D
ev
iatio

n

•
p
-v
alu

e
co
rresp

o
n
d
in
g
to
a
t-test

w
ith

n
u
ll
h
y
p
o
th
esis

µ
≤

3
an
d
altern

ativ
e
h
y
p
o
th
esis

µ
>

3
.

320

D.3. TWO DIMENSIONS SUPPORTIVEANALYSIS

However, when looking at the final statement, the highest mean comes from developers who gained

experience in ”government”, followed by “industry” and “academia”. This is interesting, as academics

agreed with the first three statements that identifying, studying, and creating the information that focuses

on the problem between quality attributes and software patterns. However, they show much less support

for developing an evaluation model to be used to solve the problem domain partially (last statement),

which does not make sense. Developers from “industry”, however, agreed with the solution much more,

which make reasonable agreement in pointing to the problem and producing a solution to fix it. We

can explain these differences in general agreement by observing the differences between the natures

of developers work in different sectors. Academics focus more on research and knowledge, whereas

developers in industry aim to provide practical solutions. The support to produce a practical solution

gives weight to our efforts doing this research. In general, all of the statements population mean for all

sectors are significantly higher than 3 (neutral value) at 1% level of significance, except for government

sector were not significantly agreed or disagreed to the statement “Identifying standard quality attribute

definitions within current pattern references is a critical for comparing the same patterns against the

quality attribute they possess”.

D.3.4 Analyses of (Q3 and Q4):

5–10 (years) 10–15 (years) 15–20 (years) 20–25 (years) Over 25 (years)
0

10

20

30

25

9

3 1 3
7

1 1

C
ou

nt

No
Yes

Are you aware of soft-
ware styles/patterns?

Figure D.2: Stacked bar chart: Years of experience in software development field with the

developers awareness of software style/patterns.

D.3.5 Analyses of (Q4 and each of the questions from Q17 to Q20):

Table D.5: Percentage frequency table: Awareness of software style/patterns by developers.

Frequency Percentage Valid
Percentage

Cumulative
Percentage

Valid No 9 17.3 18.0 18.0

Yes 41 78.8 82.0 100.0

Total 50 96.2 100.0

Missing System 2 3.8

Total 52 100

41 respondents were “aware of software styles/patterns”, 9 were unaware and 2 did not respond.

The relationship between developers who said they were “aware of software styles/patterns“ and the four

statements is shown in the (below).

The above bar chart shows the mean responses of the developers who said they were “aware of

software style/patterns”. All statements had means significantly higher than 3 (the neutral value). The

error bars (95% CI) show that all of the mean responses are not statistically different from each other,

321

APPENDIX D. COMPLEMENT INFORMATION FOR THE SPS SURVEY

as each error bar overlaps each of the others. (On the graph this is illustrated by the fact that they all

contain“4”).

D.3.6 Examples of 3 and 4 dimensional analysis:

Since the dataset contained only 52 observations (with 14 missing observations after Q8), three and

four dimensional comparison matrices were futile, as with few observations in each category, Chi-square

tests were invalid. Tables (D.6, and E.40), show (4 and 3) dimensions analysis examples, respectively.

Table D.6: ANOVA-1, Analysis of Question 1/ Option 1 “Requirements elicitation/modelling

/analysis”, for Q17 to Q20 by Q2.

Q1

What is you general field of expertise
regarding software development?
= “Requirements elicitation/

modelling/analysis”

Sum of
Squares

df
Mean
Square

F Sig.

Q17

Identifying the relationship

between software patterns and

quality attributes is very impor-

tant to software developers and

the software engineering field.

Between

Groups
.17 2 .08 .19 .827

Within

Groups
5.17 12 .43

Total 5.33 14

Q18

Identifying standard quality

attribute definitions within

current pattern references is a

critical for comparing the same

patterns against the quality

attribute they possess.

Between

Groups
.06 2 .03 .03 .968

Within

Groups
10.88 12 .91

Total 10.93 14

Q19

Studying relationships between

patterns and quality attributes

based on the current reliable

software pattern references,

and creating a database to

store these relationships on the

basis of standardized quality

attribute definitions, is valuable

knowledge.

Between

Groups
1.39 2 .70 .88 .442

Within

Groups

9.54 12 .80

Total 10.93 14

Q20

Developing an evaluation

model to assess patterns against

quality attributes is worthwhile,

provided it’s not difficult to

use.

Between

Groups

.23 2 .12 .17 .844

Within

Groups
8.17 12 .68

Total 8.40 14

For developers whose general field of expertise is “Requirements elicitation/modelling/analysis”,

there was no significant difference in responses to each of the four statements in relation work sectors, in

which they gained their most experience.

322

D
.3
.
T
W
O
D
IM

E
N
S
IO

N
S
S
U
P
P
O
R
T
IV
E
A
N
A
L
Y
S
IS

Because of low frequency in four dimensional analyses, all the results are either invalid or non-significant. The following table shows the cross tabulation of(

Q2 and Q3 with Q4 and Q5), where most of the cell counts are either 0 or 1. Therefore, four dimensional analyses for this data are invalid.

Table D.7: Cross tabulation Analyses for (Q2 and Q3 with Q4 and Q5).

How many years experience do you have in total in

the software/systems development field?

How often do you use models to describe software/system architecture during your work?

Never
Infrequently (< 10%)

Reasonably frequently

(> 15% and < 50%)
Regularly (> 50% and

< 80%)
Nearly always (> 90%)

0mm aware of any

software/system

architectural

description/modelling

languages, (e.g. ADLs,

AADL, SysML, UML)?

0mm aware of any

software/system

architectural

description/modelling

languages, (e.g. ADLs,

AADL, SysML, UML)?

0mm aware of any

software/system

architectural

description/modelling

languages, (e.g. ADLs,

AADL, SysML, UML)?

0mm aware of any

software/system

architectural

description/modelling

languages, (e.g. ADLs,

AADL, SysML, UML)?

0mm aware of any

software/system

architectural

description/modelling

languages, (e.g. ADLs,

AADL, SysML, UML)?

No
Yes, which

language?
No

Yes, which

language?
No

Yes, which

language?
No

Yes, which

language?
No

Yes, which

language?

Count Count Count Count Count Count Count Count Count Count

5–10

(years)

In which of the following sectors

have you gained most of your

general software development

experience?

Academia 0 1 2 6 1 2 0 1 0 1

Industry 0 1 0 1 0 5 0 1 0 0

Government 0 1 0 1 0 0 0 0 0 0

10–15

(years)

In which of the following sectors

have you gained most of your

general software development

experience?

Academia 0 1 0 0 0 1 0 0 0 0

Industry 0 1 0 0 1 1 0 1 0 0

Government 0 1 1 0 0 2 0 0 0 0

15–20

(years)

In which of the following sectors

have you gained most of your

general software development

experience?

Academia 0 0 1 1 0 0 0 0 0 0

Industry 0 0 0 0 0 1 0 0 1 0

Government 0 0 0 0 0 0 0 0 0 0

20–25

(years)

In which of the following sectors

have you gained most of your

general software development

experience?

Academia 0 0 0 1 0 1 0 2 0 0

Industry 0 0 0 2 0 0 0 0 0 0

Government 0 0 0 1 0 0 0 0 0 0

Over

25

(years)

In which of the following sectors

have you gained most of your

general software development

experience?

Academia 1 0 0 1 0 0 0 0 0 0

Industry 0 0 0 0 0 0 0 0 0 2

Government 0 0 0 0 0 0 0 0 0 0

3
2
3

APPENDIX D. COMPLEMENT INFORMATION FOR THE SPS SURVEY

D.4 Snapshots of primitive analysis database

Figure D.3: Overview page - for the primitive analysis database

Figure D.4: Responses primitive analysis page - Respondent’s countries, total answers, percent-

age of their answers out of 20 questions.

324

D.5. SUMMARYTABLES FOR MOST IMPORTANT RESULTS

Figure D.5: Selection criteria page - were one or more questions should be selected and submit-

ted by clicking ’submit’ button to get the analysis results.

D.5 Summary Tables for most important results

This section represents several tables that summarises valuable analyses results, to facilitate the

readability, and to reduce unnecessary tables that were generated during the analysis process.

Table D.8: Cross tabulation and test of independence between how often developers used soft-

ware style/patterns and whether the developers support standard documentation practices for

software patterns.

How often do you use software styles/patterns during your work?

Chi-Square
(p-value)

Never

Infre-

quently

(< 10%)

Reasonably

frequently

(>15% and

< 50%)

Regularly

(>50% and

<80%)

Nearly

always

(>90%)

Support of standard documentation practices for software patterns

No 0 0 1 0 0

9.2

(.690)

Yes 2 6 9 3 1

Not sure 0 0 1 0 0

Perhaps 1 7 2 0 0

325

APPENDIX D. COMPLEMENT INFORMATION FOR THE SPS SURVEY

Table D.9: Cross tabulation of how often developers used software style/patterns with the main

factors that discourage and encourage the utilisation of software patterns by developers and

Chi-square test of independence between attributes.

How often do you use software styles/patterns during your work?

Chi-Square
(p-value)

Never

Infre-

quently

(< 10%)

Reasonably

frequently

(>15% and

< 50%)

Regularly

(>50% and

<80%)

Nearly

always

(>90%)

The main factors that discourage the utilisation of software patterns by developers.

No or few available ref-

erences
2 1 0 0 0

28.2

(.659)

Poor documentation

of existing software

patterns

3 4 3 0 0

Very little teaching of

patterns in academic in-

stitutions or industry

4 7 8 1 0 20

No proof of the solutions

provided by patterns
1 3 2 0 0

Unknown quality at-

tributes for combining

software patterns

0 3 4 1 0

Developing new solu-

tions saves more time

than searching for, and

implementing the right

patterns

1 4 3 1 1

Hard to integrate with

other components or ex-

isting systems

2 4 9 3 1

Other – please specify: 0 0 1 0 0

The main factors that encourage the utilization of software patterns by developers.

Easy to find the

right patterns that

solve the problems

encountered

2 4 5 1 1

18.3

(.569)

Most available refer-

ences are clear and

well documented

2 3 5 2 0

Easy to implement 1 4 8 2 0

Clear identification

of quality attributes

possessed by patterns

2 5 5 0 1

Other - please spec-

ify:
0 1 0 1 0

326

D.5. SUMMARYTABLES FOR MOST IMPORTANT RESULTS

Table D.10: Group descriptive statistics for each of the four statements in first column along

with independent t-test results for testing difference betweenwhether developers frequently used

(≥ 3) software style/patterns during their work or not (< 3).

How often do you

use software styles /

patterns during your

work?

N Mean SD

Levene’s Test for

Equality of Variances:

F (p-value)

t-test for Equality of Means

t-statistic

(p-value)
95% CI of the

difference

Identifying the relationship between software patterns and quality attributes is very important

to software developers and the software engineering field

≥ 3 17 4.06 .75 0.21

(.650)

-0.49

(.625)

(-0.60, 0.37)

< 3 17 4.18 .64

Identifying standard quality attribute definitions within current pattern references is a critical

for comparing the same patterns against the quality attribute they possess

≥ 3 16 3.75 .78 2.05

(.163)

0.39

(.700)

(-0.53, 0.78)

< 3 16 3.63 1.03

Studying relationships between patterns and quality attributes based on the current reliable

software pattern references, and creating a database to store these relationships on the basis of

standardized quality attribute definitions, is valuable knowledge

≥ 3 16 4.19 .66 5.46

(.026)

0.74

(.467)

(-0.45, 0.95)

< 3 16 3.94 1.18

Developing an evaluation model to assess patterns against quality attributes is worthwhile,

provided it’s not difficult to use

≥ 3 16 4.00 .73 2.30

(.141)

0.63

(.532)

(-0.46, 0.86)

< 3 15 3.80 1.01

327

APPENDIX D. COMPLEMENT INFORMATION FOR THE SPS SURVEY

Table D.11: Cross tabulation of whether the relationship between the patterns and the quality

attributes in those references been proved scientifically or otherwise with the main factors that

discourage and encourage the utilisation of software patterns by developers and Chi-square test

of independence between attributes.

Has the relationship between the

patterns and the quality attributes in

those references been proved scien-

tifically or otherwise?

Chi-Square
(p-value)

No Yes Not sure Perhaps

The main factors that discourage the utilisation of software patterns by developers

Poor documentation of existing software patterns 0 4 0 1

Very little teaching of patterns in academic insti-

tutions or industry
1 9 1 4

No proof of the solutions provided by patterns 0 1 0 4

19.43

(.366)

Unknown quality attributes for combining soft-

ware patterns
1 5 0 2

Developing new solutions saves more time than

searching for, and implementing the right patterns
0 6 0 3

Hard to integrate with other components or exist-

ing systems
0 13 0 3

The main factors that encourage the utilization of software patterns by developers

Easy to find the right patterns that solve the prob-

lems encountered
1 6 0 1

12.8

(.615)

Most available references are clear and well doc-

umented
0 7 0 4

Easy to implement 0 9 0 2

Clear identification of quality attributes possessed

by patterns
1 6 1 3

Other – please specify 0 2 0 0

328

D.5. SUMMARYTABLES FOR MOST IMPORTANT RESULTS

Table D.12: F statistic (p-value) from analysis of variance (ANOVA) for Q17-Q20 by the sectors

that developers gained most of their general software development experience (Q2)?

Statements

What is you general field of expertise regarding software development?

R
eq
u
ir
em

en
ts

el
ic
it
at
io
n
/

m
o
d
el
li
n
g
/a
n
al
y
si
s

P
ro
je
ct

m
an
ag
em

en
t

A
rc
h
it
ec
tu
re

D
es
ig
n

C
o
d
in
g

T
es
ti
n
g

D
o
cu
m
en
ta
ti
o
n

Identifying the relationship

between software patterns

and quality attributes is very

important to software devel-

opers and the software engi-

neering field.

0.19

(.827)

0.55

(.587)

0.40

(0.679)

0.04

(.957)

0.08

(.923)

1.65

(.228)

0.25

(.787)

Identifying standard quality

attribute definitions within

current pattern references is

a critical for comparing the

same patterns against the

quality attribute they pos-

sess.

0.03

(.968)

0.91

(.427)

2.64

(.116)

0.05

(.950)

.11

(.896)

0.20

(.821)

0.79

(.496)

Studying relationships be-

tween patterns and quality

attributes based on the cur-

rent reliable software pat-

tern references, and creat-

ing a database to store these

relationships on the basis

of standardized quality at-

tribute definitions, is valu-

able knowledge

0.88

(.442)

1.02

(.385)

0.39

(.684)

0.52

(.604)

0.37

(.692)

1.38

(.283)

0.50

(.632)

Developing an evaluation

model to assess patterns

against quality attributes is

worthwhile, provided it’s

not difficult to use.

0.17

(.844)

0.03

(.967)

1.39

(.289)

0.30

(.747)

0.47

(.635)

0.48

(.631)

1.19

(.368)

329

APPENDIX D. COMPLEMENT INFORMATION FOR THE SPS SURVEY

Table D.13: F statistic (p-value) from analysis of variance (ANOVA) for Q17-Q20 by the de-

veloper’s total years of experience in the software development field (Q3).

Statements

What is you general field of expertise regarding software development?

R
eq
u
ir
em

en
ts

el
ic
it
at
io
n
/

m
o
d
el
li
n
g
/a
n
al
y
si
s

P
ro
je
ct

m
an
ag
em

en
t

A
rc
h
it
ec
tu
re

D
es
ig
n

C
o
d
in
g

T
es
ti
n
g

D
o
cu
m
en
ta
ti
o
n

Identifying the relationship

between software patterns

and quality attributes is very

important to software devel-

opers and the software engi-

neering field.

0.12

(.947)

0.15

(.959)

0.42

(0.792)

0.44

(.781)

0.60

(.670)

0.08

(.972)

0.03

(.991)

Identifying standard quality

attribute definitions within

current pattern references is

a critical for comparing the

same patterns against the

quality attribute they pos-

sess.

0.15

(.927)

0.78

(.557)

0.06

(.993)

0.29

(.881)

.82

(.530)

0.35

(.790)

0.40

(.758)

Studying relationships be-

tween patterns and quality

attributes based on the cur-

rent reliable software pat-

tern references, and creat-

ing a database to store these

relationships on the basis

of standardized quality at-

tribute definitions, is valu-

able knowledge

0.71

(.568)

0.75

(.578)

0.28

(.887)

0.40

(.804)

0.73

(.583)

0.22

(.883)

0.36

(.785)

Developing an evaluation

model to assess patterns

against quality attributes is

worthwhile, provided it’s

not difficult to use.

0.41

(.749)

0.57

(.690)

0.52

(.723)

0.88

(.499)

1.25

(.326)

0.38

(.773)

0.62

(.630)

330

Appendix

E
Complement information for SA

Survey

This appendix represents supportive materials for Chapter 5, where tables, figures, and sections are

ordered based on the description flow within the main chapter, in order to facilitate their traceability.

E.1 Survey Questions

Summary of the survey questions objectives, are shown in Table E.1.

Table E.1: Summary of the questionnaire and each section objectives.

Section

number
Objective

1
This section (Q1 to Q5) is for collecting demographical data about the par-

ticipants, same as the case in Chapter 4.

2

The second section consisted of five questions (Q6 toQ10). These questions

mainly focused on the matters relating to SA utilisation, description, and

modelling amongst software developers. Also, it includes the factors that

are likely have an affect on the utilisation of SAmodelling techniques during

development process. The sectionwent further to gather information related

to software description languages.

3

The final section consists of thirteen questions (Q11-Q23), which focused

on SAE tactics, and factors that could support or hinder SAE methods. The

section also, sought to explore the effect of the current technologies, au-

tomation and tools on SAE methodologies.

E.2 Individual Analysis (One dimension _Descriptive statistics)

This section represents important data that could support individual analysis discussion, which is

reported in Chapter 5.

331

APPENDIX E. COMPLEMENT INFORMATION FOR SA SURVEY

E.2.1 Analyses of (Q8)

According to more than half of the respondents, Semi-formal language and Natural language used

together form the best language to describe software/system architecture. Asubstantial number of respon-

dents also seemed comfortable with using semi-formal languages such as UML as the best language to

use in software/system description. This information can be useful to determine which languages need to

be given priority in documentation and improvement in order to improve the use of models in describing

system/software architecture.

10 20 30 40 50 60

Natural language (e. g. English-text) only.

Semi-formal language (e. g. UML, SysML)
only.

Formal language (e. g. ADLs, Z) only.

Formal language & Natural language to-
gether.

Semi-formal language & Natural language to-
gether.

Semi-formal language & Formal language to-
gether.

All three languages above together.

8.7%

17.4%

2.2%

4.2%

52.2%

2.2%

13%

Percent

Figure E.1: Bar chart for the best language to use to describe software/system architecture as

identified by the respondents.

E.2.2 Analyses of (Q9 and Q10)

There is an agreement of the respondents that developing software/system architecture using current

architectural frameworks (e.g. ISO/IEC 42010, DoDAF, RUP/4+1) increases the reliability, standardisa-

tion, and re-usability of the resulting architecture. On the other hand, where the respondents have taken a

neutral position about the fact that usage of software style/pattern concepts & models during architecture

development increases the utilisation of modelling description languages, BUT decreases the simplicity

of the architecture valuation. However, the median value for the two items are equal to 3, which signi-

fies respondents may have a neutral position for both items. The analysis results are shown in table E.2.

Figure E.2 indicates that there is a tendency towards agreement for the first item, whereas for the second

item there is neither general agreement nor disagreement.

1 2 3 4 5

Developing software/system architecture
using current architectural frameworks
(e.g. ISO/IEC 42010, DODAF, RUP/4+1)
increases the reliability, standardisation, and
reusability of the resulting architecture.

Usage of software style/pattern concepts
& models during architecture development,
increases the utilisation of modelling
description languages, BUT decreases the
simplicity of the architecture valuation.

Figure E.2: Box plot of two items Q9 and Q10.

AOne-sample t-test for specifiedmean value of 3 confirms the results abovewith t = 4.1, p-value < .01

for the first item.

332

E.2. INDIVIDUALANALYSIS (ONE DIMENSION _DESCRIPTIVE STATISTICS)

Table E.2: Descriptive statistics Q9 and Q10.

Developing software/system

architecture using current

architectural frameworks (e.g.

ISO/IEC 42010, DoDAF,

RUP/4+1) increases the reli-

ability, standardisation, and

reusability of the resulting

architecture.

Usage of software style/pattern

concepts models during archi-

tecture development, increases

the utilisation of modelling de-

scription languages, BUT de-

creases the simplicity of the ar-

chitecture valuation.

N Valid 45 46

Missing 5 4

Mean 3.5 3.0

Std. Deviation .8 .8

Skewness .32 .0

Std. Error of Skewness .54 .4

Kurtosis -.2 -.4

Std. Error of Kurtosis .7 .7

Percentiles 25 3.0 2.0

50 3.0 3.0

75 4.0 4.0

E.2.3 Analyses of (Q12): ”Do you know or use any architectural evaluation

method that can produce quantitative measures surrounding architecture char-

acteristics?”

The percentage of respondents who neither know nor use any architectural evaluation method that

can produce quantitative measures surrounding architecture characteristics is very large. This is an in-

dication that there is still a lot that needs to be done to increase awareness and encourage the use of

architectural evaluation methods.

89.1%
No

10.9%
Yes – please name it:

Figure E.3: Pie Chart of the percentage of the respondents who know or use any architectural

evaluation method that can produce quantitative measures surrounding architecture characteris-

tics.

333

A
P
P
E
N
D
IX

E
.
C
O
M
P
L
E
M
E
N
T
IN
F
O
R
M
A
T
IO

N
F
O
R
S
A
S
U
R
V
E
Y

E.3 Two dimensions matrices analysis

This section represents all necessary information that support the argument reported in Chapter 2 concerning 2-dimensions analyses.

E.3.1 Information related to the significant results

E.3.1.1 Analyses of Q1 with (Q9 and Q10)

An independent sample t-test was used to test whether two group means corresponding to the respondents with more experience in “Architecture”, and those

with other expertise are equal for the statements in (Q9 and Q10). The results are shown in Table E.3.

According to the results, the group mean for the item “Developing software/system architecture using current architectural frameworks (e.g. ISO/IEC 42010,

DoDAF, RUP/4+1) increases the reliability, standardisation, and re-usability of the resulting architecture” corresponding to the developers whose general field of

expertise regarding software development is “Architecture” is significantly higher than the rest of the developers with other expertise, t = 1.90, p-value < .05. Thus,

architects tend to agree more with the statement. There is no significant difference in means for the second statement, t = -1.07, p-value > .05.

Table E.3: Equality of means between two groups corresponding to the respondents whose general field of expertise regarding software development

is “Architecture” and those have other expertise.

What is your general field of expertise regarding software development?

Answer: Architecture

Levene’s

Test for
Equality of
Variances

t-test for Equality of Means

95% Confidence
Interval of

the Difference

F Sig. t df
Sig.

(One-tailed)

Mean
Diffe-
rence

Std.
Error
Diffe-
rence

Lower Upper

Developing software/system architecture using cur-

rent architectural frameworks (e.g. ISO/IEC 42010,

DoDAF, RUP/4+1) increases the reliability, standard-

isation, and reusability of the resulting architecture.

Equal vari-

ances as-

sumed

2.69 .109 1.90 43 .032 .43 .22 -.03 .88

3
3
4

E
.3
.
T
W
O
D
IM

E
N
S
IO

N
S
M
A
T
R
IC
E
S
A
N
A
L
Y
S
IS

Equal vari-

ances not

assumed

1.77 27.4 .045 .43 .24 -.07 .92

Usage of software style/pattern concepts & models dur-

ing architecture development, increases the utilisation

of modelling description languages, BUT decreases the

simplicity of the architecture valuation.

Equal vari-

ances as-

sumed

.74 .393 -1.07 44 .146 -.27 .25 -.78 .24

Equal vari-

ances not

assumed

-1.02 32.7 .157 -.27 .26 -.80 .27

E.3.1.2 Analyses of Q1 with (Q15–Q23)

Table E.4: Equality of means between two groups corresponding to the respondents whose general field of expertise regarding software development

is “Project Management” and those who have expertise in other fields apart from this.

What is your general field of expertise regarding software devel-

opment?

Answer: Project Management.

Levene’s
Test for

Equality of
Variances

t-test for Equality of Means

95% Confidence
Interval of

the Difference

F Sig. t df
Sig.

(One-tailed)

Mean
Diffe-
rence

Std.
Error
Diffe-
rence

Lower Upper

Most of the existing software architecture

evaluation methods, produce qualitative

results.

Equal variances as-

sumed
0.02 .895 -2.35 42 .012 -0.67 0.28 -1.24 -0.09

Equal variances not

assumed
-2.06 14.2 .034 -0.67 0.32 -1.36 0.03

3
3
5

A
P
P
E
N
D
IX

E
.
C
O
M
P
L
E
M
E
N
T
IN
F
O
R
M
A
T
IO

N
F
O
R
S
A
S
U
R
V
E
Y

The same test was carried for respondents with expertise in Project Management. The full analysis is shown in Table E.4.

Among all the 9 items, the only significant difference in means was noted in the item “Most of the existing software architecture evaluation methods, produce

qualitative results”, t = -2.35, p-value < 0.05. It is noted that for project managers, the population mean for this item is significantly less than that of the respondents

with other expertise. The mean difference is insignificant for all the other 8 items.

Table E.5: Equality of means between two groups corresponding to the respondents whose general field of expertise regarding software development

is “Design” and those who have expertise in other fields apart from this.

What is your general field of expertise regarding software development?

Answer: Design

Levene’s
Test for

Equality of
Variances

t-test for Equality of Means

95% Confidence
Interval of

the Difference

F Sig. t df
Sig.

(One-tailed)

Mean
Diffe-
rence

Std.
Error
Diffe-
rence

Lower Upper

Most of the existing software architecture

evaluation methods, produce qualitative

results

Equal variances as-

sumed
0.29 .595 -2.10 42 .021 -0.54 0.26 -1.05 -0.02

Equal variances not

assumed
-2.14 36.1 .020 -0.54 0.25 -1.04 -0.03

Reliable tools are important for develop-

ing/or evaluating software/system architec-

tures.

Equal variances as-

sumed
3.49 .069 2.04 42 .024 0.37 0.18 0.00 0.73

Equal variances not

assumed
2.04 31.3 .025 0.37 0.18 0.00 0.73

The next field of expertise to be tested for the 9 items was Design. Table E.5 shows the detailed results. Two significant results were noted: First, the group

3
3
6

E
.3
.
T
W
O
D
IM

E
N
S
IO

N
S
M
A
T
R
IC
E
S
A
N
A
L
Y
S
IS

means for the item “Most of the existing software architecture evaluation methods, produce qualitative results” showed a significant difference for the expertise

in Design, with t = -2.10, p-value < 0.05. Thus for this group, the response to the item depended on the field of expertise. Secondly, there is also a significant

difference between the group means of Designers and respondents in other fields of expertise for the item “Reliable tools are important for developing/or evaluating

software/system architectures “, t = 2.04, p-value < 0.05. Thus, the population mean for this item is significantly greater for designers compared to respondents with

other expertise.

The rest of the seven items have insignificant mean difference for the two groups, with the p-value for all the tests being greater than alpha value of .05.

Table E.6: Equality of means between two groups corresponding to the respondents whose general field of expertise regarding software development

is “Architecture” and those who have expertise in other fields apart from this.

What is your general field of expertise regarding software development?

Answer: Architecture.

Levene’s
Test for

Equality of
Variances

t-test for Equality of Means

95% Confidence
Interval of

the Difference

F Sig. t df
Sig.

(One-tailed)

Mean
Diffe-
rence

Std.
Error
Diffe-
rence

Lower Upper

”Architecture is design, but NOT all design

is Architecture”.

Equal variances as-

sumed
0.06 .806 2.20 43 .017 0.54 0.25 0.05 1.04

Equal variances not

assumed
2.24 41.1 .016 0.54 0.24 0.05 1.03

The next expertise under consideration for the 9 items was “Architecture”. For this field of expertise, the full analysis is shown in table E.6.

Only the group means for the item “Architecture is design, but NOT all design is Architecture”, show a significant difference, t = 2.20, p-value < 0.05. The t

value shows that the population mean is actually much greater. The means are insignificant for the rest of the 8 items.

Table E.7: Equality of means between two groups corresponding to the respondents whose general field of expertise regarding software development

is “Coding” and those who have expertise in other fields apart from this.

What is your general field of expertise regarding software development?

Answer: Coding

Levene’s

Test for
Equality of
Variances

t-test for Equality of Means

3
3
7

A
P
P
E
N
D
IX

E
.
C
O
M
P
L
E
M
E
N
T
IN
F
O
R
M
A
T
IO

N
F
O
R
S
A
S
U
R
V
E
Y

95% Confidence
Interval of

the Difference

F Sig. t df
Sig.

(One-tailed)

Mean
Diffe-
rence

Std.
Error
Diffe-
rence

Lower Upper

”Architecture is design, but NOT all design

is Architecture”

Equal variances as-

sumed
4.37 .043 -2.20 43 .017 -0.54 0.25 -1.04 -0.05

Equal variances not

assumed
-2.35 42.4 .012 -0.54 0.23 -1.01 -0.08

It’s worthwhile to undertake an effort to

develop a quantitative methodology for

evaluating software/system architectures.

Equal variances as-

sumed
12.85 .001 -1.87 41 .069 -0.45 0.24 -0.93 0.04

Equal variances not

assumed
-1.99 37.4 .054 -0.45 0.23 -0.90 0.01

Current technology allows us to develop

general software evaluation models that

assess any software architecture against

any quality attributes.

Equal variances as-

sumed
0.45 .508 -2.50 41 .009 -0.68 0.27 -1.23 -0.13

Equal variances not

assumed
-2.54 38.8 .008 -0.68 0.27 -1.22 -0.14

According to the results displayed in Table E.7, the population mean of the responses for the item “Architecture is design, but NOT all design is Architecture”

corresponding to the respondents whose general field of expertise regarding software development is “Coding” is significantly less than that of the respondents in

other fields of expertise, t = -2.35, p-value=.012 < .05.

The other significant result for coding experts was deduced for the item “Current technology allows us to develop general software evaluation models that

assess any software architecture against any quality attributes”, in which the population mean for the same field of expertise is significantly less than other fields of

3
3
8

E
.3
.
T
W
O
D
IM

E
N
S
IO

N
S
M
A
T
R
IC
E
S
A
N
A
L
Y
S
IS

expertise, t = -2.50, p-value=.009 < .01. No significant result was deduced for the rest of the six items for the field of expertise of “coding”, the p-value for all the

tests are greater than alpha value of .05.

Table E.8: Equality of means between two groups corresponding to the respondents whose general field of expertise regarding software development

is “Testing” and those who have expertise in other fields apart from this.

What is your general field of expertise regarding software development?

Answer: Testing

Levene’s

Test for
Equality of
Variances

t-test for Equality of Means

95% Confidence
Interval of

the Difference

F Sig. t df
Sig.

(One-tailed)

Mean
Diffe-
rence

Std.
Error
Diffe-
rence

Lower Upper

”Architecture is design, but NOT all design

is Architecture”

Equal variances as-

sumed
0.02 .878 -2.09 43 .021 -0.53 0.26 -1.05 -0.02

Equal variances not

assumed
-2.10 31.3 .022 -0.53 0.25 -1.05 -0.01

Current technology allows us to develop

general software evaluation models that

assess any software architecture against

any quality attributes.

Equal variances as-

sumed
6.89 .012 -1.58 42 .61 -0.38 0.24 -0.87 0.11

Equal variances not

assumed
-1.79 41.6 .041 -0.38 0.21 -0.82 0.05

Table E.8 shows the analysis of the population means for the responses to the 9 items for the respondents whose field of expertise is “Testing”. For this

expertise, the population mean of the responses for the item “Architecture is design, but NOT all design is Architecture” is significantly less compared to those of

other fields of expertise, t = -2.09, p-value=.021 < .05.

Further, the population mean of the responses for the item “Current technology allows us to develop general software evaluation models that assess any software

architecture against any quality attributes” for this expertise is significantly less than that of the respondents whose have other expertise, t = -1.79, p-value=.041 < .05.

The other seven items for the field of expertise of “Testing” had a p-value greater than alpha value of .05, thus the results were insignificant.

3
3
9

APPENDIX E. COMPLEMENT INFORMATION FOR SA SURVEY

E.3.1.3 Analyses of Q2 with (Q9 and Q10)

A one way ANOVA analysis was conducted to see whether group means corresponding to the cate-

gories of a variable are different for the variable of interest. The full analysis has been tabulated in Table

E.9.

According to the results, Group means of the item “Developing software/system architecture using

current architectural frameworks (e.g. ISO/IEC 42010, DoDAF, RUP/4+1) increases the reliability, stan-

dardisation, and reusability of the resulting architecture” corresponding to the sector in which developers

gained most of their general software development experience are not significantly different, F = .01,

p-value>.05. This shows that the responses to the item are not significantly affected by the three sectors

in which respondents gained their general software development experience.

On the other hand, the responses to the item “Usage of software style/pattern concepts & models

during architecture development, increases the utilisation of modelling description languages, BUT de-

creases the simplicity of the architecture valuation” corresponding to the item “In which of the following

sectors have you gained most of your general software development experience?” are significantly dif-

ferent, F = 3.33, p-value < .05, showing that the responses to the items have a significant variation with

the three sectors in which developers gained most of their software development experience.

Since the group means are significantly different for these items, there was a need to confirm which

pairs of means are significantly different to each other, arranged according to the post hoc test (LSD

method).

Table E.9: One way ANOVA table to test the difference between two variables of interest for

Q9 and Q10.

Sum of

Squares

df
Mean
Square

F Sig.

Developing software/system architecture using

current architectural frameworks (e.g. ISO/IEC

42010, DoDAF, RUP/4+1) increases the reliabil-

ity, standardisation, and reusability of the resulting

architecture.

Between Groups .01 2 .01 .01 .990

Within Groups 25.19 42 .60

Total 25.20 44

Usage of software style/pattern concepts & mod-

els during architecture development, increases the

utilisation of modelling description languages,

BUT decreases the simplicity of the architecture

valuation.

Between Groups 4.29 2 2.15 3.33 .045

Within Groups 27.71 43 .64

Total 32.00 45

According to the analysis shown in Table E.10, the group mean for “Academia” is significantly

higher than the group mean for “Industry” for the item “Usage of software style/pattern concepts &

models during architecture development, increases the utilisation of modelling description languages,

BUT decreases the simplicity of the architecture valuation.”, Mean difference = 0.63, p-value < .05. Other

group means are not significantly different.

340

E.3. TWO DIMENSIONS MATRICESANALYSIS

Table E.10: Multiple comparison test for the item in Q10, according to the the group means for

the three sectors in which developers gained their software development experience using LSD

method.

Dependent

Variable

(I) In which of

the following

sectors have

you gained most

of your gen-

eral software

development

experience?

(J) Usage of software

style/pattern concepts

& models during

architecture devel-

opment, increases

the utilisation of

modelling description

languages, BUT de-

creases the simplicity

of the architecture

valuation.

Mean
Difference

(I-J)

Std.
Error

Sig.

Usage of software style/pattern

concepts & models during archi-

tecture development, increases

the utilisation of modelling

description languages, BUT

decreases the simplicity of the

architecture valuation.

Academia Industry .63* .26 .021

Government .57 .33 .094

Industry
Academia -.63* .26 .021

Government -.06 .35 .858

Government
Academia -.57 .33 .094

Industry .06 .35 .858

* The mean difference is significant at the 0.05 level.

Table E.11: Cross tabulation of the sectors that developer’s gainedmost of their general software

development experiences against selected categorical questions and corresponding results for

Chi-square test of independence.

In which of the following sectors

have you gained most of your gen-

eral software development experi-

ence?

χ2

(p-value)

Academia Industry Goverment

Are you aware of any software/system architectural description/modelling languages?

Yes 19 16 6 0.74

(.692)No 5 2 1

How often do you use models to describe software/system architecture during your work?

Never 3 2 2

9.64

(.291)

Infrequently (<10%) 12 3 3

Reasonably frequent (>15% and <50%) 5 8 3

Regularly (>50% and <80%) 3 2 0

Nearly always (>90%) 1 3 0

What are the main factors that ENCOURAGE the utilization of modelling techniques to describe soft-

ware/system architecture?

Easier to demonstrate the software/system concept

and features
14 11 5

13.94

(.604)

341

APPENDIX E. COMPLEMENT INFORMATION FOR SA SURVEY

Most available architecture modelling references are

clear and well documented, which helps developers

understand and apply the modelling approach easily

2 3 3

It makes the designers/programers job much easier 10 3 1

Makes the evaluation of stakeholders requirements for

quality attributes possible in the early stages of the de-

velopment life cycle

6 4 1

Reliable modelling tools for describing the architec-

ture exist, which makes the usability factor much eas-

ier

3 1 0

The wide range of modelling language formality

(from informal models to formal), makes the selection

of architecture description technique more feasible

1 1 0

Architectural models can be compiled to produce a

real functioning software/system with existing mod-

elling languages and tools, (e.g., SysML, XT UML)

2 3 1

Teaching of the architecture modelling languages in

the academic sectors
2 4 2

What are the main factors that DISCOURAGE the utilization of modelling techniques to describe

software/system architecture?

Hard to integrate these models with other artefacts

(e.g. Design models), so they become standalone

models, which to some degree are not that useful dur-

ing the development of software/system

10 6 3

11.46

(.323)

Lack of tandardization between existing architecture

modelling technique, notations, and semantics
1 6 1

Current architecture description languages (including

modelling languages) are still immature
4 3 1

Modelling the architecture has limited benefit to the

whole software/system development process, so it’s

to some extent a waste of time and money

4 5 3

Hard to evaluate architecture models against any

stakeholder’s quality attributes (e.g. Security, perfor-

mance)

6 2 5

From your experience, what is the best language to use to describe software/system architecture, so

as to be more useful to all stakeholders, and to be easier to undertake qualitative and quantitative

assessments?

Natural language only 2 1 1

6.44

(.893)

Semi-formal language 5 2 1

Formal language only 1 0 0

Formal language & Natural language together 1 1 0

342

E.3. TWO DIMENSIONS MATRICESANALYSIS

Semi-formal language & Natural language together 9 9 6

Semi-formal language & Formal language together 1 0 0

All three languages above together 3 3 0

Are you aware of any system/software architectural tactics or metrics that have been or are being used

for evaluating architecture description models

Yes 1 5 1 5.43

(.066)No 22 11 7

Do you know or use any architectural evaluation method that can produce quantitative measures sur-

rounding architecture characteristics?

Yes 2 2 1 0.23

(.892)No 21 13 7

What are the most important factors that could SUPPORT quantitative evaluation for any software

architecture (SA)?

The language used for describing SA 4 2 1

7.68

(.660)

Formality level of SA description 7 4 1

Using standard language and architecture framework

for describing SA
11 5 4

Tools availability for describing and evaluating SA 8 10 4

Documenting mechanism used during SA description 6 2 1

What are the most important factors that could HINDER quantitative evaluation for any SA?

The language used for describing SA 10 4 3

8.93

(.539)

Formality level of SA description 9 8 4

Using standard language and architecture framework

for describing SA
4 0 1

Tools availability for describing and evaluating SA 8 6 1

Documenting mechanism used during SA description 3 1 2

E.3.1.4 Analyses of (Q3 and Q17)

The groupmeans of the item “Most of the existing software architecture evaluationmethods, produce

qualitative results” corresponding to the categories of the respondents years’ experience in total in the

software/systems development field are significantly different, F = 3.76, p-value < .05. This is evidence

of existence of a significant relationship between the two items.

Table E.12: One way ANOVA analysis for the item “Most of the existing software architecture

evaluation methods, produce qualitative results” corresponding to the categories of the respon-

dent’s years of experience in total in the software/systems development field.

Sum of Squares df Mean Square F Sig.

Between Groups 8.779 4 2.195 3.760 .011

Within Groups 22.767 39 .584

Total 31.545 43

343

APPENDIX E. COMPLEMENT INFORMATION FOR SA SURVEY

Since the ANOVAanalysis confirms that the group means are not all simultaneously equal, Tukey’s

HSD post hoc test for multiple comparisons was used to test which pair of group mean are significantly

unequal. The analysis is shown in Table E.13.

The group mean for the respondents who have 5-10 years of experience is significantly higher than

the group mean for the respondents who have over 25 years of experience for the item “Most of the

existing software architecture evaluation methods, produce qualitative results”, Mean difference = 1.33,

p-value=.011 < .05. This shows that the respondents who have 5-10 years of experience in software

development field have higher agreement to the item than the respondents who have over 25 years of

experience.

Furthermore, the groupmean for the respondents who have 10-15 years of experience is significantly

higher than the groupmean for the respondents who have over 25 years of experience for the item “Most of

the existing software architecture evaluationmethods, produce qualitative results”, Mean difference = 1.70,

p-value=.003 < .01. Thus, the respondents who have 10-15 years of experience in software development

field have higher agreement to the item than the respondents who have over 25 years of experience.

Multiple Comparisons

Most of the existing software architecture evaluation methods, produce qualitative results Tukey’s HSD.

Table E.13: Post hoc test (multiple comparisons) result using Tukey’s HSD test.

(I) How many

years’ experience

do you have in

total in the soft-

ware/systems

development field?

(J) How many

years’ experience

do you have in

total in the soft-

ware/systems

development field?

95% Confidence
Interval

Mean
Differ-

ence*(I-J)

Std.
Error

Sig.
Lower
Bound

Upper
Bound

5 - 10 (years)

10 - 15 (years) -.37 .29 .723 -1.21 .47

15 - 20 (years) -.33 .47 .954 -1.68 1.02

20 - 25 (years) .00 .35 1.000 -1.01 1.01

Over 25 (years) 1.33* .42 .022 .14 2.53

10 - 15 (years)

5 - 10 (years) .37 .29 .723 -.47 1.21

15 - 20 (years) .03 .50 1.000 -1.40 1.47

20 - 25 (years) .37 .40 .884 -.76 1.49

Over 25 (years) 1.70* .45 .005 .41 2.99

15 - 20 (years)

5 - 10 (years) .33 .47 .954 -1.02 1.68

10 - 15 (years) -.03 .50 1.000 -1.47 1.40

20 - 25 (years) .33 .54 .972 -1.21 1.88

Over 25 (years) 1.67 .58 .050 .00 3.34

20 - 25 (years)

5 - 10 (years) .00 .35 1.000 -1.01 1.01

344

E.3. TWO DIMENSIONS MATRICESANALYSIS

10 - 15 (years) -.37 .40 .884 -1.49 .76

15 - 20 (years) -.33 .54 .972 -1.88 1.21

Over 25 (years) 1.33 .49 .072 -.08 2.74

Over 25 (years)

5 - 10 (years) -1.33* .42 .022 -2.53 -.14

10 - 15 (years) -1.70* .45 .005 -2.99 -.41

15 - 20 (years) -1.67 .58 .050 -3.34 .00

20 - 25 (years) -1.33 .49 .072 -2.74 .08

* The mean difference is significant at the 0.05 level.

345

A
P
P
E
N
D
IX

E
.
C
O
M
P
L
E
M
E
N
T
IN
F
O
R
M
A
T
IO

N
F
O
R
S
A
S
U
R
V
E
Y

E.3.1.5 Analyses of Q4 with (Q21 and Q23)

To test whether the item means corresponding to the respondents who are aware of any software/system architectural description/modelling languages was

higher than the respondents who were not aware, an independent sample t-test was used. Table E.14 shows the results of the independent sample test.

The test yielded significant results for the item “Reading software/system architecture description models for automated evaluation purposes, is a critical, dif-
ficult, and error prone task”, t = 1.9, p-value=.04 < .05. This means that the respondents who were aware of any software/system architectural description/modelling
languages showed higher agreement to the above statement than those who were not aware of any SA description/modelling languages.

Table E.14: Independent sample t-test results between Q4 and the statements in (Q21 and Q23).

Are you aware of any software/system architectural description/modelling

languages, (e.g. ADLs, AADL, SysML, UML)?

Group 1: “Yes, which language?”

Group 2: “No”

Levene’s

Test for
Equality of
Variances

t-test for Equality of Means

95% Confidence
Interval of

the Difference

F Sig. t df
Sig.

(2-tailed)

Mean
Diffe-
rence

Std.
Error
Diffe-
rence

Lower Upper

Reading software/system architecture descrip-

tion models for automated evaluation purposes,

is a critical, difficult, and error prone task.

Equal variances as-

sumed
5.7 .02 1.6 41 .13 .5 .3 -.2 1.2

Equal variances not

assumed
1.9 11.2 .08 .5 .3 -.1 1.1

Current technology allows us to develop gen-

eral software evaluation models that assess

any software architecture against any quality

attributes.

Equal variances as-

sumed
4.6 .04 -1.3 40 .19 -.5 .4 -1.2 .2

Equal variances not

assumed
-2.1 24.1 .05 -.5 .2 -1.0 .0

The test was also significant for the item “Current technology allows us to develop general software evaluation models that assess any software architecture against any quality

attributes”, t = 2.1, p-value=.03 < .05, implying that the respondents who were aware of any software/system architectural description/modelling languages showed higher agreement

to the above statement than those who were not aware.

None of the other statements showed any significant mean difference for the respondents for this test.

3
4
6

E.3. TWO DIMENSIONS MATRICESANALYSIS

E.3.1.6 Analyses of (Q5 and Q16):

A one way ANOVA procedure is used to test the difference among group means for the selected

items corresponding to the categories of how often respondents used models to describe software/system

architecture during their work. Table E.15 shows the results of the test.

The test is significant for the item “There is still vagueness in the current literature concerning the

differences between the architecture abstraction and high level design, which causes some confusion

and perhaps wastes time during development by architects and designers”, F = 2.7, p-value < .05. The

difference between the groupmeans corresponding to the categories based on how often respondents used

models to describe software/system architecture during their work for the item “There is still vagueness

in the current literature concerning the differences between the architecture abstraction and high level

design, which causes some confusion and perhaps wastes time during development by architects and

designers” is an indication that the two are related.

Table E.15: ANOVA procedure for testing equality of group means for the selected item corre-

sponding to the categories of how often respondents used models to describe software/system

architecture during their work.

There is still vagueness in the current literature concerning the differences between the architec-

ture abstraction and high level design, which causes some confusion and perhaps wastes time

during development by architects and designers.

Sum of Squares df Mean Square F Sig.

Between Groups 3.3 4 .8 2.7 .042

Within Groups 11.9 40 .3

Total 15.2 44

Further, to determine which group means are statistically different, a multiple comparison test (LSD

method) was used. The results of the test are shown in Table E.16.

The group means for the item “There is still vagueness in the current literature concerning the dif-

ferences between the architecture abstraction and high level design, which causes some confusion and

perhaps wastes time during development by architects and designers” are significantly unequal for the

respondents who “Nearly always (>90%)” used models to describe software/system architecture during

your work compared those who “Never” use SA at all, Mean difference = 1.2, p-value < .01.

Multiple Comparisons

There is still vagueness in the current literature concerning the differences between the architecture

abstraction and high level design, which causes some confusion and perhaps wastes time during

development by architects and designers. LSD.

Table E.16: Multiple comparison test results using LSD method.

(I) How often

do you use mod-

els to describe

software/system

architecture during

your work?

(J) How often do you use mod-

els to describe software/system

architecture during your work?

95% Confidence
Interval

Mean
Differ-

ence*(I-J)

Std.
Error

Sig.
Lower
Bound

Upper
Bound

Never

Infrequently (<10 %) -.5 .3 .08 -1.0 .1

Reasonably frequent

(>15 % and <50 %)
-.5 .3 .08 -1.0 .1

347

APPENDIX E. COMPLEMENT INFORMATION FOR SA SURVEY

Regularly (>50 % and

<80 %)
-.5 .3 .17 -1.1 .2

Nearly always (>90 %) -1.2* .4 .00 -1.9 -.5

Infrequently

(<10 %)

Never .5 .3 .08 -.1 1.0

Reasonably frequent

(>15 % and <50 %)
.0 .2 1.00 -.4 .4

Regularly (>50 % and

<80 %)
.0 .3 1.00 -.6 .6

Nearly always (>90 %) -.7* .3 .03 -1.3 -.1

Reasonably fre-

quent (>15 %

and <50 %)

Never .5 .3 .08 -.1 1.0

Infrequently (<10 %) .0 .2 1.00 -.4 .4

Regularly (>50 % and

<80 %)
.0 .3 1.00 -.6 .6

Nearly always (>90 %) -.7* .3 .03 -1.3 -.1

Regularly

(>50 % and

<80 %)

Never .5 .3 .17 -.2 1.1

Infrequently (<10 %) .0 .3 1.00 -.6 .6

Reasonably frequent

(>15 % and <50 %)
.0 .3 1.00 -.6 .6

Nearly always (>90 %) -.7 .4 .06 -1.4 .0

Nearly always

(>90 %)

Never 1.2* .4 .00 .5 1.9

Infrequently (<10 %) .7* .3 .03 .1 1.3

Reasonably frequent

(>15 % and <50 %)
.7* .3 .03 .1 1.3

Regularly (>50 % and

<80 %)
.7 .4 .06 .0 1.4

* The mean difference is significant at the 0.05 level.

The group means are also unequal for the respondents who “Nearly always (>90%)” used models to

describe software/system architecture during their work as compared to thosewho “Infrequently (<10%)”

used, Mean difference = 0.7, p-value < .05.

Finally, the group means are unequal for the respondents who “Nearly always (>90%)” used models

to describe software/system architecture during their work compared to those who “Reasonably frequent

(>15% and <50%)” used SA in their work, Mean difference = 0.7, p-value < .05.

E.3.1.7 Analyses of (Q5 and Q18):

The one way ANOVA procedure was also used to test the difference among group means for the

selected item corresponding to the categories of how often respondents used models to describe soft-

348

E.3. TWO DIMENSIONS MATRICESANALYSIS

ware/system architecture during their work as shown in Table E.17.

The test is significant for the item “It’s worthwhile to undertake an effort to develop a quantitative

methodology for evaluating software/system architectures”, F = 2.7, p-value < .05. This means that the

group means corresponding to the categories of how often respondents used models to describe soft-

ware/system architecture during their work are statistically different for this item.

In order to determine the specific groupmeans that were statistically different, a multiple comparison

test (LSD method) is used as shown in Table E.18.

The group means for the item “It’s worthwhile to undertake an effort to develop a quantitative

methodology for evaluating software/system architectures” showed a significant difference for the re-

spondents who “Nearly always (>90%)” used models to describe software/system architecture during

their work compared to those who “Never” used, Mean difference = 1.6, p-value < .01. Furthermore, the

group means are unequal for the respondents who “Nearly always (>90%)” used models to describe soft-

ware/system architecture during your work compared to those who “Infrequently (<10%)” used models

in their work, Mean Mean difference = 1.2, p-value < .05.

Table E.17: ANOVA procedure for testing equality of group means for the selected item corre-

sponding to the categories of how often respondents used models to describe software/system

architecture during their work.

It’s worthwhile to undertake an effort to develop a quantitative methodology for evaluating soft-

ware/system architectures.

Sum of Squares df Mean Square F Sig.

Between Groups 6.4 4 1.6 3.0 .03

Within Groups 20.7 38 .5

Total 27.1 42

The other difference in group means was noticed between the respondents who “Nearly always

(>90%)” used models to describe software/system architecture during their work and those who “Rea-

sonably frequent (>15% and <50%)” used the same, Mean difference = 1.0, p-value < .05. Finally, the

group means were also unequal between the respondents who “Nearly always (>90%)” used models to

describe software/system architecture during their work and those who “Regularly (>50% and <80%)”

used models to describe SA during their work, Mean difference = 1.2, p-value < .05.

Multiple Comparisons

It’s worthwhile to undertake an effort to develop a quantitative methodology for evaluating

software/system architectures LSD.

Table E.18: Multiple comparison test results using LSD method.

(I) How often

do you use mod-

els to describe

software/system

architecture during

your work?

(J) How often do you use mod-

els to describe software/system

architecture during your work?

95% Confidence
Interval

Mean
Differ-

ence*(I-J)

Std.
Error

Sig.
Lower
Bound

Upper
Bound

Never

Infrequently (<10 %) -.4 .4 .23 -1.2 .3

Reasonably frequent

(>15 % and <50 %)
-.6 .4 .11 -1.3 .1

349

APPENDIX E. COMPLEMENT INFORMATION FOR SA SURVEY

Regularly (>50 % and

<80 %)
-.4 .4 .34 -1.3 .5

Nearly always (>90 %) -1.6* .5 .00 -2.5 -.6

Infrequently

(<10 %)

Never .4 .4 .23 -.3 1.2

Reasonably frequent

(>15 % and <50 %)
-.2 .3 .55 -.7 .4

Regularly (>50 % and

<80 %)
.0 .4 1.00 -.8 .8

Nearly always (>90 %) -1.2* .4 .01 -2.0 -.3

Reasonably fre-

quent (>15 %

and <50 %)

Never .6 .4 .11 -.1 1.3

Infrequently (<10 %) .2 .3 .55 -.4 .7

Regularly (>50 % and

<80 %)
.2 .4 .67 -.6 1.0

Nearly always (>90 %) -1.0* .4 .03 -1.8 -.1

Regularly

(>50 % and

<80 %)

Never .4 .4 .34 -.5 1.3

Infrequently (<10 %) .0 .4 1.00 -.8 .8

Reasonably frequent

(>15 % and <50 %)
-.2 .4 .67 -1.0 .6

Nearly always (>90 %) -1.2* .5 .03 -2.2 -.1

Nearly always

(>90 %)

Never 1.6* .5 .00 .6 2.5

Infrequently (<10 %) 1.2* .4 .01 .3 2.0

Reasonably frequent

(>15 % and <50 %)
1.0* .4 .03 .1 1.8

Regularly (>50 % and

<80 %)
1.2* .5 .03 .1 2.2

* The mean difference is significant at the 0.05 level.

E.3.1.8 Analyses of (Q5 and Q22)

The results of a one way ANOVA procedure for Q22 is shown in Table E.19. The test showed

significant results for the item “Restricting the description of architecture to a specific modelling language

during development, should make the architecture quantitative evaluation easier”, F = 3.0, p-value < .05.

Therefore, the groupmeans for the item “Restricting the description of architecture to a specific modelling

language during development, should make the architecture quantitative evaluation easier” are affected

by how often respondents used models to describe software/system architecture during their work.

350

E.3. TWO DIMENSIONS MATRICESANALYSIS

Table E.19: ANOVA procedure for testing equality of group means for the selected item corre-

sponding to the categories of how often respondents used models to describe software/system

architecture during their work.

Restricting the description of architecture to a specific modelling language during development,

should make the architecture quantitative evaluation easier.

Sum of Squares df Mean Square F Sig.

Between Groups 4.9 4 1.2 3.0 .03

Within Groups 16.1 39 .4

Total 21.0 43

It was necessary to use a multiple comparison test (LSD method) to single out the group means that

were different. Table E.20 shows the results of the test.

The group means for the item “Restricting the description of architecture to a specific modelling

language during development, should make the architecture quantitative evaluation easier” are signifi-

cantly unequal for the respondents who “Infrequently (<10%)” used models to describe software/system

architecture during their work and those who “Regularly (>50% and <80%)” used them in their work,

Mean difference = 0.9, p-value < .05.

The groupmeans are also unequal for the respondentswho “Reasonably frequent (>15% and <50%)”

used models to describe software/system architecture during their work compared to those who “Regu-

larly (>50% and <80%)” used models in their work, Mean difference = 1.0, p-value < .05.

Multiple Comparisons

Restricting the description of architecture to a specific modelling language during development, should

make the architecture quantitative evaluation easier. LSD

Table E.20: Multiple comparison test results using LSD method.

(I) How often

do you use mod-

els to describe

software/system

architecture during

your work?

(J) How often do you use mod-

els to describe software/system

architecture during your work?

95% Confidence
Interval

Mean
Differ-

ence*(I-J)

Std.
Error

Sig.
Lower
Bound

Upper
Bound

Never

Infrequently (<10 %) -.5 .3 .11 -1.1 .1

Reasonably frequent

(>15 % and <50 %)
-.6 .3 .06 -1.3 .0

Regularly (>50 % and

<80 %)
.4 .4 .35 -.4 1.2

Nearly always (>90 %) -.1 .4 .84 -.9 .8

Infrequently

(<10 %)

Never .5 .3 .11 -.1 1.1

Reasonably frequent

(>15 % and <50 %)
-.1 .2 .62 -.6 .4

351

APPENDIX E. COMPLEMENT INFORMATION FOR SA SURVEY

Regularly (>50 % and

<80 %)
.9* .3 .01 .2 1.5

Nearly always (>90 %) .4 .4 .26 -.3 1.1

Reasonably fre-

quent (>15 %

and <50 %)

Never .6 .3 .06 .0 1.3

Infrequently (<10 %) .1 .2 .62 -.4 .6

Regularly (>50 % and

<80 %)
1.0* .3 .01 .3 1.7

Nearly always (>90 %) .5 .4 .15 -.2 1.3

Regularly

(>50 % and

<80 %)

Never -.4 .4 .35 -1.2 .4

Infrequently (<10 %) -.9* .3 .01 -1.5 -.2

Reasonably frequent

(>15 % and <50 %)
-1.0* .3 .01 -1.7 -.3

Nearly always (>90 %) -.5 .4 .30 -1.3 .4

Nearly always

(>90 %)

Never .1 .4 .84 -.8 .9

Infrequently (<10 %) -.4 .4 .26 -1.1 .3

Reasonably frequent

(>15 % and <50 %)
-.5 .4 .15 -1.3 .2

Regularly (>50 % and

<80 %)
.5 .4 .30 -.4 1.3

* The mean difference is significant at the 0.05 level.

E.3.1.9 Analyses of Q6 with (Q9, Q10, and Q15 to Q23):

This section summarised many analysis tables results for question six into one table, as illustrated

in Table E.21.

352

E.3. TWO DIMENSIONS MATRICESANALYSIS

Table E.21: Independent sample t-test results for equality of two population group means of Likert scaled items
Q9, Q10 and Q15 to Q23 by the main factors that ENCOURAGE the utilization of modelling techniques to describe

software/system architecture (Q6). Groups formed by the developers who agreed with a Q6 item (Q6CB1 to Q6CB8)

and developers who didn’t agree with that item.

Q9 Q10 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23

Q6

CB1

-0.41

(.681)

-0.36

(.718)

-1.02

(.314)

-0.76

(.454)

-0.82

(.415)

1.34

(.197)

-0.14

(.888)

0.24

(.814)

-0.83

(.413)

-0.58

(.501)

-0.43

(.671)

Q6

CB2

1.17

(.247)

0.46

(.650)

0.11

(.912)

-0.26

(.794)

0.66

(.513)

-0.45

(.655)

-1.45

(.153)

-0.71

(.483)

-0.22

(.825)

0.56

(.582)

0.39

(.700)

Q6

CB3

-0.27

(.789)

1.96

(.056)

0.07

(.947)

1.56

(.126)

0.55

(.589)

-1.13

(.267)

2.20∗

(.034)

-1.15

(.257)

0.58

(.568)

-0.46

(.649)

-0.48

(.637)

Q6

CB4

0.88

(.382)

-0.42

(.677)

1.98

(.054)

1.23

(.226)

0.49

(.626)

0.80

(.428)

-0.57

(.569)

0.86

(.395)

-0.60

(.554)

0.26

(.793)

-0.38

(.706)

Q6

CB5

2.27*

(.028)

-1.25

(.218)

1.00

(.324)

-0.18

(.861)

-0.17

(.870)

0.79

(.436)

1.64

(.109)

-0.85

(.399)

0.18

(.859)

0.75

(.460)

2.02∗

(.049)

Q6

CB6

4.78∗∗

(.000)

0.00

(1.00)

0.26

(.795)

0.49

(.628)

2.07*

(.044)

1.47

(.150)

0.49

(.624)

0.97

(.336)

0.12

(.902)

2.16∗

(.037)

-0.96

(.343)

Q6

CB7

-0.46

(.648)

-1.58

(.121)

0.48

(.636)

0.15

(.883)

-0.46

(.646)

0.99

(.326)

1.68

(.100)

2.55

(.015)

0.23

(.823)

1.27

(.212)

-1.59

(.120)

Q6

CB8

-2.29∗

(.031)

-0.46

(.650)

-2.28∗

(.028)

-1.62

(.112)

0.66

(.513)

-1.27

(.212)

-1.58

(.121)

-0.15

(.883)

-0.72

(.478)

0.00

(1.00)

-0.45

(.658)

Key: t-statistic ; (p-value)

* t-statistic is significant at 5% level of significance

** t-statistic is significant at 1% level of significance

E.3.1.10 Analyses of Q7 with (Q9, Q10, and Q15 to Q23):

This section summarised many analysis tables results for question seven into one table, as illustrated

in Table E.22.

353

APPENDIX E. COMPLEMENT INFORMATION FOR SA SURVEY

Table E.22: Independent sample t-test results for equality of two population group means of

Likert scaled items Q9, Q10 and Q15 to Q23 by the main factors that DISCOURAGE the uti-

lization of modelling techniques to describe software/system architecture (Q7). Groups formed

by the developers who agreed with a Q7 item (Q7CB1 to Q7CB5) and developers who didn’t

agree with that item.

Q9 Q10 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23

Q7

CB1

-0.62

(.538)

-1.82

(.075)

0.34

(.739)

-0.10

(.920)

0.81

(.422)

1.39

(.171)

-0.16

(.872)

1.26

(.216)

-2.52∗

(.016)

0.44

(.666)

-0.63

(.533)

Q7

CB2

0.03

(.979)

-0.72

(.475)

-0.55

(.586)

1.73

(.090)

-2.34∗

(.024)

1.19

(.242)

0.67

(.508)

0.21

(.837)

-1.16

(.253)

-0.44

(.659)

-0.43

(.671)

Q7

CB3

-0.37

(.710)

0.92

(.362)

0.57

(.575)

0.39

(.695)

1.12

(.268)

-0.28

(.780)

1.08

(.287)

0.30

(.802)

0.76

(.451)

0.56

(.582)

-1.76

(.087)

Q7

CB4

0.16

(.877)

0.00

(1.00)

0.23

(.818)

-0.61

(.548)

0.34

(.735)

-0.44

(.666)

-0.57

(.569)

-0.17

(.866)

1.23

(.226)

0.51

(.612)

1.23

(.224)

Q7

CB5

-0.03

(.977)

1.17

(.248)

-1.56

(.126)

-1.96

(.056)

1.94

(.060)

-0.85

(.398)

-1.61

(.115)

0.50

(.619)

1.00

(.324)

1.43

(.163)

0.87

(.388)

Key: t-statistic ; (p-value)

* t-statistic is significant at 5% level of significance

E.3.1.11 Analyses of (Q10 and Q17):

A Chi-square test was used to test the independence between the categorical variables “Usage of

software style/pattern concepts & models during architecture development, increases the utilisation of

modelling description languages, BUT decreases the simplicity of the architecture valuation” and “Most

of the existing software architecture evaluation methods, produce qualitative results”.

Table E.23: Pearson Chi-square test results for analyses of questions Q10 and Q17.

Usage of software style/pattern concepts &

models during architecture development, in-

creases the utilisation of modelling description

languages, BUT decreases the simplicity of the

architecture valuation.

Most of the existing software architecture eval-

uation methods, produce qualitative results.

Chi-square 30.52

df 16

Sig. .015

According to the results presented in Table E.24 and E.23, the test is significant, χ2(16)= 30.52,
p-value < .05. This confirms that there is an association or dependence between the categorical variables

“Usage of software style/pattern concepts & models during architecture development, increases the util-

isation of modelling description languages, BUT decreases the simplicity of the architecture valuation”

and “Most of the existing software architecture evaluation methods, produce qualitative results”.

354

E.3. TWO DIMENSIONS MATRICESANALYSIS

Table E.24: Cross tabulation of “Usage of software style/pattern concepts & models during

architecture development, increases the utilisation of modelling description languages, BUT

decreases the simplicity of the architecture valuation” and “Most of the existing software ar-

chitecture evaluation methods, produce qualitative results”.

Usage of software style/pattern con-

cepts & models during architecture

development, increases the utilisation

of modelling description languages,

BUT decreases the simplicity of the

architecture valuation.

Most of the existing software architecture evaluation methods,

produce qualitative results.

Strongly
Disagree

Disagree Neutral Agree
Strongly
Agree

Count Count Count Count Count

Strongly Disagree 0 1 0 0 0

Disagree 1 0 8 1 2

Neutral 0 2 10 5 1

Agree 0 1 5 6 0

Strongly Agree 0 0 0 0 1

E.3.1.12 Analyses of (Q13 and Q23):

Table E.25: Cross tabulation of the most important factors that could SUPPORT quantitative evaluation for any

SA and the opinion about the statement “Current technology allows us to develop general software evaluation models

that assess any software architecture against any quality attributes”.

What are the most important factors that

could SUPPORT quantitative evaluation

for any SA? You may choose two.

Current technology allows us to develop general software eval-

uation models that assess any software architecture against any

quality attributes.

Strongly
Disagree

Disagree Neutral Agree
Strongly
Agree

Count Count Count Count Count

The language used for describing SA 0 3 2 2 0

Formality level of SA description 3 2 3 4 0

Using standard language and architec-

ture framework for describing SA
0 7 6 5 1

Tools availability for describing and

evaluating SA
2 5 10 2 1

Documenting mechanism used during

SA description
0 1 7 1 0

A Chi-square test was used to test the independence between two considered categorical variables.

The test is significant at 6% level, χ2(20)= 30.75, p-value < .06. Therefore, there is an association or

355

APPENDIX E. COMPLEMENT INFORMATION FOR SA SURVEY

dependence between the most important factors that could SUPPORT quantitative evaluation for any SA

and the opinion about the statement “Current technology allows us to develop general software evaluation

models that assess any software architecture against any quality attributes”.

Table E.26: Pearson Chi-square test results for analyses of questions Q13 and Q22.

What are the most important factors that could

SUPPORT quantitative evaluation for any SA?

You may choose two.

Current technology allows us to develop general

software evaluation models that assess any soft-

ware architecture against any quality attributes.

Chi-square 30.75

df 20

Sig. .059

E.3.1.13 Analyses of (Q10 and Q13):

A Chi-square test was used to test the independence between two categorical variables: “Usage of

software style/pattern concepts & models during architecture development, increases the utilisation of

modelling description languages, BUT decreases the simplicity of the architecture valuation” and “the

most important factors that could SUPPORT quantitative evaluation for any SA”.

Table E.27: Pearson Chi-square test results for analyses of questions Q10 and Q13.

Usage of software style/pattern concepts &

models during architecture development, in-

creases the utilisation of modelling description

languages, BUT decreases the simplicity of the

architecture valuation.

What are the most important factors that could

SUPPORT quantitative evaluation for any SA?

You may choose two.

Chi-square 34.36

df 20

Sig. .024

The test yielded significant results, χ2(20)= 34.36, p-value < .05. This led to the conclusion that
there is a significant association or dependence between the categorical variables “Usage of software

style/pattern concepts & models during architecture development, increases the utilisation of modelling

description languages, BUT decreases the simplicity of the architecture valuation” and “the most impor-

tant factors that could SUPPORT quantitative evaluation for any SA”.

E.3.2 Examples of non-significant results for 2-dimensions analyses

E.3.2.1 Analyses of (Q2 and Q6)

There is no association or dependence between sectors in which respondents gained most of their

general software development experience and the main factors that encourage the utilisation of modelling

techniques to describe software/system architecture, χ2 = 13.94, p-value > .05.

Table E.28: Cross tabulation of respondent’s sectors in which respondents gained most of their

general software development experience and the main factors that encourage the utilisation of

modelling techniques to describe software/system architecture.

What are the main factors that ENCOURAGE the utilisation

of modelling techniques to describe software/system architec-

ture? You may select up to two of the following options.

In which of the following sectors have you

gained most of your general software devel-

opment experience?

356

E.3. TWO DIMENSIONS MATRICESANALYSIS

Academia Industry Government

Count Count Count

Easier to demonstrate the software/system con-

cept and features
Count 14 11 5

Most available architecture modelling refer-

ences are clear and well documented, which

helps developers understand and apply the

modelling approach easily

Count 2 3 3

It makes the designers/programers job much

easier
Count 10 3 1

Makes the evaluation of stakeholders require-

ments for quality attributes possible in the

early stages of the development life cycle

Count 6 4 1

Reliable modelling tools for describing the ar-

chitecture exist, which makes the usability fac-

tor much easier

Count 3 1 0

The wide range of modelling language formal-

ity (from informal models to formal), makes

the selection of architecture description tech-

nique more feasible

Count 1 1 0

Architectural models can be compiled to pro-

duce a real functioning software/system with

existing modelling languages and tools, (e.g.

SysML, XT UML)

Count 2 3 1

Teaching of the architecture modelling lan-

guages in the academic sectors
Count 2 4 2

Table E.29: Pearson Chi-square test results for analyses of questions Q2 and Q6.

In which of the following sectors have you

gained most of your general software develop-

ment experience?

What are the main factors that ENCOURAGE

the utilisation of modelling techniques to de-

scribe software/system architecture? You may

select up to two of the following options.

Chi-square 13.94

df 16

Sig. .604

357

APPENDIX E. COMPLEMENT INFORMATION FOR SA SURVEY

E.3.2.2 Analyses of (Q2 and Q7):

There is no association or dependence between sectors in which respondents gained most of their

general software development experience and the main factors that DISCOURAGE the utilisation of

modelling techniques to describe software/system architecture, χ2 = 11.64, p-value > .05.

Table E.30: Cross tabulation of respondent’s sectors in which respondents gained most of their

general software development experience and the main factors that DISCOURAGE the utilisa-

tion of modelling techniques to describe software/system architecture.

What are the main factors that DISCOURAGE the utilisation

of modelling techniques to describe software/system architec-

ture? You may select up to two options.

In which of the following sectors have you

gained most of your general software devel-

opment experience?

Academia Industry Government

Count Count Count

Hard to integrate these models with other arte-

facts (e.g. Design models), so they become

standalone models, which to some degree are

not that useful during the development of soft-

ware/system

Count 10 6 3

Lack of standardisation between existing ar-

chitecture modelling technique, notations, and

semantics

Count 10 6 1

Current architecture description languages (in-

cluding modelling languages) are still imma-

ture

Count 4 3 1

Modelling the architecture has limited bene-

fit to the whole software/system development

process, so it’s to some extent a waste of time

and money

Count 4 5 3

Hard to evaluate architecture models against

any stakeholder’s quality attributes (e.g. Se-

curity, performance)

Count 6 2 5

358

E.3. TWO DIMENSIONS MATRICESANALYSIS

Table E.31: Pearson Chi-square test results for analyses of questions Q2 and Q7.

In which of the following sectors have you

gained most of your general software develop-

ment experience?

What are the main factors that DISCOURAGE the

utilization of modelling techniques to describe soft-

ware/system architecture? You may select up to two op-

tions.

Chi-square 11.46

df 10

Sig. .323

E.3.2.3 Analyses of (Q2 and Q13):

There is no significant association between these two items, χ2 = 7.68, p-value > .05.

Table E.32: Pearson Chi-square test results for analyses of questions Q2 and Q13.

In which of the following sectors have you gained

most of your general software development experi-

ence?

What are the most important factors that could SUPPORT

quantitative evaluation for any SA?You may choose two.

Chi-square 7.68

df 10

Sig. .660

Table E.33: Cross tabulation of sectors in which respondents gained most of their general soft-

ware development experience and the most important factors that could SUPPORT quantitative

evaluation for any SA.

In which of the fol-

lowing sectors have

you gained most of

your general soft-

ware development

experience?

What are the most important factors that could SUPPORT quantitative evalua-

tion for any SA? You may choose two.

The language

used for

describing SA

Formality

level of SA

description

Using standard lan-

guage and architec-

ture framework for

describing SA

Tools availabil-

ity for describ-

ing and evaluat-

ing SA

Documenting

mechanism

used during SA

description

Count Count Count Count Count

Academia 4 7 11 8 6

Industry 2 4 5 10 2

Government 1 1 4 4 1

E.3.2.4 Analyses of (Q2 and Q14):

There is no significant association between these two items, χ2 = 8.93, p-value > .05. Thus the sec-

tors in which respondents gained most of their software development experience does not seem to shape

the respondents’ opinions about the factors that hinder quantitative evaluation of SA.

359

APPENDIX E. COMPLEMENT INFORMATION FOR SA SURVEY

Table E.34: Cross tabulation of sectors in which respondents gained most of their general soft-

ware development experience and the most important factors that could HINDER quantitative

evaluation for any Software Architecture (SA).

In which of the fol-

lowing sectors have

you gained most of

your general soft-

ware development

experience?

What are the most important factors that could HINDER quantitative evaluation

for any SA? You may choose two.

The language

used for

describing SA

Formality

level of SA

description

Using standard lan-

guage and architec-

ture framework for

describing SA

Tools availabil-

ity for describ-

ing and evaluat-

ing SA

Documenting

mechanism

used during SA

description

Count Count Count Count Count

Academia 10 9 4 8 3

Industry 4 8 0 6 1

Government 3 4 1 1 2

Table E.35: Pearson Chi-square test results for analyses of questions Q2 and Q14.

In which of the following sectors have you gained

most of your general software development experi-

ence?

What are the most important factors that could HINDER

quantitative evaluation for any SA?You may choose two.

Chi-square 8.93

df 10

Sig. .539

E.4 Examples for three and four dimensional analyses

Within this section, examples of (3 and 4) dimensional analysis are illustrated. However, many

tests and analysis (which not included here) for both dimensions were performed, but their results are

inappropriate due to the same reasons that have been reported within these examples.

E.4.1 Three dimensional analysis:

1- Analyses of Q3 by Q5 when Q1: What is your general field of expertise regarding software

development? = Requirements elicitation / modelling / analysis The test is significant at 5% level of

significance, χ2 = 26.62, p-value < .05. But the test result may invalid due to violation of the assumption

of minimum expected cell counts for a valid non-parametric Chi-Square test. Though the test result is

significant at 5% level that signifies the association between years of experiences of respondents in the

software/systems development field and how often the respondents use models to describe software/sys-

tem architecture during their work when the general field of expertise regarding software development is

“Requirements elicitation/modelling/analysis” but due to low expected cell counts, the result is invalid

and so on for all the three dimensional cross tabulations.

2- Analyses of Q22 by Q2 when Q1: What is your general field of expertise regarding soft-

ware development? = Project management. One wayANOVAprocedure is used to test the difference

among group means for the item “Restricting the description of architecture to a specific modelling lan-

guage during development, should make the architecture quantitative evaluation easier” corresponding

to the different sectors from where the respondents gained their general software development experi-

ence and for the respondents whose general field of expertise regarding software development is project

management.

360

E.4. EXAMPLES FOR THREEAND FOUR DIMENSIONALANALYSES

Table E.36: Pearson Chi-Square test results for testing association between years of experiences

of respondents in the software/systems development field and how often the respondents use

models to describe software/system architecture during their work when the general field of

expertise regarding software development is “Requirements elicitation/modelling/analysis”.

How many years’ experience do you have in to-

tal in the software/systems development field?

How often do you use models to describe soft-

ware/system architecture during your work?

Chi-square 26.618

df 16

Sig. .046*,c,d

Results are based on nonempty rows and columns in each innermost subtable.
* The Chi-square statistic is significant at the .05 level.
a Requirements elicitation / modelling / analysis = Yes.
c More than 20% of cells in this subtable have expected cell counts less than 5. Chi-square results may be invalid.
d The minimum expected cell count in this subtable is less than one. Chi-square results may be invalid.

T
ab
le
E
.3
7
:
C
ro
ss
ta
b
u
la
ti
o
n
o
f
y
ea
rs
o
f
ex
p
er
ie
n
ce
s
o
f
re
sp
o
n
d
en
ts
in
th
e
so
ft
w
ar
e/
sy
st
em

s
d
ev
el
o
p
-

m
en
t
fi
el
d
an
d
h
o
w
o
ft
en

th
e
re
sp
o
n
d
en
ts
u
se
m
o
d
el
s
to
d
es
cr
ib
e
so
ft
w
ar
e/
sy
st
em

ar
ch
it
ec
tu
re
d
u
ri
n
g

th
ei
r
w
o
rk
w
h
en

th
e
g
en
er
al
fi
el
d
o
f
ex
p
er
ti
se
re
g
ar
d
in
g
so
ft
w
ar
e
d
ev
el
o
p
m
en
t
is
“R
eq
u
ir
em

en
ts
el
ic
i-

ta
ti
o
n
/m
o
d
el
li
n
g
/a
n
al
y
si
s”
.

H
o
w
m
an
y
y
ea
rs
’
ex
p
er
ie
n
ce

d
o
y
o
u

h
av
e
in
to
ta
l
in
th
e
so
ft
w
ar
e/
sy
st
em

s

d
ev
el
o
p
m
en
t
fi
el
d
?

H
o
w
o
ft
en

d
o
y
o
u
u
se
m
o
d
el
s
to
d
es
cr
ib
e
so
ft
w
ar
e/
sy
st
em

ar
ch
it
ec
tu
re

d
u
ri
n
g
y
o
u
r
w
o
rk
?

N
ev
er

In
fr
eq
u
en
tl
y

(<
1
0
%
)

R
ea
so
n
ab
ly

fr
eq
u
en
tl
y

(>
1
5
%
an
d

<
5
0
%
)

R
eg
u
la
rl
y

(>
5
0
%

an
d
<

8
0
%
)

N
ea
rl
y

al
w
ay
s

(>
9
0
%
)

T
o
ta
l

5
–
1
0
(y
ea
rs
)

C
o
u
n
t

1
5

6
0

1
1
3

E
x
p
ec
te
d
C
o
u
n
t

1
.1

4
.5

5
.1

.6
1
.7

1
3
.0

1
0
–
1
5
(y
ea
rs
)

C
o
u
n
t

1
1

2
0

0
4

E
x
p
ec
te
d
C
o
u
n
t

.3
1
.4

1
.6

.2
.5

4
.0

1
5
–
2
0
(y
ea
rs
)

C
o
u
n
t

0
0

1
0

0
1

E
x
p
ec
te
d
C
o
u
n
t

.1
.3

.4
.0

.1
1
.0

2
0
–
2
5
(y
ea
rs
)

C
o
u
n
t

0
2

0
1

0
3

E
x
p
ec
te
d
C
o
u
n
t

.3
1
.0

1
.2

.1
.4

3
.0

O
v
er
2
5
(y
ea
rs
)

C
o
u
n
t

0
0

0
0

2
2

E
x
p
ec
te
d
C
o
u
n
t

.2
.7

.8
.1

.3
2
.0

T
o
ta
l

C
o
u
n
t

2
8

9
1

3
2
3

E
x
p
ec
te
d
C
o
u
n
t

2
.0

8
.0

9
.0

1
.0

3
.0

2
3
.0

361

APPENDIX E. COMPLEMENT INFORMATION FOR SA SURVEY

Table E.38: Multiple Comparisons between Q2, Q22, when Q1= Project Management

Dependent Variable: Restricting the description of architecture to a specific modelling

language during development, should make the architecture quantitative evaluation easier.

LSD

(I) In which of

the following

sectors have you

gained most of

your general soft-

ware development

experience?

(J) In which of

the following

sectors have you

gained most of

your general soft-

ware development

experience?

95% Confidence
Interval

Mean
Differ-

ence*(I-J)

Std.
Error

Sig.
Lower
Bound

Upper
Bound

Academia

Industry 1.000* .274 .015 .30 1.70

Government .500 .316 .175 -.31 1.31

Industry
Industry -1.000* .274 .015 -1.70 -.30

Government -.500 .274 .127 -1.20 .20

Government

Industry -.500 .316 .175 -1.31 .31

Government .500 .274 .127 -.20 1.20

* The mean difference is significant at the 0.05 level.

The test is significant for the item “Restricting the description of architecture to a specific mod-

elling language during development, shouldmake the architecture quantitative evaluation easier”, F = 6.9,

p-value < .05. So, the group means corresponding to the different sectors where the respondents gained

their general software development experience and for the respondents whose general field of expertise

regarding software development is project management are statistically different for the item “Restrict-

ing the description of architecture to a specific modelling language during development, should make the

architecture quantitative evaluation easier”.

Now to see which group means are statistically different, a multiple comparison test (LSD method)

is used.

The group means for the item “Restricting the description of architecture to a specific modelling lan-

guage during development, should make the architecture quantitative evaluation easier” is significantly

different for the respondents whose general field of expertise regarding software development is project

management and who gained there general software development experience in “Academia” than who

gained there general software development experience in “Industry”, mean = 1.0, p-value < .05.

Table E.39: One way ANOVA table to test the difference among group means for Q22, Q2,

when Q1= Project Management

Sum of Squares df Mean Square F Sig.

Between Groups 1.375 2 .688 6.875 .037

Within Groups .500 5 .100

Total 1.875 7

a. Project management = Yes

362

E
.4
.
E
X
A
M
P
L
E
S
F
O
R
T
H
R
E
E
A
N
D
F
O
U
R
D
IM

E
N
S
IO

N
A
L
A
N
A
L
Y
S
E
S

E.4.2 Example for Four dimensional analyses

Due to low frequency in four dimensional analyses, all the results are either invalid or non-significant. The following table shows the cross tabulation of Q2

and Q3 with Q4 and Q5 where most of the cell counts are either 0 or 1. Therefore, four dimensional analyses for this data will not be valid.

Table E.40: Cross tabulation Analyses for (Q2 and Q3 with Q4 and Q5).

How many years experience do you have in total in

the software/systems development field?

How often do you use models to describe software/system architecture during your work?

Never
Infrequently (< 10%)

Reasonably frequently

(> 15% and < 50%)
Regularly (> 50% and

< 80%)
Nearly always (> 90%)

0mm aware of any

software/system

architectural

description/modelling

languages, (e.g. ADLs,

AADL, SysML, UML)?

0mm aware of any

software/system

architectural

description/modelling

languages, (e.g. ADLs,

AADL, SysML, UML)?

0mm aware of any

software/system

architectural

description/modelling

languages, (e.g. ADLs,

AADL, SysML, UML)?

0mm aware of any

software/system

architectural

description/modelling

languages, (e.g. ADLs,

AADL, SysML, UML)?

0mm aware of any

software/system

architectural

description/modelling

languages, (e.g. ADLs,

AADL, SysML, UML)?

No
Yes, which

language?
No

Yes, which

language?
No

Yes, which

language?
No

Yes, which

language?
No

Yes, which

language?

Count Count Count Count Count Count Count Count Count Count

5–10

(years)

In which of the following sectors

have you gained most of your

general software development

experience?

Academia 0 1 2 6 1 2 0 1 0 1

Industry 0 1 0 1 0 5 0 1 0 0

Government 0 1 0 1 0 0 0 0 0 0

10–15

(years)

In which of the following sectors

have you gained most of your

general software development

experience?

Academia 0 1 0 0 0 1 0 0 0 0

Industry 0 1 0 0 1 1 0 1 0 0

Government 0 1 1 0 0 2 0 0 0 0

15–20

(years)

In which of the following sectors

have you gained most of your

general software development

experience?

Academia 0 0 1 1 0 0 0 0 0 0

Industry 0 0 0 0 0 1 0 0 1 0

Government 0 0 0 0 0 0 0 0 0 0

20–25

(years)

In which of the following sectors

have you gained most of your

general software development

experience?

Academia 0 0 0 1 0 1 0 2 0 0

Industry 0 0 0 2 0 0 0 0 0 0

Government 0 0 0 1 0 0 0 0 0 0

Over

25

(years)

In which of the following sectors

have you gained most of your

general software development

experience?

Academia 1 0 0 1 0 0 0 0 0 0

Industry 0 0 0 0 0 0 0 0 0 2

Government 0 0 0 0 0 0 0 0 0 0

3
6
3

APPENDIX E. COMPLEMENT INFORMATION FOR SA SURVEY

E.5 Supported information for the Summary Table of Chapter 5

This section includes all tables mentioned by the summary Table 5.13 in Chapter 5, which have not

mentioned by other sections.

E.5.1 Analyses of (Q2 and Q11):

There is a significant association or dependence between sectors in which respondents gained most

of their general software development experience with whether the developers were aware of any sys-

tem/software architectural tactics or metrics that have been or are being used for evaluating architecture

description models, χ2 = 5.43, p-value < .07, leading us to believe that some sectors have applied more

effort than others in creating awareness about SA evaluation.

Table E.41: Cross tabulation of sectors in which respondents gained most of their general soft-

ware development experience and whether respondents were aware of any system/software ar-

chitectural tactics or metrics that have been or are being used for evaluating architecture descrip-

tion models (e.g. detecting attacks for security).

In which of the following sectors

have you gained most of your general

software development experience?

Are you aware of any system/software architectural tac-

tics or metrics that have been or are being used for eval-

uating architecture description models, (e.g. detecting

attacks for security).

No
Yes, please provide

reference:

Count Count

Academia 22 1

Industry 11 5

Government 7 1

Table E.42: Pearson Chi-square test results for analyses of questions Q2 and Q11.

In which of the following sectors have you

gained most of your general software develop-

ment experience?

Are you aware of any system/software architec-

tural tactics or metrics that have been or are be-

ing used for evaluating architecture description

models, (e.g. detecting attacks for security).

Chi-square 5.43

df 2

Sig. .066

E.5.2 Analyses of (Q3 and Q5):

The results in Table E.44 and Table E.43 reveal a significant association between the years of ex-

perience in total in the software/systems development field with how they used models to describe soft-

ware/system architecture during their work, χ2 = 26.18, p-value > .05.

364

E.5. SUPPORTED INFORMATION FOR THE SUMMARYTABLE OF…

Table E.43: Pearson Chi-square test results for analyses of questions Q3 and Q5.

How many years’ experience do you have in to-

tal in the software/systems development field?

How often do you use models to describe soft-

ware/system architecture during your work?

Chi-square 26.18

df 16

Sig. .052

Table E.44: Cross tabulation of respondent’s years of experience in total in the software/systems

development field and how often they used models to describe software/system architecture

during your work.

How many years’

experience do you

have in total in the

software/systems

development field?

How often do you use models to describe software/system architecture

during your work?

Never
Infrequently
(< 10%)

Reasonably
frequently
(> 15% and
< 50%)

Regularly
(> 50%

and < 80%)

Nearly
always
(> 90%)

Count Count Count Count Count

5–10 (years) 3 10 8 2 1

10–15 (years) 3 1 6 1 0

15–20 (years) 0 2 1 0 1

20–25 (years) 0 4 1 2 0

Over 25 (years) 1 1 0 0 2

E.5.3 Analyses of (Q3 and Q7):

There is a significant association between years of experience in total in the software/systems devel-

opment field and the main factors that DISCOURAGE the utilisation of modelling techniques to describe

software/system architecture, χ2 = 30.44, p-value < .07. The full analysis of the results is shown in Ta-

ble 5.7 and E.45.

Table E.45: Pearson Chi-square test results for analyses of questions Q3 and Q7.

How many years’ experience do you have in to-

tal in the software/systems development field?

What are the main factors that DISCOURAGE

the utilization of modelling techniques to de-

scribe software/system architecture? You may

select up to two options.

Chi-square 30.44

df 20

Sig. .063

365

A
P
P
E
N
D
IX

E
.
C
O
M
P
L
E
M
E
N
T
IN
F
O
R
M
A
T
IO

N
F
O
R
S
A
S
U
R
V
E
Y

E.5.4 Analyses of (Q9 and Q10 by Q6)

Table E.46: Independent samples t-test results for the selected items for equality of grouped population means.

Item: It makes the designers/programers job much easier.

Groups: “Yes” and “No”

Levene’s

Test for
Equality of
Variances

t-test for Equality of Means

95% Confidence
Interval of

the Difference

F Sig. t df
Sig.

(2-tailed)

Mean
Diffe-
rence

Std.
Error
Diffe-
rence

Lower Upper

Developing software/system architecture

using current architectural frameworks (e.g.

ISO/IEC 42010, DoDAF, RUP/4+1) in-

creases the reliability, standardisation, and

reusability of the resulting architecture.

Equal variances as-

sumed
4.1 .05 -.2 43 .82 -.1 .2 -.6 .4

Equal variances not

assumed -.3 39.2 .79 -.1 .2 -.5 .4

Usage of software style/pattern concepts &

models during architecture development,

increases the utilisation of modelling descrip-

tion languages, BUT decreases the simplicity

of the architecture valuation.

Equal variances as-

sumed
1.7 .20 2.0 44 .06 .5 .3 .0 1.0

Equal variances not

assumed 1.8 21.1 .08 .5 .3 -.1 1.1

The independent sample t-test result is non-significant for the item “Developing software/system architecture using current architectural frameworks ...etc.”,

t(43) = -0.2, p-value > .05.

The test is also non-significant for the item “Usage of software style/pattern concepts & models during architecture ...etc.”, t(44) = 2.0, p-value > .05. This

leads to the conclusion that there was no significant difference between respondents who answered “Yes” and those who answered “No” to the item “It makes the

designers/programmers job much easier”.

3
6
6

E.5. SUPPORTED INFORMATION FOR THE SUMMARYTABLE OF…

E.5.5 Additional important summary tables for 2-Dimensional analyses

In this section I have summarised and combined several important results, from many different ta-

bles, to allow the readers to be able to view the overall analyses picture. However, most of the summary

tables included in this section are long and stuffed with valuable information (which could be a disadvan-

tage); but they should be better for representing these results, rather-than reporting them via (70 pages)

as a separated tables.

Table E.47: Cross tabulation of the developer’s years’ of experience in the software/system

development field against selected categorical questions and corresponding results for χ2-test

of independence.

Howmany years’experience do you have in to-

tal in the software/systems development field?
χ2

(p-value)

5–10
(years)

10–15
(years)

15–20
(years)

20–25
(years)

> 25
(years)

Are you aware of any software/system architectural description/modelling languages

Yes 21 8 2 7 3 5.26

(.261)No 3 2 2 0 1

How often do you use models to describe software/system architecture during your work?

Never 3 3 0 0 1

26.18

(.052)

Infrequently (<10%) 10 1 2 4 1

Reasonably frequent (>15% and <50%) 8 6 1 1 0

Regularly (>50% and <80%) 2 1 0 2 0

Nearly always (>90%) 1 0 1 0 2

What are the main factors that ENCOURAGE the utilization of modelling techniques to de-

scribe soft- ware/system architecture?

Easier to demonstrate the software/system

concept and features
15 7 2 3 3

36.62

(.263)

Most available architecture modelling ref-

erences are clear and well documented,

which helps developers understand and ap-

ply the modelling approach easily

5 3 0 0 0

It makes the designers/programmers job

much easier
8 1 2 2 1

Makes the evaluation of stakeholders re-

quirements for quality attributes possible in

the early stages of the development life cy-

cle

4 0 2 5 0

Reliable modelling tools for describing the

architecture exist, which makes the usabil-

ity factor much easier

2 0 1 0 1

367

APPENDIX E. COMPLEMENT INFORMATION FOR SA SURVEY

The wide range of modelling language for-

mality (from informal models to formal),

makes the selection of architecture descrip-

tion technique more feasible

1 1 0 0 0

Architectural models can be compiled to

produce a real functioning software/sys-

tem with existing modelling languages and

tools, (e.g. SysML, X-UML)

2 1 0 2 1

Teaching of the architecture modelling lan-

guages in the academic sectors
3 3 0 1 1

What are the main factors that DISCOURAGE the utilization of modelling techniques to de-

scribe software/system architecture?

Hard to integrate these models with other

artefacts (e.g. Design models), so they be-

come standalone models, which to some

degree are not that useful during the devel-

opment of software/system

8 3 3 4 1

30.44

(.063)

Lack of standardisation between exist-

ing architecture modelling technique, nota-

tions, and semantics

7 1 2 4 3

Current architecture description languages

(including modelling languages) are still

immature

0 4 1 2 1

Modelling the architecture has limited ben-

efit to the whole software/system develop-

ment process, so it’s to some extent a waste

of time and money

7 4 0 1 0

Hard to evaluate architecture models

against any stakeholder’s quality attributes

(e.g. Security, performance)

8 4 0 0 1

From your experience, what is the best language to use to describe software/system architec-

ture, so as to be more useful to all stakeholders, and to be easier to undertake qualitative and

quantitative assessments?

Natural language (e.g. English-text) only 3 1 0 0 0

29.83

(.191)

Semi-formal language (e.g. UML, SysML)

only
5 2 0 0 1

Formal language (e.g. ADLs, Z) only 0 0 0 0 1

Formal language & Natural language to-

gether
1 0 0 1 0

Semi-formal language & Natural language

together
5 8 4 5 2

368

E.5. SUPPORTED INFORMATION FOR THE SUMMARYTABLE OF…

Semi-formal language & Formal language

together
1 0 0 0 0

All three languages above together 5 0 0 1 0

Are you aware of any system/software architectural tactics or metrics that have been or are

being used for evaluating architecture description models

Yes 2 3 0 1 1 2.95

(.566)No 20 8 4 5 3

Do you know or use any architectural evaluation method that can produce quantitative mea-

sures surrounding architecture characteristics?

Yes 1 2 0 1 1 3.29

(.511)No 21 8 4 5 3

What are the most important factors that could SUPPORT quantitative evaluation for any SA?

The language used for describing SA 4 1 0 1 1

12.94

(.880)

Formality level of SA description 4 4 1 2 1

Using standard language and architecture

framework for describing SA
7 3 3 4 3

Tools availability for describing and evalu-

ating SA
11 5 1 3 2

Documenting mechanism used during SA

description
6 1 1 1 0

What are the most important factors that could HINDER quantitative evaluation for any SA

The language used for describing SA 9 2 1 3 2

17.47

(.622)

Formality level of SA description 10 6 1 3 1

Using standard language and architecture

framework for describing SA
4 1 0 0 0

Tools availability for describing and evalu-

ating SA
4 3 2 3 3

Documenting mechanism used during SA

description
2 2 0 2 0

Table E.48: Cross tabulation between the developer’s awareness regarding modelling languages

and selected categorical questions.

Are you aware of any soft-

ware/system architectural

description/ modelling

languages
χ2

(p-value)
Yes No

369

APPENDIX E. COMPLEMENT INFORMATION FOR SA SURVEY

How often do you use models to describe software/system architecture during your work?

Never 6 1

1.77

(.777)

Infrequently (<10%) 14 4

Reasonably frequent (>15% and <50%) 13 2

Regularly (>50% and <80%) 5 0

Nearly always (>90%) 3 1

What are the main factors that ENCOURAGE the utilization of modelling techniques to describe

software/system architecture?

Easier to demonstrate the software/system concept

and features
24 5

Most available architecture modelling references

are clear and well documented, which helps de-

velopers understand and apply the modelling ap-

proach easily

6 2

It makes the designers/programmers jobmuch eas-

ier
10 4

5.03

(.755)

Makes the evaluation of stakeholders require-

ments for quality attributes possible in the early

stages of the development life cycle

10 1

Reliable modelling tools for describing the ar-

chitecture exist, which makes the usability factor

much easier

3 1

The wide range of modelling language formality

(from informal models to formal), makes the se-

lection of architecture description technique more

feasible

2 0

Architectural models can be compiled to produce

a real functioning software/system with existing

modelling languages and tools, (e.g. SysML, X

UML)

6 0

Teaching of the architecture modelling languages

in the academic sectors
7 1

What are the main factors that DISCOURAGE the utilization of modelling techniques to describe

software/system architecture?

Hard to integrate these models with other artefacts

(e.g. Design models), so they become standalone

models, which to some degree are not that useful

during the development of software/system

13 6

6.14

(.293)

Lack of standardisation between existing architec-

ture modelling technique, notations, and seman-

tics

14 3

370

E.5. SUPPORTED INFORMATION FOR THE SUMMARYTABLE OF…

Current architecture description languages (in-

cluding modelling languages) are still immature
7 1

Modelling the architecture has limited benefit to

the whole software/system development process,

so it’s to some extent a waste of time and money

10 1

Hard to evaluate architecture models against any

stakeholder’s quality attributes (e.g. Security, per-

formance)

11 1

From your experience, what is the best language to use to describe software/system architecture, so

as to be more useful to all stakeholders, and to be easier to undertake qualitative and quantitative

assessments?

Natural language (e.g. English-text) only 2 2

12.23

(.057)

Semi-formal language (e.g. UML, SysML) only 8 0

Formal language (e.g. ADLs, Z) only 0 1

Formal language & Natural language together 2 0

Semi-formal language & Natural language together 19 4

Semi-formal language & Formal language together 1 0

All three languages above together 6 0

Are you aware of any system/software architectural tactics or metrics that have been or are being

used for evaluating architecture description models

Yes 7 0 1.74

(.187)No 31 8

Do you know or use any architectural evaluation method that can produce quantitative measures

surrounding architecture characteristics?

Yes 5 0 1.22

(.270)No 32 8

What are the most important factors that could SUPPORT quantitative evaluation for any SA?

The language used for describing SA 6 0

4.79

(.442)

Formality level of SA description 10 2

Using standard language and architecture frame-

work for describing SA
15 5

Tools availability for describing and evaluating SA 18 4

Documenting mechanism used during SA description 5 3

What are the most important factors that could HINDER quantitative evaluation for any SA?

The language used for describing SA 13 4

2.81

(.730)

Formality level of SA description 16 4

Using standard language and architecture frame-

work for describing SA
4 1

Tools availability for describing and evaluating SA 13 2

Documenting mechanism used during SA description 6 0

371

APPENDIX E. COMPLEMENT INFORMATION FOR SA SURVEY

Table E.49: Cross tabulation of how often developer’s used models to describe software/system

architecture during their work against selected categorical questions and corresponding results

for χ2 test of independence.

How often do you use models to describe software/system ar-

chitecture during your work?
χ2

(p-value)

Never
Infrequently
(<10%)

Reasonably
frequent
(15–50%)

Regularly
(50–80%)

Nearly
always
(>90%)

What are the main factors that ENCOURAGE the utilization of modelling techniques to describe

software/ system architecture?

Easier to demonstrate the soft-

ware/system concept and features
5 7 10 5 3

56.46

(.005)

Most available architecture mod-

elling references are clear and well

documented, which helps develop-

ers understand and apply the mod-

elling approach easily

0 2 5 0 1

It makes the designers/programers

job much easier
0 8 4 2 0

Makes the evaluation of stakehold-

ers requirements for quality at-

tributes possible in the early stages

of the development life cycle

0 4 3 2 2

Reliable modelling tools for de-

scribing the architecture exist,

which makes the usability factor

much easier

0 3 0 0 1

The wide range of modelling

language formality (from informal

models to formal), makes the

selection of architecture description

technique more feasible

0 0 1 1 0

Architectural models can be com-

piled to produce a real function-

ing software/system with existing

modelling languages and tools, (e.g.

SysML, xtUML)

0 4 1 0 1

Teaching of the architecture mod-

elling languages in the academic

sectors

4 1 3 0 0

What are the main factors that DISCOURAGE the utilization of modelling techniques to describe soft-

ware/system architecture?

372

E.5. SUPPORTED INFORMATION FOR THE SUMMARYTABLE OF…

Hard to integrate these models with

other artefacts (e.g. Design mod-

els), so they become standalone

models, which to some degree are

not that useful during the develop-

ment of software/system

1 8 8 1 1

Lack of standardisation between ex-

isting architecture modelling tech-

nique, notations, and semantics

0 7 4 4 2

Current architecture description

languages (including modelling

languages) are still immature

0 2 3 2 1

33.54

(.029)Modelling the architecture has lim-

ited benefit to the whole soft-

ware/system development process,

so it’s to some extent a waste of time

and money

5 3 3 0 1

Hard to evaluate architecture mod-

els against any stakeholder’s qual-

ity attributes (e.g. Security, perfor-

mance)

3 2 6 1 1

From your experience, what is the best language to use to describe software/ system architecture, so as to

be more useful to all stakeholders, and to be easier to undertake qualitative and quantitative assessments?

Natural language (e.g. English-

text) only
2 0 2 0 0

23.4

(.494)

Semi-formal language (e.g. UML,

SysML) only
0 4 4 0 0

Formal language (e.g. ADLs, Z)

only
1 0 0 0 0

Formal language & Natural lan-

guage together
0 1 1 0 0

Semi-formal language & Natural

language together
3 8 7 3 3

Semi-formal language & Formal

language together
0 1 0 0 0

All three languages above together 1 1 1 2 1

Are you aware of any system/ software architectural tactics or metrics that have been or are being used

for evaluating architecture description models

Yes 1 0 3 2 1 5.62

(.229)No 6 15 13 3 3

Do you know or use any architectural evaluation method that can produce quantitative measures sur-

rounding architecture characteristics?

373

APPENDIX E. COMPLEMENT INFORMATION FOR SA SURVEY

Yes 1 1 1 1 1 1.89

(.757)No 6 14 14 4 3

What are the most important factors that could SUPPORT quantitative evaluation for any SA?

The language used for describing

SA
1 2 2 0 2

22.55

(.312)

Formality level of SA description 1 1 5 3 2

Using standard language and ar-

chitecture framework for describing

SA

3 8 4 3 2

Tools availability for describing and

evaluating SA
3 7 8 2 2

Documenting mechanism used dur-

ing SA description
0 6 3 0 0

What are the most important factors that could HINDER quantitative evaluation for any SA?

The language used for describing

SA
2 7 5 1 2

17.93

(.592)

Formality level of SA description 4 6 8 3 0

Using standard language and ar-

chitecture framework for describing

SA

0 3 2 0 0

Tools availability for describing and

evaluating SA
2 3 4 3 3

Documenting mechanism used dur-

ing SA description
1 2 2 1 0

Table E.50: Cross tabulation of the developer’s general field of expertise regarding software

development against selected categorical questions and corresponding results for χ2 test of in-

dependence.

What is your general field of expertise regarding software development? You

may select more than one of the following options.
χ2

(p-value)
Require-
ments

elicitation/
modelling/
analysis

Project
manag-
ement

Archi-
tecture

Design Coding Testing
Documen-
tations

Other

Are you aware of any software/system architectural description/modelling languages

Yes 20 8 18 27 25 15 7 4 9.69

(.287)No 3 3 1 3 3 3 1 2

374

E.5. SUPPORTED INFORMATION FOR THE SUMMARYTABLE OF…

Inwhich of the following sectors have you gainedmost of your general software development experience?

Academia 9 4 7 14 13 8 4 2
12.49

(.710)
Industry 10 5 8 11 11 8 4 4

Government 4 2 5 6 5 2 0 0

From your experience, what is the best language to use to describe software/system architecture, so as to

be more useful to all stakeholders, and to be easier to undertake qualitative and quantitative assessments?

Natural language

only
1 1 0 2 4 1 2 0

Semi-formal lan-

guage
6 0 2 4 2 4 1 0

Formal language

only
0 1 0 0 0 0 0 0

Formal lan-

guage & Natural

language together

0 0 1 2 2 1 0 0

53.21

(.281)Semi-formal lan-

guage & Natural

language together

13 7 12 16 15 7 2 4

Semi-formal lan-

guage & Formal

language together

0 0 1 1 0 0 0 0

All three lan-

guages above

together

2 1 4 5 4 3 1 0

Are you aware of any system/software architectural tactics or metrics that have been or are being used

for evaluating architecture description models

Yes 5 2 5 5 5 4 3 0 13.94

(.083)No 18 9 14 25 22 12 4 5

Do you know or use any architectural evaluation method that can produce quantitative measures sur-

rounding architecture characteristics?

Yes 18 10 14 26 24 14 6 5 9.40

(.309)No 4 1 4 4 2 1 0 0

Table E.51: Independent sample t-test for equality of two population group means of ”develop-

ing software/system architecture using current architectural frameworks increases the reliability,

standardisation, and reusability of the resulting architecture” by the main factors that ENCOUR-

AGE the utilization of modelling techniques to describe software/system architecture.

The main factors that ENCOURAGE the utiliza-

tion of modelling techniques to describe soft-

ware/system architecture

N Mean SD

t-test for Equality of Means

375

APPENDIX E. COMPLEMENT INFORMATION FOR SA SURVEY

t-statistic
(p-value)

95% CI of the
difference

Easier to demonstrate the software/system concept and features

Yes 30 3.43 0.73 -0.41

(.681)
(-0.59, 0.39)

No 15 3.53 0.83

Most available architecture modelling references are clear and well documented, which helps

developers understand and apply the modelling approach easily

Yes 8 3.75 0.71 1.17

(.247)
(-0.25, 0.94)

No 37 3.41 0.76

It makes the designers/programers job much easier

Yes 14 3.43 0.51 -0.27

(.789)
(-0.47, 0.36)

No 31 3.48 0.85

Makes the evaluation of stakeholders requirements for quality attributes possible in the early

stages of the development life cycle

Yes 9 3.67 0.71 0.88

(.382)
(-0.32, 0.82)

No 36 3.42 0.77

Reliable modelling tools for describing the architecture exist, which makes the usability factor

much easier

Yes 4 4.25 0.96
2.27(.028) (0.04, 1.62)

No 41 3.39 0.70

The wide range of modelling language formality (from informal models to formal), makes the

selection of architecture description technique more feasible

Yes 2 4.00 0.00
1.02(.313) (-0.55, 1.66)

No 43 3.44 0.77

Architectural models can be compiled to produce a real functioning software/system with ex-

isting modelling languages and tools, (e.g. SysML, xtUML)

Yes 6 3.33 1.03 -0.46

(.648)
(-0.83, 0.52)

No 39 3.49 0.72

Teaching of the architecture modelling languages in the academic sectors

Yes 8 3.13 0.35
-2.29(.031) (-0.79, -0.04)

No 37 3.54 0.80

Table E.52: Independent sample t-test for equality of two population group means of ”Usage of

software style/pattern concepts &models during architecture development, increases the utilisa-

tion of modeling description languages, BUT decreases the simplicity of the architecture valua-

tion” by the main factors that ENCOURAGE the utilization of modelling techniques to describe

software/system architecture.

The main factors that ENCOURAGE the utiliza-

tion of modelling techniques to describe soft-

ware/system architecture

N Mean SD

t-test for Equality of Means

t-statistic
(p-value)

95% CI of the
difference

Easier to demonstrate the software/system concept and features

Yes 30 2.97 0.93 -0.36

(.718)
(-0.63, 0.44)

376

E.5. SUPPORTED INFORMATION FOR THE SUMMARYTABLE OF…

No 16 3.06 0.68

Most available architecture modelling references are clear and well documented, which helps

developers understand and apply the modelling approach easily

Yes 8 3.13 0.64
0.46(.650) (-0.52, 0.82)

No 38 2.97 0.89

It makes the designers/programers job much easier

Yes 14 3.36 0.93
1.96(.056) (-0.02, 1.04)

No 32 2.84 0.77

Makes the evaluation of stakeholders requirements for quality attributes possible in the early

stages of the development life cycle

Yes 10 2.90 0.88
-0.42(.677) (-0.74, 0.49)

No 36 3.03 0.85

Reliable modelling tools for describing the architecture exist, which makes the usability factor

much easier

Yes 4 2.50 1.29 -1.25

(.218)
(-1.43, 0.34)

No 42 3.05 0.80

The wide range of modelling language formality (from informal models to formal), makes the

selection of architecture description technique more feasible

Yes 2 3.00 1.41 0.00

(1.00)
(-1.24, 1.24)

No 44 3.00 0.84

Architectural models can be compiled to produce a real functioning software/system with ex-

isting modelling languages and tools, (e.g. SysML, xtUML)

Yes 6 2.50 0.55
-1.58(.121) (-1.31, 0.16)

No 36 3.08 0.86

Teaching of the architecture modelling languages in the academic sectors

Yes 8 2.88 0.64 -0.46

(.650)
(-0.82, 0.52)

No 38 3.03 0.89

377

APPENDIX E. COMPLEMENT INFORMATION FOR SA SURVEY

Table E.53: Summary table of χ2-test results for testing pairwise independence between cate-

gorical variables.

Q2 Q4 Q5 Q6 Q7 Q8 Q11 Q12 Q13 Q14

Q1
12.49

(.710)

9.69

(.287)

53.21

(.281)

13.94

(.083)

9.40

(.309)

Q2
0.74

(.692)

9.64

(.291)

13.94

(.604)

11.46

(.323)

6.44

(.893)

5.43

(.066)

0.23

(.892)

7.68

(.660)

8.93

(.539)

Q3
5.26

(.261)

26.18

(.052)

36.62

(.263)

30.44

(.063)

29.83

(.191)

2.95

(.566)

3.29

(.511)

12.94

(.880)

17.47

(.622)

Q4
1.77

(.777)

5.03

(.755)

6.14

(.293)

12.23

(.057)

1.74

(.187)

1.22

(.270)

4.79

(.442)

2.81

(.730)

Q5
56.46∗∗

(.005)

33.54∗

(.029)

23.44

(.494)

5.62

(.229)

1.89

(.757)

22.55

(.312)

17.93

(.592)

Q6
52.51

(.089)

34.28

(.932)

36.56

(.626)

45.81

(.244)

Q7
23.75

(.783)

31.33

(.178)

20.67

(.711)

Q8
1.37

(.968)

3.21

(.782)

25.12

(.719)

24.95

(.728)

Q11
22.17∗∗

(.000)

6.23

(.285)

7.49

(.187)

Q12
2.34

(.800)

6.31

(.277)

Q13
28.43

(.289)

Key: χ2 statistic ; (p-value)

* χ2 statistic is significant at 5% level of significance

** χ2 statistic is significant at 1% level of significance

378

E.5. SUPPORTED INFORMATION FOR THE SUMMARYTABLE OF…

Table E.54: nalysis of variance (ANOVA) results for Q9, Q10 and Q15 to Q23 by the single

response categorical variables.

Q9 Q10 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23

Q2
0.01

(.990)

3.33*

(.045)

0.14

(.873)

2.02

(.145)

0.03

(.974)

1.59

(.217)

2.51

(.094)

1.75

(.187)

0.17

(.842)

0.80

(.458)

0.01

(.989)

Q3
0.14

(.967)

0.74

(.573)

0.13

(.969)

0.36

(.835)

3.76*

(.011)

0.84

(.510)

0.44

(.781)

0.64

(.636)

1.10

(.371)

0.44

(.777)

0.61

(.660)

Q5
1.04

(.400)

0.95

(.448)

1.87

(.135)

2.74*

(.042)

0.84

(.506)

2.93*

(.033)

1.01

(.412)

0.28

(.887)

0.55

(.699)

2.99*

(.030)

1.18

(.335)

Q8
1.09

(.389)

0.60

(.731)

0.84

(.549)

0.50

(.801)

0.28

(.945)

1.03

(.423)

1.09

(.386)

0.52

(.787)

1.19

(.335)

0.51

(.612)

0.63

(.709)

Key: F-statistic

(p-value)

Table E.55: Summary table of Chi-Square test results for testing pairwise independence between

two Likert scale variables, where (the row and column variables are Likert scaled).

Q10 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23

Q9
20.01

(.067)

9.24

(.682)

6.19

(.402)

3.64

(.726)

4.84

(.848)

Q10
12.71

(.694)

30.52*

(.015)

23.05*

(.027)

11.26

(.187)

31.95**

(.001)

28.40**

(.005)

16.57

(.166)

60.10**

(.000)

Q15
17.99*

(.021)

14.74

(.256)

9.92

(.271)

14.11

(.294)

14.45

(.271)

8.25

(.765)

17.64

(.345)

Q17
15.26

(.054)

8.76

(.723)

6.31

(.613)

42.25**

(.000)

38.94**

(.000)

23.54*

(.023)

24.62

(.077)

Q18
8.80

(.185)

15.48

(.079)

6.89

(.648)

19.85*

(.019)

18.22

(.109)

Q19
7.53

(.274)

8.10

(.231)

3.29

(.772)

8.51

(.385)

Q20
35.77**

(.000)

Q21
28.57**

(.005)

Q22
12.62

(.397)

Key: χ2 statistic ; (p-value)

* χ2 statistic is significant at 5% level of significance

** χ2 statistic is significant at 1% level of significance

379

APPENDIX E. COMPLEMENT INFORMATION FOR SA SURVEY

Table E.56: Summary table of Chi-Square test results for testing pairwise independence between

a categorical variable and a Likert scale variable (row variables are categorical and column

variables are Likert scaled).

Q9 Q10 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23

Q1
30.99

(.154)

38.03

(.214)

19.42

(.248)

52.96*

(.011)

20.36

(.676)

12.99

(.674)

37.68*

(.037)

51.69

(.001)

30.84

(.159)

39.85

(.160)

Q2
1.31

(.971)

7.47

(.487)

4.13

(.389)

6.93

(.544)

8.26

(.220)

7.91

(.095)

5.52

(.479)

5.80

(.446)

9.32

(.157)

4.54

(.805)

Q3
7.65

(.812)

19.23

(.257)

4.16

(.842)

33.12*

(.007)

9.14

(.691)

5.22

(.734)

16.54

(.168)

13.82

(.312)

7.80

(.800)

24.08

(.088)

Q4
2.90

(.407)

1.70

(.792)

3.03

(.220)

1.58

(.813)

1.95

(.584)

0.81

(.667)

1.44

(.697)

2.73

(.435)

1.45

(.694)

5.97

(.201)

Q5
24.20*

(.019)

20.35

(.205)

14.31

(.074)

26.30*

(.0499)

28.59*

(.005)

10.01

(.264)

16.10

(.187)

8.78

(.722)

16.41

(.173)

39.00**

(.001)

Q6
28.72

(.231)

22.34

(.898)

19.38

(.250)

24.62

(.821)

23.04

(.517)

15.38

(.497)

26.92

(.308)

14.03

(.946)

38.56*

(.030)

33.75

(.383)

Q7
12.70

(.626)

20.81

(.408)

9.98

(.442)

36.32*

(.014)

8.60

(.897)

7.18

(.708)

22.74

(.090)

18.80

(.223)

12.84

(.614)

19.11

(.514)

Q8
10.48

(.915)

21.30

(.621)

7.87

(.795)

10.74

(.991)

16.28

(.573)

9.00

(.703)

8.93

(.961)

18.97

(.394)

11.87

(0.85)

19.00

(.752)

Q11
5.86

(.119)

7.50

(.112)

2.75

(.600)

9.55*

(.049)

4.37

(.224)

1.84

(.398)

7.22

(.065)

8.05*

(.045)

8.37*

(.039)

6.65

(.155)

Q12
3.25

(.355)

8.29

(.082)

0.43

(.980)

1.01

(.605)

8.55

(.073)

2.04

(.563)

0.44

(.802)

9.99*

(.019)

6.67

(.083)

0.59

(.746)

9.48*

(.050)

Q13
24.35

(.059)

34.36*

(.024)

22.44

(.317)

2.61

(.989)

27.99

(.110)

18.21

(.252)

12.28

(.267)

15.24

(.435)

14.07

(.520)

15.68

(.404)

30.75

(.059)

Q14
19.32

(.200)

16.52

(.684)

10.36

(.961)

7.00

(.725)

20.62

(.420)

20.97

(.138)

7.51

(.677)

19.08

(.210)

10.50

(.787)

14.83

(.464)

22.56

(.311)

Key: χ2 statistic ; (p-value)

* χ2 statistic is significant at 5% level of significance

** χ2 statistic is significant at 1% level of significance

380

E
.6
.
S
U
P
P
O
R
T
IV
E
IN
F
O
R
M
A
T
IO

N
F
O
R
T
H
E
F
IE
L
D
S
T
U
D
Y

E.6 Supportive information for the Field study

This section represents any complementary data that could support the field study report, with discussed in Section 5.4

Table E.57: Checklist questions, Organisation answers and feedback for: Site1

Checklist Questions Answers given by the organisation Organisation Feedback

1 Is the architect and evaluation team

(testers) available on site?

No - There is no focus on the architecture within the organisation during

the development of systems. The current direction of the organisation’s

large systems is developing database systems using Oracle (ERP).

There is a peer review before pro-

duction of systems artefacts.

2 If there is an evaluation team, what is their

main field of experience? (Architecture,

design, programming, systems evaluation,

or others)

Most of the people involved in the system development are programmers

and some are designers. However, there are no architects.

OK

3 Is there any new system, which is under de-

velopment on site?

Rank Competition System, Using ERP Oracle Application. OK

4 What is the expected due-date of the sys-

tem/systems under development?

2 Months OK

5 ”Was modelling language used in existing

systems or for those systems that are under

development?”

No OK

6 ”What was the current systems’ evaluation

method against quality attributes?”

Normally, an iterative functionality acceptance test carried out after im-

plementation finished. Also, regarding database systems, they are using

Toad tools to check database relationships and some problem diagnosis

such as SQL problematic statements and performance issues. There are

no evaluation methods or tools that have been used on the architectural

level.

OK

7 For the systems under development, did

they use modelling techniques or lan-

guages? If yes, in which life cycle stage

were they used? What are the accepted

artefacts?

There is no use for any modelling language such as UML, SysML, or

diagrams (components and connectors) such as DFD, State diagrams,

etc. Their main method is prototyping using Visio and Form-Designer

to create forms, grids, reports, interface screens, etc.

OK

3
8
1

A
P
P
E
N
D
IX

E
.
C
O
M
P
L
E
M
E
N
T
IN
F
O
R
M
A
T
IO

N
F
O
R
S
A
S
U
R
V
E
Y

8 ”Were modelling techniques used to archi-

tect the system?”

No - There is no architecture focus within the organisation during the

development of systems.

OK

9 Is there any architecture evaluation method

that has been used? If yes, howwas it used?

No - There is no architecture focus within the organisation during the

development of systems.

OK

10 Are there any tools that support modelling? No, except prototyping tools mentioned above. OK

11 ”Are there any tools that support modelling

evaluation? ”

No, except Toad tool, mentioned above, which not supporting evaluation

on architectural level.

OK

12 Are there any tools that support reverse en-

gineering? If yes, what is the produced

artefacts format?

No OK

13 Is there an interface mechanism within ex-

isting systems to an external analysis tool?

No OK

14 ”Was the architecture of existing systems,

or systems under development, developed

according to some standards?”

No - There is no architecture focus within the organisation during the de-

velopment of systems. Mainly, they use what Oracle uses as a standard,

such as Oracle ERP.

Developers/Designers follow stan-

dards mentioned in the standard

document and approved by theman-

agement. This document is a live

document.

15 ”Is the organisation familiar with DoDAF,

Artisan, and Math-works products?”

No OK

16 ”Are there any systems simulation tools

that have been used? If yes, for what pur-

poses? What are the tools? What is the in-

put and output of the simulation?”

No OK

17 ”Are there any standards, methods, tech-

niques, tools, and procedures for docu-

menting the software development pro-

cesses and artefacts? If yes, what are

they?”

No, documenting is very primitive, Also, it varies from developer to an-

other, and from one system to another. Types of documentation artefacts

are also different with no standard.

MS office is used for documenta-

tion. A minimum set of documents

are required for each system devel-

oped and all developers follow cer-

tain documentation standards. A

QA process later refine system doc-

umentation before production.

3
8
2

E
.6
.
S
U
P
P
O
R
T
IV
E
IN
F
O
R
M
A
T
IO

N
F
O
R
T
H
E
F
IE
L
D
S
T
U
D
Y

Table E.58: Checklist questions, Organisation answers and feedback for: Site2

Checklist Questions Answers given by the organisation Organisation Feedback

1 Is the architect and evaluation team

(testers) available on site?

”No - There is no architecture focus within the organisation during the

development of systems. The current direction of the organisation’s

large systems is developing database systems and web applications us-

ing Oracle (ERP). There are some mid-size applications, that have de-

veloped on site. Normal waterfall life cycle has been used. Mid-size

systems used Visual Studio as a tool based on .NET framework.”

Ok

2 If there is an evaluation team, what is their

main field of experience? (Architecture,

design, programming, systems evaluation,

or others)

No, they have been grouped when needed, their main proficiencies are

programming and design.

Ok

3 Is there any new system which is under de-

velopment on site?

”Financial and management system, and Aircrafts maintenance and In-

ventory system using Oracle (ERP), as a web based application.”

Ok

4 What is the expected due-date of the sys-

tem/systems under development?

No due-date has been given. Ok

5 Was modelling language used in existing

systems or for those systems that are un-

derdevelopment?

No, but they used some modelling diagrams such as use cases and entity

relationship during the development of on site applications.

Ok

6 ”What was the current systems’ evaluation

method against quality attributes?”

Normally, an iterative work-through test is carried out after implemen-

tation is finished. Regarding the database systems, they are using Toad

tools to check database relationships and some problem diagnosis such

as SQL problematic statements and performance issues. There are no

evaluation methods or tools that have been used on the architectural

level.

Ok

7 For the systems under development, did

they use modelling techniques or lan-

guages? If yes, in which life cycle stage

were they used? What are the accepted

artefacts?

There is no use for any modelling language such as UML, SysML, or

diagrams (components and connectors) such as DFD, State diagrams,

etc. Their main method is prototyping using Visio and Oracle tools to

create forms, grids, reports, interface screens, etc.

Ok

3
8
3

A
P
P
E
N
D
IX

E
.
C
O
M
P
L
E
M
E
N
T
IN
F
O
R
M
A
T
IO

N
F
O
R
S
A
S
U
R
V
E
Y

8 ”Were modelling techniques used to archi-

tect the system?”

NO - There is no architecture focus within the organisation during the

development of systems.

Ok

9 Is there any architecture evaluation method

that has been used? If yes, howwas it used?

No - There is no architecture focus within the organisation during the

development of systems.

Ok

10 Are there any tools that support modelling? NO, except prototyping tools mentioned above or Visio. Ok

11 ”Are there any tools that support modelling

evaluation?”

None on architectural level. However, they are using some of the built-

in oracle tools to evaluate web application components relations.

Ok

12 Are there any tools that support reverse en-

gineering? If yes, what is the produced

artefacts format?

No Ok

13 Is there an interface mechanism within ex-

isting systems to an external analysis tool?

No Ok

14 ”Was the architecture of existing systems,

or systems under development, developed

according to some standards?”

No - There is no architecture focus within the organisation during the

development of systems. Mainly, they use Oracle ERP standard

Ok

15 ”Is the organisation familiar with DoDAF,

Artisan, and Math-works products?”

No Ok

16 ”Are there any systems simulation tools

that have been used? If yes, for what pur-

poses? What are the tools? What is the in-

put and output of the simulation?”

No Ok

17 ”Are there any standards, methods, tech-

niques, tools, and procedures for docu-

menting the software development pro-

cesses and artefacts? If yes, what are

they?”

”No, the documenting that has been used is very primitive,Also, it varies

from developer to another, also, from one system to another. Documen-

tation documents follow no standardisation schema.”

Ok

Table E.59: Checklist questions, Organisation answers and feedback for: Site3

Checklist Questions Answers given by the organisation Organisation Feedback

3
8
4

E
.6
.
S
U
P
P
O
R
T
IV
E
IN
F
O
R
M
A
T
IO

N
F
O
R
T
H
E
F
IE
L
D
S
T
U
D
Y

1 Is the architect and evaluation team

(testers) available on site?

”Architect available, but within the contractor side and not within the

organisation side. Evaluation team available in both sides. Note: Or-

ganisation side included all consultants and themain contractor included

subcontractors companies.”

Organisation Evaluation Team in-

cludes Officers and Consultants.

2 If there is an evaluation team, what is their

main field of experience? (Architecture,

design, programming, systems evaluation,

or others)

Evaluation team grouped when needed, their main proficiencies are pro-

gramming and designing, but there are no architects.

Experience of organisation Evalua-

tion Team members cover commu-

nication and civil engineering, com-

puter software and hardware and

ILS.

3 Is there any new system which is under de-

velopment on site?

Artefacts delivered to the site for Officers and Consultants reviews. The system is developed in Contrac-

tor and his Subcontractor Facilities.

4 What is the expected due-date of the sys-

tem/systems under development?

”No due-date has been given. Expected approximate duration has been

given is 4 years, starting when the new contractor begins.”

OK

5 Was modelling language used in existing

systems or for those systems that are under

development?

”Yes, UML has been used to create what is called “system top level

design structure”, as well as lower level designs.”

OK

6 ”What was the current systems’ evaluation

method against quality attributes?”

There are no evaluation methods or tools, which either have been or

are being used on the architectural level. Ad-hoc Analysis is the nor-

mal practice to ensure the correctness of the models, and not to eval-

uate it against any other properties except limited ones. Which means

assign professionals or team to check for specific systems properties us-

ing available tools such as, checking model consistency using Rational

Rose.

OK

7 For the systems under development, did

they use modelling techniques or lan-

guages? If yes, in which life cycle stage

were they used? What are the accepted

artefacts?

Yes, UML has been used to create what is called “system top design

structure”, and lower level designs. The modelling has not been used

within requirements, implementation, or evaluation phases. Only struc-

turing and designing of the systems within several levels of details that

have been done.

OK

8 ”Were modelling techniques used to archi-

tect the system?”

”NO - There is use of modelling to develop a top level design structure

of the system, which actually is not the lower level of the system archi-

tecture. However, no attention has been given about, what is called the

“System Architecture“ or “Architecture Evaluation” within the organi-

sation during the development of systems.”

OK

3
8
5

A
P
P
E
N
D
IX

E
.
C
O
M
P
L
E
M
E
N
T
IN
F
O
R
M
A
T
IO

N
F
O
R
S
A
S
U
R
V
E
Y

9 Is there any architecture evaluation method

that has been used? If yes, howwas it used?

No - There is a lack of architecture evaluation within the organisation

during the development of systems.

OK

10 Are there any tools that support modelling? Yes, Rational Rose, Doors, and Visio. OK

11 ”Are there any tools that support modelling

evaluation? ”

None, at the architectural level. However, they are using some of built-

in limited analysis checks with Rational Rose and Doors tools to evalu-

ate model consistency and components relations. There are no external

tools used for further analysis. Their advantages of using these tools

are: its advanced modelling tools, could be plugged-into externals anal-

ysis tools for more investigation and analysis (e. g. UML/Analyser), and

their models could be exported and used by other modelling tools such

as Artisan.

OK

12 Are there any tools that support reverse en-

gineering? If yes, what is the produced

artefacts format?

Yes, Rational Rose could be used for reverse engineering when needed,

the output is UML model.

OK

13 Is there an interface mechanism within ex-

isting systems to an external analysis tool?

Yes, tools that have been used so far within the project, do support in-

terfacing mechanism with external tools.

OK

14 ”Was the architecture of existing systems,

or systems under development, developed

according to some standards?”

No. However, they create top level design structure, which could be

useful but not usable in the future because of contractor replacement.

UML used as standardised general-purpose modelling language.

OK

15 ”Is the organisation familiar with DoDAF,

Artisan, and Math-works products?”

Yes, they used DoDAF 1.5 for their systems development. However,

there is no utilisation of Artisan or Math-works products within the

project.

OK

16 ”Are there any systems simulation tools

that have been used? If yes, for what pur-

poses? What are the tools? What is the in-

put and output of the simulation?”

No OK

3
8
6

E
.6
.
S
U
P
P
O
R
T
IV
E
IN
F
O
R
M
A
T
IO

N
F
O
R
T
H
E
F
IE
L
D
S
T
U
D
Y

17 ”Are there any standards, methods, tech-

niques, tools, and procedures for docu-

menting the software development pro-

cesses and artefacts? If yes, what are

they?”

Yes, documenting has been done in different phases of the project. Doc-

uments vary based on the utilisation of the existing tools, and standard

have been applied such as UML as amodelling language, andDoDAF as

architecture framework. However, requirements documents were plain

text and had not been modelled, therefore traceability of the require-

ments to the contractors produced artefacts is difficult.

OK

3
8
7

APPENDIX E. COMPLEMENT INFORMATION FOR SA SURVEY

388

Appendix

F
Complementary information for The

RCS – Chapter 6

This appendix contains information that support Chapter 6.

389

APPENDIX F. COMPLEMENTARY INFORMATION FOR THE RCS –…

F.1 RCS analysis - Supporting Figures

In this section I include few figures for Real-time Control System (RCS) architecture to support the

analyses presented in Chapter 6. Also, the intention is to help in visualising the analysis and to facilitate

the discussion for readers.

S
W

B
W

S
W

B
W

S
W

B
W

S
W

B
W

S
W

B
W

S
W

B
W

S
W

B
W

S
W

B
W

S
W

B
W

S
W

B
W

S
W

B
W

S
W

B
W

S
W

B
W

S
W

B
W

S
W

B
W

S
W

B
W

S
W

B
W

S
W

B
W

S
W

B
W

S
W

B
W

S
W

B
W

S
W

B
W

S
W

B
W

S
W

B
W

S
W

B
W

S
W

B
W

S
W

B
W

S
W

B
W

S
W

B
W

S
W

B
W

S
W

B
W

S
W

B
W

S
W

B
W

S
W

B
W

S
W

B
W

S
W

B
W

S
W

B
W

Figure F.1: Each layer of the system contains a number of RCS-nodes, each containing – Be-

haviour Generation (BG), World Model (WM), Sensory Processing (SP), and Value Judgement

(VJ)- modules. The nodes are interconnected as a layer style, or lattice, through the communi-

cation system, Meystel et al. [2002].

390

F.1. RCSANALYSIS - SUPPORTING FIGURES

background

object

object
entity
frames

surface1

surface2

surface3

surface
entity
frames

surface4

patch4

patch3

patch2

patch1

edge3

edge2

list
entity
frames

edge1

pixel4

pixel3

pixel2

pixel1

pixeli+4

pixeli+3

pixeli+2

pixel
entity
frames

pixeli+1

grouping

grouping

grouping

surface
entity
image

list
entity
image

pixel
entity
image

1

2

43

1

2

43

1

2

43

1

2

43

belong to

belong to

belong to

belong to

Figure F.2: Hierarchical image and entity frames within Sensory Processing (SP) component,

AfterMeystel et al. [2002].

391

APPENDIX F. COMPLEMENTARY INFORMATION FOR THE RCS –…

Figure F.3: Snapshot for the RCS Node structure with SysML, using Artisan tool.
392

F.1. RCSANALYSIS - SUPPORTING FIGURES

Figure F.4: Extracted RCS architecture for coupling evaluation

Figure F.5: Modified model from the extracted RCS architecture, for comparison purpose.

393

APPENDIX F. COMPLEMENTARY INFORMATION FOR THE RCS –…

394

Appendix

G
Opportunity to improve SA through

future-work thoughts

Maintaining architectural integrity is not easy. Architectural quality requires invest-

ment and discipline.

— Dr. Bill Curtis, Senior vice president and chief scientist at CAST

Mistrı́k et al. [2014, pp xxvi]

This appendix briefly introduces incomplete and possible concepts for (future work) that could im-

prove SA and SAE. However, full description and development of both concepts is outside the scope of

this thesis.

The two concepts were brighten-up during the improvement of Moreno et al. [2008] performance

model that discussed in Chapter 6, which are:

1. The first pillar is to describe (in brief) the System Architecture Evaluation (SysAE) approach,

which is a vision of developing a full product to evaluate system (hardware and software) ar-

chitecture in the future. SysAE is an approach that comprised of four main components as ex-

plained in Section G.2. Whereas, the Software Architecture Quantitative Evaluation Framework

(SAQEF)–(second point), is one main component of SysAE product. SysAE concept, is organised

in a package diagram, as illustrated in Figure G.1.

2. In the second pillar, I describe the “SAQEF” concept, in which I included some models to demon-

strate the applicability of the framework. This concept is briefly discussed in Section G.2

The explanation of any standards, tools, languages, frameworks, and profiles that are included

within the description of both concepts (SysAE and SAQEF) is out of this thesis scope.

G.1 SysAE approach - Big picture - Long-term vision

The idea behind this section is to explain my viewpoint regarding system evaluation. Also, to en-

courage engineers/developers to be involved in the SysAE approach by developing their own components

incrementally, which can be integrated into SysAE product in the future. The drivers behind this package

structure are both separation of concerns, and future development.

395

APPENDIX G. OPPORTUNITYTO IMPROVE SA THROUGH FUTURE-…

This structure, should allows developers to create their own evaluation models, then plug them into

the SysAE-Product; even if they were geographically distributed. This is a privilege to maximise reuse,

interoperability, minimise coupling, and maximise the independence given to the development teams

through a component-based approach with a common repository.

However, it is important for individual developers to specify the interfaces early on, in order for

their models to be linked and work with the main evaluation model SysAE-Product. This should be done

with flexibility in mind.

As illustrated in Figure G.1, at the highest level of the package structure, is the SysAE–Product

component which includes common libraries, such as the measurement units for evaluation metrics (e.g.

Time in Second, Number of Components (NOC), Number of Components (NOC), etc.)

Figure G.1: SystemArchitecture Evaluation (SysAE-Product) structure, Using component base

products approach.

The second level of the structure contains two product packages HardwareAE, and SoftwareAE,

which contain architectural evaluation general requirements. This was necessary due to the differences

between hardware and software measuring techniques.

TheH-Family-Req and S-Family-Req packages, contain the high-level system (hardware/ software)

general use cases, system context diagram, and system constraints.

396

G.2. SAQEF EVALUATION FRAMEWORKANDMODELS

Whereas, the third level is the Component package of four different packages that would be avail-

able in each product. Differentiation between quantitative and qualitative assessments for both hard-

ware and software is essential, due to their evaluation methods distinguish. Each package feature is a

self-contained unit, which would contain the specific requirements (Specific-Req), Architecture, Design,

Implementation, and Testing packages. The specific requirements for each component are derived from,

and extended from, common general (Family-Requirements) as specified in the (HardwareAE, and Soft-

wareAE) packages.

Software engineers would then develop subcomponents that related to the software component, and

the hardware engineers develop and elaborate the hardware specific details. The developers/engineers

should insure the consistency of their models, interdependencies between models, and their evaluation

component should be able to integrate and run smoothly with SysAE–Product as a whole.

Each feature/evaluation model may be developed incrementally, with additional capabilities, which

could be added on a regular basis. Also, each new evaluation model, should go through a component test

procedure, before plugging it into the SysAE–Product, to ensure that everything works correctly, then an

integration test after linking the model. Information will be shared between the developers by means of

configuration Management process.

The main requirements for developing SysAE components are:

• All components in SysAE shall be described and developed with a standardised known description

language.

• All the four main packages included in the Component package shall satisfy their own family

requirements.

• All the four main packages included in the Component package shall have an integration mecha-

nism to SysAE–product as a whole.

At the end of the project, SysAE-Product will have a library of well-documented evaluation features,

which could be used to evaluate several system architectures.

G.2 SAQEF evaluation framework and models

According to the brief description of the SysAE approach in the previous section G.1, SAQEF com-

ponent should satisfy the general requirements of the SysAE product, and the software family require-

ments (S-Family-Req) package.

Thus, SAQEF main goal is to evaluate software systems on an architectural level, quantitatively.

With this, the approach should be developed with a comprehensive and understandable notation, which

permit Software Architecture Evaluation (SAE) by means of using tactics and metrics.

The key points of SAQEF description and development are:

• Its top-level specifications, which explained the standards, framework, its architecture, develop-

ment guidelines that SAQEF should follow during its development and the main functions that

SAQEF should perform.

• Its concept and methodology, including a brief description of the utilised languages, framework,

tools, and the reasons behind their selection.

397

APPENDIX G. OPPORTUNITYTO IMPROVE SA THROUGH FUTURE-…

• Its structure, which explained the top-level structure of SAQEF concept, views, packages and their

relationship with each other. This point also described SAQEF views and how they should be

linked with their requirements to ensure that they are satisfied, traceable, and refined through the

efficiency requirement model.

• Modelling metrics, whose concept was to utilise the parametric diagram (SysML profile) in mod-

elling quantitative measurements through the system coupling assessment.

• Full implantation of the concept artefacts, and validation of them through a test producers.

G.2.1 SAQEF specifications

As an example, the specifications of the SAQEF framework are highlighted in a sample top level

requirements diagram in Figure G.2. Overall SAQEF specification contains three requirements as follow:

1. Standard

2. Quality assessment

3. Interface

Whereas, the second level of requirements includes:

1. ISO-standard quality tree (Evaluating SA based on ISO quality classification);

2. Individual quality tree (Evaluating SA based on particular quality classification, which will be

created by developers for a specific assessment);

3. Quantitative measures (Evaluating SA based software metrics, which can be used by both utility

trees mentioned above), where each one has a textual description included in its propriety.

For example:

• ISO-standard quality tree requirement include the statement: SAQEF shall accommodate the

international quality model standard ISO/IEC 25010, to evaluate software architecture.

• Individual quality tree requirement include the statement: SAQEF shall be able to accommo-

date any individually quality tree created by developers, to evaluate software architecture.

SAQEF requirements digram will be expand, based upon the further and future research.

G.2.2 SAQEF Concept and Methodology

G.2.2.1 Brief description of the Solution

The SAQEF concept is driven by the knowledge and analysis for the SAE state-of-the-art. As a

result, the approach focuses on standardisation and incremental development procedures. This can be

achieved by utilising some of the existing and reliable standards, languages, and frameworks, ...etc;

for example, (the The Unified Profile for DoDAF/MoDAF (UPDM) profile, SysML language, DoDAF

framework, and the utilisation of sophisticated modelling tool called Artisan). Also, SAQEF concept

should permits valuable ideas to be employed such as, tactics, metrics, and analytical theories. Therefore,

formalisation of the approach will be high, which increases the readiness for automation and simulations.

398

G.2. SAQEF EVALUATION FRAMEWORKANDMODELS

Figure G.2: Requirement diagram – SAQEF. Requirement Hierarchy.

The use of a good tool (e.g. Artisan) is important, due to some advantages that can be realised such

as, the flexibility of using several profiles, checking consistency, integration in/out the models.

The architectural data for candidate architectures will be input to SAQEF for analysis. This should

be done bearing in mind the analytical constraints and environmental challenges. Then SAQEF should

analyse the input data based on its quantitative measures. The assessment result will appear as bench-

marking characteristics that can have further analysis and visualisation, using integrated tools (e.g. Mat-

Lab, Sysim, and Simulink), which help in obtaining the analysis results in an understandable format that

will help architects in making any necessary refinements. High operational concept of the evaluation

approach is illustrated in Figures G.3 and G.4, using DoDAF operational view (OV-1a), which shows

SAQEF as a component of SAE concept.

G.2.2.2 Brief description of utilised standards, profiles, language, and frame-

work including some of SAQEF examples

This section explains the utilisation of several profiles by SAQEF. SAQEFmodel as shown in Figure

G.5, which is a package digram that represents the domain model. SysML profile must be employed by

SAQEF package, in order to include SysML stereotypes. The model also, could employ some of the

libraries information included within the SysML profile for measurement use. That is why it’s important

to import any profile as indicated. The use of access relationship to DoDAF profile, is because it has been

considered as a (private import) for some of its elements that are required to be used by SAQEF model,

such as, the DoDAF views.

UPDM, is a domain meta model profile. It is an Object Management Group (OMG) standard, pub-

lished in September 2009. It is a standardised approach of expressing (the Department of DefenceArchi-

tecture Framework (DoDAF), and the Ministry of DefenceArchitecture Framework (MoDAF) artefacts),

399

APPENDIX G. OPPORTUNITYTO IMPROVE SA THROUGH FUTURE-…

Figure G.3: SAE – Operational concept (Graphical representation).

Figure G.4: SAE – Operational concept (Model components representation).

using UML, and SysML modelling languages. The main objective of the UPDM approach is to leverage

commercial standards to (DoDAF and MoDAF) frameworks and to offer support tool interoperability.

Languages and frameworks included within the UPDM profile, are illustrated by the UPDM structure in

Figure G.6.

G.2.2.2.0.1 Reasons as to why I have chosen UPDM: It supports:

• Extensibility to other Architecture Frameworks

• Representation of Architectural Patterns

• Security views

• Standardisation

• Quality assessment through domain specific modelling

• Custom views and viewpoints

• Enterprise and SystemArchitecture

400

G.2. SAQEF EVALUATION FRAMEWORKANDMODELS

Figure G.5: UPDM structure.

UPDM imports all SysML profile, which supports SAQEF evaluation approach, due to the fol-

lowing points:

• SysML parametric diagrams: This facilitates the incorporation of engineering analysis with the

models architecture. For instance, Security and performance parameters in an (system view) SV-7

can be captured in the equations’ parameters.

• SysML blocks diagrams: These represent the structural elements such as the system (artefacts)

operational node configurations capability facilitating the use of item flows, flow ports, as well as,

properties value with distributions and units.

• SysML activity diagrams: These are used for the purpose of supporting the uninterrupted flow of

hierarchies’ activity, modelling, and offering support for superior flow block diagrams functional-

ity.

• SysML requirement diagrams: This facilitates the text based requirements that ought to be traced

and captured in other elements of the model through the use of relationships, such as satisfy, derive,

verify and refine.

• SysML view and viewpoint: This facilitates the providence of the model multiple perspective, as

well as, the management, control and information organising.

SAQEF approachwill follow the guidelines of theArchitectureDescription Standard (IEEE–42010),

during its architecture development processes, as described in SAQEF requirements in Figure G.2, unless

a new standard is published.

The use of IEEE – 42010 standard, during the development of SAQEF, could elevate its concept for

the following reasons:

• Helps to standardised the approach.

401

APPENDIX G. OPPORTUNITYTO IMPROVE SA THROUGH FUTURE-…

Figure G.6: UPDM structure (package digram) - Artisan tool.

• Allows the use of independent notation.

• Encompasses the DoDAF viewpoint.

• Is a widely-spread framework, that makes further development and modifiability easier.

• Permits free use of the format or media for an architectural description.

• Reflects current practices and consensus.

The points noted above limit some of the challenges and limitations that are existed within current

SAE approaches, which are discussed earlier in Chapter 2, such as standardisations, tool support, and

extensibility.

G.3 SAQEF model organisation and views

The overall structure of SAQEF components is illustrated through (packaging diagram) in Fig-

ure G.7. The Figure shows the structure of the model, the model elements are represented in packages

format, and the relationships between them are identified.

As an example, Figure G.7, demonstrate the relationship between SAQEF views (Other-Views and

402

G.3. SAQEF MODELORGANISATIONAND VIEWS

Quality-Views) with the rest of the user model are explicitly expressed using the «import» relationship.

Noting that SAQEF other views means capability, operational, system, services, and other needed views

fromDoDAF profile. The comments (green box), notes (yellow box) and constraints (blue box) have been

utilised to make the model easy to understand. Also, its worth to note that with this configuration, the

«view» packages contain nomodel elements of their own, and that changes to the model in other packages

are automatically updated in any of SAQEF views. In addition, the structure shows dependency between

SAQEF structural and behavioural packages. Also, presents the satisfaction relationship between SAQEF

model and some of SAQEF requirements as example.

Furthermore, the library package SAE, contains two packages that have the value types needed for

SAQEF evaluation methods. The ’SI Definitions’ package contains common value types which already

exists in the SysML profile. The other package ’SAQEF Specific Library’ is add in value types developed

during SAQEF development due to the needs of specific measurements for the SA.

More elaborating example of SAQEF’ components relationships is illustrated in , through an effi-

ciency assessment example, in order to prove the concept applicability.

Also, the SAQEF scope, purpose,vision, project information, context, tools, views, environment in

all view one (AV-1) model, is illustrated (in brief) in Figure G.9.

403

A
P
P
E
N
D
IX

G
.
O
P
P
O
R
T
U
N
IT
Y
T
O
IM

P
R
O
V
E
S
A
T
H
R
O
U
G
H
F
U
T
U
R
E
-
…

Figure G.7: SAQEF Packaging structure–(using packages and views) - (Package diagram) – Artisan tool – The package ’SAQEF Model’ illustrate

how the model organised into packages that contain model elements

4
0
4

G
.3
.
S
A
Q
E
F
M
O
D
E
L
O
R
G
A
N
IS
A
T
IO

N
A
N
D
V
IE
W
S

Figure G.8: SAQEF (Efficiency assessment) – More details with employment of DoDAF views - (Requirement diagram) – Artisan tool

4
0
5

A
P
P
E
N
D
IX

G
.
O
P
P
O
R
T
U
N
IT
Y
T
O
IM

P
R
O
V
E
S
A
T
H
R
O
U
G
H
F
U
T
U
R
E
-
…

Figure G.9: SAQEF-AV-1, used of DoDAF views - All view (AV-1) - Artisan tool

4
0
6

G.4. ARCHITECTURALTACTICSAND METRICS

G.4 Architectural tactics and metrics

SAQEF approach is not about creating new tactics and metrics for evaluating software architecture;

rather-than to help any developers to define and describe their own architectural (tactics and metrics) and

integrate them into SAQEF, to be tested and used. Furthermore, this thesis has discussed some proposed

tactics and metrics in Chapter 2. The rest of this section will explain in brief what might make good

metrics to evaluate software architecture quantitatively.

The five main criteria that help for developing a good metrics as reported by Jaquith [2007] are:

1. Contextually precise.

2. Always measured.

3. Inexpensive to gather.

4. Expressed by cardinal (no ordinal) numbers or percentage.

5. Expressed by at least one unit of measure.

From the knowledge gained by this research, I think that, the above five points are generally suitable

due to the following explanation:

• Metrics should be relevant and specific, to help decision makers to reflect upon their results.

• Also, the metric should not allow subjective criteria and human judgement, which constraint and

help at the same time different people to come up with the same occlusion for the metric result.

• Furthermore, most of the metrics takes time to calculate, starting from gathering needed data, trans-

forming and organising it as needed, computing, then translate the result into understandable for-

mat. Thus, a final version of SAQEF implementation should help to make the above process much

cheaper and faster, through automation.

• Transferring rating measure to numbers (e.g. high-low to 1-2) might be an inappropriate approach

for a metric or quantitative measure. As example of this, Zayaraz [2010] quantitative method for

evaluating SA, when he used the five point scale for quality attributes and the pair wise compar-

isons when he transferred all verbal judgement into numerical judgement (Equally preferred=1 …

Extremely preferred =9).

• Good metric should be measured by one unit at least, two even better. A simple example of this

is, a number of security defects in an application’. Better metric is a number of security defect per

100 lines of code’ in the application, or by per layer in architectural level.

During SAQEF conceptual development all measurement units for hardware and software should

be placed in the ’model library’ and all information will by shared by SysAE components. Any new

measurement units could be added to the library with no difficulties. An example of the measurement

units and value types are illustrated in Figure G.10, which shows ‘package diagram’ that demonstrate

some SAQEF specific value types and units, which could be used in SA evaluation process.

G.4.1 Applying metrics with the parametric diagram

One of the main important components in SAQEF framework is the utilisation of ‘parametric dia-

gram’ that could transfer theoretical assessment method, into a working evaluation mechanism to assess

SA. There are many architectural evaluation methods, equations that could be applied into architectural

407

APPENDIX G. OPPORTUNITYTO IMPROVE SA THROUGH FUTURE-…

Figure G.10: Measurement (Dimensions and Units) – SAQEF profile – Artisan tool

data to evaluate some aspects. For example, the work presented by Grady [1992], Kan [2003], Ejiogu

[2005], and Jaquith [2007] show some measurements techniques by researcher within the field of SA.

Further work need to be performed, in order to prove the concept of SAQEF approach in general

and its ability to provide developers with a vehicle that could help them to develop their measurement

matrices and equations, integrate them easily to SAQEF models, test them, then use them over again then

again.

An example of ‘parametric diagram’ utilisation, is represented, in order to illustrate the idea of

transferring equation (System Coupling Equation) developed by Zayaraz [2010], into a parametric model

within SAQEF framework. Its important before modelling equations by parametric diagram to identify

all the variables within the equation, and to identify all its input and output. I used block definition

diagram package to define the equation for System coupling measurement’ as illustrated in Figure G.11.

All parameters, properties, constraints, value types and units are defined within the Figure. The ‘System

Coupling Equation’ constraints block does have ‘SCp’ (coupling equation) as one of its properties to

facilitate the parametric modelling.

By clicking on the ‘System Coupling Equation’ constraints block in Figure G.11, the Parametric

Diagram in Figure G.12 will appear, because both Figures are connected. This parametric diagram ex-

panded ‘System Coupling Equation - constraints block’, were all input, output, rational (green box), and

constraint notes (blue box) are identified and linked together. Extracting architectural data, and visualis-

ing equations result are are recommended for further research.

G.5 Conclusion

In conclusion, this appendix has been reported to support Chapter 7 future work discussion. Two

important pillars have been briefly discussed with some examples. Both concepts SysAE and SAQEF are

parts of the future work plan.

408

Figure G.11: Constraints and parameters details for (System coupling measurement) in Block

Definition Diagram format (bdd) - SAQEF profile - Artisan tool.

Figure G.12: Parametric Diagram – System coupling. The constraint block from Figure G.11

has been expanded in this Figure where its equation is the constraints property (yellow box),

which is belong to its block. Constraint notes are used to explain the system coupling equation

and expected output limits - SAQEF profile - Artisan tool.

Author Index

Ölveczky, P. C., 33

Abou-El-Fittouh, H., 158

Abowd, G., 64

Abrial, J.-R., 37

Adrion, W. R., 6

Albus, J., 18, 216, 219, 220, 222, 225, 229,

245, 248

Albus, J. S., 216, 218, 228

Alebrahim, A., 73

Alexander, C., 3, 15, 17, 61, 62, 97, 112, 114

Allen, R., 304

Alpert, S. R., 114

Alshaikh, Z., 112

Armour, F., 81, 235

Athar, A., 64

AV Sriharsha, A. R., 164, 180

Babar, M., xii, xxi, 17, 64, 82–84, 86, 233

Babar, M. A., 100, 102

Bachmann, F., 4, 134

Badreddin, O., 32

Bardram, J. E., xii, 85

Barth, J. T., 114

Bass, L., 4, 5, 16, 19, 30, 53, 67, 69, 71, 75,

78, 79, 81, 82, 84, 86, 92–94, 96,

110–112, 115, 119, 120, 133, 134,

164, 180, 216, 222, 227, 229, 233,

304

Becker, S., xii, 16, 59, 89–91, 232

Bendı́k, J., 39

Bengtsson, P., 72, 73

Blanchard, B. S., 7

Booch, G., 34

Bosch, J., 304

BouckÃ, N., 37

Boyer, R. S., 38

Breivold, H. P., 18

Brookes, S. D., 90

Brouwers, N., 164

Buede, D. M., 20

Buschmann, F., 34, 98, 99, 110, 112, 114, 130,

228, 232

Cabot, J., xvii, 44

Capilla, R., 112

Carroll, S., 75

Cheng H.C., L., 18, 100

Chidamber, S. R., 239

Chrissis, M. B., 206

Clements, P., 5, 17, 19, 34, 39, 64, 66–76, 98,

134, 163, 235

Cochran, W. G., 141, 144

Company, H. A. C., 28

Comyn-Wattiau, I., 112

Coplien, J. O., 112, 114

Dashofy, E. M., 304

Denscombe, M., 135, 141

Desharnais, J., 116

Dey, A. K., 112

Dick, J., 29

Dissaux, P., 37, 304

Dobrica, L., 64, 66, 73

Dogru, A. H., 73

Donohoe, P., 229

Ejiogu, L. O., 75, 408

Everitt, B. S., 144

Fairbanks, G., 112

Feiler, P., xvii, 40, 41

Fielding, R. T., 16, 19, 112

Finkelstein, R., xviii, 218, 221

Fitzgerald, J., 37

Flint, S., xix, 7, 8, 55, 301, 302

Foster, H., 36

Fowler, M., 37, 45, 49, 60, 91, 107, 112, 130,

233

France, R., 103

Freitas, R., 19, 85, 130

Frølund, S., 238

411

Futrell, R. T., 95, 116

Gamma, E., 98, 99, 110, 114, 119, 130

Garlan, D., 40, 41, 78, 87, 98, 100–102, 112,

120, 121, 304

Gilmore, S., 91

Glass, R. L., 7

Gogolla, M., 38

Grady, R. B., 94–96, 180, 408

Grassi, V., 91

Graça, H., 112

Greenfield, J., 60–63

Griffiths, M., 249

Grone, B., 113

Grunske, L., 85, 238

He, J., 304

Hewitt, C., 37

Hilken, C., 32

Hoare, C. A. R., 37

Hoinville, G., 141

Hummel, O., 130

Iqbal, Z., 231

Ivkovic, I., 58

Jaquith, A., 75, 180, 407, 408

Jones, C. B., 38

Jung, S. K., 134

Kamal, A. W., 241

Kan, S., 75, 97, 180, 408

Kassab M.and El-Boussaidi, G., 181

Kasunic, M., xviii, 135

Kaufmann, M., 38

Kazman, R., xviii, 64, 67, 70–72, 234, 235

Kelly, J., 35

Kerhervé, B., 58

Kerievsky, J., 232

Kerzner, H. R., 8

Khwaja, S., 130, 159, 164

Kim, H.-k., 73

Kim, J. S., 19, 53, 63, 88, 91, 130

Kircher, M., 110

Kitchenham, B., 135, 141

Klarlund, N., 36

Klassen, T. P., 20, 23

Klein, M., 79, 81

Kleppe, A., 50

Kleppe, A. G., 48, 54

Koziolek, H., 91

Krasner, H., 94–96

Kruegel, C., 84

Kurtev, I., 57, 58

Lamancha, B. P., 32

Lange, C. F. J., 62

Larman, C., 35

Lassing, N., 73

Leavens, G., 87

Leavens, G. T., 37

Lewis, W., 235

Linåker, J., 135

Lugou, F., 32, 164

Lung, C.-H., 73

Malavolta, I., 102, 158, 196

Manolescu, D., 63

Markovic, S., 58

Martin, J., 51

Mavridou, A., 41

Me, G., 146

Medvidovic, N., 32, 39, 102, 303, 304

Mello, R. M. de, 135

Mellor, S., 45, 47, 55

Mellor, S. J., xxii, 216, 223, 224

Merilinna, J., 56, 58, 76

Meystel, A. M., xviii, xix, 18, 216, 218–223,

225, 390, 391

Milicev, D., 76

Mistrı́k, I., 4, 53, 215, 395

Mitra, A., 116

Molter, G., 73

Moreno, G., x, xii, xiii, 5, 59, 88–91, 164, 215,

216, 231, 236, 242, 248–250, 395

Mårtensson, F., 64

Noyer, A., 32

Obbink, H., 34, 64

Oquendo, F., 33, 40, 304, 306

Ortega, J. L., 220

Overhage, S., 18, 64

Ozkaya, M., 196

Pastor, O., 52–54

Pereira, V., 32

Petrasch, R., 116

Petri, C. A., 37

Petriu, D., 91

Pons, C., 44

Potts, C., 8

Pressman, R., 30, 31, 39

Punter, T., 56

Qin, Z., 4, 5, 17, 19, 30, 31, 33, 36, 38, 64,

66–68, 70, 73, 80, 302, 304, 306

Qumer, A., 51

Rech, J., xxii, 43–45, 56, 62, 91, 103, 306

Rensink, A., xxi, 46, 47

Reussner, R., 4, 81, 87, 125, 232

Riaz, M., 130

Ribeiro, F. G. C., 31, 32

Ribeiro, Q. A. D. S., 32, 164

Richards, M., 112

Riehle, D., 112, 113

Roscoe, A., 90

Rozier, K. Y., 31, 36

Runeson, P., 216

Rushby, J., xxi, 30, 38, 47, 191

Russell, D., 216

Röttger, S., 56, 58

Safwat, A., 29

Schlosser, H., 18

Schmidt, D., 61–63, 110

Schmidt, D. C., 63, 91, 120, 130

Schumacher, M., 59, 60, 62, 63, 110, 111, 115,

120, 239

Schumann, J. M., 35, 36, 39

SEI, 71, 235

Selman, B., 99

Shaw, M., 34, 41, 62, 303

Shreelekhya, G., 5

Silingas, D., 76

Silva Melo, M. da, 32

Silverston, L., 61

Simpson, J. A., 74

Sottet, J. S., 58

Stahl, T., 44, 45, 48, 49, 59, 60

Storey, N., 35

Suman, M., 116

Tang, A., 135, 141, 158, 196

Taylor, D. S., 38

Taylor, R. N., 304

Teebiga, R., 130

Tellis, W., 200

Tešanovic, A., xviii, 233

Tibermacine, C., 239

Völter, M., 62

Walker, P. M. B., 74

Wayne, W., 141

Weilkiens, T., 8

Wolfgang, P., 114

Wortmann, A., 32

Xia, S., 38

Yin, R., 200, 216

Zachman, J. A., 16

Zamansky, A., 38

Zayaraz, G., xii, 19, 67, 73, 74, 91, 130, 134,

164, 407, 408

Zhang, C., 158

Zhu, L., 134

Zimmermann, O., 63

Zou, Y., 58, 59

	Special Thanks
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	Preface
	I Introduction
	1 Overview
	1.1 Introduction
	1.2 Initial motivation and research aim
	1.2.1 Contributing Factors to the Problem Domain of this Thesis

	1.3 Methodology and Research Design
	1.3.1 Research Method
	1.3.2 Research Activities
	1.3.3 Research Life Cycle

	1.4 Thesis Scope and Structure
	1.4.1 Introduction (PARTI)
	1.4.2 Contribution (PARTII)
	1.4.3 Wrapping up (PART III)

	1.5 Publications
	1.6 Summary of Contributions

	2 Background
	2.1 Introduction
	2.2 Initial research
	2.3 Software Architecture Description
	2.3.1 Brief Analysis of SA description methods
	2.3.2 Views of SA description
	2.3.3 Formal methods and languages
	2.3.3.1 Common formal methods and languages
	2.3.3.2 Applicability of formal methods in the software Life Cycle
	2.3.3.3 Degree and scope of Formal methods
	2.3.3.4 ADLs as example of formal description

	2.3.4 ACME in brief
	2.3.4.1 ACME design trade-offs

	2.3.5 Conclusion

	2.4 Model driven approaches and Architecture
	2.4.1 Model driven software development
	2.4.1.1 Importance of domains in MDSD

	2.4.2 Introduction to MDA
	2.4.2.1 MDA Framework

	2.4.3 OO-method
	2.4.3.1 Key aspects of OO-method with respect to SA, SPs, and QAs
	2.4.3.2 Mapping OO-Processes to MDA-Processes
	2.4.3.3 Extra features of OO-methods missing from MDA

	2.4.4 xtUML as an example of model automation approach
	2.4.5 Key aspects of MDSD approaches with respect to SA, SPs, and QAs
	2.4.5.1 Models and transformations
	2.4.5.2 Pattern Languages with respect to SA (in brief)

	2.4.6 Conclusion

	2.5 Evaluating Software Architecture
	2.5.1 Evaluating software architecture in general
	2.5.2 Comparisons between current common architecture evaluation approaches
	2.5.2.1 Scenario-based evaluation methods
	2.5.2.2 Measuring techniques

	2.5.3 Analysis of Specific Evaluation Techniques
	2.5.3.1 SEI – Bass approach
	2.5.3.2 Satisfying QAs through the use of SPs, BABAR2005sss
	2.5.3.3 Mapping between SEI Tactics approach and BABAR2005sss Pattarn approach
	2.5.3.4 Exploring quality attributes using architectural prototyping BARDRAM2005eqa
	2.5.3.5 Garlan approaches
	2.5.3.6 Model-driven performance analysis BECKER2008cmt, MORENO2008MDP
	2.5.3.7 Evaluating SA using Metrics – Zayaraz2010

	2.5.4 QAs in SA Context
	2.5.4.1 Complexity of quality attributes
	2.5.4.2 Understanding quality attributes
	2.5.4.3 Quality attribute characterisations
	2.5.4.4 Sensitivity points and trade-off points

	2.6 Research challenges
	2.6.1 Research conceptual challenges
	2.6.2 Major architecture developments challenges and debates
	2.6.2.1 General challenges influencing the architecture evaluation
	2.6.2.2 Standardisation as a common problem in software architecture
	2.6.2.3 Architecture modelling Challenges

	2.7 Conclusion and Conjecture

	II Contribution
	3 The dilemma of SP descriptions with partial solution
	3.1 Introduction
	3.2 Rationale of the investigation approach
	3.3 Investigation Analyses
	3.3.1 Patterns and Quality Attributes Refinement
	3.3.1.1 Problems Discovered within the Current Pattern Definitions and Terminologies
	3.3.1.2 Problems Discovered within Current Pattern Categorisations

	3.3.2 The Variation Concept as a Problem within QAs

	3.4 Conflict Example - (Proxy Pattern)
	3.5 Summary of the issues discovered by this study
	3.6 Proposed solution
	3.6.1 Functionality description
	3.6.1.1 Pages descriptions

	3.7 Related work
	3.8 Conclusion

	4 Factors Influencing Utilisation of Software Patterns: A Questionnaire Analysis Result
	4.1 Executive summary
	4.2 Introduction
	4.3 Research methodology and Survey process
	4.3.1 Research technique and process
	4.3.2 Instrument questions
	4.3.3 Invitation mechanism and Instrument distribution
	4.3.4 Target population and Sampling technique
	4.3.5 Procedure of the analysis
	4.3.6 Rationale of the selected analysis methods
	4.3.6.1 Single Dimensional Analysis Methods
	4.3.6.2 Two-Dimensional Analysis Methods
	4.3.6.3 Three and Four-Dimensional Analysis Methods

	4.4 Findings and Recommendations
	4.4.1 Discussion of Findings
	4.4.1.1 Individual Analysis
	4.4.1.2 Two Dimensional Analysis

	4.4.2 Important comments from some non-significant results that related to the research goals
	4.4.3 Inappropriateness of three and four dimensional analyses

	4.5 Related work
	4.6 Limitations
	4.7 Conclusion

	5 Utilisation of Software Architecture Artefacts and its Evaluation
	5.1 Executive summary
	5.2 Introduction
	5.3 Survey methodology and process
	5.3.1 Instrument questions
	5.3.2 The analyses methods and procedure
	5.3.2.1 Data Distribution Normality statistics

	5.3.3 Findings and Recommendations
	5.3.3.1 Significant Results
	5.3.3.2 Inappropriateness of Three and Four Dimensional Analyses
	5.3.3.3 Focused Analysis on Q6, Q7, Q13 and Q14

	5.3.4 Related Work
	5.3.5 Limitations
	5.3.5.1 Summary of significant results

	5.4 Field Study Analysis
	5.4.1 Introduction
	5.4.2 Objective of the Field Study
	5.4.3 Study Process and Methods
	5.4.3.1 Organisation Location and Selection Criteria
	5.4.3.2 Communication Procedure

	5.4.4 Preliminary phase
	5.4.5 Result of the preliminary phase
	5.4.6 Final Phase – Conducting the Study
	5.4.7 Findings and Recommendations

	5.5 An Experience Story
	5.6 Conclusion

	6 The RCS as a Case Study and Promoting the MORENO2008MDP Approach
	6.1 Introduction
	6.2 RCS under Examination-Intro
	6.2.1 Case Study Process
	6.2.2 Discussion and Findings
	6.2.2.1 RCS architecture and BCK styles
	6.2.2.2 The RCS architecture and Mellor Styles

	6.2.3 Manifestation of QAs within RCS architecture

	6.3 Incipient Concept to Promote MORENO2008MDP approach-Intro
	6.3.1 Patterns and QAs conceptual schema
	6.3.1.1 Conceptual schema description and steps
	6.3.1.2 Prospect of the conceptual schema

	6.3.2 Conceptual schema limitations

	6.4 Conclusion

	III Wrapping up
	7 Discussion and conclusion
	7.1 Introduction
	7.2 Summary of the research contribution
	7.3 Limitations and Drawbacks of the contribution
	7.4 Recommendations and Future work
	7.5 Overall conclusion
	7.6 Closing remarks

	Bibliography

	IV Appendices
	A Publications
	B Complementary background information for Chapter 2
	B.1 Introduction
	B.2 MDA Advantages and Disadvantages
	B.3 More about ADLs
	B.3.0.1 ADL elements
	B.3.0.2 Design goals of ADLs
	B.3.0.3 The Most ADLs that are still supported

	C Database application
	C.1 Technical description
	C.1.1 DB tables
	C.1.2 Database Snapshots
	C.1.3 Brief description of development changes and difficulties

	D Complement information for the SPs Survey
	D.1 Introduction
	D.2 Rationale of the Two-dimensional analysis method used – by details
	D.3 Two dimensions supportive analysis
	D.3.1 Analyses of (Q1 and each of Q17–Q20)
	D.3.2 Analyses of (Q2 and both (Q5 and Q8)
	D.3.3 Analyses of (Q2 and each question from Q17 to Q20)
	D.3.4 Analyses of (Q3 and Q4):
	D.3.5 Analyses of (Q4 and each of the questions from Q17 to Q20):
	D.3.6 Examples of 3 and 4 dimensional analysis:

	D.4 Snapshots of primitive analysis database
	D.5 Summary Tables for most important results

	E Complement information for SA Survey
	E.1 Survey Questions
	E.2 Individual Analysis (One dimension _Descriptive statistics)
	E.2.1 Analyses of (Q8)
	E.2.2 Analyses of (Q9 and Q10)
	E.2.3 Analyses of (Q12): "Do you know or use any architectural evaluation method that can produce quantitative measures surrounding architecture characteristics?"

	E.3 Two dimensions matrices analysis
	E.3.1 Information related to the significant results
	E.3.1.1 Analyses of Q1 with (Q9 and Q10)
	E.3.1.2 Analyses of Q1 with (Q15–Q23)
	E.3.1.3 Analyses of Q2 with (Q9 and Q10)
	E.3.1.4 Analyses of (Q3 and Q17)
	E.3.1.5 Analyses of Q4 with (Q21 and Q23)
	E.3.1.6 Analyses of (Q5 and Q16):
	E.3.1.7 Analyses of (Q5 and Q18):
	E.3.1.8 Analyses of (Q5 and Q22)
	E.3.1.9 Analyses of Q6 with (Q9, Q10, and Q15 to Q23):
	E.3.1.10 Analyses of Q7 with (Q9, Q10, and Q15 to Q23):
	E.3.1.11 Analyses of (Q10 and Q17):
	E.3.1.12 Analyses of (Q13 and Q23):
	E.3.1.13 Analyses of (Q10 and Q13):

	E.3.2 Examples of non-significant results for 2-dimensions analyses
	E.3.2.1 Analyses of (Q2 and Q6)
	E.3.2.2 Analyses of (Q2 and Q7):
	E.3.2.3 Analyses of (Q2 and Q13):
	E.3.2.4 Analyses of (Q2 and Q14):

	E.4 Examples for three and four dimensional analyses
	E.4.1 Three dimensional analysis:
	E.4.2 Example for Four dimensional analyses

	E.5 Supported information for the Summary Table of Chapter 5
	E.5.1 Analyses of (Q2 and Q11):
	E.5.2 Analyses of (Q3 and Q5):
	E.5.3 Analyses of (Q3 and Q7):
	E.5.4 Analyses of (Q9 and Q10 by Q6)
	E.5.5 Additional important summary tables for 2-Dimensional analyses

	E.6 Supportive information for the Field study

	F Complementary information for The RCS – Chapter 6
	F.1 RCS analysis - Supporting Figures

	G Opportunity to improve SA through future-work thoughts
	G.1 SysAE approach - Big picture - Long-term vision
	G.2 SAQEF evaluation framework and models
	G.2.1 SAQEF specifications
	G.2.2 SAQEF Concept and Methodology
	G.2.2.1 Brief description of the Solution
	G.2.2.2 Brief description of utilised standards, profiles, language, and framework including some of SAQEF examples

	G.3 SAQEF model organisation and views
	G.4 Architectural tactics and metrics
	G.4.1 Applying metrics with the parametric diagram

	G.5 Conclusion

	Author Index

