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Abstract.—Studies in biogeography and macroecology have been increasing massively since 
climate and biodiversity databases became easily accessible. Climate simulations for past, present, 
and future have enabled macroecologists and biogeographers to combine data on species’ 
occurrences with detailed information on climatic conditions through time to predict biological 
responses across large spatial and temporal scales. Here we present and describe ecoClimate, a 
free and open data repository developed to serve useful climate data to macroecologists and 
biogeographers. ecoClimate arose from the need for climate layers with which to build ecological 
niche models and test macroecological and biogeographic hypotheses in the past, present, and 
future. ecoClimate offers a suite of processed, multi-temporal climate data sets from the most 
recent multi-model ensembles developed by the Coupled Modeling Intercomparison Projects 
(CMIP5) and Paleoclimate Modeling Intercomparison Projects (PMIP3) across past, present, and 
future time frames, at global extents and 0.5° spatial resolution, in convenient formats for analysis 
and manipulation. A priority of ecoClimate is consistency across these diverse data, but retaining 
information on uncertainties among model predictions. The ecoClimate research group intends to 
maintain the web repository updated continuously as new model outputs become available, as well 
as software that makes our workflows broadly accessible. 
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The availability of spatially explicit data 

layers summarizing past, present, and future 
climate conditions has stimulated the fields of 
biogeography and macroecology greatly in the 
last two decades. For instance, the pioneering 
WorldClim repository1 (Hijmans et al., 2005) 
enabled researchers to integrate data on 
species’ geographic occurrences with detailed 
information on climate conditions through 
time to predict biological responses across 
large spatial and temporal scales. In tandem 
with the climate data, access to vast data 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 http://www.worldclim.org.   

resources about biodiversity (e.g., GBIF2, 
Paleobiology Database3, speciesLink4), and 
exciting new computational tools (e.g., the 
new R packages; rgbif: Chamberlain et al., 
2013; rAvis: Varela et al., 2014a; 
paleobioDB: Varela et al., 2014b), have 
facilitated fundamental analyses by 
macroecologists and biogeographers on broad 
scales. The multi-temporal climate data have 
been used to explore effects of past (Varela et 
al., 2015a) and future (Thomas et al., 2004) 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 http://www.gbif.org. 
3 http://www.paleobiodb.org.  
4 http://splink.cria.org.br.  
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climate change; to understand past extinction 
events (Lima-Ribeiro et al., 2013a); and to 
test hypotheses concerning population 
dynamics (Barrientos et al., 2014), 
evolutionary processes (Araújo et al., 2013; 
Saupe et al., 2014), and ecological dynamics 
(Martínez-Meyer et al., 2004; Martínez-Meyer 
and Peterson, 2006). 

Data layers summarizing climatic 
information are created by interpolating 
continuous surfaces from real (generally 
point-based) observations, or by modeling 
conditions based on complex simulations 
describing key processes of atmospheric and 
ocean circulation, the so-called general 
circulation models (GCMs; Braconnot et al., 
2007). For instance, New et al. (2002), 
Hijmans et al. (2005), and Kriticos et al. 
(2012) provide interpolated data layers for 
modern climates based on observations from 
almost 50,000 weather stations worldwide; 
~100 fossil pollen records from the Last 
Glacial Maximum (LGM - 21 ka, Bartlein et 
al., 2011; Harrison et al., 2014) and mid-
Pliocene (Dowsett et al., 2012) made possible 
building layers for past continental climates. 
However, a dearth of detailed fossil data 
linking time and space has hindered building 
reliable data layers from paleobiological 
observations. Obviously, future climatic 
conditions are not accessible via observation.  

Consequently, climatologists have invested 
in GCMs to simulate global climate over long 
time periods, and connect climates of the deep 
geological past through the present to future 
conditions. Climatologists tune GCMs based 
on boundary conditions such as orbital 
parameters, solar forcing, greenhouse gas 
concentrations, CO2 emissions, land-use, and 
ice coverage, coupled with atmospheric, 
vegetation, and ocean dynamics (Braconnot et 
al., 2007). Via these intensive computer 
simulations, climatologists have predicted 
global climates for past (Miocene, Pliocene, 
late Quaternary), present (pre- and post-
industrial), and future conditions (end of 21st 
century; Taylor et al., 2012).  

Still, climate model outputs are not at all 
user-friendly for most macroecologists and 
biogeographers. Outputs are normally 
formatted as complex text files (e.g., netCDF 
format), which are not trivial to process; even 
to understand the acronyms used for 
identifying the dozens of climatic variables 
and model parameters can be challenging. 

Macroecologists and biogeographers are used 
to working with data layers in the form of 
raster images or simple ASCII text files. 
Spatial resolution also differs among GCMs, 
precluding direct incorporation into spatial 
analyses without complex downscaling 
procedures.  

Given, then, the often complex and 
inaccessible nature of GCM outputs, and yet 
the great interest in multi-temporal climate 
data and their enormous applicability to 
important questions in macroecology and 
biogeography, we decided to process climate 
layers from multiple GCMs, and make them 
available on a free and open web repository: 
ecoClimate5. ecoClimate offers a wide suite of 
climate data layers from the most recent 
multi-model ensembles  published as part of 
the Coupled Model Inter-comparison Project 
(CMIP5; Taylor et al., 2012) and the 
Paleoclimate Modeling Intercomparison 
Project (PMIP3) across past, present and 
future time frames, at global extents and 0.5° 
spatial resolution. Data are provided in 
formats easily incorporated in analyses via 
common platforms and popular GIS software.  
 

METHODS 
Raw climatic variables 

We accessed climatic simulations from 
most recent generations of coupled 
atmosphere-ocean general circulation models 
(AOGCMs) available in the CMIP5 and 
PMIP3 databases (Table 1). The AOGCMs 
comprised multi-model ensembles for long-
term experiments: past ("PlioExp2a", "lgm", 
and "midHolocene" experiments), present 
("piControl" and "historical" experiments) and 
future scenarios ("RCPs" experiments for 
different CO2 emission scenarios), although 
some specific outputs are not yet available 
from some modeling groups (Table 2). 
AOGCMs run long-term simulations for pre-
industrial scenario (~1760), a control 
experiment (piControl) for stabilizing climate 
predictions and model evaluation, and then 
simulate climates for different time slices, 
according to specific boundary conditions. 
Besides pre-industrial, current conditions are 
also simulated for historical periods, 
providing climatic conditions for the 20th 
century (indeed, the industrial period from 
1850 to 2005). Future conditions are 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 http://www.ecoclimate.org/.  
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Table 2. ecoClimate layers processed as regards availability of outputs (! indicates 
available, ✗ indicates not available) from the CMIP5 and PMIP3 working groups. 
Experiment acronyms: Plio: mid-Pliocene Warm Period (mPWP, ~3.3 to 3.0 million 
years ago); LGM: Last Glacial Maximum (21,000 years ago); HOL: mid-Holocene 
(6000 years ago); piControl: pre-Industrial (~1760); Historical (1900-1949); Modern 
(1950-1999); RCPs: representative carbon pathways, with emission scenarios for the 
end of the 21st century (2080-2100). 

AOGCM 
Past Present Future 

Plio LGM HOL piCon. Histor. Modern RCP2.6 RCP4.5 RCP6.0 RCP8.5 
CCSM !  !  !  !  !  !  !  !  !  !  
CNRM ✗ !  !  !  !  !  ✗ !  ✗ !  

COSMOS ✗ !  ✗ !  ✗ ✗ ✗ ✗ ✗ ✗ 
FGOALS ✗ !  !  !  !  !  !  ✗ ✗ !  

GISS ✗ !  ✗ !  !  !  !  !  !  !  
IPSL ✗ !  !  !  !  !  !  !  !  !  

MIROC ✗ !  !  !  !  !  !  !  !  !  
MPI ✗ !  !  !  !  !  ✗ ✗ ✗ ✗ 
MRI ✗ !  !  !  !  !  !  !  !  !  
 
Table 3. Spatial correlation (Pearson's coefficient, r) among downscaled temperature 
(above diagonal) and precipitation (below diagonal) layers from distinct techniques. 
Krige: ordinary kriging; IDW: inverse distance weighting; Splines: thin-plate spline; 
Trend: trend surface with 12th-order polynomial regression. 

 Krige IDW Splines Trend 
Natural 

neighbor 
Krige - 0.99 0.99 0.99 0.99 
IDW 0.98 - 0.99 0.99 0.99 
Splines 0.99 0.97 - 0.99 1.00 
Trend 0.84 0.90 0.83 - 0.99 
Natural 
neighbor 0.99 0.97 0.99 0.83 - 
      

 

 
Figure 1. Mean square errors (MSE) among downscaling techniques for (A) 
temperature and (B) precipitation layers. Note that lowest MSEs come from ordinary 
kriging method. Krige: ordinary kriging; IDW: inverse distance weighting; Splines: 
thin-plate spline; Trend: trend surface with 12th-order polynomial regression.  
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simulated in sequence, out to 2100, following 
different representative concentration 
pathways (RCPs) across 21st century (RCP2.6, 
RCP4.5, RCP6.0, and RCP8.5 experiments). 
Finally, experiments for past scenarios cover 
the LGM (Bartlein et al., 2011) and mid-
Holocene (6 ka), key periods representing 
glacial and interglacial phases related to the 
last ice age, as well as the mid-Pliocene warm 
period (mPWP, ~3.3-3.0 Ma). From such 
AOGCMs (Table 2), we downloaded 4 
simulated monthly atmospheric variables: 
precipitation flux (pr), mean surface 
temperature (tas), maximum surface 
temperature (tasmax), and minimum surface 
temperature (tasmin). All outputs match 
ensemble member "r1i1p1" (except GISS, 
which was r1i1p151), assuring compatible 
outputs among AOGCMs.  

Because AOGCMs run long-term 
simulations, we averaged simulated monthly 
values from the entire native time-series for 
pre-industrial and past experiments (Table 1) 
to guarantee reliable long-term means. For the 
historical experiments, we averaged climate 
predictions for 1900-1949 (hereafter the 
“historical” period) and 1950-1999 (hereafter 
the “modern” period). Future predictions were 
averaged between 2080 and 2100, thus 
representing conditions for the end of the 21st 
century. 

Temperature variables were transformed 
from Kelvin to Celsius, and precipitation flux 
(in mm m-2 s-1) was converted to total monthly 
precipitation (mm month-1), taking into 
account a month with 30 days according the 
specific calendar of 360 days year-1. The 
original netCDF files with raw AOGCM 
outputs were processed using the ncdf 
package in R (Pierce, 2014). Scripts are 
available openly6. 
 
Statistical downscaling: regridding AOGCM-

specific native outputs 
The long-term means for temperature and 

precipitation variables were downscaled to 
0.5° resolution. Our downscaling was actually 
a regridding procedure instead of a standard 
interpolation (implications discussed below). 
Standard interpolations are commonly used 
for observed climatology to increase 
resolution, but mainly to create spatially 
continuous values across a regular grid of 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6 https://github.com/ecoclimate.  

cells (see details in Harris et al., 2014). 
Because weather stations are not regularly 
spatially, this continuity is crucial (see 
examples in New et al., 2002; and Hijmans et 
al., 2005). In our case, AOGCMs outputs are 
already originally gridded and continuous, 
albeit at coarse resolutions (Table 1), so we 
regridded raw variables from model-specific 
native resolutions to a global 0.5° grid. We 
thus produced climatic layers at a resolution 
relevant to the spatial scales at which 
macroecologists and biogeographers are 
interested, and on a comparable grid system 
among all AOGCMs. 
 

Change-factor approach 
We followed the change-factor approach to 

downscaling (Wilby et al., 2004). This 
approach comprises three steps: (i) compute 
the change-factor (also called climate change 
trends or anomalies) between past/future and 
baseline climate for each raw variable at 
model-specific native spatial resolution, (ii) 
downscale change-factor (“smoothing”) and 
the corresponding baseline climate from each 
AOGCM to the standard 0.5° resolution, and 
(iii) apply downscaled change-factor to the 
downscaled baseline climate to reconstitute 
values and obtain downscaled layers for past 
and future climates. In the change-factor 
approach, current climate layers from weather 
station interpolations are often used to 
represent baseline climates from which 
change-factors are computed (Hijmans and 
Graham, 2006; Kriticos et al., 2012). We 
considered three scenarios from AOGCMs as 
baseline climates (pre-industrial, historical, 
and modern), taking into account 
macroecological and biogeographic interests, 
as has been used in applications such as 
ecological niche modeling (Terribile et al., 
2012; Collevatti et al., 2013a; 2013b; Lima et 
al., 2014); they also cover time periods for 
ample biodiversity data exist, and so are 
potentially useful for models relating 
organisms to environments.  

In the first step, change-factors for 
temperature variables (T change-factors) were 
computed as the simple difference between 
past/future and baseline conditions (a standard 
anomaly in climatology) for each grid cell, for 
a given AOGCM. For precipitation, change-
factors (P change-factors) were computed as 
ratios of anomalies to corresponding baseline 
conditions. Ratios are more robust in 
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Figure 2. Maps illustrating the 19 bioclimatic variables available in ecoClimate; red 
and blue titles indicate maps for temperature and precipitation variables, respectively. 
For simplicity, maps were built only for the LGM in South America, as predicted by 
AOGCM CCSM4. However, ecoClimate offers climate data at global extents for 
multiple periods (Figure 3) and 9 AOGCMs (Table 2), including raw monthly 
variables. The name and unit of bioclimatic variables are provided in Table 4. 
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Figure 3. Time series illustrating the global extent and multi-temporal characteristic 
of climate data available in ecoClimate. For illustration, maps show only annual mean 
temperature (Bio1) across past, present and future time periods from AOGCM 
CCSM4. However, ecoClimate offers similar time series for 9 AOGCMs (Table 2) 
and 19 bioclimatic variables (Table 4 and Figure 2). The period "Present" represents 
the baseline used to downscale time series (pre-Industrial ~1760, Historical 1900-
1949, or Modern 1950-1999; not shown here, but see details in Figure 5). Color scale 
is standardized across all maps; white, red and blue tones indicate near zero, positive 
and negative temperatures, respectively. 
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maintaining original patterns in downscaling 
when managing large values, as in 
precipitation (Wilby et al., 2004). 

In the second step, we used ordinary 
kriging to downscale both raw T and P 
change-factors and their respective baseline 
climates statistically to the standard global 
0.5° grid (see details below on kriging 
methods). In the third step, we applied the 
downscaled T and P change-factors to the 
corresponding downscaled baseline layers to 
obtain downscaled past and future scenarios. 
This step follows the inverse of the 
computation in the first step. For temperature, 
this involves adding the T change-factors to 
the correspondent baseline temperature value 
in each grid cell; for precipitation, the values 
are multiplied by baseline values to unpack 
ratios on the original precipitation scale.  
 

Ordinary kriging method 
We automated downscaling by coupling 

functions from the gstat package (Pebesma, 
2004) in a script in R (R Development Core 
Team, 2014). Downscaling was performed 
using the “krige” kriging function, based on 
the 12 nearest observations to a given focal 
point (rather than fitting an inverse distance 
weighted power from the global 
neighborhood) and a variogram model. To 
model the spatial structure in data, we fit a 
variogram using the “fit.variogram” function, 
which fits ranges and sills from a variogram 
model (here a spherical variogram) to a 
sample variogram. The spherical variogram 
model was used because it shows a 
progressive decrease of spatial autocorrelation 
out to some distance, beyond which 
autocorrelation is zero, a common spatial 
structure in climate data (in an exponential 
model, for example, autocorrelation would 
disappear completely only at an infinite 
distance).  

The sample variogram was obtained using 
the “variogram” function, following the 
direction with the largest range (i.e., the 
omnidirectional model type) in each variable, 
and assuming a constant trend for variables 
(i.e., we did not specify predictors to fit 
sample variograms). Integrating these 
functions from gstat package in R (Pebesma, 
2004) made automating the interpolation 
procedure possible. Scripts are available 

openly at the Internet link given in the 
footnote7. 
 

Sensitivity analyses: comparing  
downscaling methods 

Diverse statistical methods have been used 
for downscaling data and generate 
standardized, finer-resolution climate 
surfaces. We used ordinary kriging because it 
is known to produce reliable regridded 
surfaces by considering spatial structure in 
raw gridded variables to minimize variance of 
errors (Hartkamp et al., 1999). Considering 
spatial structure in data is an important 
advantage relative to other simple linear 
interpolation techniques (e.g., regression 
methods, see Hartkamp et al., 1999, for an 
overview); ordinary kriging is desirable here 
for regridding climatic simulations that reflect 
the spatial structure of original gridded 
boundary conditions (e.g., ice sheet, 
topography, vegetation, insolation). 
Moreover, because our dataset was based on 
gridded climatic simulations, it makes no 
conceptual sense to account for effects on 
observed climate patterns (e.g., coastal 
influence, terrain barriers, temperature 
inversions, which are explicitly accounted by 
the PRISM method, for example; see Daly et 
al., 2002), nor linking weather stations along 
isoclines from irregularly spaced data points 
(which, for example, would be obtained by 
thin-plate spline-fitting techniques like 
ANUSPLIN; see details in Hutchinson and 
Xu, 2013; see applications in New et al., 
2002; Hijmans et al., 2005). 

However, to avoid doubt about our 
choices, we spatially downscaled raw 
temperature mean (tas) and precipitation (pr) 
variables from AOGCM CCSM4, pre-
industrial experiment, using other 4 common 
methods: thin-plate splines, inverse distance 
weighting, trend surface (best results achieved 
with 12th-order polynomial regression), and 
natural neighbor. To compare methods, we 
correlated all downscaled layers each other, 
and found them highly spatially concordant 
with corresponding originally interpolated 
layers by ordinary kriging (all r > 0.96 for 
precipitation, except for trend surface method; 
all r > 0.98 for temperature; Table 3).  

Moreover, we evaluated the efficiency of 
each downscaling method by comparing 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7	  https://github.com/ecoclimate. 	  
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Table 4. Description of the 19 bioclimatic variables and contribution of raw monthly 
temperature and precipitation variables used in their calculations, all available in 
ecoClimate. Tasmin: minimum surface temperature; Tasmax: maximum surface 
temperature; Tas: mean surface temperature; Pr: precipitation flux. 
 

Bioclimatic variables  Raw variables 

Variable Description (name/unit) Tasmin 
(°C) 

Tasmax 
(°C) 

Tas 
(°C) 

Pr 
(mm m-2) 

Bio1 Annual mean temperature (°C)   !  
Bio2 Mean diurnal range (°C) 

(mean of monthly (max temp - min temp)) ! !   

Bio3 Isothermality (%) 
(100*Bio2/Bio7) ! !   

Bio4 Temperature seasonality (%) 
(standard deviation *100)   !  

Bio5 Max temperature of warmest month (°C)  !   
Bio6 Min temperature of coldest month (°C) !    
Bio7 Temperature annual range (°C) 

(Bio5-Bio6) ! !   
Bio8 Mean temperature of wettest quarter (°C)   ! ! 
Bio9 Mean temperature of driest quarter (°C)   ! ! 
Bio10 Mean temperature of warmest quarter (°C)   !  
Bio11 Mean temperature of coldest quarter (°C)   !  
Bio12 Annual precipitation (mm/m2)    ! 
Bio13 Precipitation of wettest month (mm/m2)    ! 
Bio14 Precipitation of driest month (mm/m2)    ! 

Bio15 Precipitation seasonality - % 
(coefficient of variation)    ! 

Bio16 Precipitation of wettest quarter (mm/m2)    ! 
Bio17 Precipitation of driest quarter (mm/m2)    ! 
Bio18 Precipitation of warmest quarter (mm/m2)   ! ! 
Bio19 Precipitation of coldest quarter (mm/m2)   ! ! 
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values of 5000 random points (n, ~10% of 
original CCSM4 grid cells) from downscaled 
(X) and native gridded (Z) layers using mean 
square errors, as MSE = 1/n*Σ(Xi – Zi)2. From 
MSE, lower errors indicate more precise 
methods: downscaled estimates are more 
similar to corresponding original values. This 
procedure was repeated 1000 times. Multiple 
regridded values (finer resolution) matching 
every AOGCM-native grid cell (coarser 
resolution) were averaged to allow direct 
comparison. Kriging showed lowest MSEs for 
both temperature and precipitation variables 
(Figure 1).  

Our sensitivity analyses showed that, 
although all methods produced downscaled 
climatic layers with similar spatial patterns 
(high correlations), ordinary kriging was the 
most precise for downscaling both 
temperature and precipitation variables 
(lowest MSE). Because the climate science 
community has not established best practices 
by which to develop higher-resolution climate 
layers (Hall, 2014), our sensitivity analyses at 
least guarantee that ordinary kriging 
represents a good practical choice. 
 

Building bioclimatic layers 
We used the downscaled layers of the 4 

raw variables (precipitation, mean 
temperature, maximum temperature, 
minimum temperature) for the 12 months of 
the year to calculate the 19 core bioclimatic 
variables (Table 4). We followed the standard 
equations used by WorldClim8, except that 
BIO1 (annual mean temperature) was 
obtained directly from AOGCM simulations 
(variable tas), instead of as an average 
maximum and minimum temperatures, as 
implemented in the "biovars" function in the 
dismo package in R (Hijmans et al., 2013).  
 

THE ECOCLIMATE DATABASE 
The web-repository 

We created a web-repository, ecoClimate9, 
to share downscaled bioclimatic layers 
(Figure 2), as well as the long-term means for 
raw monthly temperature and precipitation 
variables. Bioclimatic variables are commonly 
used in macroecological and biogeographic 
analyses, like ecological niche modeling. 
Monthly variables are needed to compute 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8 http://www.worldclim.org/bioclim.  
9 http:///www.ecoclimate.org.  

other desirable climate predictors, such as 
actual and potential evapotranspiration 
(AET/PET, see AET calculator10). The dataset 
includes standard 0.5° gridded climate layers 
for mid-Pliocene (~3.3 to 3.0 Ma), LGM (21 
ka), mid-Holocene (6 ka), pre-industrial 
(~1760), historical (1900-1949), modern 
(1950-1999) and future conditions (2080-
2100, end of the 21st century), all from 
updated AOGCMs available in the most 
recent CMIP5 and PMIP3 climate modeling 
projects (Figure 3). Future simulations include 
four representative concentration pathways 
(RCPs): RCP2.6 (low emissions scenario), 
RCP4.5 and RCP6.0 (intermediate emissions 
scenarios), and RCP8.5 (high emissions 
scenario; see details about climate scenarios in 
Taylor et al., 2012).  

A distinctive attribute of ecoClimate is its 
multi-model and multi-temporal coverage 
(Figure 4). This distinction makes ecoClimate 
potentially applicable to a multitude of 
questions commonly asked in macroecology 
and biogeography. However, in analyses 
using multi-temporal climatic scenarios, 
downscaled layers should be matched. For 
example, past and future layers are genuinely 
comparable only if downscaled from the same 
baseline condition (pre-industrial, historical or 
modern climate; Figure 5). This detail is 
needed to ensure that climate layers are 
comparable, and not reflecting differences 
among baselines. 

By presenting and serving uniform data 
from different climatic simulations that are 
compatible through time, ecoClimate allows 
users to consider and evaluate apparent 
differences among AOGCMs (see details on 
climate modeling uncertainties in Taylor et 
al., 2012, and Harris et al., 2014). The 
multiple current climate data available in 
ecoClimate that were used across the 
downscaling procedure as baseline scenarios 
are specific to each AOGCM, instead of a 
unique standard observed climate (e.g., from 
interpolations among weather stations), favors 
keeping modeling uncertainties intact. 
Therefore, considering the spread of results as 
available in ecoClimate is crucial to 
perspectives on the range of potential signals 
of interest in macroecological and 
biogeographic studies (see discussion in 
Varela et al., 2015b).  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
10 http://geog.uoregon.edu/envchange/software.html.  
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Figure 5. Schematic representation of the compatibility pattern among downscaled layers from 
ecoClimate database. For each AOGCM, three groups of downscaled layers have been derived based 
on distinct baseline scenarios (pre-Industrial, Historical, Modern). Past and future climate layers are 
necessarily compatible for a same baseline, but incompatible among baselines. See experiment 
acronyms in Figure 4. 
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Using a scenario based on observed 
climate (see example in Hijmans and Graham, 
2006) would reduce variability among 
AOGCM outputs by relating downscaled past 
and future layers to the same unique baseline, 
and could hide potential macroecological and 
biogeographic responses or underestimate 
their variation or uncertainty. Not considering 
the full diversity of potential responses to 
climate change may compromise many 
research questions, or even lead to invalid 
results in many cases (e.g., see the importance 
of using intact climate uncertainty for 
phylogeographic inference as discussed in 
Collevatti et al., 2013b; 2015).  
 

Potentiality, applicability, and relevance 
The data served via ecoClimate are 

potentially applicable to a multitude of 
research interests, including numerous 
questions in macroecology and biogeography, 
but also in diverse environmental, agricultural 
and paleobiological sciences (Figure 6). 
Ecological niche modeling (ENM) and its 
numerous research purposes, for instance, 
offer an excellent example.  

Ecological niche models estimate 
associations between environmental aspects 
(most often climate) and known occurrences 
of species to characterize the range of 
conditions under which the species’ 
populations are viable. This suite of methods 
and ideas has been applied to diverse research 
purposes: guiding discovery of populations of 
known (Bourg et al., 2005; Guisan et al., 
2006) and unknown (Raxworthy et al., 2003) 
species; understanding distributional 
dynamics under past (Banks et al., 2008a; 
2008b) and future (Dormann, 2007; 
Anderson, 2013) climates; anticipating 
climate change impacts on agricultural (Fraga 
et al., 2013) and natural (Nabout et al., 2011) 
extraction; mapping invasion risk (Peterson, 
2003; Jiménez-Valverde et al., 2011), pest 
distributions (Venette et al., 2010; Estay et al., 
2014), and disease trasmission (Peterson, 
2014); estimating population parameters 
(Tôrres et al., 2012; Lima-Ribeiro and Diniz-
Filho, 2013; Thuiller et al., 2014), species 
richness (Wisz and Rahbeck, 2007; Lima-
Ribeiro et al., 2013b), and community 
composition (Pellissier et al., 2012); analyzing 
biotic interactions (Anderson et al., 2002; 
Wheeler et al., 2015); illuminating patterns 
and processes of diversification and speciation 

(Silva et al., 2014); characterizing dispersal 
(Génard and Lescourret, 2013; Saltré et al., 
2015); highlighting extinction (Nogués-Bravo 
et al., 2008; Lima-Ribeiro et al., 2013a); 
testing niche conservatism (Martínez-Meyer 
et al., 2004; 2006; Peterson and Nyári, 2007; 
Jakob et al., 2010) and phylogeographic 
hypotheses (Collevatti et al., 2013b; 2015; 
Alvarado-Serrano and Knowles, 2014); 
establishing historical refugia (Waltari et al., 
2007; Terribile et al., 2012); identifying 
biodiversity hotspots (Carnaval and Moritz, 
2008; Carnaval et al., 2009); choosing 
appropriate areas for biodiversity conservation 
(Nobrega and De Marco, 2011; Williams et 
al., 2013) and translocation (Martínez-Meyer 
et al., 2006; Richmond et al., 2010); etc. All 
of these applications depended on data such as 
those now served via ecoClimate. 

Besides uses in ENM, ecoClimate can be 
applicable to diverse other research areas in 
the natural sciences. Quantifying and mapping 
historical climate signatures in relation to 
spatial (Araújo et al., 2008) and temporal 
(Lyons and Wagner, 2009) biodiversity 
patterns, for example, is a general issue in 
macroecology to which ecoClimate data have 
much to offer. In the “new” paleobiology, a 
research field integrating paleontologists and 
evolutionary theorists, paleoclimatic 
simulations have provided opportunities for 
testing climatic controls on macroevolutionary 
patterns (Eronen et al., 2009; Myers and 
Saupe, 2013). Similarly, community 
phylogenetics has recently seen important 
advances by drawing information from 
climate models to understand community 
assembly on geographic scales (Hawkins et 
al., 2014). Also of current interest are climate-
change-induced transformations on 
agricultural systems (Image Team, 2001; 
Ramirez-Villegas et al., 2013), not restricted 
to food supply (Parry et al., 2004; Elliott et 
al., 2014), but including conservation issues 
(Hannah et al., 2013; Zarco-González et al., 
2013). Although not exhaustive, this list of 
research interests clearly exemplifies the 
relevance of ecoClimate to multiple studies in 
the natural sciences.  
 
Challenges: resolution, scale and uncertainty 

Building databases is challenging in 
multiple dimensions, including operational 
and intrinsic, data-related features. First, 
ecoClimate presents processed climate layers 
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Figure 6. Flowchart showing potential applications of ecoClimate in diverse areas of the natural 
sciences. 
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based on data derived from dynamic modeling 
groups who advance in model predictions by 
improving their Earth system equations, 
model assumptions, input data, and 
parameters (Haywood et al., 2011), so 
processed layers must be updated 
continuously. Second, as should be apparent 
from the discussions above, several features 
of simulated climate data (e.g., spatial 
resolution, temporal scale, and modeling 
uncertainty) challenge researchers in every 
analysis.  

Spatial resolution of native-gridded 
simulations is irregular among AOGCMs and 
often coarse, ranging from 1-4° of latitude and 
longitude. The regridding performed in 
developing ecoClimate data sets had two 
finalities: producing climate layers that are 
directly comparable across geography from a 
standard grid, and that are at resolutions 
relevant to macroecologists and 
biogeographers. The standard 0.5° grid fulfills 
these goals: although 0.5° resolution might be 
coarse for specific scenarios in more regional 
and local analyses, we decided not to produce 
high-resolution layers from the AOGCMs 
because simple downscaling do not produce 
any new information in the climate change 
signal and often creates artificially high-
resolution surfaces in which climate 
information can be no more reliable than the 
native, coarse-resolution simulations 
underlying them (Harris et al., 2014).  

Rather, climate signals in global 
circulation models are often spatially biased at 
regional scales (e.g., lacking certain features 
of atmospheric circulation like the jet stream) 
which may reduce credibility of downscaled 
data (Hall, 2014). Besides the peculiarities of 
climate noise per se, artificially high-
resolution climate surfaces may provide 
unreliable signals in macroecological and 
biogeographic models in the form of classical 
consequences of pseudoreplication for 
statistical results. That is, greater detail in 
artificially pseudoreplicated information 
across space does not imply more accurate 
information (Taylor et al., 2012). This point 
holds in particular in regions with complex 
topography, such as where elevational 
gradients determine significant climate 
differentiation across local to regional scales 
(e.g., the Andes in South America, the Rocky 
Mountains in North America, the Alps in 
Europe, and the Himalayas in Asia).  

Such limitations, however, do not 
invalidate high-resolution downscaling, as 
long as their limitations are understood. 
Actually, producing reliable climate layers at 
resolutions relevant at local to regional scales 
is possible via dynamic downscaling 
procedures (or regional modeling; Pal et al., 
2007). Dynamic downscaling is based on 
regional climate models simulated from finer-
resolution surface features such as terrain, 
whereas simple downscaling uses transfer 
functions representing climate relationships at 
global scales (Pielke and Wilby, 2012). 
However, regional climate downscaling is 
challenging at broad extents, like the global 
climate layers in ecoClimate, because 
mesoscale models simulating dynamical 
regional climate features are not yet available 
for most regions worldwide (Kerr, 2011).  

Meanwhile, the climate modeling 
community suggests some caution with 
downscaled information: 
 

In general, careful researchers may wish to 
avoid consideration of downscaled infor-
mation from the CMIP5 models unless they 
have become sufficiently aware of the 
limitations of both the global models and 
the downscaling methods. 

 (Taylor et al. 2012: 496) 
 
Such spatially finer information is needed for 
specific analyses at regional scales. Indeed, 
macroecologists and biogeographers also need 
climate data at finer temporal resolutions, 
especially for past conditions to test 
hypotheses in evolutionary macroecology 
(Diniz-Filho et al., 2013) and paleobiogeo-
graphy (Varela et al., 2011).  

The climate modeling community 
simulates climates for key past periods during 
which boundary conditions are extreme (e.g., 
last glacial maximum, mid-Pliocene warm 
period), however, for long intermediate 
periods, direct estimates are generally lacking. 
To solve this problem, researchers have 
interpolated conditions to finer time-series 
using climate proxies as covariables, instead 
of interpolating values linearly (see Lawing 
and Polly, 2011; and Rödder et al., 2013). 
Although temporal interpolations are 
relatively straightforward for some variables 
like temperature, they are conceptually 
challenging. Specific proxy estimates (e.g., 
18O-oxygen radioisotopes, a direct proxy for 
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temperature change) are scarce, spatially or 
temporally aggregated, and represent 
continental dynamics unusually (see Lisiecki 
and Raymo, 2005 for details on the most 
accurate globally distributed benthic δ18O 
records). More challenging is the case of 
climatic variables (e.g., precipitation) for 
which reliable or direct proxies describing 
their temporal variability are lacking.  

Finally, the time scale of climatic 
simulations is temporally limited. For 
instance, LGM (21 ka) is the oldest period in 
the PMIP3 simulations (Taylor et al., 2012). 
Parallel simulations have been developed for 
the mid-Pliocene (~3.3-3.0 Ma; Haywood et 
al., 2011), and plans exist for development of 
mid-Miocene (17-14.5 Ma; Goldner et al., 
2014) simulations as well, maybe as a specific 
experiment for the next generation (CMIP6; 
see Meehl et al., 2014). Regardless, the 
temporal limitations of AOGCMs challenge 
macroecological and biogeographic studies of 
evolutionary dynamics that are older than 
existing climatic simulations. 

Lastly, predictive uncertainty in AOGCM 
outputs represents another aspect that 
challenges macroecological and biogeo-
graphic analyses. GCMs simulate climate 
conditions based on predetermined external 
forcings (e.g., Earth's orbital parameters, 
anthropogenic activities, greenhouse gas 
concentrations), but exhibit variations owing 
to internal interactions of stochastic and 
nonlinear climate features manifested on a 
variety of time scales (e.g., El Niño events; 
Taylor et al., 2012). These unforced variations 
produce noise in climate at different spatial 
scales. Hence, it is important that 
macroecologists and biogeographers consider 
all uncertainty from AOGCMs to derive 
realistic measures of confidence around 
predictions of biological signals. However, 
AOGCMs and particular variables can be 
selected a priori based on similarity patterns 
across specific regions and periods (see the 
recent proposal of Varela et al., 2015b). 
 

PERSPECTIVES 
Many practical aspects that impeded 

comprehensive macroecological and 
biogeographic studies two or three decades 
ago have received special attention, and have 
been overcome at least partially over the past 
15 years by making available detailed 
biological and environmental databases that 

are easily accessed, managed, and updated 
(Wilson, 2000; Hijmans et al., 2005). 
ecoClimate adds to this effort to build 
permanent research infrastructure in this field. 
ecoClimate arose from the need for detailed 
and rigorously-documented climate layers to 
build ecological niche models and test 
macroecological and biogeographic 
hypotheses through the past, present, and 
future (see fundamental questions in 
Sutherland et al., 2013; Seddon et al., 2014). 
ecoClimate offers a range of processed multi-
temporal climate layers from the most recent 
multi-model ensembles by CMIP5 and PMIP3 
over diverse time frames, at global extents and 
0.5° spatial resolution.  

Our plan is to maintain the ecoClimate 
database updated continuously as new model 
outputs become available. When new 
experiments (e.g., MioMIP) and next 
generations of climate models from CMIP and 
PMIP (e.g., CMIP6; see Meehl et al., 2014) 
and their descendents are developed, they will 
be processed and incorporated into the 
ecoClimate database. What is more, as a key 
next step, we will also advance the processing 
of climate layers by developing bias-corrected 
layers, and build temporally interpolated 
sequences at 1 ka resolution. We are 
developing an R package providing functions 
to deal with all these processing phases along 
ecoClimate purpose. Because many AOGCM-
based outputs were not processed for 
ecoClimate, including hundreds of variables 
(e.g., evaporation, relative humidity, heat flux, 
etc.; see the complete list11), simulated for 
distinct time frequencies (daily, every 6h, 3h) 
and realms (e.g., land, land-ice, ocean), an R 
package will surely help ecoClimate users to 
amplify their research horizons. 
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