
Biodiversity Informatics, 6, 2009, pp. 5-17

5

AN EFFICIENT SEGMENTATION ALGORITHM FOR ENTITY

INTERACTION

EUGENE CH’NG1

School of Computing and Information Technology, The University of Wolverhampton

Wulfruna Street, WV1 1SB, Wolverhampton, United Kingdom.

Abstract.—The inventorying of biological diversity and studies in biocomplexity require the
management of large electronic datasets of organisms. While species inventory has adopted
structured electronic databases for some time, the computer modelling of the functional
interactions between biological entities at all levels of life is still in the stage of development. One
of the challenges for this type of modelling is the biotic interactions that occur between large
datasets of entities represented as computer algorithms. In real-time simulation that models the
biotic interactions of large population datasets, the use of computational processing time could be
extensive. One way of increasing the efficiency of such simulation is to partition the landscape so
that entities need only traverse its local space for entities that falls within the interaction proximity.
This article presents an efficient segmentation algorithm for biotic interactions for research related
to the modelling and simulation of biological systems.

Key words.— artificial life, entity interaction, individual-based model, optimisation algorithms,
segmentation.

 Biodiversity research studies the “variation of

life at all levels of biological organisation” (Gaston
and Spicer 2004) and is used to refer to “the whole
range of activities traditionally connected with
inventorying and studying living resources”
(Lévêque and Mounolou 2003). Such studies
frequently encounter large datasets of biological
entities, especially in functional interactions
between different levels of organisms and their
effects on the modifying and shaping of the
environment. As research in biodiversity becomes
complex, computer modelling and simulation
become a necessary means for conducting
experiments so that questions that cannot be
answered by traditional approaches may be
resolved through the use of technology. The
feasibility of computer modelling of nature is
amplified in studies in biocompexity, which is
defined by Lévêque and Mounolou as “the result of
functional interactions between biological entities,
at all levels of organization, and their biological,
chemical, physical and social environments” where
observational studies of complex entities above the

 correspondence e-mail: e.chng@wlv.ac.uk

species level such as population, biocenosis
ecosystems, and biospheres require controlled
experiments of their environment. For example,
one may wish to project the impacts of future
increase in yearly mean temperature on an
ecosystem, or to attempt to computationally
introduce an invasive species to see its effects on a
population. In other cases, one may wish to
increase the biological time and processes of a
virtual ecosystem in order to predict its outcome in
a hundred years’ time. Other important needs are to
visualise, not by charts and graphs but by utilising
interactive computer graphics, the real-time
interaction of a biological community in order to
observe the ecosystem dynamics. In any case, there
is much to be explored in the mergence of
computers and biology for biodiversity research.
Traditional modelling in ecology depended upon

statistical and probabilistic procedures such as
classification and regression trees, generalised
linear models, multivariate adaptive regression
splines, and artificial neural networks. According
to some comparative studies (Cairns 2001, Miller
and Franklin 2002, Muñoz and Felicísimo 2004),
such methods often produce inconsistent results. In

CH’NG. – AN EFFICIENT SEGMENTATION ALGORITHM FOR ENTITY INTERACTION

6

the worst case, they are fraught with errors and
inaccuracies as factors considered crucial are often
not being taken into account. A number of critiques
have recently questioned the validity of modelling
strategies for predicting the natural distribution of
species. For example, a research review (Pearson
and Dawson 2003) showed that many factors other
than climate determine species distributions and
the dynamics of distribution changes. While
traditional approaches have been focused on the
identification of a species’ bioclimatic envelope,
crucial factors such as biotic interactions (Connell
1961, Silander and Antonovics 1982, Davis et al.
1998) and evolutionary change (Woodward 1990,
Davis and Shaw 2001, Thomas et al. 2001) are not
taken into account and therefore making
predictions erroneous and misleading. Species
dispersal is another factor that has been
disregarded, Pearson and Dawson (Pearson and
Dawson 2003) suggest that migration limitations
such as landscape barriers, deforestation, and man-
made habitats can obstruct species movement and
should be taken into account in such models. As
incorporating these factors into the procedures of
traditional approaches is difficult, it becomes
necessary to explore new approaches for ecological
modelling (Ch'ng 2009).
Nature has intrinsic problem-solving principles

and nature-inspired design seems a potential area
for discovering new methodology for research.
There may not be a better way to model biological
life than to simply mimic its designs by using the
algorithmic format to simulate the various levels of
complexities (molecular, species, ecosystem, and
biosphere). This synthesis of nature formulates
algorithms by extracting nature’s principle rules in
order that biological organisms can be replicated
within the confines of voltage and silicon. Indeed,
the aim of the experimental science of Artificial
Life (Langton 1995) attempts to understand the
mechanisms behind living systems by synthesising
them so that the structure and functions of these
systems may be understood and applied. One of its
founders (Langton 1990) states that “By extending
the horizons of empirical research in biology
beyond the territory currently circumscribed by
life-as-we-know-it, the study of Artificial Life
gives us access to the domain of life-as-it-could-be,
and it is within this vastly larger domain that we
must ground general theories of biology and in
which we will discover novel and practical

applications of biology in our engineering
endeavors.”
Most, if not all of Artificial Life-based modelling

techniques are Individual-Based Models (IBMs)
and an extension of it called Evolutionary
Individual-Based Model (EIBM) (Bornhofen and
Lattaud 2006), or Agent-based models. Breckling
et al. stated that ‘IBMs contrasts with common
ecological models which frequently operate on the
population level and represent a population as an
overall state, thereby specifying rules how the
overall state changes (Breckling et al. 2005).
IBMs was identified in a visionary article by

Huston et al. (Huston et al. 1988) as a potential
model for simulating the effects of individual
variation, spatial processes, cumulative stress, and
natural complexities that are difficult with classical
approaches: “individual-based models allow
ecological modellers to investigate types of
questions that have been difficult or impossible to
address using the state-variable approach.”
Individual-Based Models have been thoroughly
reviewed up to 1999 (Grimm 1999) and 2005
(Grimm and Railsback 2005) followed by a recent
review of EIBM (Bornhofen and Lattaud 2006).
Another review of the approach have shown that
individual-based models can also benefit from
concepts in Complex Adaptive Systems (Railsback
2001). These novel modelling techniques could
potentially resolve issues outlined earlier, such as
biotic interaction, evolutionary change, and species
dispersal barriers. What distinguishes IBMs from
other “individual-oriented” models that
acknowledge the individual level in some way but
still adhere mainly to the classical modelling
paradigm? There are four criterion: (1) the degree
to which the complexity of the individual's life
cycle is reflected in the model; (2) whether or not
the dynamics of resources used by individuals are
explicitly represented; (3)whether real or integer
numbers are used to represent the size of a
population; and (4) the extent to which variability
among individuals of the same age is considered
(Uchmanski J and V. 1996, Grimm and Railsback
2005). Since the emergence phenomenon observed
in IBMs reflects that of ecological systems, three
properties characterises them (Breckling et al.
2005): (1) they do not exist on the level of isolated
subsystems; (2) they emerge on higher levels as a
result of interactions of the subsystems; and (3)
new properties appear at one level of a system and

CH’NG. – AN EFFICIENT SEGMENTATION ALGORITHM FOR ENTITY INTERACTION

7

are not deducible from the observation of the lower
levels units or compartments of the system. This
requires the modelling of individuals rather than at
the population level. Such techniques require the
modelling of individual biological life, including
their genotype, phenotype and dynamics. This
implies the requirements for large computing
resources as hundreds of thousands of calculations
are performed for each individual as they react and
interact with their biotic and abiotic environment.
If optimisation problems associated with these
models are properly developed, new opportunities
for resource conservation planning, habitat and
biodiversity management, mitigation strategies and
studies related to the understanding of
demographic problems can be initiated.
This research attempts to solve a critical problem

associated with computational resources that is
connected to artificial life, IBMs or agent-based
modelling of biological systems at the species level
and the simulation of biotic interactions among
large datasets of spatially-explicit sessile
organisms and a suggested extension for vagile life
forms. The following sections explore optimisation
techniques and formulate logical methods for
optimising entity interactions. The paper concludes
with a discussion of the results and opportunities
for future work.

OPTIMISATION TECHNIQUES

Unlike statistical methods, which uses pixels as
patch size of n meter of space to describe large
communities of organisms on a landscape, new
approaches require the modelling of individual
organisms and all its internal processes and
external interactions. Experience tells us that the
modelling of biological life using computer
algorithms requires large numbers of variables,
algorithmic structures, and calculations. This is
true even for a single entity. The availability of
computing resources for simulation becomes an
exponential challenge when biotic and abiotic
interactions occur and entities reproduce. Resource
bottleneck is a problem that requires solving before
new modelling methods can see fruition.
Unfortunately, a review of literature in the area
yielded little evidence of such studies. Schulz and
Reggia developed a method for predicting nearest
agent distances in artificial worlds (Schulz and
Reggia 2002). Other methods are developed for
representing complex outdoor scenes in computer

graphics (Snyder and Barr 1987, Deussen et al.
1998, Soler et al. 2003) but algorithms have not
been formalised for improving the efficiency of
large entity interactions.
Data structures for managing and categorising

large collections of data are available. The simplest
perhaps is the array data structure. More advanced
structures are hierarchical data structures, which is
based on recursive decomposition (Aho et al.
1974). Well known hierarchical data structures
(Samet 1984) used in the science and engineering
for efficient representation and improving
execution times are binary trees, quadtrees, and
octrees. A tree in computer science terminology
emulates a tree structure. It has sets of link nodes
starting from a root node and proceeds through the
child nodes (branch) and finally to the leaf nodes
(final nodes). A child node has one parent node and
a parent node may have zero to many nodes. A
binary tree contains only two child nodes and is not
suitable for partitioning terrains into equal parts
(where the ratio is 1). Quadtree and octrees contain
only four and eight nodes respectively. As we shall
soon see in the discussions, hierarchical data
structures presents some problems for managing
large indexes that have frequent changes. The
approach presented in this article uses a data
structure that is non-hierarchical. It divides terrains
based on the square root of the number of

segments, S . The approach is flexible and is
able to segment a landscape into an infinite number
of equal parts. The next section explores some
concepts related to the efficiency of segmentation
logic.

EXPLORING THE LOGIC OF
SEGMENTATION METHODOLOGY

The segmentation algorithm presented here is an
optimisation technique developed and applied for
investigating a new approach of vegetation
modelling for studying palaeoenvironments (Ch'ng
and Stone 2006b, a, Ch'ng 2009). The optimisation
technique targets non cell-based IBMs and agent-
based models. In other words, it does not apply to
discrete environments such as Cellular Automata
(CA), E.g., (Gutowitz 1991, Ginot et al. 2002). The
IBMs must be spatially explicit and in a continuous
environment. The optimisation technique targets
sessile organisms (e.g., plants) but can be easily
extended to include vagile life forms (e.g., fish,

CH’NG. – AN EFFICIENT SEGMENTATION ALGORITHM FOR ENTITY INTERACTION

8

animals and insects) and is suggested in the
Discussions section. The following paragraphs
explore segmentation logics.
In the ecosystem model, there are bound to be

large numbers of entity interactions, both accessing
and competing for resources. The efficiency of an
optimisation technique will determine the
computational speed of the simulation. In an
algorithm, the entities are usually stored in a single
array, in more advanced simulation requiring
constant insertion and deletion (births and deaths)
entities are stored within a collection data structure.
In the simulation cycle, each entity accesses every
other entity in the same collection to determine
their proximities for interaction or competition. If
entities are at proximity, interaction occurs.
Therefore, if the collection contains ten simple two
state entities, every entity will have to go through
ten loops including itself for determining the
proximity of other entities before computing the

interaction. This amounts to 210 , and if there are
1000 entities, the amount increases exponentially

at 000,000,110002 = . In large landscapes and
actual models, vegetations could amount to
thousands to hundreds of thousands of plants with
computable variables, algorithms and calculations
in each entity. This problem gives reason for
developing optimisation techniques. In the initial
stages of research, three theoretical concepts were
compared for their efficiencies.

Memory Indices (MI)

The first concept requires that each entity
remembers the indices of nearby entities (Figure
1). In this technique, each entity accesses only the
indices in its memory for interaction and
competition. The technique however, has serious
limitations and is restricted only to sessile IBMs.
We know that vegetation reproduces abundantly
during the spring-summer seasons each year. In the
simulation, when new plants are reproduced plant
proximities in the entire collection will have to be
traversed and computed to determine which plants
should be in the memory of other plants. And each
time a single plant dies the collection has to be
traversed again to remove the index of the dead
plant from the memory of nearby plants. This
becomes very slow as the number of plants
increases.

Figure 1. Inefficient Memory Indices (MI).

Collection Class Indices (CCI)

The second concept segments the landscape into
different collection classes storing the indices of
entities in each class (Figure 2). This is a better
algorithm compared to the first since the segments
in a terrain is fixed provided the landscape is not
continually being re-segmented during the
simulation. However, different collection classes
increases memory and the need to traverse each
collection during simulation wastes computational
time. Furthermore, in each reproductive lifecycle,
each collection has to be checked against the new
plants to determine which segment boundary it
belongs to. CCI differs from Cellular Automata but
is very similar to the Particle In Cell (PIC) method
in (Bithell and Macmillan 2007).

Segmentation Algorithm

The third technique is more efficient. In a
landscape, a plant can only compete with adjacent
plants at a given time and all other plants should be
discounted from the interaction. In theory, the
simulation time should decrease with the increase
of landscape segments. We shall soon see the
performance of the technique.
Figure 3a shows a landscape with groups of

plants where only intersecting plants are being
competed against. In the real world, computation is
not a problem since interaction between entities is
parallel and occurs simultaneously. However, since
every virtual plant is stored within an array in a
computer program, traversal is required to

CH’NG. – AN EFFICIENT SEGMENTATION ALGORITHM FOR ENTITY INTERACTION

9

Figure 2. Inefficient Collection Class Indices (CCI).

determine which plant is ‘visible’ for competition.
In a simulation, the ideal competition scenario for
segmentation in Figure 3a can be divided into 4
segments where each plant needs only access the
other plants in its own segment space (shown in b).
In a difficult segmentation condition at c where the
source plant (large circle) is near to a boundary or
overlaps the boundary of a segment space, the
source plant is required to access all other plants in
neighbouring segment spaces for thorough
interaction. In this case, the benefits of segmenting
the landscape are not apparent as it is the same as
condition a since plants within the entire collection
is accessed. The benefits become apparent when
the segments are increased (in d). The figure
illustrates that a higher segmentation increases the
speed of the program since each plant needs only
access the plants within its segment space and
adjacent segment spaces. The only rule needed is
that the size of a segment should not be smaller
than the canopy of a tree with the largest diameter.
Segmenting a landscape in a standard DirectX or

OpenGL 3D coordinates is different from the 2D
screen coordinate systems. The method developed
in this research targets the DirectX 3D coordinate
space but can be easily extended to include
OpenGL and 2D coordinate spaces. Segmentation
begins with divisions. The number of divisions can
be from 1 to ∞ subject to the limits of computer
memory. The segments are derived from the square

of the divisions with 2d d S= = , where d is
the number of divisions and S is the number of
segments. Figure 3a contains 1 division with 1

segment, 21 1 1= = . The landscape in b and c
both contain 2 divisions with 4 segments,

22 2 4= = . Figure 3d contains 3 divisions

with 9 segments 23 3 9= = . The number of
divisions has equal width and height. The value of
the width and height of the landscape can be
obtained with,

terrain
divs

terrain
divs

w
w

S

h
h

S

=

=

 (1)

where divsw and divsh are respectively the

number of divisions in the width and height of the
terrain. terrainw and terrainh are the size of the width

and height of the terrain. S is the number of

divisions which divides the terrain into divsw and

divsh .

Constructing the segments requires an
understanding of the 3D coordinate system, shown
in Figure 4a. The origin of the axis lies at the
centre of the plane with extensions of the axis in
both the negative and positive directions. The
segmentation however, cannot begin from the
origin but is offset in the negative (-x,-y) direction
starting from the ‘start’ position show in b. This
means that segment 0 begins from the lower left
corner (-x, -y) and ends at the top right corner (+x,
+y) at segment 15. The units (-50, -25, 0, +25,
+50) are given as an example and can be replaced
with any other units with equal divisions. Based on
the divisions of width at b, it is observed that when
j=0, x=-50, when j=1, x=25, when j=2, x=0, and
so on. This generates a graph at c where an
equation of the line is given (Eq. 2),

()
2

terrain terrainw w
f j j

S
= −

 (2)

CH’NG. – AN EFFICIENT SEGMENTATION ALGORITHM FOR ENTITY INTERACTION

10

Figure 3. Efficient Segmentation Logic. A landscape with 1 segment (a), a landscape with 4 segments (b), entity
accessing other segments for interaction (c), and entity interaction in a 9 segments scenario (d).

where j is the segment junction, terrainw is the

width of the terrain, and S is the number of
divisions. The equation offsets the first segment (0)
from the origin to the ‘start’ position. A
construction of the height divisions uses the same
equation replacing terrainw with terrainh .

In the algorithm, each segment is a rectangle
object storing its size and position. The algorithm
in standard format is given in Listing 1. divs is the
number of divisions, i and j are each division’s
index, wDiv and hDiv are the width and length of

each segment divided from terrainw

S
 and terrainh

S
.

Every plant in its own segment space accesses its
adjacent segment spaces. Figure 5a shows the
index accessing pattern using a one dimensional
array. T is the target segment where a plant resides.
The plant accesses its adjacent segment spaces for
competition. The segmentation in b shows black
coloured segments within the safe frame (red). In c,
the segment within the safe frame (blue arrows)
safely accesses segments that exist whereas
segments outside the safe frame (red arrows)
accesses non-existent segments and will generate
errors in the program.
This problem can be solved by preventing the

left edge and corner segments from accessing
certain non-existing segments. Figure 6 shows
some instances of the patterns of non-existent
segments where the target segment should not have
access to. The pattern illustrates that depending on
where the edge segment (orange) is located (top,
bottom, left, right), it should not access not less or

more than three non-existent segments. The corner
segments should not access not less or more than 5
non-existent segments. The algorithm for
segregating the edge and corner segments is given
in Listing 2. pDivisions is the number of divisions
on the landscape, pNumOfSegment is the number
of segments on the landscape. The rest are self-
explanatory.

A UML diagram showing the class relationship
between the Segment and Vegetation is given in
Figure 7. Every plant has a unique VegetationID.
Within the plant, SegmentID defines the segment
the plant is in and has a default value of -1 when it
is in the dormant stage. It is assigned when the
seed is germinated as that is the beginning of
competition. The Segment object contains a unique
SegmentID and an array of PlantIndices[] which
stores the index of each plant within the boundary
of the segment rectangle. The index of a plant can
only be in the PlantIndices[] array of one segment
at any given time. The pseudo code in Listing 3
shows how entities are managed during simulation
time.

OPTIMISATION RESULTS

Results from the segmentation algorithm
covered in the previous section were recorded on a
150m² terrain with five species of trees.

Due to the nature of the simulation (large
number and fluctuations of population), it is
difficult to generate a comparison chart of the
increase of the segments (1, 2, …, n) and for each
case, the number of organisms and the simulation
speed. Therefore a chart has to be shown for each
individual segmentation simulation.

CH’NG. – AN EFFICIENT SEGMENTATION ALGORITHM FOR ENTITY INTERACTION

11

Figure 4. Segmentation constructions in 3D coordinate space (a, b, and c).

Figure 5. The concept of safe frame in segmentation algorithm: Index accessing pattern using one dimensional
array (a), safe frame with black numbers (b), and frames accessing non-existent segments (c).

At the start of the simulation, the initial number of
trees is 147 distributed among the species.

Three segmentation experiments were
conducted to compare the results using the same
settings where vegetation reproduces up to a
maximum of 162 on one of the experiment. The
first segmentation test uses 1 segment for the
landscape with a total of 162 at peak production
over 258 years, the second and third partitioned the
terrain into 64 and 144 segments respectively. The
64 segments version produces 147 plants at its
peak over 263 years and the 144 segments version
produces up to 151 during its peak over 258 years.
Even though the settings are the same for all three
experiments, the number of vegetation produced is
different. This is due to the interaction among
vegetation and the environmental variations
affecting them. This however, does not
significantly affect the results as comparison is
made between the speed and the number of plants
produced (Figure 8-11).

A comparison of the three graphs showed that
there is significant increase in speed if the
segmentation algorithm is applied. In Figure 9,
when the number of vegetation reaches its
maximum at 140, the speed reaches only 180
milliseconds using 64 segments as compared to an
average of 400 milliseconds using only 1 segment
(Figure 8). If the segments are increased to 144, the
speed decreased to only an average of 100
milliseconds with the same amount of vegetation
(Figure 10).

Figure 11 is a comparison of efficiency of
segmentation between the three experiments. The
graph showed that the computational speed
increases significantly between 1 and 64 segments.
However, the increase in performance is not
apparent between 64 and 144 segments. This is due
to the small number of vegetation present in the
landscape. The performance becomes obvious
when the number of vegetation is greatly increased
near the end of the graph. Figure 12-13 are graphs

CH’NG. – AN EFFICIENT SEGMENTATION ALGORITHM FOR ENTITY INTERACTION

12

Listing 1:

1. int n = 0; // segment number

2. for (int j = 0; j < divs; j++) // Rows (divided on Length)

3. {

4. for (int i = 0; i < divs; i++) // Columns (divided on Width)

5. {

6. x = (terrainWidth/divs)*i - terrainWidth/2; // Set the x position (Columns)

7. y = (terrainHeight/divs)*j - terrainHeight/2; // Set the y position (Rows)

8.

9. // Create a new segment

10. segment[n] = new Segment(x*2, y*2, wDiv*2, hDiv*2);

11. n += 1; // next segment

12. }

13.}

Listing 2:

1. // Collect Segment Corners

2. pBottomLeftCorner = 0;

3. pBottomRightCorner = pDivisions-1;

4. pTopLeftCorner = pDivisions * (pDivisions-1);

5. pTopRightCorner = pNumOfSegment-1;

6.

7. // Collect Segment Edges

8. pLeftEdge = new int[pDivisions-2];

9. pRightEdge = new int[pDivisions-2];

10.

11.for (int i=0 ; i < pDivisions-2 ; i++)

12.{

13. pLeftEdge[i] = (i+1) * pDivisions;

14. pRightEdge[i]= (pDivisions-1) + pDivisions * (i+1);

15.}

Listing 3:

Initialise Simulation:

Generate Segments

Test all entities

 If entity is within segment

Assign VegetationID to segment PlantIndices based on its location

Assign SegmentID to each entity

Simulation Cycle:

Remove dead entities and assign new entities to segment

Simulate entity interaction within proximity segments

Listing 4:

Initialise Simulation:

Generate Segments

Test all entities

 If entity is within segment

 Assign VegetationID to segment PlantIndices based on its location

 Assign SegmentID to each entity

Simulation Cycle:

Remove dead entities and assign new entities to segment

Assign vagile entities to segment and assign SegmentID to vagile entities

Simulate entity interaction within proximity segments

Simulate interaction for vagile entities (viewable entities within

segment)

CH’NG. – AN EFFICIENT SEGMENTATION ALGORITHM FOR ENTITY INTERACTION

13

comparing segmentation results of an environment
using the same landscape. Vegetation is a mixture
of trees and herbaceous plants totalling 203 in
number at the start of the simulation. The
herbaceous plants are used because the rate of
reproduction is much faster than the trees. The 64
segments version produces 14,795 plants at its
peak over 23 years and the 144 segments version

Figure 6. Accessing non-existent segments.

produces up to 12,393 during its peak over 33
years. The comparison shows a significant increase
in performance using 144 segments. When the
number of plants increases to around 12,000
(Figure 13), the speed decreases to only 300,000
milliseconds as compared to 64 segments at
700,000 milliseconds.

DISCUSSION
The implementation of an efficient

segmentation algorithm will greatly reduce
simulation time in studies dealing with large real-
time datasets, such as the modelling of
biocompexity where biotic interaction plays a
major role in the dynamics of the system. The
results in the study confirm that the use of the
segmentation algorithm to divide the landscape and
the devising of a strategy for managing entity
interaction greatly speeds up the simulation, with
an increase of >40% in all cases.

The finding suggests that increasing the
segmentation decreases the speed of simulation in
all studies. In the first test, (Figure 8-10), three
scenarios with segments 1, 64, and 144 were
compared. The number of plants in all three
scenarios averaged 153. The results showed that
the speed of simulation doubles from 400ms to
180ms if 64 segments were applied. If 144
segments were applied, the speed decreases from
400ms to 100 ms.

Tests conducted in a larger landscape with
thousands of plants averaging 13,594 also showed
a significant increase in simulation speed (Figure
12-13). When plants in the landscape reached a
population of 12,000, the 144 segments yielded
300k milliseconds as compared to 700k
milliseconds using the 64 segments version.

The experiments were conducted on sessile
entities. But an additional cycle in the simulation
will enable highly vagile entities to be included in
the system. The bold lines in Listing 4 show the
extension. Vagile entities may require a separate
collection class from the static entities and the
interaction should be after the static entities have
been processed. Static objects are at priority. For
example, the seeds of plants should be produced
first before predators have access to them, trees
should first appear before habitats are made
available, and etc.

Hierarchical data structures such as quadtrees
and octrees may have potential solution for such
problems. But they will need to be tested.
Hierarchical data structures divide a space into
equal parts. Quadtrees divide a space or the subset
of a space into four equal parts that are stored as
nodes while octrees divide a space into eight equal
parts. Apart from that, the two structures are
essentially the same and achieve the same
objective. These structures are found to be very
efficient in a space that contains entities that do not
go through large and frequent changes such as
thousands of addition, deletion, interaction and
movement in one simulation cycle. They are
frequently used in computer graphics and
visualisation. When there are large changes, it is
predicted that the restructuring and traversing of
the nodes will increase the simulation time. The
simulation cycle in Listing 3 and 4 show a simple
breadth traversal of the segments for both sessile
and vagile entities. Hierarchical data structures
require additional steps in each cycle to rebuild the
nodes when entities die and new entities are
produced. Furthermore, entities need to traverse
both the breadth and depth of the nodes in order to
determine their interaction proximity. In theory,
such structures should not have significant increase
in speed, but tests should be carried out in future
work. There is much to be explored as far as
efficient algorithms for entity interaction is
concerned. The algorithms have produced
significant results for potential interaction among

CH’NG. – AN EFFICIENT SEGMENTATION ALGORITHM FOR ENTITY INTERACTION

14

Figure 7. A UML diagram illustrating the relationship between the class Vegetation and Segment .

Figure 8. Experimental results using 1 segment on the landscape. The image shows the speed of simulation (the
graph with high fluctuations at bottom) and the number of plants (the graph on the top).

Figure 9. Experimental results using 64 segments on the landscape.

Figure 10. Experimental results using 144 segments on the landscape.

CH’NG. – AN EFFICIENT SEGMENTATION ALGORITHM FOR ENTITY INTERACTION

15

Figure 11. A comparison of the efficiency of segmentations between the experiments. Solid lines show the
average speed of simulation and dashed lines of a paler shade show its corresponding plant population.

Figure 12. The comparison of efficiency of segmentation between experiments (64 segments).

Figure 13. The comparison of efficiency of segmentation between experiments (144 segments).

CH’NG. – AN EFFICIENT SEGMENTATION ALGORITHM FOR ENTITY INTERACTION

16

thousands of entities. When vagile life forms are
introduced, more efficient techniques will be
required. In future work, High Performance
Computing with hundreds of nodes of computer
clusters is essential to support the calculations
involved in biotic and abiotic interactions.
Research is underway to make this a reality.

REFERENCES

Aho, A. V., J. E. Hopcroft, and J. D. Ullman. 1974. The
Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, Mass.

Bithell, M. and W. D. Macmillan. 2007. Escape from
the Cell: Spatially explicit modelling with and
without grids. Ecological Modelling 200:59-78.

Bornhofen, S. and C. Lattaud. 2006. Outlines of
Artificial Life : A Brief History of Evolutionary
Individual Based Models. Lecture Notes in
Computer Science, Springer-Verlag 3871:226-237.

Breckling, B., F. Müller, H. Reuter, F. Hölker, and O.
Fränzle. 2005. Emergent properties in individual-
based ecological models – introducing case studies
in an ecosystem research context. Ecological
Modelling 186:376-388.

Cairns, D. M. 2001. A Comparison of Methods for
Predicting Vegetation. Plant Ecology 156:3-18.

Ch'ng, E. 2009. An Artificial Life-Based Vegetation
Modelling Approach for Biodiversity Research. in
R. Chiong, editor. to appear in Nature-Inspired
informatics for Intelligent Applications and
Knowledge Discovery: Implications in Business,
Science and Engineering. IGI Global, Hershey, PA.

Ch'ng, E. and R. J. Stone. 2006a. 3D Archaeological
Reconstruction and Visualization: An Artificial Life
Model for Determining Vegetation Dispersal
Patterns in Ancient Landscapes. Pp. 112-118.in
Computer Graphics, Imaging and Visualization
(CGiV). IEEE Computer Society, Sydney,
Australia.

Ch'ng, E. and R. J. Stone. 2006b. Enhancing Virtual
Reality with Artificial Life: Reconstructing a
Flooded European Mesolithic Landscape. Presence:
Teleoperators and Virtual Environments 15:341-
352.

Connell, J. H. 1961. The influence of interspecific
competition and other factors on the distribution of
the barnacle Chthamalus stellatus. Ecology 42:710-
723.

Davis, A. J., L. S. Jenkinson, J. H. Lawton, B.
Shorrocks, and S. Wood. 1998. Making mistakes
when predicting shifts in species range in response
to global warming. Nature 391:783-786.

Davis, M. B. and R. G. Shaw. 2001. Range Shifts and
Adaptive Responses to Quaternary Climate Change.
Science 292:673-679.

Deussen, O., P. Hanrahan, B. Lintermann, R. Mech, M.
Pharr, and P. Prusinkiewicz. 1998. Realistic
modeling and rendering of plant ecosystems.in
Proceedings of SIGGRAPH '98 Annual Conference
Series 1998. ACM Press.

Gaston, K. J. and J. I. Spicer. 2004. Biodiversity: an
introduction. Blackwell Publishing (2nd Ed.),
Oxford.

Ginot, V., C. Le Page, and S. Souissi. 2002. A multi-
agents architecture to enhance end-user individual-
based modelling. Ecological Modelling 157:23-41.

Grimm, V. 1999. Ten years of individual-based
modeling in ecology: what have we learned and
what could we learn in the future? Ecological
Modelling 56:221-224.

Grimm, V. and S. F. Railsback. 2005. Individual-based
Modeling and Ecology. Princeton University Press,
Princeton, New Jersey.

Gutowitz, H. 1991. Cellular automata: Theory and
experiment. Physica D 45:1-3.

Huston, M., D. Deangelis, and W. Post. 1988. New
computer models unify ecological theory.
Bioscience 38:682-692.

Langton, C. G. 1990. Artificial Life. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA.

Langton, C. G., editor. 1995. Artificial Life: An
Overview. MIT Press, Cambridge.

Lévêque, C. and J. C. Mounolou. 2003. Biodiversity.
John Wiley & Sons, Ltd., Chichester, West Sussex.

Miller, J. and J. Franklin. 2002. Modeling the
distribution of four vegetation alliances using
generalized linear models and classification trees
with spatial dependence. Ecological Modelling
157:227-247.

Muñoz, J. and Á. M. B. Felicísimo. 2004. Comparison
of statistical methods commonly used in predictive
modelling. Journal of Vegetation Science 15:285-
292.

Pearson, R. G. and T. P. Dawson. 2003. Predicting the
impacts of climate change on the distribution of
species: are bioclimate envelope models useful?
Global Ecology & Biogeography 12:361-371.

Railsback, S. F. 2001. Concepts from complex adaptive
systems as a framework for individual-based
modelling. Ecological Modelling 139:47-62.

Samet, H. 1984. The Quadtree and Related Hierarchical
Data Structures. Computer Surveys, ACM 16.

Schulz, R. and J. A. Reggia. 2002. Predicting Nearest
Agent Distances in Artificial Worlds. Artificial Life
8:247 - 264.

Silander, J. A. and J. Antonovics. 1982. Analysis of
interspecific interactions in a coastal plant

CH’NG. – AN EFFICIENT SEGMENTATION ALGORITHM FOR ENTITY INTERACTION

17

community - a perturbation approach. Nature
298:557-560.

Snyder, J. M. and A. H. Barr. 1987. Ray tracing
complex models containing surface tessellations.
Pages 1-10 SIGGRAPH '87 Proceedings. ACM.

Soler, C., F. X. XSillion, F. Blaise, and P. Dereffye.
2003. An Efficient Instantiation Algorithm for
Simulating Radiant Energy Transfer in Plant
Models. ACM Transactions on Graphics 11:204-
233.

Thomas, C. D., E. J. Bodsworth, R. J. Wilson, A. D.
Simmons, Z. G. Davies, M. Musche, and L.
Conradt. 2001. Ecological and evolutionary
processes at expanding range margins. Nature
411:577-581.

Uchmanski J and G. V. 1996. Individual-based
modelling in ecology: what makes the difference?
Trends in Ecology & Evolution 11:437-441.

Woodward, F. I. 1990. The impact of low temperatures
in controlling the geographical distribution of
plants. Philosophical Transactions of the Royal
Society of London, Series B, Biological Sciences
326:585-593.

