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Abstract.—The inventorying of biological diversity and studies in biocomplexity require the 
management of large electronic datasets of organisms. While species inventory has adopted 
structured electronic databases for some time, the computer modelling of the functional 
interactions between biological entities at all levels of life is still in the stage of development. One 
of the challenges for this type of modelling is the biotic interactions that occur between large 
datasets of entities represented as computer algorithms. In real-time simulation that models the 
biotic interactions of large population datasets, the use of computational processing time could be 
extensive. One way of increasing the efficiency of such simulation is to partition the landscape so 
that entities need only traverse its local space for entities that falls within the interaction proximity. 
This article presents an efficient segmentation algorithm for biotic interactions for research related 
to the modelling and simulation of biological systems.  
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 Biodiversity research studies the “variation of 

life at all levels of biological organisation” (Gaston 
and Spicer 2004) and is used to refer to “the whole 
range of activities traditionally connected with 
inventorying and studying living resources” 
(Lévêque and Mounolou 2003). Such studies 
frequently encounter large datasets of biological 
entities, especially in functional interactions 
between different levels of organisms and their 
effects on the modifying and shaping of the 
environment. As research in biodiversity becomes 
complex, computer modelling and simulation 
become a necessary means for conducting 
experiments so that questions that cannot be 
answered by traditional approaches may be 
resolved through the use of technology.  The 
feasibility of computer modelling of nature is 
amplified in studies in biocompexity, which is 
defined by Lévêque and Mounolou as “the result of 
functional interactions between biological entities, 
at all levels of organization, and their biological, 
chemical, physical and social environments” where 
observational studies of complex entities above the  
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species level such as population, biocenosis 
ecosystems, and biospheres require controlled 
experiments of their environment. For example, 
one may wish to project the impacts of future 
increase in yearly mean temperature on an 
ecosystem, or to attempt to computationally 
introduce an invasive species to see its effects on a 
population. In other cases, one may wish to 
increase the biological time and processes of a 
virtual ecosystem in order to predict its outcome in 
a hundred years’ time. Other important needs are to 
visualise, not by charts and graphs but by utilising 
interactive computer graphics, the real-time 
interaction of a biological community in order to 
observe the ecosystem dynamics. In any case, there 
is much to be explored in the mergence of 
computers and biology for biodiversity research. 
Traditional modelling in ecology depended upon 

statistical and probabilistic procedures such as 
classification and regression trees, generalised 
linear models, multivariate adaptive regression 
splines, and artificial neural networks. According 
to some comparative studies (Cairns 2001, Miller 
and Franklin 2002, Muñoz and Felicísimo 2004), 
such methods often produce inconsistent results. In 
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the worst case, they are fraught with errors and 
inaccuracies as factors considered crucial are often 
not being taken into account. A number of critiques 
have recently questioned the validity of modelling 
strategies for predicting the natural distribution of 
species. For example, a research review (Pearson 
and Dawson 2003) showed that many factors other 
than climate determine species distributions and 
the dynamics of distribution changes. While 
traditional approaches have been focused on the 
identification of a species’ bioclimatic envelope, 
crucial factors such as biotic interactions (Connell 
1961, Silander and Antonovics 1982, Davis et al. 
1998) and evolutionary change (Woodward 1990, 
Davis and Shaw 2001, Thomas et al. 2001) are not 
taken into account and therefore making 
predictions erroneous and misleading. Species 
dispersal is another factor that has been 
disregarded, Pearson and Dawson (Pearson and 
Dawson 2003) suggest that migration limitations 
such as landscape barriers, deforestation, and man-
made habitats can obstruct species movement and 
should be taken into account in such models. As 
incorporating these factors into the procedures of 
traditional approaches is difficult, it becomes 
necessary to explore new approaches for ecological 
modelling (Ch'ng 2009). 
Nature has intrinsic problem-solving principles 

and nature-inspired design seems a potential area 
for discovering new methodology for research. 
There may not be a better way to model biological 
life than to simply mimic its designs by using the 
algorithmic format to simulate the various levels of 
complexities (molecular, species, ecosystem, and 
biosphere). This synthesis of nature formulates 
algorithms by extracting nature’s principle rules in 
order that biological organisms can be replicated 
within the confines of voltage and silicon. Indeed, 
the aim of the experimental science of Artificial 
Life (Langton 1995) attempts to understand the 
mechanisms behind living systems by synthesising 
them so that the structure and functions of these 
systems may be understood and applied. One of its 
founders (Langton 1990) states that “By extending 
the horizons of empirical research in biology 
beyond the territory currently circumscribed by 
life-as-we-know-it, the study of Artificial Life 
gives us access to the domain of life-as-it-could-be, 
and it is within this vastly larger domain that we 
must ground general theories of biology and in 
which we will discover novel and practical 

applications of biology in our engineering 
endeavors.” 
Most, if not all of Artificial Life-based modelling 

techniques are Individual-Based Models (IBMs) 
and an extension of it called Evolutionary 
Individual-Based Model (EIBM) (Bornhofen and 
Lattaud 2006), or Agent-based models. Breckling 
et al. stated that ‘IBMs contrasts with common 
ecological models which frequently operate on the 
population level and represent a population as an 
overall state, thereby specifying rules how the 
overall state changes (Breckling et al. 2005). 
IBMs was identified in a visionary article by 

Huston et al. (Huston et al. 1988) as a potential 
model for simulating the effects of individual 
variation, spatial processes, cumulative stress, and 
natural complexities that are difficult with classical 
approaches: “individual-based models allow 
ecological modellers to investigate types of 
questions that have been difficult or impossible to 
address using the state-variable approach.” 
Individual-Based Models have been thoroughly 
reviewed up to 1999 (Grimm 1999) and 2005 
(Grimm and Railsback 2005) followed by a recent 
review of EIBM (Bornhofen and Lattaud 2006). 
Another review of the approach have shown that 
individual-based models can also benefit from 
concepts in Complex Adaptive Systems (Railsback 
2001). These novel modelling techniques could 
potentially resolve issues outlined earlier, such as 
biotic interaction, evolutionary change, and species 
dispersal barriers. What distinguishes IBMs from 
other “individual-oriented” models that 
acknowledge the individual level in some way but 
still adhere mainly to the classical modelling 
paradigm? There are four criterion: (1) the degree 
to which the complexity of the individual's life 
cycle is reflected in the model; (2) whether or not 
the dynamics of resources used by individuals are 
explicitly represented; (3)whether real or integer 
numbers are used to represent the size of a 
population; and (4) the extent to which variability 
among individuals of the same age is considered 
(Uchmanski J and V. 1996, Grimm and Railsback 
2005). Since the emergence phenomenon observed 
in IBMs reflects that of ecological systems, three 
properties characterises them (Breckling et al. 
2005): (1) they do not exist on the level of isolated 
subsystems; (2) they emerge on higher levels as a 
result of interactions of the subsystems; and (3) 
new properties appear at one level of a system and 
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are not deducible from the observation of the lower 
levels units or compartments of the system. This 
requires the modelling of individuals rather than at 
the population level. Such techniques require the 
modelling of individual biological life, including 
their genotype, phenotype and dynamics. This 
implies the requirements for large computing 
resources as hundreds of thousands of calculations 
are performed for each individual as they react and 
interact with their biotic and abiotic environment. 
If optimisation problems associated with these 
models are properly developed, new opportunities 
for resource conservation planning, habitat and 
biodiversity management, mitigation strategies and 
studies related to the understanding of 
demographic problems can be initiated.  
This research attempts to solve a critical problem 

associated with computational resources that is 
connected to artificial life, IBMs or agent-based 
modelling of biological systems at the species level 
and the simulation of biotic interactions among 
large datasets of spatially-explicit sessile 
organisms and a suggested extension for vagile life 
forms. The following sections explore optimisation 
techniques and formulate logical methods for 
optimising entity interactions. The paper concludes 
with a discussion of the results and opportunities 
for future work. 

 
OPTIMISATION TECHNIQUES 

Unlike statistical methods, which uses pixels as 
patch size of n meter of space to describe large 
communities of organisms on a landscape, new 
approaches require the modelling of individual 
organisms and all its internal  processes and 
external interactions. Experience tells us that the 
modelling of biological life using computer 
algorithms requires large numbers of variables, 
algorithmic structures, and calculations. This is 
true even for a single entity. The availability of 
computing resources for simulation becomes an 
exponential challenge when biotic and abiotic 
interactions occur and entities reproduce. Resource 
bottleneck is a problem that requires solving before 
new modelling methods can see fruition. 
Unfortunately, a review of literature in the area 
yielded little evidence of such studies. Schulz and 
Reggia  developed a method for predicting nearest 
agent distances in artificial worlds (Schulz and 
Reggia 2002). Other methods are developed for 
representing complex outdoor scenes in computer 

graphics (Snyder and Barr 1987, Deussen et al. 
1998, Soler et al. 2003) but algorithms have not 
been formalised for improving the efficiency of 
large entity interactions. 
Data structures for managing and categorising 

large collections of data are available. The simplest 
perhaps is the array data structure. More advanced 
structures are hierarchical data structures, which is 
based on recursive decomposition (Aho et al. 
1974). Well known hierarchical data structures 
(Samet 1984) used in the science and engineering 
for efficient representation and improving 
execution times are binary trees, quadtrees, and 
octrees. A tree in computer science terminology 
emulates a tree structure. It has sets of link nodes 
starting from a root node and proceeds through the 
child nodes (branch) and finally to the leaf nodes 
(final nodes). A child node has one parent node and 
a parent node may have zero to many nodes. A 
binary tree contains only two child nodes and is not 
suitable for partitioning terrains into equal parts 
(where the ratio is 1). Quadtree and octrees contain 
only four and eight nodes respectively. As we shall 
soon see in the discussions, hierarchical data 
structures presents some problems for managing 
large indexes that have frequent changes. The 
approach presented in this article uses a data 
structure that is non-hierarchical. It divides terrains 
based on the square root of the number of 

segments, S . The approach is flexible and is 
able to segment a landscape into an infinite number 
of equal parts. The next section explores some 
concepts related to the efficiency of segmentation 
logic. 
 

EXPLORING THE LOGIC OF 
SEGMENTATION METHODOLOGY 

The segmentation algorithm presented here is an 
optimisation technique developed and applied for 
investigating a new approach of vegetation 
modelling for studying palaeoenvironments (Ch'ng 
and Stone 2006b, a, Ch'ng 2009). The optimisation 
technique targets non cell-based IBMs and agent-
based models. In other words, it does not apply to 
discrete environments such as Cellular Automata 
(CA), E.g., (Gutowitz 1991, Ginot et al. 2002). The 
IBMs must be spatially explicit and in a continuous 
environment. The optimisation technique targets 
sessile organisms (e.g., plants) but can be easily 
extended to include vagile life forms (e.g., fish, 
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animals and insects) and is suggested in the 
Discussions section. The following paragraphs 
explore segmentation logics. 
In the ecosystem model, there are bound to be 

large numbers of entity interactions, both accessing 
and competing for resources. The efficiency of an 
optimisation technique will determine the 
computational speed of the simulation. In an 
algorithm, the entities are usually stored in a single 
array, in more advanced simulation requiring 
constant insertion and deletion (births and deaths) 
entities are stored within a collection data structure. 
In the simulation cycle, each entity accesses every 
other entity in the same collection to determine 
their proximities for interaction or competition. If 
entities are at proximity, interaction occurs. 
Therefore, if the collection contains ten simple two 
state entities, every entity will have to go through 
ten loops including itself for determining the 
proximity of other entities before computing the 

interaction. This amounts to 210 , and if there are 
1000 entities, the amount increases exponentially 

at 000,000,110002 = . In large landscapes and 
actual models, vegetations could amount to 
thousands to hundreds of thousands of plants with 
computable variables, algorithms and calculations 
in each entity. This problem gives reason for 
developing optimisation techniques. In the initial 
stages of research, three theoretical concepts were 
compared for their efficiencies. 

 

Memory Indices (MI) 

The first concept requires that each entity 
remembers the indices of nearby entities (Figure 
1). In this technique, each entity accesses only the 
indices in its memory for interaction and 
competition. The technique however, has serious 
limitations and is restricted only to sessile IBMs. 
We know that vegetation reproduces abundantly 
during the spring-summer seasons each year. In the 
simulation, when new plants are reproduced plant 
proximities in the entire collection will have to be 
traversed and computed to determine which plants 
should be in the memory of other plants. And each 
time a single plant dies the collection has to be 
traversed again to remove the index of the dead 
plant from the memory of nearby plants. This 
becomes very slow as the number of plants 
increases.  

 

 

Figure 1. Inefficient Memory Indices (MI). 
 

Collection Class Indices (CCI) 

The second concept segments the landscape into 
different collection classes storing the indices of 
entities in each class (Figure 2). This is a better 
algorithm compared to the first since the segments 
in a terrain is fixed provided the landscape is not 
continually being re-segmented during the 
simulation. However, different collection classes 
increases memory and the need to traverse each 
collection during simulation wastes computational 
time. Furthermore, in each reproductive lifecycle, 
each collection has to be checked against the new 
plants to determine which segment boundary it 
belongs to. CCI differs from Cellular Automata but 
is very similar to the Particle In Cell (PIC) method 
in (Bithell and Macmillan 2007). 
 

Segmentation Algorithm 

The third technique is more efficient. In a 
landscape, a plant can only compete with adjacent 
plants at a given time and all other plants should be 
discounted from the interaction. In theory, the 
simulation time should decrease with the increase 
of landscape segments. We shall soon see the 
performance of the technique. 
Figure 3a shows a landscape with groups of 

plants where only intersecting plants are being 
competed against. In the real world, computation is 
not a problem since interaction between entities is 
parallel and occurs simultaneously. However, since 
every virtual plant is stored within an array in a 
computer     program,     traversal   is    required   to  
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Figure 2. Inefficient Collection Class Indices (CCI). 
 
determine which plant is ‘visible’ for competition. 
In a simulation, the ideal competition scenario for 
segmentation in Figure 3a can be divided into 4 
segments where each plant needs only access the 
other plants in its own segment space (shown in b). 
In a difficult segmentation condition at c where the 
source plant (large circle) is near to a boundary or 
overlaps the boundary of a segment space, the 
source plant is required to access all other plants in 
neighbouring segment spaces for thorough 
interaction. In this case, the benefits of segmenting 
the landscape are not apparent as it is the same as 
condition a since plants within the entire collection 
is accessed. The benefits become apparent when 
the segments are increased (in d). The figure 
illustrates that a higher segmentation increases the 
speed of the program since each plant needs only 
access the plants within its segment space and 
adjacent segment spaces. The only rule needed is 
that the size of a segment should not be smaller 
than the canopy of a tree with the largest diameter. 
Segmenting a landscape in a standard DirectX or 

OpenGL 3D coordinates is different from the 2D 
screen coordinate systems. The method developed 
in this research targets the DirectX 3D coordinate 
space but can be easily extended to include 
OpenGL and 2D coordinate spaces. Segmentation 
begins with divisions. The number of divisions can 
be from 1 to ∞ subject to the limits of computer 
memory. The segments are derived from the square 

of the divisions with 2d d S= = , where d is 
the number of divisions and S is the number of 
segments. Figure 3a contains 1 division with 1 

segment, 21 1 1= = . The landscape in b and c 
both contain 2 divisions with 4 segments, 

22 2 4= = . Figure 3d contains 3 divisions 

with 9 segments 23 3 9= = . The number of 
divisions has equal width and height. The value of 
the width and height of the landscape can be 
obtained with, 
 
 
 

terrain
divs

terrain
divs

w
w

S

h
h

S

=

=

   (1) 

 
 
where divsw  and divsh  are respectively the 

number of divisions in the width and height of the 
terrain. terrainw  and terrainh  are the size of the width 

and height of the terrain. S  is the number of 

divisions which divides the terrain into divsw  and 

divsh . 

Constructing the segments requires an 
understanding of the 3D coordinate system, shown 
in Figure 4a. The origin of the axis lies at the 
centre of the plane with extensions of the axis in 
both the negative and positive directions. The 
segmentation however, cannot begin from the 
origin but is offset in the negative (-x,-y) direction 
starting from the ‘start’ position show in b. This 
means that segment 0 begins from the lower left 
corner (-x, -y) and ends at the top right corner (+x, 
+y) at segment 15. The units (-50, -25, 0, +25, 
+50) are given as an example and can be replaced 
with any other units with equal divisions. Based on 
the divisions of width at b, it is observed that when 
j=0, x=-50, when j=1, x=25, when j=2, x=0, and 
so on. This generates a graph at c where an 
equation of the line is given (Eq. 2), 
 

( )
2

terrain terrainw w
f j j

S
= −

  (2)
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Figure 3. Efficient Segmentation Logic. A landscape with 1 segment (a), a landscape with 4 segments (b), entity 
accessing other segments for interaction (c), and entity interaction in a 9 segments scenario (d). 
 
 
where j is the segment junction, terrainw  is the 

width of the terrain, and S  is the number of 
divisions. The equation offsets the first segment (0) 
from the origin to the ‘start’ position. A 
construction of the height divisions uses the same 
equation replacing terrainw  with terrainh . 

In the algorithm, each segment is a rectangle 
object storing its size and position. The algorithm 
in standard format is given in Listing 1. divs is the 
number of divisions, i and j are each division’s 
index, wDiv and hDiv are the width and length of 

each segment divided from terrainw

S
 and terrainh

S
. 

Every plant in its own segment space accesses its 
adjacent segment spaces. Figure 5a shows the 
index accessing pattern using a one dimensional 
array. T is the target segment where a plant resides. 
The plant accesses its adjacent segment spaces for 
competition. The segmentation in b shows black 
coloured segments within the safe frame (red). In c, 
the segment within the safe frame (blue arrows) 
safely accesses segments that exist whereas 
segments outside the safe frame (red arrows) 
accesses non-existent segments and will generate 
errors in the program. 
This problem can be solved by preventing the 

left edge and corner segments from accessing 
certain non-existing segments. Figure 6 shows 
some instances of the patterns of non-existent 
segments where the target segment should not have 
access to. The pattern illustrates that depending on 
where the edge segment (orange) is located (top, 
bottom, left, right), it should not access not less or  
 

 
more than three non-existent segments. The corner 
segments should not access not less or more than 5 
non-existent segments. The algorithm for 
segregating the edge and corner segments is given 
in Listing 2. pDivisions is the number of divisions 
on the landscape, pNumOfSegment is the number 
of segments on the landscape. The rest are self-
explanatory. 

A UML diagram showing the class relationship 
between the Segment and Vegetation is given in 
Figure 7. Every plant has a unique VegetationID. 
Within the plant, SegmentID defines the segment 
the plant is in and has a default value of -1 when it 
is in the dormant stage. It is assigned when the 
seed is germinated as that is the beginning of 
competition. The Segment object contains a unique 
SegmentID and an array of PlantIndices[ ] which 
stores the index of each plant within the boundary 
of the segment rectangle. The index of a plant can 
only be in the PlantIndices[ ] array of one segment 
at any given time. The pseudo code in Listing 3 
shows how entities are managed during simulation 
time. 

 
OPTIMISATION RESULTS 

Results from the segmentation algorithm 
covered in the previous section were recorded on a 
150m² terrain with five species of trees.  

Due to the nature of the simulation (large 
number and fluctuations of population), it is 
difficult to generate a comparison chart of the 
increase of the segments (1, 2, …, n) and for each 
case, the number of organisms and the simulation 
speed. Therefore a chart has to be shown for each 
individual segmentation simulation.
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Figure 4. Segmentation constructions in 3D coordinate space (a, b, and c). 

 

Figure 5. The concept of safe frame in segmentation algorithm: Index accessing pattern using one dimensional 
array (a), safe frame with black numbers (b), and frames accessing non-existent segments (c). 
 

 
At the start of the simulation, the initial number of 
trees is 147 distributed among the species.  

Three segmentation experiments were 
conducted to compare the results using the same 
settings where vegetation reproduces up to a 
maximum of 162 on one of the experiment. The 
first segmentation test uses 1 segment for the 
landscape with a total of 162 at peak production 
over 258 years, the second and third partitioned the 
terrain into 64 and 144 segments respectively. The 
64 segments version produces 147 plants at its 
peak over 263 years and the 144 segments version 
produces up to 151 during its peak over 258 years. 
Even though the settings are the same for all three 
experiments, the number of vegetation produced is 
different. This is due to the interaction among 
vegetation and the environmental variations 
affecting them. This however, does not 
significantly affect the results as comparison is 
made between the speed and the number of plants 
produced (Figure 8-11).  

A comparison of the three graphs showed that 
there is significant increase in speed if the 
segmentation algorithm is applied. In Figure 9, 
when the number of vegetation reaches its 
maximum at 140, the speed reaches only 180 
milliseconds using 64 segments as compared to an 
average of 400 milliseconds using only 1 segment 
(Figure 8). If the segments are increased to 144, the 
speed decreased to only an average of 100 
milliseconds with the same amount of vegetation 
(Figure 10). 

Figure 11 is a comparison of efficiency of 
segmentation between the three experiments. The 
graph showed that the computational speed 
increases significantly between 1 and 64 segments. 
However, the increase in performance is not 
apparent between 64 and 144 segments. This is due 
to the small number of vegetation present in the 
landscape. The performance becomes obvious 
when the number of vegetation is greatly increased 
near the end of the graph. Figure 12-13 are graphs
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Listing 1:  

1. int n = 0; // segment number 

2. for (int j = 0; j < divs; j++) // Rows (divided on Length) 

3. { 

4.   for (int i = 0; i < divs; i++) // Columns (divided on Width) 

5.   { 

6.     x = (terrainWidth/divs)*i - terrainWidth/2; // Set the x position (Columns) 

7.     y = (terrainHeight/divs)*j - terrainHeight/2; // Set the y position (Rows) 

8. 

9.     // Create a new segment 

10.    segment[n] = new Segment(x*2, y*2, wDiv*2, hDiv*2); 

11.    n += 1; // next segment 

12.  } 

13.} 
 
Listing 2:  

1. // Collect Segment Corners 

2. pBottomLeftCorner = 0; 

3. pBottomRightCorner = pDivisions-1; 

4. pTopLeftCorner = pDivisions * (pDivisions-1); 

5. pTopRightCorner = pNumOfSegment-1; 

6.  

7. // Collect Segment Edges 

8. pLeftEdge = new int[pDivisions-2]; 

9. pRightEdge = new int[pDivisions-2]; 

10. 

11.for (int i=0 ; i < pDivisions-2 ; i++) 

12.{ 

13. pLeftEdge[i] = (i+1) * pDivisions; 

14. pRightEdge[i]= (pDivisions-1) + pDivisions * (i+1); 

15.} 

Listing 3:  

Initialise Simulation: 

Generate Segments 

Test all entities 

  If entity is within segment 

Assign VegetationID to segment PlantIndices based on its location 

Assign SegmentID to each entity 

Simulation Cycle: 

Remove dead entities and assign new entities to segment 

Simulate entity interaction within proximity segments 

 

Listing 4:  

Initialise Simulation: 

Generate Segments 

Test all entities 

  If entity is within segment 

  Assign VegetationID to segment PlantIndices based on its location 

  Assign SegmentID to each entity 

Simulation Cycle: 

Remove dead entities and assign new entities to segment 

Assign vagile entities to segment and assign SegmentID to vagile entities  

Simulate entity interaction within proximity segments 

Simulate interaction for vagile entities (viewable entities within 

segment) 
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comparing segmentation results of an environment 
using the same landscape. Vegetation is a mixture 
of trees and herbaceous plants totalling 203 in 
number at the start of the simulation. The 
herbaceous plants are used because the rate of 
reproduction is much faster than the trees. The 64 
segments version produces 14,795 plants at its 
peak over 23 years and the 144 segments version  

 
Figure 6. Accessing non-existent segments. 

 
produces up to 12,393 during its peak over 33 
years. The comparison shows a significant increase 
in performance using 144 segments. When the 
number of plants increases to around 12,000 
(Figure 13), the speed decreases to only 300,000 
milliseconds as compared to 64 segments at 
700,000 milliseconds.  
 

DISCUSSION 
The implementation of an efficient 

segmentation algorithm will greatly reduce 
simulation time in studies dealing with large real-
time datasets, such as the modelling of 
biocompexity where biotic interaction plays a 
major role in the dynamics of the system. The 
results in the study confirm that the use of the 
segmentation algorithm to divide the landscape and 
the devising of a strategy for managing entity 
interaction greatly speeds up the simulation, with 
an increase of >40% in all cases. 

The finding suggests that increasing the 
segmentation decreases the speed of simulation in 
all studies. In the first test, (Figure 8-10), three 
scenarios with segments 1, 64, and 144 were 
compared. The number of plants in all three 
scenarios averaged 153. The results showed that 
the speed of simulation doubles from 400ms to 
180ms if 64 segments were applied. If 144 
segments were applied, the speed decreases from 
400ms to 100 ms. 

Tests conducted in a larger landscape with 
thousands of plants averaging 13,594 also showed 
a significant increase in simulation speed (Figure 
12-13). When plants in the landscape reached a 
population of 12,000, the 144 segments yielded 
300k milliseconds as compared to 700k 
milliseconds using the 64 segments version. 

The experiments were conducted on sessile 
entities. But an additional cycle in the simulation 
will enable highly vagile entities to be included in 
the system. The bold lines in Listing 4 show the 
extension. Vagile entities may require a separate 
collection class from the static entities and the 
interaction should be after the static entities have 
been processed. Static objects are at priority. For 
example, the seeds of plants should be produced 
first before predators have access to them, trees 
should first appear before habitats are made 
available, and etc.  

Hierarchical data structures such as quadtrees 
and octrees may have potential solution for such 
problems. But they will need to be tested. 
Hierarchical data structures divide a space into 
equal parts. Quadtrees divide a space or the subset 
of a space into four equal parts that are stored as 
nodes while octrees divide a space into eight equal 
parts. Apart from that, the two structures are 
essentially the same and achieve the same 
objective. These structures are found to be very 
efficient in a space that contains entities that do not 
go through large and frequent changes such as 
thousands of addition, deletion, interaction and 
movement in one simulation cycle. They are 
frequently used in computer graphics and 
visualisation. When there are large changes, it is 
predicted that the restructuring and traversing of 
the nodes will increase the simulation time. The 
simulation cycle in Listing 3 and 4 show a simple 
breadth traversal of the segments for both sessile 
and vagile entities. Hierarchical data structures 
require additional steps in each cycle to rebuild the 
nodes when entities die and new entities are 
produced. Furthermore, entities need to traverse 
both the breadth and depth of the nodes in order to 
determine their interaction proximity. In theory, 
such structures should not have significant increase 
in speed, but tests should be carried out in future 
work.  There is much to be explored as far as 
efficient algorithms for entity interaction is 
concerned. The algorithms have produced 
significant  results for  potential interaction  among 
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Figure 7. A UML diagram illustrating the relationship between the class Vegetation and Segment . 
 

 

Figure 8. Experimental results using 1 segment on the landscape. The image shows the speed of simulation (the 
graph with high fluctuations at bottom) and the number of plants (the graph on the top). 

 

 
Figure 9. Experimental results using 64 segments on the landscape. 
 

 
Figure 10. Experimental results using 144 segments on the landscape. 
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Figure 11. A comparison of the efficiency of segmentations between the experiments. Solid lines show the 
average speed of simulation and dashed lines of a paler shade show its corresponding plant population. 

 

 
Figure 12. The comparison of efficiency of segmentation between experiments (64 segments). 
 

 
Figure 13. The comparison of efficiency of segmentation between experiments (144 segments). 
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thousands of entities. When vagile life forms are 
introduced, more efficient techniques will be 
required. In future work, High Performance 
Computing with hundreds of nodes of computer 
clusters is essential to support the calculations 
involved in biotic and abiotic interactions. 
Research is underway to make this a reality. 
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