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Abstract.— Most of the literature on natural history is hidden in millions of pages stacked up in our libraries. 
Various initiatives aim now at making these publications digitally accessible and searchable, applying xml-
mark up technologies. The unique biological names play a crucial role to link content related to a particular 
taxon. Thus discovering and marking them up is extremely important. Since their manual extraction and 
markup is cumbersome and time-intensive, it needs be automated. In this paper, we present computational 
linguistics techniques and evaluate how they can help to extract taxonomic names automatically. We build on 
an existing approach for extraction of such names (Koning et al. 2005) and combine it with several other 
learning techniques. We apply them to the texts sequentially so that each technique can use the results from the 
preceding ones. In particular, we use structural rules, dynamic lexica with fuzzy lookups, and word-level 
language recognition. We use legacy documents from different sources and times as test bed for our evaluation. 
The experimental results for our combining approach (FAT) show greater than 99% precision and recall. They 
reveal the potential of computational linguistics techniques towards an automated markup of biosystematics 
publications. 
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The Mass Digitization of biosystematics literature 
is becoming a major issue (e.g., Biodiversity 
Heritage Library, www.bhl.si.edu; American 
Museum of Natural History Digital Library; 
antbase.org). This body of literature with well over 
10 Million pages contains all the descriptions of 
the world’s biological taxa, that is the names and 
formal descriptions of the estimated 1.7 Million 
species known today and their higher categories 
(Maze 2004). The scientific names, Latinized 
binomen composed of a generic and a specific 
name (ICZN 2000: Article 5.1), are important. This 
is because they are unique within animals, plants, 
bacteria, virus and fungi, and their applications are 
ruled by respective codes (e.g., International Code 
of Zoological Nomenclature for animals). Each of 
these names belongs in a spe cific position within 
the taxonomic hierarchy. Within the life sciences, 
these scientific names are used to report the 
identity of the organisms upon which a study has 
been conducted. 

This potentially allows finding and linking all 
information on a particular species. Thus, 
recognizing taxonomic names is highly relevant for  

 
the digitization process, since no complete list of 
all the names of living organisms exists yet. 
Manual extraction of these names is time-
consuming, e.g., 80 hours of manual extraction 
versus 330 seconds automatic extraction (Koning 
et al. 2005), and thus expensive. Automated name 
recognition and extraction is the ultimate solution. 
This article describes a combining approach for 
taxonomic name extraction, i.e., it combines 
several existing techniques from machine learning 
etc. We have dubbed our approach FAT, which is 
short for ‘Finds all taxonomic names’. By reducing 
the average error of the base techniques by over 
90%, our technique comes close to meeting the 
claim behind its name. 
 

NAME EXTRACTION (TECHNIQUES) 
Taxonomic names have some basic structural 
commonalities. The combination of its elements 
(see Table 1) is not very restrictive and includes 
many optional parts and combinations. Some of 
these are no longer used, such as quadrinomen, a 
variety of a subspecies of a species of a genus. But 
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nevertheless it is part of the history of names (see 
ICZN 2000 for legalistic aspects). 
 
Table 1: The parts of taxonomic names 

Part Example 1 Example 2 
Genus Prenolepis Dolichoderus 
(Subgenus) (Nylanderia)  
Species vividula decollatus 
(Author) Nylander  
(Subspecie
s) 

subsp. 
guatemalensis 

 

(Author) Forel  
(Variety) var. itinerans  
(Author) Forel  

 
For example, both “Prenolepis (Nylanderia) 

vividula Nylander subsp. guatemalensis Forel var. 
itinerans Forel“ and “Dolichoderus decollatus“ are 
taxonomic names. There are only two mandatory 
parts in such a name: the genus and the species 
name. Table 1 shows the deconstruction of the two 
examples. The parts with their names in brackets 
are optional. Formally, the rules of the Linnaean 
(Binominal) nomenclature define the structure of 
taxonomic names as follows, exemplified using 
animal names: 

1. The genus is mandatory. It is a capitalized 
word, often abbreviated by its first one or two 
letters, followed by a dot. In enumerations of 
several species of the same genus, the genus 
tends to appear explicitly only with the first 
species in the sequence. 

2. The subgenus is optional. It is a capitalized 
word. In most cases, it is enclosed in brackets, 
but not always. 

3. The species is mandatory. It is a lower case 
word, often followed by the name of the 
scientist who first described the species. 

4. The subspecies is optional. It is a lower case 
word as well, preceded by an indicator word 
like subsp. or subspecies. It is often followed 
by the name of the scientist who first 
described the subspecies. In newer 
publications, the species is often abbreviated if 
a subspecies is given. In this case, the author 
name of the species is omitted. In addition, the 
indicator word can be omitted as well. 

5. The variety is optional. It is a lower case 
word, preceded by an indicator word like var. 
or variety. It is often followed by the name of 
the scientist who first described it. Since 1960, 
however, the indicator word var. or variety is 
not permitted anymore (ICZN 2000). 

The main problem for the automated 
recognition of these names is to distinguish them 
from the surrounding text, including other Named 
Entities (NE). Named Entity Recognition (NER) 
techniques can be employed to automatically 
identify scientific names (Chieu & Ng 2002). NER 
uses a variety of methods. Most common are 
gazetteers, grammars, rules, and statistical methods 
like Support Vector Machine (Bikel et al. 1997; 
Cuerzan & Yarowsky 1999; Mikheev et. al., 1999; 
Isozaki et al. 2002; Koning et al. 2005). Tjong et 
al. (2003) introduce two typical NER tasks: The 
names of locations, persons, and organizations are 
to be extracted. One may perceive taxonomic 
names as a special case of NE. But their structure 
is more complex and more variable than the one of 
‘typical’ NE, e.g., location names, despite some 
basic shared elements, such as a Latin binomen 
surrounded by text in another language, the Latin 
binomen often not being part of existing 
dictionaries. Hence, common NER techniques tend 
to be too general to recognize taxonomic names. 
Newer tasks like the one presented by Carreras et 
al. (2005) do not consider more complex entities, 
but start dealing with relationships and semantic 
roles. Therefore, we do not have the hope that 
general NER research will turn to the extraction of 
complex entity names in the near future. Another 
problem of existing NER techniques is that they 
usually require pre-annotated training data (several 
hundred thousand words) to achieve good results 
(about 97 % precision and recall). – Besides NER, 
the following techniques are used to extract 
taxonomic names. 
 
List-based NER techniques.  Palmer & Day  
(1997) perform a lookup to determine whether a 
word is a NE of the category sought. The sole use 
of a thesaurus as a positive list is not an option for 
taxonomic names. All existing thesauri are 
incomplete. Nevertheless, such a list allows 
recognizing known parts of taxonomic names. 

The inverse approach would be a list-based 
exclusion technique, e.g., a common English 
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thesaurus like WordNet serves as a list of known 
negatives. This in isolation is not an option either. 
It would not exclude proper names reliably. Next, 
it would exclude parts of taxonomic names that 
also happen to be used in common English. This 
was the reason for the majority of errors in the 
evaluation of TaxonGrab (Koning et al. 2005), 
which combines list-based exclusion with some 
rules. However, exclusion of sure negatives, i.e., 
words that are never part of taxonomic names, 
simplifies the classification process. 
 
Rule-based techniques do not require any training 
data. Instead, they try to find words or word 
sequences with a certain structure, e.g., regarding 
punctuation. Yoshida et al. (1999) presents a 
technique that extracts the names of proteins and 
their abbreviations based on regular expressions. It 
makes use of the very distinctive syntax of protein 
names, e.g., “NG-monomethyl-L-arginine”. 

The syntax of taxonomic names is subject to 
certain rules as well, but they are less restrictive. 
Due to the wide range of optional parts (see Tab. 
1), it is impossible to find a regular expression that 
matches all taxonomic names and at the same time 
provides a satisfactory degree of precision. Koning 
et al. (2005) present an approach based on regular 
expressions and lexica. This technique (called 
TaxonGrab) performs satisfactorily compared to 
common NER approaches. But the conception of 
what is a positive is restricted. For instance, it 
simply leaves aside taxonomic names that do not 
specify a genus. However, the general idea of 
using rules to filter the phrases of documents is 
helpful. 
 
Bootstrapping. Jones et al. (1999) describe an 
approach to training classifiers without large 
amounts of labeled training data. Some labeled 
seed data and a large unlabeled training corpus is 
taken as input. Learning from the seed data yields 
automatic labeling of the corpus. Jones et al. 
(1999) have shown that the performance of this 
approach is equal to the one of other techniques 
that require large amounts of labeled training data. 
Bootstrapping is not readily applicable to our 
particular problem, however. Niu et al. (2003) use 
an unlabeled corpus of 88,000,000 words to 
bootstrap a named entity recognizer. For our 
purpose, even unlabeled training data is not 

available in this order of magnitude, at least right 
now. 
 
Active Learning. The intention behind Active 
Learning (Day et al. 1997) is to speed up the 
creation of large labeled training corpora from 
unlabeled documents. In particular, the system uses 
all of its knowledge during all phases of the 
processing. In this way, it can label many data 
items automatically, and the user has to label only 
pathologic cases. To increase data quality, such a 
user-interactive approach should be part of a 
taxonomic-name extractor as well. We make use of 
this approach in two ways: First, the output of each 
step serves as base data for the subsequent ones. 
Second, the user manually classifies the few 
remaining cases after these automated steps. 
Following the general idea of active learning, we 
feed these manual classifications back into the base 
data. The algorithm can then use them later when 
processing other documents. This improves the 
performance of the algorithm at runtime. In our 
evaluation, we will use a measure that quantifies 
the number of user interactions. This is to enable 
comparison to other components. 
 
Word Language Recognition.  Language 
Recognition is intended to determine the language 
a given text is written in. (Sautter & Böhm 2006) 
have shown that these techniques can be used to 
extract parts of taxonomic names from English 
text. In particular, modifications have been made 
to the standard techniques so that little training 
data is required and becomes applicable on word 
level. The technique is based on two statistics 
containing the N-Gram distribution of taxonomic 
names and of common English. Both statistics are 
built from examples from the respective languages. 
It applies Active Learning to reduce the need for 
annotated training data. The classifier is tunable 
towards precision or recall, as needed. In optimal 
configurations, both reach a level of 96%. This is 
the typical level of common up-to-date NER 
components. The Active Learning requires the user 
to classify about 3% of the words manually. 
Although this is relatively low, compared to 
manually annotating an entire text, the absolute 
number of user interactions is still high. In 
addition, some training data is needed. Thus, other 
techniques are used to (a) gather the required 
training examples and to (b) reduce the input to 



SAUTTER ET AL. – FIND ALL TAXON NAMES IN LITERATURE 
 

49 

this classifier as far as possible. In particular, it 
should be used only to deal with word sequences 
that cannot be labeled safely with the other 
techniques. 
 
Gene and Protein Name Extraction. The major 
focus of NER in biomedicine is the extraction of 
gene and protein names. Tanabe & Wilbur (2002) 
give a wide overview of the techniques used for 
this purpose. The most frequently used approaches 
are Hidden Markov Models, lexicon lookups and 
structural rules. Many of the techniques also 
include a Part-Of-Speech tagger and use its output 
as additional evidence. However, there are 
significant differences between gene and protein 
names on the one hand and taxonomic names on 
the other hand: First the nomenclature rules for the 
latter are by far less restrictive and include a wide 
range of optional parts. For instance, they may 
include the names of the discoverer/author of a 
given part. Second, there are parts of gene and 
protein names which are easy to distinguish from 
the surrounding text because of their structure. For 
the extraction of taxonomic names, we cannot rely 
on this type of evidence. Consequently, the 
techniques for gene or protein name recognition 
are not feasible for the extraction of taxonomic 
names. 

An individual technique in isolation thus might 
not be sufficient for taxonomic name extraction. 
Mikheev et al. (1999) have shown that a 
combining approach, i.e., one that integrates the 
results of several different techniques, is superior 
to the individual techniques for common NER. For 
this reason, we combine approaches for taxonomic 
name extraction. 

Due to the active learning, the word-level 
language recognizer needs little training data. In 
addition, the manual effort induced by user 
interactions is high. Thus, other techniques need be 
applied beforehand, for the following two reasons: 
First, to find sufficient training examples for the 
word-level classifier. Second, to reduce the input 
to the classifier to as few words as possible. This 
last aspect is based on the idea to prevent as many 
words as possible from being prompted to the user 
to further reduce the manual effort. 

Usage of the typical structure of taxonomic 
names allows achieving both goals. Syntax-based 
rules are used to extract training examples from the 
documents. This leads to a reduction of the number 

of words the classifier has to deal with. However, 
it is not possible to find rules that extract 
taxonomic names with both high precision and 
recall, as we will show later. But we have found 
rules that fulfill one of these requirements very 
well. In what follows, we refer to these as 
precision rules and recall rules, respectively. 
 

MATERIAL AND METHODS 
The Classification Process 
The general idea of our approach is first to extract 
or exclude those parts of the text for which we can 
be sure about that they are either taxonomic names 
or not (Precision and Recall Rules in Fig. 1). We 
then use the parts already classified to build lexica 
and statistics, which we use to classify the rest of 
the text (Data Rules and Word Classifier in Fig. 1). 
If there are still uncertain parts left after this step, 
we present them to the user for manual 
classification (User Feedback in Fig. 1). In more 
detail, our approach works as follows: 

i) In a first pass through the document, we apply 
the precision rules. Every word sequence from 
the document that matches such a rule is a 
sure positive. 

ii) In a second pass, we apply the recall rules to 
the phrases that are not sure positives. A 
phrase not matching one of these rules is a 
sure negative. 

iii) Third, we build lexica from the sure positives 
and sure negatives, and apply them in several 
ways to the phrases that are still uncertain. For 
instance, we filter out word sequences that 
contain at least one known negative word. 

iv) We collect a set of names from the set of sure 
positives. We then use these names to both 
include and exclude further word sequences. 

v) We train the word-level language recognizer 
with the surely positive and surely negative 
words. We then use the language recognizer to 
classify word/phrases that are still uncertain. 

Figure 1 visualizes the classification process. 
Red areas mark the flow of words/phrases which 
are uncertain at several stages, blue areas mark 
sure positives, while yellow areas mark sure 
negatives. The boxes with round corners represent 
sets of words/phrases, colored according to their 
state. Initially, all words in the text (Documents) 
are uncertain. After FAT has finished, all 
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words/phrases are classified as sure positives  
(Tax.  Names)  or sure negatives (Not Tax. 
Names). The gray boxes represent the different 
steps of the FAT algorithm; the arrows depict the 
data flow. More specifically, the meaning of the 
arrows also depends on where  an incoming  arrow 
meets a box: An arrow meeting the box at its top 
represents data the step has to process. Arrows 
going to the side of a box stand for words/phrases 
already classified and now serving as additional 
input. The state of the words/phrases after a step is 
visualized at the bottom of a box: + indicates that a 
word/phrase has matched the rule, - indicates the 
opposite, and ? indicates that the particular step 
could not classify the word or phrase with 
certainty. The background color of the area behind 
the outgoing arrows also emphasizes this. An 
arrow that splits indicates that data goes two ways.  

As data comes out of the User Feedback step 
and is finally classified, for instance, it goes into 
the sets of sure positives and sure negatives, 
respectively. Additionally, the Word Classifier 
receives it as additional training data. Two joining 
arrows signal that data comes from two sources. 
The training data for the Word Classifier, for 
example, comes from the sure positives and 
negatives as well as from the words/ phrases 
classified in the User Feedback step. 

 
Figure 1. The Classification Process 

 

 
The order of application enables the different 

techniques to profit from each other: The Precision 
and Recall Rules extract the base data for the 
subsequent steps, so there is no need for training 
data at all. Using the Data Rules and the Word 
Classifier before them would require manual 
preparation of lexica and training data for the 
classifier. So inverting our proposed order of 
application is not feasible. When processing a 
document, the FAT algorithm does one pass 
applying the precision and recall rules. At the same 
time it collects the sure positives, candidates, and 
sure negatives. All further steps base on this initial 
trisection of the text. Only the recall rule using the 
set of scientist names (see below) requires one 
further pass over the document. 

This approach is somewhat similar to the 
bootstrapping algorithm proposed by Jones et al. 
(1999). The difference is that this process works 
solely with the document it actually processes. In 
particular, it does not need any external data or a 
training phase. The 107 documents forming the 
A.M.N. (American Museum Novitates) part of our 
test bed count about 8,100 words on average, 
which is less than 0.02% of the data used by Niu et 
al. (2003). The entire test bed has less than 
2,500,000 words, still less than 2% of the corpus 
used by Niu et al. (2003). On the other hand, with 
the classification process proposed here, the 
accuracy of the underlying classifier must be very 
high from the start. This is because we do not have 
a training phase, but start from scratch with the 
first document we process. 

Rules for Structure of Taxonomic Names 
In order to make use of the structure of taxonomic 
names, we use rules that refer to this structure, see 
Tab. 2. The syntax used here is the one of the 
JAVA programming language, documented in the 
JAVA online documentation (JAVA 1.4.2). We 
use regular expressions for the formal 
representation of the rules. In this section, we 
develop a regular expression matching any word 
sequence that conforms to the Linnaean rules of 
nomenclature (see 3.3). 
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Table 2: Abbreviations.  

_ one white space character 
<LcW> [a-z](3,) 
<LcA> [a-z](1,2). 
<CapW> [A-Z][a-z](2,) 
<CapA> [A-Z]{[a-z]}?. 
<Name> {<CapA>_}(0,2)<CapW> 

The taxonomic names are modeled as follows: 

6. The genus part of a taxonomic name is a 
capitalized word, often abbreviated by its first 
one or two letters, followed by a dot. We 
denote it as <genus>, which stands for 
{<CapW>|<CapA>}. 

7. The subgenus part of a taxonomic name is a 
capitalized word, optionally surrounded by 
brackets. We denote it as <subGenus>, which 
stands for <CapW>|(<CapW>). 

8. The species part of a taxonomic name is the 
name of the species, a lower case word, 
optionally followed by a name. In newer 
publications, on the other hand, the species is 
often abbreviated if a subspecies is given. In 
this case, the name is omitted. We denote this 
structure as <species>, which stands for 
{<LcW>{_<Name>}?|<LcA>}. 

9. The subspecies part of a taxonomic name is a 
lower case word, preceded by the indicator 
word subsp. or subspecies, and optionally 
followed by a name. In newer publications, 
however, the subspecies is often abbreviated if 
a variety is given. In this case, the name is 
omitted. In addition, the indicator word subsp. 
or subspecies can be omitted as well. We 
denote this structure as <subSpecies>, 
standing for 
{{{{subsp.|subspecies}_}?<LcW>{_<Name>
}?}| <LcA>}. 

10. The variety part of a taxonomic name is a 
lower case word, preceded by the indicator 
word var. or variety, and optionally followed 
by a name. In newer publications, however, 
the indicator word var. or variety can be 
omitted. We denote this structure it as 
<variety>, which stands for 
{{{var.|variety}_}?<LcW> {_<Name>}?}. 

A taxonomic name is now modeled as follows. We 
refer to the pattern as <taxName>: 
 <genus> {_<subGenus>}? 
 _<species>{_<subSpecies>}? 
 {_<variety>}? 

Precision Rules 
Because <taxName> matches any sequence of 
words that conforms to the Linnaean rules, it is not 
very precise. The simplest match is a capitalized 
word followed by one or more in lower case. Any 
two words at the beginning of a sentence are a 
match! Thus, to have less false positives, we need 
more precise regular expressions. To accomplish 
this, we rely on the optional parts of taxonomic 
names. In particular, we classify a sequence of 
words as a sure positive if it contains at least one 
of the optional parts <subGenus>, <subSpecies> 
and <variety>. For the last two, we additionally 
demand the subspecies or variety to be explicitly 
labeled or the part before them to be abbreviated. 
The second restriction is as secure as the first one. 
The reason is that normal text rarely continues in 
lower case after a dot. The hope is to exclude 
almost all phrases that are not taxonomic names. 
Even though our regular expressions may classify 
a sequence of words as a sure positive erroneously, 
our evaluation will show that this happens very 
rarely. Our set of precise regular expressions has 
three elements: 

11. <taxName> with subgenus in brackets, 
<subspecies> and <variety> optional:  
 <genus>_(<CapW>) 
 _<species>{_<subSpecies>}? 
 {_<variety>}? 

12. <taxName> with <subspecies> given, 
<subGenus> and <variety> optional:  
 <genus> {_<subGenus>}? 
 _<species>_<subSpecies> 
 {_<variety>}? 

13. <taxName> with <variety> mandatory, 
<subGenus> and <subSpecies> optional:  
 <genus>{_<subGenus>}? 
 _<species>{_<subSpecies>}? 
 {_<variety>} 

To classify a word sequence as a sure positive if it 
matches at least one of these regular expressions, 
we combine them disjunctively and call the result 
<preciseTaxName>. It matches any sequence of 
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words we can classify as a taxonomic name simply 
because of its structure. When applying the 
precision rules, we test phrases of up to 10 words, 
plus punctuation. 

In many taxonomic publications, new genera, 
species, etc. are explicitly labeled. If Dolichoderus 
decollatus is described for the first time, for 
instance, it is likely to labeled as a new species 
somewhere. The title of the description would be 
Dolichoderus decollatus, new species. We use 
special forms of the precision rules to make use of 
these labels. In particular, we consider a match of 
<taxName> a sure positive if it directly precedes a 
label in the text. Because they rely on explicit 
labels, we refer to these special precision rules as 
Label Rules. 

A notion related to that of a sure positive is the 
one of a surely positive word. A surely positive 
word is a part of a taxonomic name that is not part 
of a scientist’s name. For instance, the taxonomic 
name Prenolepis (Nylanderia) vividula Erin subsp. 
guatemalensis Forel var. itinerans Forel contains 
the surely positive words Prenolepis, Nylanderia, 
vividula, guatemalensis, and itinerans. Further 
steps of our process assume that surely positive 
words exclusively appear as parts of taxonomic 
names. 

Recall Rules 
The recall rules basically consist of <taxName>, 
which matches any sequence of words that 
conforms to the Linnaean rules. When applying it, 
we again test phrases of up to 10 words, plus 
punctuation. But there is a further issue: 
Enumerations of several species of the same genus 
tend to contain the genus only once. For instance, 
in Pseudomyrma (Minimyrma) arboris-sanctae 
Emery, latinoda Mayr and tachigalide Forel we 
want to extract latinoda Mayr and tachigalide 
Forel as well. To address this, we make use of the 
surely positive words: We use them to extract parts 
of taxonomic names that lack the genus. 

We also extract the names of the scientists 
from the sure positives and collect them in an extra 
list (name lexicon). We regard a capitalized word 
in a sure positive as a name if it comes after the 
second position. In the example, we would extract 
Pseudomyrma, Minimyrma and arboris-sanctae 
from the sure positive Pseudomyrma (Minimyrma) 
arboris-sanctae Emery. We would also add Emery 
to the set of names. 

We cannot be sure that the list of sure positive 
words suffices to find all species names in an 
enumeration. Hence, we additionally collect all 
lower-case words followed by a capitalized word 
contained in the set of names. In the example, we 
need to have Mayr and Forel in the set of names to 
extract latinoda Mayr and tachigalide Forel. 

Data Rules 
Because we want to achieve close to 100% in 
recall, the recall rules are minimally restrictive. 
Consequently, many word sequences that are not 
taxonomic names are considered uncertain. Before 
the word-level language recognizer deals with 
them, we explore some more ways to find 
negatives. Because the precision rules are very 
restrictive, they match only a fraction of the 
taxonomic names in a text. Making use of the sure 
positive words, we can also find additional sure 
positives. 
 
Sure Negatives. As previously mentioned, 
<taxName> matches any capitalized word 
followed by a word in lower case. This includes 
the start of any sentence. But making use of the 
sure negatives, we can recognize these phrases. In 
particular, we classify any word sequence as 
negative that contains a word which is also in the 
set of sure negatives. For instance, in sentence 
“Additional evidence results from …”, “Additional 
evidence” matches <taxName>. Another sentence 
contains “… an additional advantage …”, which 
does not match <taxName>. Thus, the set of sure 
negatives contains “an”, “additional”, and 
“advantage”. Knowing that “additional” is a sure 
negative, we exclude the phrase “Additional 
evidence”. 
 
Names of Scientists. Though the names of 
scientists are valid parts of taxonomic names, they 
may also cause false matches. A misclassification 
occurs when they are matched with the genus or 
subgenus part – <taxName> cannot exclude this. In 
addition, they might appear elsewhere in the text 
without belonging to a taxonomic name. Similarly 
to sure negatives, we exclude a word sequence if 
the first or second word is contained in the set of 
names. For instance, in “…, and Forel further 
concludes …”, “Forel further” matches 
<taxName>. If the set of names contains “Forel”, 
we can exclude “Forel further”. This is because we 
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know that “Forel” is not the name of a taxonomic 
genus. 
 
Sure Positives. Making use of the sure positives 
we have extracted with the precision rules, we can 
find additional sure positives. In particular, we 
mark an uncertain word sequence as a sure positive 
if it consists of surely positive words or 
abbreviations. If the precision rules have extracted 
Prenolepis (Nylanderia) vividula Erin subsp. 
guatemalensis Forel var. itinerans Forel, for 
instance, we conclude that Prenolepis vividula is a 
sure positive as well. 
 
Stemming Lookup Catch. Koning et al. (2005) 
used a common English dictionary to exclude 
negatives. As mentioned in the introduction, this 
leads to the exclusion of taxonomic names 
containing a common English word. For instance, 
this would exclude the taxonomic name Formica 
minor because of minor. On the other hand, such a 
dictionary-based exclusion can help to catch the 
(very few, but still existing) erroneous matches of 
the regular expressions in <preciseTaxName>. Our 
observation shows that if a common English word 
is part of a taxonomic name, it is always used in its 
base form. Thus, if we find a stemmed form of a 
word in a dictionary, we conclude that it is not part 
of a taxonomic name. Consider the following 
sentence from an essay on dangerous insects: … In 
Chaguanas (Trinidad) another subspecies 
poisoned Forel. Except for the word In, this 
sentence matches the regular expression from 
<preciseTaxName> where <subSpecies> is 
mandatory. But we can recognize it as a false 
match because of the conjugated verb poisoned in 
the subspecies position. Similar pathologic cases 
can occur for the variety part.  But all these cases 
share a useful feature: They comprise modified 
forms of common English words. Thus, to exclude 
these errors, we combine the dictionary lookup 
with stemming: For all the words matched to a 
lower case part of a regular expression in 
<preciseTaxName> (<species>, <subSpecies> or 
<variety>), we check if it could be a conjugated 
verb given its ending (most common endings are -
s, -ed, and -ing). If so, we apply stemming in order 
to obtain the infinitive. If contained in a common 
English dictionary, we exclude the match. In the 
example, the ending rule applies to poisoned. 
Porter’s (1980) stemming algorithm produces 

poison as the word stem. Because this word is 
contained in the dictionary, we can exclude the 
erroneous match. In In Chaguanas (Trinidad) 
another subspecies poisoned Forel the stemming 
lookup catch is the only data rule that we also 
apply to the matches of the regular expression from 
<preciseTaxName>. 

Name Completion 
Making use of the scientists’ names, we also 
extract taxonomic names that lack the genus, e.g., 
from enumerations, such as Pheidole pallidula, 
orbula, xantra. In addition, the rules allow genus 
abbreviations like Ph. for Pheidole in Ph. 
cornutula. In order to determine the meaning of a 
taxonomic name, we need to complete the names 
with their full parts. 

If the genus part is missing, we have two 
options: First, we check if the species part appears 
elsewhere in the document, together with the genus 
it belongs to. If this is not the case, we use the last 
genus that we have extracted before the position of 
the name to complete. This is useful especially in 
case of enumerations: If several species of the 
same genus are enumerated, the genus is often 
given only with the first one. We then transfer the 
genus part to the subsequent taxon names. 

If the genus is abbreviated, we also have two 
options: First, we again check if the species part 
appears elsewhere in the document, together with 
the full name of the genus it belongs to. If this 
fails, we check if we have recognized any genus 
name that starts with the given abbreviation. If 
there is exactly one such genus name, we insert it. 
If there is more than one, i.e., the abbreviation is 
ambiguous, we use the one which appears closest 
before the abbreviation. 

Classification of Remaining Words 
After applying the various rules, uncertain word 
sequences still remain. To deal with them, we use 
word-level language recognition (Sautter & Böhm 
2006), a technique to classify words as parts of 
taxonomic names or as common English, 
respectively. It is based on two statistics containing 
the N-Gram distribution of taxonomic names and 
of common English, that is how often short 
sequences of letters occur in a group of words in a 
text (e.g., 4-Gram for Formica = {Form, ormi, 
rmic, mica}). Both statistics are built from 
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examples from the respective languages. This 
technique achieves about 96% in precision and 
recall. It involves the user in the classification 
process to back up narrow decisions with the 
human expert knowledge. To train the classifier, 
we use the surely positive and surely negative 
words as the training data. Instead of classifying 
every word separately, we compute the word-level 
classification score of all words of a sequence and 
then classify the sequence as a whole. This has 
several advantages: First, if one word of a 
sequence is uncertain, this does not automatically 
incur a user-feedback request. Second, if a 
sequence of words is uncertain as a whole, the user 
gives feedback for the entire sequence. This results 
in several surely classified uncertain words at the 
cost of only one feedback request. In addition, a 
user can easier determine the meaning of a 
sequence of words than the one of a single word. 
 
Experimental Setup and Test Bed 
We run two series of experiments: We first process 
each document individually. We then process the 
documents incrementally, i.e., we do not clear the 
sets of known positives and negatives after each 
document. The same is true for the statistics of the 
word-level language recognizer. This is to measure 
the benefit of reusing data obtained from one 
document in the processing of subsequent ones. 
Finally, we take a closer look at the effects of the 
individual steps and heuristics. 

The platform is completely implemented in 
JAVA 1.4.2, and we have used the java.util.regex 
package to represent the rules. 

All tests presented here are based on three 
groups of annotated documents. First, we use 107 
issues of the American Museum Novitates 
(A.M.N.), a natural science periodical published by 
the American Museum of Natural History. The 
second group is a recent publication representing a 
widely used standard in ant systematics (F.2000, 
Fisher  2000), and the third one is the Birds of 
Congo (C.1932: Chapin 1932, 1939, 1953, 1954), 
partitioned into four parts of similar size, which 
was used by Koning et al, 2005. Koning et al.’s 
test bed has been extended to include additional 
groups of publications with different ways of 
combining and abbreviating names. Table 3 
contains the relevant numbers on our test bed 
(rounded), the numbers on the A.M.N. and F.2000 

parts are the result of manual counting, those on 
C.1932 originate from (Koning et al. 2005). 
 
Table 3: The Test Bed 
 
 A. M. N. F. 2000 C. 1932 
Words 857,000 58,000 1,100,000
Taxonomic 
Names 12,000 175 21,000 

Evaluation Measure 
In NLP, the f-Measure is popular to quantify the 
performance of a word classifier, but we also need 
to measure the advantage the system gains from 
asking the user for feedback on narrow 
classifications. In particular, we use three measures 
to quantify our test results. As mentioned, the first 
one is the f-Measure: 
• P(P) := positives classified as positive  
N(P) := positives classified as negative  
P(N) := negatives classified as positive  
N(N) := negatives classified as negative 

rp
rp2
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N(P)  P(P)
P(P)
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+
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But our combined technique has three possible 
outputs. If the decision between positive or 
negative is narrow, a word is classified as 
uncertain, and the user is prompted. This prevents 
misclassifications and thus induces a considerable 
advantage over fully automated techniques. In 
order to enable comparison to fully automated 
techniques, we use two further measures: 
• U(P) := positives not classified (uncertain)
  
U(N) := negatives not classified (uncertain) 

Given this, Coverage C is defined as the 
fraction of all classifications that are not uncertain: 

)N(U)N(N)N(P)P(U)P(N)P(P

)N(N)N(P)P(N)P(P
:C

+++++

+++
=  

To combine these two measures to a single 
measure for overall classification quality, we 
multiply f-Measure and coverage and define 
Quality Q as 

CfMeasure:Q ×=  
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This measure treats all uncertain votes as 
misclassifications, thus punishing every user 
interaction as if it was an error. This enables 
comparison to techniques that do not involve the 
user. It is very restrictive because a random guess 
might result in at least half of the uncertain words 
classified correctly. On the other hand, a correct 
vote from the user avoids misclassifications. In 
learning components, this keeps statistics clean 
because no errors are fed back. 
 

EVALUATION AND DISCUSSION 
A combining approach gives rise to many 
questions in the context of taxonomic name 
extraction, e.g.: How does a word-level classifier 
perform with training data automatically 
generated? How does rule-based filtering affect 
precision, recall, and coverage? What is the effect 
of extending the lexica dynamically? Which kinds 
of errors remain? 

Tests with Individual Documents 
First, we test the combined classifier with each 
document individually. We omit Fisher (2000) 
here because it consists of only one document. The 
results for this part of the test bed will be presented 
in the next section. Table 4 contains the average 
results for the A.M.N. and C.1932. The 
combination of rules, dynamic lexica, and word-
level classification provides very high precision 
and recall. The former is 99.7% on average, the 
latter 98.2%. The need for manual intervention is 
very low: The average coverage is 99.7%. 
The average results with individual issues of the 
A.M.N. (Column Doc in Table 4) are significantly 
worse than with the other two parts of the test bed. 
A more detailed look at the results reveals 
significant differences between the individual 
documents. For more than half of the documents, 
the results are equal to those of the other two parts 
of our test bed. The rest of the A.M.N. issues 
points out a weakness of our combined technique: 
If the precision rules do not extract a sufficient 
number of sure positives, we run into two 
problems. We neither have enough data to 
successfully apply the data rules, nor do we have 
enough positive examples to train the word level 
classifier. The Sum Column in Table 4 contains 
the summed up results for the A.M.N. It turns out 
that precision, recall and coverage are far better for 

the total numbers than the average per document. 
This is because the documents with few taxonomic 
names in them produce the poor results, while our 
combined technique performs better with the 
bigger documents. For C.1932, this effect is almost 
non-existent. The individual parts are big enough 
and contain sufficiently many sure positives for 
our technique to succeed. 
 

Table 4: Test with Individual Documents 

A. M. N. C.1932 
 

Doc Sum Doc Sum 
Words 857,000 1,100,000 
Taxonomic 
Names 12,600 22,500 

Sure Pos. 24 2,528 2,833 11,331
Uncertain 356 38,177 11,545 46,179
Data Rules 
SP 85 9148 4983 19933 

Data Rules 
UC 42 4475 674 2,697 

Scorings 17 1,836 181 723 
Precision 93.1% 97.5% 92.7% 99.7% 
Recall 55.2% 93.3% 97.8% 99.8% 
f-Measure 56.8% 95.4% 95.0% 99.7% 
Coverage 87.8% 99.0% 96.6% 99.8% 
Quality 54.4% 94.4% 91.9% 99.6% 

Tests with Entire Corpus 
In the first test the classifier did not transfer any 
experience from one document to later ones. We 
now process the documents one after another, de 
facto concatenating all the documents to one big 
super-document, which is then analyzed as a 
whole. Table 5 shows the results. As expected, the 
classifier performs better than with individual 
documents. This is true for both the A.M.N. and 
C.1932 test documents. The average recall 
increases to 99.9%, coverage improves to 99.8% 
on average. Precision increases to an average of 
99.5%. 

The effect of the incremental learning is 
obvious, especially for the A.M.N. part of the test 
bed: The false positives are less than 2% of those 
in the first test shown by a comparison of the recall 
values in Tables 4 and 5. The effect on precision is 
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significant as well: The number of false negatives 
is only a third of that in the first test. Finally, the 
number of words for which the technique has to 
ask for feedback is halved (compare coverage 
values). 
 
Table 5: Test with Corpora 

 A. M. N. F. 2000 C. 1932 
Words 857,000 58,000 1,100,000 
Taxonomic 
Names 12,600 175 22,500 

Sure Pos. 3,059 172 13,827 
Uncertain 37,028 2,368 42,180 
Data Rules 
SP 11,819 175 2,2084 

Data Rules 
UC 1,132 2 583 

Scorings 618 1 295 
Precision 99.2% 100% 99.8% 
Recall 99.9% 100% 99.9% 
f-Measure 99.6% 100% 99.8% 
Coverage 99.5% 100% 99.9% 
Quality 99.1% 100% 99.7% 

 
The reason for the improvement is obvious 

from documents where the number of word 
sequences in <preciseTaxName> is low: data from 
other documents compensates the lack of positive 
examples. This reduces the number of false 
positives and false negatives as well as the user 
interactions. 

The Data Rules 
The Lines Uncertain in Tables 4 and 5 contain the 
number of uncertain phrases after the application 
of the regular expressions, the Lines Data Rules 
UC display how many phrases remain uncertain 
after the data rules were applied. The exclusion of 
word sequences containing a sure negative turns 
out to be effective to filter the matches of 
<taxName>. On average, this step reduces the 
number of uncertain word sequences by about 
75%. 

The Lines Sure Pos. and Data Rules SP., in 
turn, provide the number of sure positives after the 
regular expressions and after the data rules, 
respectively. The data rules based on the sure 

positives are very effective as well: they reduce the 
uncertain word sequences by another 15 %, and at 
the same time enlarge the set of sure positives by 
50% on average. In particular, they do not only 
reduce the uncertain sequences, but also obtain 
additional training data for the word level 
classifier. 

The lines labeled Scorings display the number 
of distinct phrases that were classified by the 
statistical component. Our experiments show that 
the manual effort incurred by uncertain statistical 
classifications and subsequent user feedback 
decreases significantly. All four data rules decrease 
the number of words the language recognizer has 
to deal with. This is because they produce 
additional training data and reduce the number of 
words classified as uncertain. 

Comparison to Word-Level Classifier and 
TaxonGrab 
A word-level classifier (WLC) is the core 
component of FAT. We compare it in standalone 
use to the combining technique (Comb) and to the 
TaxonGrab (T-Grab) approach (Koning et al., 
2005), which is based on a set of regular 
expressions and lists. The results for TaxonGrab 
were obtained from the C.1932 part of our test set 
used for this evaluation (see Tab. 6). FAT is 
superior to both TaxonGrab and standalone word-
level classification. The improved precision and 
recall results are due to the usage of greater variety 
of evidence. The better coverage results from the 
lower number of words that the word-level 
classifier has to deal with. On average, it has to 
classify only 0.1% of the words in a document. 
This also significantly reduces the user feedback 
and the number of potential errors of the word-
level classifier. 
 
Table 6: Comparison to Related Approaches 

 Precisi
on 

Recall f-
Measur
e 

Covera
ge 

T-Grab 96% 94% 95% - 
WLC 97% 95% 96% 95% 
Comb 99.7% 99.9% 99.8% 99.8% 

 
All these positive effects result in about 99.8% f-
Measure and 99.8% coverage. This means the error 
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is reduced by 90% compared to word-level 
classification, and by 93% compared to 
TaxonGrab. 

Misclassifications 
Although FAT achieves very high performance, 
some errors remain. In this section, we take a 
closer look at the latter and discuss how we can 
prevent them in the future. 
 
False Negatives. False negatives can occur in the 
language recognition step. Most of them contain 
two words the first of which is a genus. 
Xenomyrmex varies … , for instance, could induce 
such an error: The word level classifier (correctly) 
recognizes the first word as a part of a taxonomic 
name. The second word is not typical enough to 
change the overall classification of the sequence. 
To avoid this type of false negatives, one might use 
POS-tagging, which would label varies as a verb. 
We could exclude word sequences containing 
words with a meaning that cannot occur in 
taxonomic names. A related problem results from 
literature references in arbitrary languages. Chapin 
(1932, 1939, 1953, 1954), for instance, cites 
Systema naturae (Linnaeus 1758), a book written 
in Latin. The word level classifier correctly 
recognizes  the language as Latin. The problem is 
that our assumption that the taxonomic names are 
the only parts of the text in Latin does not always 
hold. Other publications cite complete paragraphs 
from documents written in Italian. Sulla posizione 
sistematica is an excerpt from such a paragraph 
that happens to match <taxName>. Because Italian 
is closer to Latin than to English, the word level 
classifier recognizes this phrase as a taxonomic 
name. German citations raise yet another problem: 
Because the capitalization rules of this language 
differ from the English ones, the regular 
expressions happen to match such text parts. In 
particular, all nouns are capitalized in German. 
This lets them match the genus and subgenus part 
of our regular expressions. 
 
False Positives. The <taxName> regular 
expression matches any word sequence that is a 
taxonomic name. But the subsequent exclusion 
mechanisms may misclassify a sequence of words. 
In particular, the word-level classifier does not 
always recognize taxonomic names if they have 
been formed from proper names of persons. This is 

because these words consist of N-Grams that are 
typical for common English. Wheeleria rogersi 
Smith, for instance, is a fictitious but valid 
taxonomic name. To overcome this problem, we 
can construct these genera and species from the 
names we have extracted from the sure positives. 
 

CONCLUSIONS 
This paper has shown how combined computer 
linguistic techniques can be applied to 
automatically extract taxonomic names from 
English text documents. FAT yields a precision of 
up to 99.7% as opposed to TaxonGrab (96%).  
A promising future avenue is to study those names 
which have not been detected, and to start to 
integrate other languages. This is in fact necessary, 
since a large part of the heritage literature is 
written in languages different from English. 
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