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ABSTRACT 
Maximizing the grating efficiency is a key goal for the first light instrument IRIS (Infrared Imaging Spectrograph) 
currently being designed to sample the diffraction limit of the TMT (Thirty Meter Telescope). Volume Phase 
Holographic (VPH) gratings have been shown to offer extremely high efficiencies that approach 100% for high line 
frequencies (i.e., 600 to 6000l/mm), which has been applicable for astronomical optical spectrographs. However, VPH 
gratings have been less exploited in the near-infrared, particularly for gratings that have lower line frequencies. Given 
their potential to offer high throughputs and low scattered light, VPH gratings are being explored for IRIS as a potential 
dispersing element in the spectrograph. Our team has procured near-infrared gratings from two separate vendors. We 
have two gratings with the specifications needed for IRIS current design: 1.51-1.82μm (H-band) to produce a spectral 
resolution of 4000 and 1.19-1.37μm (J-band) to produce a spectral resolution of 8000. The center wavelengths for each 
grating are 1.629μm and 1.27μm, and the groove densities are 177l/mm and 440l/mm for H-band R=4000 and J-band 
R=8000, respectively. We directly measure the efficiencies in the lab and find that the peak efficiencies of these two 
types of gratings are quite good with a peak efficiency of ~88% at the Bragg angle in both TM and TE modes at H-band, 
and 90.23% in TM mode, 79.91% in TE mode at J-band for the best vendor. We determine the drop in efficiency off the 
Bragg angle, with a 20-23% decrease in efficiency at H-band when 2.5° deviation from the Bragg angle, and 25%-28% 
decrease at J-band when 5° deviation from the Bragg angle.  
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1 INTRODUCTION 
The Infrared Imaging Spectrograph (IRIS)1 is the first light diffraction-limited instrument designed for the future Thirty 
Meter Telescope (TMT). Working with the advanced adaptive optics system (NFIRAOS)2,3 and integrated on-instrument 
wavefront sensors (OIWFS)4, IRIS is designed to sample the diffraction limit. IRIS combines a powerful near-infrared 
imager5 and an integral field spectrograph6 operating over the ground-based near-infrared band passes with a range from 
0.84μm to 2.4μm. A spectral resolution of R=4000 will be used for all broad bands, and a higher resolution mode 
(R=8000) will potentially be provided for certain modes. Both the imager and spectrograph are designed around 4K by 
4K HgCdTe detectors from Teledyne (Hawaii 4RG)7. Many of the TMT and IRIS science cases require high sensitivity 
limits (Barton et al. 2010)8 and the IRIS technical team is interested in exploring how to maximize the efficiency. 
Typically in a spectrograph the largest degradation of total throughput is from the detector quantum efficiency, quality 
and number of optical elements, and the type and quality of the dispersing element (such as, grating, prism, and other 
diffraction structures). Surface relief diffraction gratings (like ruled gratings and holographic gratings) are traditional 
dispersing elements for the majority of astronomical spectrographs. Usually, the peak efficiency of traditional diffraction 
gratings are of order ~80%. Grating vendors are working to optimize the manufacturing process to get higher efficiencies, 
and optical engineers continue to invent new types of diffraction structures or innovation in their applications. VPH 
gratings are a type of transmission grating with high diffraction efficiency with low scattered light properties, which have 
been investigated since the late 1960s9,10,11. National Optical Astronomy Observatories (NOAO) measured the 
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performance of VPH gratings for astronomy applications in 1998, and got promising results12. In the following years, 
VPH gratings have been applied in different astronomical spectrographs (e.g. Clemens et al. 2000, Bershady et al. 2008, 
Hou et al., 2010, Laurent et al. 2010, Zanutta et al. 2014)13-18. The introduction of VPH gratings to optical astronomy has 
brought greater efficiencies, as well as offered more flexibility in the optical design of instruments19. 
 
Compared with traditional surface relief gratings, VPH gratings have some unique features, such as high transitive 
efficiency in the primary operating mode (theoretical diffraction efficiencies can approach 100% for high line 
frequencies, 600 to 6000l/mm)20 and environmentally stable structure with encapsulation between two glass substrates, 
which are applicable for astronomical spectrographs. VPH gratings have been shown to be viable in optical astronomical 
instrumentation (SOAR, WIYN, LOMST, MUSE, and AFOSC, FOCAS)13-18, but have been less exploited at near-
infrared wavelengths (Arns et al. 2010 for APOGEE)21.  
 
In this paper, we investigated two types of VPH gratings designed for IRIS to assess the quality and the feasibility of 
these gratings for its spectrograph. The first grating is designed for H-band with a spectral resolution of 4000, working 
from 1.51-1.82μm, and the second grating is for J-band with a resolution of 8000, from 1.19μm and 1.37μm. Compared 
with the VPH gratings that are used for optical spectrograph, these two VPH gratings have lower line frequencies of 
177l/mm and 440l/mm for H-band and J-band, respectively. Kaiser Optical System Inc. (KOSI) and Wasatch Photonics 
(Wasatch) provided prototyping for each of these bands for a total of four gratings in our sample.  
 
We present the performance characteristics of four near-infrared VPH gratings with specifications that are designed for 
the IRIS spectrograph. We will describe the experimental setup and method for measuring direct efficiencies at non-
cryogenic temperatures. The relation between the efficiency versus angle range of VPH gratings is tested, and the 
entrance angular bandwidth governed by the Bragg angle is given. Our measurements are compared to theoretical 
efficiencies for these grating types. We also compare the VPH grating performance to reflective ruled diffraction 
gratings (Meyer et al, this conference) with similar properties to help in the selection of grating types and vendors for 
IRIS. This comparison will also be crucial for other current and future near-infrared spectrographs with a range of 
industrial applications. 

2 VPH GRATING PROPERTIES  
Different from surface relief gratings, VPH gratings are transmission gratings usually with a 10 to 100 micron 
dichromated gelatin (DCG) layer placed between two glass substrates. The chosen glass substrate combination is 
dependent on the desired wavelength of light. This sandwich structure makes VPH gratings more stable and durable than 
surface relief gratings, since the diffracting surface is protected by glass, which can be easily cleaned. The DCGs are 
generated through exposure to a laser interferogram, the interferometric pattern is recorded within the volume of gelatin 
material, so the refractive index is modulated in a sinusoidal fringe pattern8. When light passes through the VPH grating, 
the refractive index modulation generates optical path differences for different wavelengths, and the diffraction that 
occurs follows the grating equation. The particular wavelength of light that satisfies Bragg’s law has the highest 
efficiency, which is dependent on the incidence angle. The VPH gratings have lower scattered light than ruled gratings 
since the diffraction is a function of the modulation of the gelatin material, rather than the surface quality of the ruled 
grating and individual facets. This means that VPH gratings can have very high efficiencies designed for particular 
incidence angles and wavelengths of light20. What is important, the high efficiency and large super-blaze (the envelope 
of the entire efficiency spectrum according to the incidence angle is called the super-blaze22) make VPH gratings attract 
much attention, especially in high resolution applications. Superblaze refers to the ability of VPH grating instrument to 
tune for each central wavelength setting. As VPH gratings are operated at Littow configuration, the spectrograph detector 
must also be rotated or articulated about the grating center. In this way, high efficiency and high resolution can be 
achieved over a broad band. 
 
Transmission gratings can also bring great improvements and advantages for optical designs. It makes the optical 
structure flexible and compact, and easy to work with for larger incidence angles system (with combined prism). 
However, the efficiency will decrease much when the incidence angle deviates the Bragg angle. Depending on current 
manufacture process, if the VPH gratings can achieve their theoretical performance is what we concerned. In order to 
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understand the relationship between the characters and its manufacture, the principle of VPH gratings is introduced as 
following.  
 
The incidence light is diffracted due to the refractive index periodic modulation of the gelatin film material as shown in 
Figure 1. Therefore, the fundamental parameters that relate the efficiency are the thickness of the active film (d) and the 
modulation of the refractive index (Δn1). The grating parameters include incidence angle α, diffraction angle β, slant 
angle γ, grating thickness d, the grating period Λ, the frequency of the intersection of the grating ν, grating vector K, and 
index of refraction n.  

 
Figure 1: VPH grating geometry and parameters with the DCG (include incidence angle α, diffraction angle β, slant angle γ, grating 
thickness d, the grating period Λ, the frequency of the intersection of the grating ν, grating vector K, and index of refraction n), the 
glass substrates on either side are not shown. 
 
The diffraction follows the classical grating equation: 

mλ=Λ(sinα0+sinβ0)                                                                                (1) 

Where m is the diffraction order, and λ is the wavelength.  
 
If the fringes are not slanted, thus γ= π/2, Λ=1/ν. The Bragg condition is met when the incidence angle and diffraction 
angle are equal and opposite. The Bragg equation can be given by: 

mλ=2Λn1sinα1                                                                                    (2) 
 
where  

n1sinα1 =n0sinα                                                                                    (3) 

From the Bragg’s law and the Kogelnik’s two-wave coupled-wave theory, most VPH grating properties can be deduced23. 
According the Kogelnik’s two-wave coupled-wave theory, the most important conclusion is that the diffraction 
efficiency η, spectral bandwidth Δλ, and angular bandwidth Δα are a function of the grating modulation Δn1 and actual 
film thickness23,24. This brief conclusion has straight effect on VPH grating manufacture process. For a plane 
transmission grating without slanted fringes, the TE mode (polarization perpendicular to the incidence plane) diffraction 
efficiency at the first Bragg order is given by Kogelnik 1969: 

ηTE= sin2[πΔn1d/(λcosα1)]                                                                          (4) 

For the TM mode (polarization parallel to the plane of incidence), the diffraction efficiency equation becomes: 

ηTM= sin2[πΔn1dcos(2 α1)/( λcosα1)]                                                             (5) 

The polarization efficiency dependency on the VPH gratings occurs through the reduced effective coupling constant 
cos(2α1). If the incidence angle α1 in the material is small, the polarization dependencies are minimized.  
 
The first order spectral bandwidth and angular bandwidth are approximated by: 

Δ λFWHM/ λ∝ ( Λ/d)cot α1                                                                         (6) 
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      Δ αFWHM∝ Λ/d                                                                                    (7) 

Where ΔαFWHM is expressed in radians. 
 
From the above relations, we can see that in order to achieve the proper efficiency and bandwidth, the right index 
modulation (Δn1) and the precise thickness (d) of VPH grating are necessary. Having a highly dispersive grating is fine, 
but increasing the line density has an influence on the bandwidth. To maintain an acceptable bandwidth, when Λ is 
reducing, we must reduce the grating thickness d at the same time to guarantee the appropriate bandwidth. Besides, the 
coupled-wave equations, the grating thickness including the substrates must be accounted for the total efficiency. 
Therefore, to keep the efficiency at highest value, when the grating thickness is reduced, the index modulation needs to 
be increased.  
 
In the infrared wavelength, the high index modulation is important. From equation (4) and (5), if the wavelength 
increases, the refractive index modulation must increase to keep the diffraction close to unity. For infrared wavelengths 
to satisfy the Bragg’s law with a specific incidence angle, VPH gratings need to have lower groove densities. The 
manufacturing of these low groove density gratings are challenging since the equipment needs a small opening-angle and 
large aperture mirrors that need low wavefront error. Infrared instruments usually work in low temperatures, so the 
cryogenic behavior of the VPH grating is very significant. Form Tamura et al. 2006, they completed 5 cycles between 
room temperature and 200K and they found that the diffraction efficiency and angular dispersion are nearly independent 
of temperature25.  

3 VPH GRATING MEASUREMENT  
Based on the current optical design, the spectrograph camera focal length is 370mm, and the pixel pitch of the detector 
(Teledyne Hawaii-4RG) is 15μm. The opening angle of spectrograph is 45°, and the spectral resolution has three levels, 
R=4000, R=8000 and R=10000 which are specified for 2 pixels. According the requirements of IRIS, the main 
parameters of grating for each bandpass were calculated6. We select H-band R=4000 and J-band R=8000 to investigate 
the efficiency and performance of our gratings. The VPH gratings for H-band R=4000 and J-band R=8000 have 
relatively lower groove densities, and are therefore more difficult to manufacture. The specifications are in Table 1. 
Kaiser Optical System Inc. and Wasatch Photonics provided prototyping for each of these gratings. According the IRIS 
requirements for the VPH gratings, KOSI and Wasatch designed the VPH gratings with specific parameters and give the 
theoretical simulation by Rigorous Coupled-Wave Analysis (RCWA). Both of their simulation results are similar. The 
peak efficiency of H-band is round 85% at 1.629μm, with 25% decrease when 2.5 °deviation from the Bragg angle. For 
J-band, the peak efficiency of 1.27μm is 95%, with 25% drop in efficiency when 5° off the Bragg angle.  
 
Our team measured the efficiencies of these gratings at a single wavelength per passband. The peak efficiency at 
different incidence angles and efficiency distribution at each order at both the Bragg angle and off-Bragg angle were 
measured. At the end, we compare the VPH gratings performance between the theoretical simulation and actual 
measurement results.  

     Table 1. Specifications of VPH gratings designed for IRIS 
 IRIS H-band R=4000 IRIS J-band R=8000 
Central Wavelength  1.629 μm 1.27 μm 
Bandpass 1.51-1.82 μm 1.19-1.37 μm 
Fringe Frequency  177 l/mm 440 l/mm 
Incidence Angle 8.3° (at 1.629μm) 16.2°(at 1.27μm) 
Grating Clear Aperture  100mm×100mm 100mm×100mm 

3.1 Measurement Equipment and Stability 

For the infrared gratings efficiency measurement, we used an InGaAs camera (Raptor Photonics OWL SW 1.7 CL320) 
as the detector and 1.55μm and 1.31μm laser diodes as the light source for H-band and J-band, respectively. In order to 
guarantee the stability of laser source, we use LM9LP-LD/TEC as the laser driver. The stability of each laser diode was 
measured for six hours continuously. The laser diode needs to be turned for ~1 hour before it stabilizes in its power. 
After the first hour of continuous operation, the standard deviation of the measured intensity is within 0.3%.  
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The laser diode is connected to a collimator (F240FC) through a SMF-28 fiber. SMF-28 is a single mode fiber, and its 
core diameter is 8.2μm, operating from 1.310μm to 1.625μm. We used a variable attenuator (VOA50-FC-SM) to adjust 
the intensity of the incidence light and make sure the final spot on the detector is unsaturated. Since there is big 
difference between the brightest order and the faintest orders, the exposure time is varied from each order to achieve a 
good signal-to-noise ratio. When the polarized efficiency was measured, the linear polarizer (LPNIR050-MP) is installed 
before the VPH grating. After the VPH grating, an achromatic lens focuses the beam on the detector that sits on an 
optical rail system. The diameter of the laser without the grating is ~1.5mm with little angle deviation. An anodized 
aluminum baffle box resides over the entire experiment to eliminate scattered background light. The schematic of 
configuration is shown in Figure 2.  

 
Figure 2. Schematic of the configuration. The laser diode is coupled to the fiber, and the total intensity is adjusted by an attenuator. 
We collimate the laser beam before it passes through the (polarized and) VPH grating. Adjust the position and angle of camera, and 
make sure the diffracted orders focus on the center of the detector. 
3.2 Adjustment Process for Measurement 

The peak efficiency for a given order is defined as the measured flux of a monochromatic light source diffracted into that 
order relative to the total incidence flux. The typical efficiency measurement procedure is as follows: (1) Set up the VPH 
grating perpendicular to the incidence light beam; (2) rotate the VPH grating to the specific incidence angle; (3) adjust 
the camera position and angle to measure the diffracted order; (4) change the gain of the attenuator to get a reasonable 
incidence intensity; (5) take 100 frames of the flux with the best exposure time; (6) block the laser, and take the 
background of the setup with the same exposure time; (7) repeat the above steps for each order; (8) remove the VPH 
grating, and measure the pure incidence flux of the laser; and (9) using the flux of the specific diffracted order to divide 
the total incidence flux of the laser, the efficiency will be calculated. It is important to note that we observed reflected 
light off the incoming light surface of the VPH grating, which would decrease the total efficiency.  
 
The whole process takes roughly one hour. Within this time, the polarization state of fiber does not change and the 
temperature of the camera does not increase26. Because VPH grating efficiencies are quite sensitive to the incidence 
angle, the precision of the incidence angle is very important for our measurement. In our setup, the incidence angle 
precision is less than 10′. Due to reflective and scattered light, the sum of the efficiencies of all diffracted orders is less 
than 100%. We confirm this result by the following data in Table 2 to 5. 

3.3 Efficiency Results  

We have four VPH gratings, two at H-band and two at J-band. The clear aperture is 100mm×100mm. Herein, we only 
provide the efficiency results of the central area. In order to evaluate the performance of the whole grating, we will 
measure many other locations of the grating. We measured the peak efficiency of different incidence angles, and find the 
actual Bragg angle of each VPH grating, and then measured each order’s efficiency at the Bragg angle.  

3.3.1 H-band VPH grating Efficiency measurement  

We used a 1.55μm laser diode to measure the efficiency at different incidence angles for the TM mode, TE mode, and 
without the polarizer. The results of the KOSI H-band VPH grating are shown in Figure 3 and 4, and the Wasatch H-
band VPH grating are shown in Figure 5 and 6.  
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From the efficiency curves in Figure 5, we can find that the KOSI H-band VPH grating is not sensitive to polarization, 
and there is little deviation between the TM and TE polarization states. Its peak efficiency at the Bragg angle (~7.5 °) is 
88%. The efficiency drops 20%-23% when the incidence angle is 2.5° off the Bragg angle. We also measure the 
efficiency of each order at the Bragg angle 7.5°, and the details of these results are listed in Table 2. The same 
measurement was done at off Bragg angle (8°, 9°) too, and the comparison is in Figure 4. The peak efficiencies in Figure 
3 and 4 come form different measurement, so there is some deviation between them, which is within the measurement 
error range. 
 
In Figure 5, it presents the peak efficiency at different incidence angles of Wasatch H-band VPH grating. Its peak 
efficiency at the Bragg angle (~10 °) is between 61% and 66%. From the efficiency curve, we can see that the efficiency 
drops more than 35% when the incidence angle is 5° off Bragg angle. The efficiency of each order at the Bragg angle 10 ° 
and off Bragg angle (9°, 11 °) is shown in Figure 6. The details of the Wasatch H-band efficiencies at the Bragg angle 
are shown in Table 3.  

 
Figure 3. KOSI H-band efficiency at different incidence angles. The peak efficiency of 1.55μm is around 88% at the Bragg angle (7.5°) 
with the error 2.7%. The efficiency drop 20-23% when the incidence angle is 2.5° off from the Bragg angle in different modes. 

     Table 2 KOSI H-band efficiency of each order at the Bragg angle (7.5°) 

Order 3 2 1 0 -1 -2 

TM Efficiency (%) 0.85±0.03 1.51±0.05 87.50±2.66 5.24±0.16 2.71±0.08 0.33±0.01 

UNP Efficiency (%) 1.27±0.04 1.16±0.03 88.88±2.72 3.73±0.11 1.93±0.06 1.03±0.03 

TE Efficiency (%) 1.59±0.04 0.79±0.02 87.27±2.65 2.34±0.07 1.24±0.04 1.67±0.05 
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Figure 4. KOSI H-band efficiency comparison at Bragg angle (7.5 °) and off Bragg angles (8° blue, 9° magenta)   

 
Figure 5.Wasatch H-band efficiency at different incidence angles. The peak efficiency of 1.55μm is between ~61%-66% at the Bragg 
angle (10°) with the error ~1.9%. The efficiency drop more than 35% when the incidence angle is 5° off from the Bragg angle. 

     Table 3 Wasatch H-band efficiency of each order at Bragg angle (10°) 

Order 3 2 1 0 -1 -2 

TM Efficiency (%) 2.22±0.07 7.61±0.23 61.33±1.86 6.79±0.20 12.66±0.38 3.32±0.10 

UNP Efficiency (%) 2.73±0.08 6.59±0.20 63.35±1.93 6.17±0.19 10.68±0.33 4.16±0.13 

TE Efficiency (%) 3.79±0.12 4.84±0.15 67.33±2.05 5.21±0.16 7.20±0.22 5.83±0.18 
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Figure 6. Wasatch H-band efficiency comparison at Bragg angle (10 °) and off Bragg angles (9° magenta, 11° blue) 

3.3.2 J-band VPH grating Efficiency measurement 

We used a 1.31μm laser diode to measure the efficiency at different incidence angles for the TM mode, TE mode, and 
without the polarizer. The results of the KOSI J-band VPH grating are shown in Figure 7 and 8, and the performance of 
Wasatch J-band VPH grating is shown in Figure 9 and 10. The efficiency of each order at the Bragg angle was measured. 
There is 10% difference between each of the polarization modes for KOSI J-band VPH grating. According to the VPH 
grating principles, this deviation between polarization may be due to the effective of the coupling constant cos(2α1). If 
the incidence angle α1 within the medium is small, the polarization dependencies are minimized.  

 
Figure 7. KOSI J-band efficiency at different incidence angles. The TM peak efficiency of 1.31μm is 91% at the Bragg angle (17°) 
with 2.8% error, while the TE peak efficiency is 81% with 2.4% error. The efficiency drop 25%-28% when the incidence angle is 5° 
off from the Bragg angle. 
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     Table 4. KOSI J-band efficiency of each order at Bragg Angle (17°) 

Order 2 1 0 -1 

TM Efficiency (%) 1.55±0.05 89.49±2.78 3.78±0.12 2.49±0.08 

UNP Efficiency (%) 0.87±0.03 83.45±2.54 9.14±0.28 3.40±0.10 

TE Efficiency (%) 0.81±0.03 78.92±2.39 10.19±0.31 3.47±0.11 

 

 
Figure 8. KOSI J-band efficiency comparison at Bragg angle (17°) and off Bragg angles (16° magenta, 18° blue) 

 

Figure 9. Wasatch J-band efficiency at different incidence angles. The TM peak efficiency of 1.31μm is ～75% at the Bragg angle 

(17.5°) with 2.3% error, while the TE peak efficiency is～82% with 2.5% error. The efficiency drop 13-16% when the incidence angle 
is 5° off from the Bragg angle. 
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     Table 5. Wasatch J-band efficiency of each order at Bragg Angle (17.5°) 

Order 2 1 0 -1 

TM Efficiency (%) 0.10±0.003 74.99±2.27 10.84±0.32 2.96±0.09 

UNP Efficiency (%) 0.50±0.02 80.32±2.43 5.9±0.18 4.01±0.12 

TE Efficiency (%) 0.60±0.02 80.84±2.45 3.95±0.12 4.15±0.13 

 

 
Figure 10. Wasatch J-band efficiency comparison at Bragg angle (17.5°) and off Bragg angles (17° magenta, 18° blue) 

 
3.4 Measurement Uncertainties and Error Analysis 

The dominating error terms are the stability of the laser and infrared camera during each of the measurements. The laser 
diode intensity stability is 0.3% and the fluctuation due to camera temperature changes is 0.3% (measured by Mieda et 
al. 2014)26. For our uncertainties, we also consider the flat field error, background deviation, dark current deviation, 
readout noise, random noise and Poisson noise. We also include a systematic error, from the accuracy of the incidence 
angle at the VPH grating is 10′ and the camera position error is 2.0%. During the measurement, we try to make the setup 
background dim by using baffle box, and cooled the camera to minimize the dark current. Even though, we find the 
variance is not zero when there is no light entrance. The deviation of the mean values of the setup background is 2 DN 
(digital number). From the absolute difference between the average dark count and linear fit plotted as a function of 
exposure time, there are always 10 DN fluctuations regardless of exposure time (the same result as that measured by 
Mieda et al. 2014)26. We look 10 DN as the random noise of camera. Hence, the detector photoelectron noise is the 
function of the Poisson noise of the signal, the setup background, the dark current, and readout noise, and camera 
random noise in the spot aperture. Using error propagation, we derive the error for each efficiency measurement. We 
also measured the VPH grating at least three times, so the final reported measurements of the peak efficiency in Table 6 
and 7 was the weighted average. 

4 COMPARISON WITH REFLECTIVE GRATING 
Meyer et al, this conference, presents the reflective ruled diffraction gratings with comparable properties. The main 
properties of H-band gratings are listed in Table 6. The final peak efficiencies of VPH gratings are the averages of three 
times results. From the efficiency measurements, KOSI H-band VPH grating has the highest efficiency of ~88% both in 
TM and TE modes, with little polarization effect, but it drops by 20-23% at 2.5° off the Bragg angle. CIOMP 
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(Changchun Institute of Optics, Fine Mechanics, and Physics, Chinese Academy of Sciences) H-band ruled grating also 
have high efficiencies, but show larger differences of ~15% between TM and TE modes. The same comparison is done 
for J-band R8000. Only Bach provided ruled grating for this band. KOSI J-band VPH grating has highest efficiency with 
the TM efficiency of 90.23%. Wasatch J-band VPH grating has lower efficiency, but better performance in polarization 
(6.7% deviation between TE and TM modes) and bandpass (less efficiency drop than KOSI J-band VPH grating). Bach 
J-band ruled grating have the lower efficiencies compared VPH gratings. From these two tables, we can find the VPH 
gratings of KOSI have higher efficiencies than those of Wasatch, while with much more drops in efficiencies at both H-
band and J-band.  

     Table 6. H-band R4000 Gratings Performance Comparison. The final efficiencies and error bars of VPH gratings are the averages 
of three measurements, and the final results of Ruled gratings are the single measurement. 

Grating  Peak Efficiency 
(TM and TE) 

Efficiency drop from 
Bragg/Blazed Angle 

Clear Aperture 

Theoretical 
Performance Simulated 
by RCWA 

85% 
85% 

20% at 2.5° from Bragg 
angle, 60% at 5° from Bragg 
angle 

 

KOSI H-band  
VPH grating 

88.29±0.89% 
87.75±0.88% 

20-23% at 2.5° from Bragg 
angle 

100mm× 100mm 

Wasatch H-band VPH 
grating 

60.90±0.61% 
66.51+0.67% 

35-40% at 5°  
from Bragg angle 

100mm× 100mm 

Bach H-band Ruled 
grating 

70.78±2.68% 
71.25±3.07% 

 25mm× 25mm 

CIOMP H-band 
Ruled grating 

98.90±3.36% 
80.71±2.62% 

Within 3% 50mm× 50mm 

     Table 7. J-band R8000 Gratings Performance Comparison 
Grating  Peak Efficiency 

(TM and TE) 
Efficiency drop from 
Bragg/Blazed Angle 

Clear Aperture 

Theoretical Performance 
Simulated by RCWA 

95% 
95% 

25% at 5°  
from Bragg angle 

 

KOSI J-band 
VPH grating 

90.23±0.99% 
79.91±0.83% 

25-28% at 5°  
from Bragg angle 

100mm× 100mm 

Wasatch J-band VPH 
grating 

75.26±0.79% 
81.96±0.98% 

13-16% at 5°  
from Bragg angle 

100mm× 100mm 

Bach J-band Ruled 
grating 

75.18±2.42% 
78.78±2.54% 

 25mm×25mm 

 
 

5 CONCLUSION  
 
From the principle analysis, VPH gratings can achieve extremely high efficiencies (>90%) and has indicated by 
theoretical predictions are not sensitive to polarization. But the efficiencies decrease much when the incidence angle is 
off the Bragg angle. We measured four near-infrared VPH gratings with the properties designed for IRIS, and we find 
the peak efficiencies of these two types of gratings are in good agreement to theoretical prediction. The best peak 
efficiency of 1.55μm at the Bragg angle is ~88±0.9% in both TM and TE modes, without apparent polarization effect at 
H-band, which have obvious advantages compared to ruled gratings. The efficiency drops 20-23% when 2.5° deviation 
from the Bragg angle. The peak efficiency and the decrease in efficiency are correlated with the theoretical simulation. 
For J-band, the highest peak efficiency of 1.31μm at the Bragg angle is 90.23±0.99% at TM mode and 79.91±0.83% at 
TE mode, much higher than ruled grating, which is larger than the RCWA prediction. The drop in efficiency is similar as 
the prediction, ~25% decrease when 5° off the Bragg angle. The VPH gratings of KOSI have higher peak efficiencies 
than those of Wasatch, but Wasatch VPH gratings have better performance at larger deviation off Bragg angel.  
 
From our testing, we find the transmission of VPH gratings is substantially higher than ruled gratings. However, the 
efficiencies of VPH gratings drop dramatically when the incidence angle is off the Bragg angle. In the IRIS design, there 
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is a varied angle of incidence in the spectral direction on the grating. For the lenslet, the incidence angle is up to 8.78°6, 
and the angles off axis will be up to ±4.4° off the Bragg angle. Therefore, this is a concern for VPH grating performance 
for the IRIS design. From the grating manufacture, VPH gratings are more feasible to achieve extra-large apertures 
compared with ruled gratings. All of these factors are what IRIS will consider for the final design.  
 
It is important to note that our measurements are made with a monochromatic light source and does not cover the full 
bandpass, and therefore the performance of the grating is limited. VPH gratings are sensitive to the incidence angle, thus 
when the angle changes the efficiency of a particular wavelength drops but another wavelength efficiency (which yield 
to the Bragg condition at the new incidence angle) will increase. It means VPH gratings can diffract a large range of 
wavelengths (Δλ), but in very specific direction (small Δα). The super-blaze curve will provide much more efficiency 
information for high spectral resolution applications.  
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