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Since the 1960s, the Benjamin-Feir (or modulation) instability (MI) has been considered as the self-
modulation of the continuous “envelope waves” with respect to small periodic perturbations that precedes
the emergence of highly localized wave structures. Nowadays, the universal nature of MI is established
through numerous observations in physics. However, even now, 50 years later, more practical but complex
forms of this old physical phenomenon at the frontier of nonlinear wave theory have still not been revealed
(i.e., when perturbations beyond simple harmonic are involved). Here, we report the evidence of the
broadest class of creation and annihilation dynamics of MI, also called superregular breathers.
Observations are done in two different branches of wave physics, namely, in optics and hydrodynamics.
Based on the common framework of the nonlinear Schrödinger equation, this multidisciplinary approach
proves universality and reversibility of nonlinear wave formations from localized perturbations for
drastically different spatial and temporal scales.
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I. INTRODUCTION

Nonlinearity plays a fundamental role both in the
understanding of most natural phenomena and in the
development of advanced technologies and engineering
designs. The nonlinear Schrödinger equation (NLSE) in
its many forms serves as a central model in nonlinear
science, and more specifically in nonlinear wave theory
[1]. In particular, the one-dimensional NLSE captures
the physics of some very exciting and fascinating non-
linear phenomena, such as the modulation instability and
envelope solitons [2–3]. It also belongs to the remarkable
class of integrable systems [4] and can be solved by using
the inverse scattering transform method or other integra-
tion techniques. Studies of the phenomenon of modulation
instability (MI) have been pioneered by the theoretical
and experimental observations done in the 1960s [5–10].

The effect has been understood as an instability of a plane
wave against the long-wave modulation and associated
with the growth of spectral sidebands. MI has been found
in deep water [9,10], in plasmas [11–13], within laser
light [8,14], in electrical transmission lines [15], and in
Bose-Einstein condensates [16]. A linear stability analysis
is typically performed to identify the instability criterion
and to evaluate the initial growth rate of the sidebands.
However, the above simplistic analysis provides only
snapshots of the initial steps of MI and the complete
evolution of the process has remained unexplored. In
reality, MI exhibits much richer dynamics when one goes
beyond the simple linear stability analysis. To address
this problem, some exact pulsating solutions (also called
breathers) describing the full MI dynamics were derived
during the 1970s and 1980s, but only for periodic initial
modulations [17–22]. These cases provided, as a first step,
a powerful framework for interpretation of a specific range
of MI-related dynamics that play a fundamental role in the
theory of freak waves [23]. Only recently, some unique
features of these solutions have been confirmed exper-
imentally for various nonlinear media [24–31]. It concerns
the simplest solutions that are either periodic in space and
localized in time or periodic in time and localized in
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space; they are referred to as Kuznetsov-Ma breathers and
Akhmediev breathers, respectively. Taking the period of
both solutions to infinity gives rise to a first-order doubly
localized Peregrine soliton. Yet, despite the worldwide
success, in particular, stimulating new theoretical studies
on the rich family of breather solutions (see Ref. [32] and
references therein), theoretical or experimental results
are restricted so far to an essentially reduced class of
breathers.
In 2013, a new step was taken in theory. Namely,

Zakharov and Gelash proposed superregular breather
solutions to describe a novel and general scenario of
modulation instability that develops from localized per-
turbations of the plane wave [33,34]. The latter have more
physical and practical significance than periodic pertur-
bations in Benjamin-Feir instability that require the whole
infinite space. Superregular breathers exhibit a combina-
tion of unique features in terms of propagation behavior.
In contrast to previous analytical solutions, they start
with infinitesimally small localized perturbations. Indeed,
Akhmediev breathers are known to start the MI from small
periodic perturbation. They are fully described by the
heteroclinic trajectory in the phase space (adding a phase
shift with propagation), whereas Kuznetsov-Ma breathers
show pulsating dynamics, starting the propagation from a
solitary envelope. Superregular breathers form a subset of
breather solutions and are defined as a nonlinear super-
position of N pairs (where N is an integer) of quasi-
Akhmediev breathers propagating in opposite directions.
Most interestingly, superregular breathers may describe
nonlinear dynamics of the broadest class of unstable
localized small perturbation of the plane wave, thus
providing a novel and global overview of the nonlinear
stage of modulation instability. They can be considered
as the fundamental “building blocks” for the complete
description of the modulation instability and the old
problem of integrable turbulence, and even the so-called
freak waves induced by MI for coherent or incoherent
wave trains [35]. In addition to the development of
perturbation into special pairs of breathers, the reverse
process is another important scenario. Indeed, N pairs of
quasi-Akhmediev breathers almost annihilate (we call this
process “quasiannihilation”) to a small localized pertur-
bation as a result of their collision [33,34]. Such math-
ematical entities (i.e., N-pair breather solutions with their
shifting parameters) are able to describe different con-
figurations of the nonlinear stage of MI at any propagation
distance, such as the amplification, annihilation, or even
ghost interaction of nearly any individual or ensemble
of localized perturbations (i.e., local concentration of
energy) on a finite background (as revealed later by the
special cases of the one-pair breather solution shown in
Fig. 1). In practice, most of spontaneous pattern forma-
tions and localized structures induced by MI could now

be described by using such generalized solutions, even
when the background itself is localized in time (i.e., a laser
pulse). It was already shown that breather dynamics with
pulsed excitation can be interpreted in terms of local
breather states at different points on the pulse envelope
[36,37]. Superregular breathers give an enlarged and
generalized picture of the collision features with
respect to recent numerical and experimental studies of
breather structures and their interactions in optics or
hydrodynamics [29–31,38].
In this work, we simultaneously report two experi-

ments, in an optical fiber and in a water-wave tank,
specifically designed to reveal the corresponding dynam-
ics of such mathematical entities as superregular breath-
ers in real physical systems. We demonstrate explicitly
that initial perturbation develops to a superregular pair
of quasi-Akhmediev breathers that move in opposite
directions leaving behind a nonperturbed plane wave.
We also observe the reverse process of annihilation of a
pair of quasi-Akhmediev breathers. Our results are in
excellent agreement with analytic predictions. Moreover,
our multidisciplinary approach confirms the universal
nature of superregular breathers for any NLSE-driven
wave system through comprehensive analysis of unstable
localized perturbations on a time scale of seconds for
water waves and on a time scale of picoseconds for
light waves.

II. BREATHER FORMALISM

Our experiments are designed using the breather
formalism of Refs. [33,34] obtained within the frame-
work of the self-focusing NLSE in dimensionless form,
iψξ þ 1=2ψττ þ │ψ│2ψ ¼ 0, where subscripted variables
stand for partial differentiations. Here, ψ is a wave group
or wave envelope which is a function of ξ (a scaled
propagation distance or longitudinal variable) and τ
(a comoving time, or transverse variable, moving with
the wave-group velocity). This equation usually describes
the nonlinear wave evolution in various media, in
particular, gravity waves in deep-water conditions and
light waves in standard optical fibers. The above evolu-
tion equation that describes wave propagation in space
(not in time) is more convenient for direct comparison
with laboratory experiments.
We study MI of the plane wave solution, which can

be written in our parametrization as ψ0 ¼ AeiA
2ξ, where A

is the amplitude of the plane wave (here equal to 1).
The self-focusing NLSE has an exact N-breather
solution, which can be constructed by the appro-
priate integration technique (see Appendix A). The
general one-breather solution has four real parameters,
R, α, μ, θ, and can be described by the following
expression [39–41]:
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Parameters R, α are the polar coordinates of the point
in the area R ≥ 1, ðπ=2Þ > α > −ðπ=2Þ (actually, R, α
describe the coordinate of the pole of the solution for the
auxiliary Zakharov-Shabat system, see Appendix A). In
general, the one-breather solution is a localized object
with characteristic size δτ ∼ 1=2η ¼ ½ðR − 1=RÞ cos α�−1,
moving on top of the continuous wave with breather
group velocity Vg¼ γ=η¼ 2sinαðR4þ1Þ=½RðR2−1Þ�,
and oscillating with period T¼2π=2ω¼2πR2=
½ðR4−1Þcos2α� [34]. Thus, R, α control the main breather
properties. Parameters μ, θ define the location and phase
of the breather and vary in the range ½0; 2π�. When R ¼ 1,
α ≠ 0, the solution is an Akhmediev breather (AB),
which becomes the Peregrine soliton in the limit
α → 0. For low values of Vg (R ≠ 1, α → 0), we approach
the limit of Kuznetsov-Ma breathers, whereas for high
values of Vg and δτ (R ¼ 1þ ε, where ε is a small
parameter), we obtain the class of quasi-Akhmediev
breathers, which play the key role in the theory of
superregular breathers. Figure 1(a) shows the example

of a quasi-Akhmediev breather with parameters
(R ¼ 1.15, α ¼ 0.4). In the general N-breather solution,
each ith breather has similar four parameters, Ri, αi,
μi, θi, so that the total solution is described by 4N
parameters.
Zakharov and Gelash have found that pairs of quasi-

Akhmediev breathers with opposite values of angular para-
meter α form the broadest class of N-pair breather solutions
that describes the nonlinear stage of MI of small localized
perturbation as well as breather quasiannihilation (see
Appendix A for a short mathematical comment). The
examples of complicated two- and three-pairs scenarios as
well as a discussion of generalN-pairs solutions can be found
in Refs. [33,34]. Note that now the limit N → ∞ is under
theoretical study. Here, we consider only the simplest, but
very important, case of superregular one-pair solution with
parameters appropriate for our experimental setups. The one-
pair superregular solution can be obtained from a general
two-breather solution by setting R1 ¼ R2 ¼ R ¼ 1þ ε,
α1 ¼ −α2 ¼ α, and can be written in the following form:
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FIG. 1. Special cases of the one-pair breather solution (R ¼ 1.15, α ¼ 0.4) compared to the single breather solution. (a) Single
breather solution (R ¼ 1.15, α ¼ 0.4, θ ¼ 0, μ ¼ 0). (b)–(d) One-pair breather solution with the following phase shifts: θ1;2 ¼ 0,
θ1;2 ¼ π=2 (superregular case) and θ1;2 ¼ π, respectively (μ1;2 ¼ 0 for all cases). Note that the maximum amplitudes at the origin
(ξ ¼ 0, τ ¼ 0) are (a) 2.86, (b) 4.72, (c) 1.125, (d) 2.72. These values highlight the degree of breather interaction.
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where qi ¼ ðqi1; qi2Þ is a two-component vector function,
so that

q11 ¼ e−ϕ1 − eϕ1−iα
R

; q12 ¼ eϕ1 − e−ϕ1−iα
R

;

q21 ¼ e−ϕ2 − eϕ2þiα

R
; q22 ¼ eϕ2 − e−ϕ2þiα

R
;

ϕ1 ¼ ητ þ γξþ μ1
2
þ i

�
kτ þ ωξ − θ1

2

�
;

ϕ2 ¼ ητ − γξþ μ2
2
− i

�
kτ − ωξþ θ2

2

�
;

and the parameters η, k, γ, andω are defined above. The small
parameter ε ¼ ðR − 1Þ characterizes the amplitude of the
perturbation at the moment of breather quasiannihilation.
Parameters μ1;2, θ1;2 correspond to the phase shifts between
the two breathers; μ1;2 can also describe shifts in space and
time (see also Appendix A). Such phase shifts affect the
shape and the amplitude of the perturbation. The quasianni-
hilation appears when θ1 þ θ2 is close to π. The difference
between θ1 þ θ2 and π defines the degree of complexity of
the wave profile at the area of collision. The solution is
superregular when the phases are adjusted in a way that the
perturbation is sufficiently small.
Figures 1(b)–1(d) shows some particular arrangements

of the above one-pair breather solution (R ¼ 1.15, α ¼ 0.4)
with the following values of phase shifts: θ1;2 ¼ 0,
θ1;2 ¼ π=2, and θ1;2 ¼ π, respectively (μ1;2 ¼ 0 for all
cases). The synchronization of the collision is obtained
for θ1;2 ¼ 0, thus leading to the formation of the high
amplitude peak at the origin (ξ ¼ 0, τ ¼ 0), as shown
in Fig. 1(b) [40,41]. A similar synchronized collision of
Akhmediev breathers has recently been studied in optics

experiments [30], by controlling the phase and velocity
differences between the breathers. Figure 1(c) shows
the quasiannihilation of breathers at the origin when
θ1;2 ¼ π=2. This corresponds to a small localized pertur-
bation of the continuous wave on the line ξ ¼ 0 (super-
regular case) [33,34]. Another particular interaction is
obtained for θ1;2 ¼ π [see Fig. 1(d)]. Then, the collision
point is just another maximum of either breather solution.
Each breather then appears seemingly without influence of
the collision process; this particular case is here called a
ghost interaction of breathers. Quasi-Akhmediev breathers
shown in Fig. 1(a) are periodic in neither time nor space.
They are periodic along the line connecting thepeakmaxima.
For the one-pair solution, shown in Figs. 1(b)–1(d), there is
only one collision point in the plane (ξ, τ).After this collision,
breathers propagate in opposite directions to infinity with a
constant group velocity Vg.
Below, we focus on the novel scenario of quasiannihi-

lation of breathers. When θ1 þ θ2 is exactly equal to π
[for example, θ1;2 ¼ π=2, like in Fig. 1(c)], the quasianni-
hilation is the most effective. In this case, at the moment
of breather collision (ξ ¼ 0) the perturbation δψ on the
continuous wave (i.e., ψ ¼ 1þ δψ) can be approximated
by the following formula:

δψ ≈
4iε coshðiαÞ cosð2τ sin α − θ1−θ2

2
Þ

coshð2ετ cos αÞ ; ð3Þ

where ε ¼ R − 1. The perturbation is localized in time and
can contain many oscillations, but their number decreases
with decreasing α. The number of oscillations also defines
the main perturbation frequency of the wave envelope. Note
that R and α also govern the angle that separates quasi-AB
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FIG. 2. (a),(b) Amplitude and phase profiles of the approximated perturbation (blue dashed line) calculated with Eq. (2) compared to
the exact profile (black solid line) of the quasiannihilated breathers at ξ ¼ 0 observed in Fig. 1(c). (c),(d) Amplitude and phase profiles
of the one-pair breather solution at ξ ¼ 7.5 with the same parameters as in Fig. 1(c).
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trajectories in the plane (ξ, τ). Moreover, the temporal
width of the initial perturbation increases with decreasing ε,
while its amplitude decreases, so ε plays a role of the small
parameter for our perturbation problem. Figures 2(a)
and 2(b) show the comparison between the approximated
perturbation and the exact profile of the quasiannihilated
breathers from Fig. 1(c). We observe that the simplified
approach of δψ gives a good fit of the small localized
perturbation even here with ε ¼ 0.15. In this work, we
choose a low value of the parameter α and a considerable
value of ε due to the restrictions of experimental setups.
An initially small localized perturbation of the continuous
wave grows at first exponentially. It is described by the
well-known equations for the linear stage of modulation
instability. Then it develops into a pair of breathers propa-
gating in opposite directions, as shown in Figs. 2(c)
and 2(d). We note that such regular solutions leave after
the propagation of breathers a continuous wave with a
different phase (the difference with the phase at infinity
is 4α) [34]. A process when the perturbed part of the
continuous wave almost returns to the initial state can be
treated as a local or approximate Fermi-Pasta-Ulam recur-
rence [42,43]. This idea is particularly interesting when we
discuss the whole N-pair class of superregular breathers,
which describes a wide variety of initial perturbations. Note
that, for the case of periodic perturbations, the Fermi-Pasta-
Ulam recurrence is described by Akhmediev breathers [44]
and also leads to the phase shift.

III. EXPERIMENTAL SETUPS

The experimental setups used to demonstrate the exist-
ence of superregular breathers in real physical systems,
i.e., water waves and nonlinear fiber optics, are depicted
in Figs. 3(a) and 3(b), respectively. All parameters of our
experiments are chosen to highlight the creation and
annihilation dynamics related to superregular breathers
as shown in Fig. 1(c) (in particular, when 0 < ξ < 5).
Each system is capable of synthesizing nontrivial wave
profiles in the temporal domain according to Eqs. (1)
and (2). Such an ideal excitation of the modulation

instability process is a prerequisite to exactly observe the
dynamics shown in Fig. 1 instead of more complex
behaviors [27]. In water-wave experiments, the initial wave
profiles are generated with a single-flap paddle located at
one end of a tank. An electric signal, calculated using the
exact mathematical expression describing the water surface
elevation, drives the paddle to directly modulate the surface
height in the temporal domain. The tank dimensions are
15 × 1.6 × 1.5 m3 [25,29]. In order to avoid wave reflec-
tions and perform clean experiments in the wave flume, the
influence of reflected waves from the beach on the breather
dynamics should be minimized as much as possible. Hence,
an absorbing beach is installed at the opposite end and we
place the last wave gauge 9 m from the flap. At this
position, the beach is at 3-m distance from the wave gauge.
Previous experiments, which have been conducted in the
same facility, have already shown that at this distance and
by choosing small amplitude carrier, the reflective waves
do not have any significant influence on the dynamics
of NLSE-localized structures [25,29]. To overcome the
restrictions related to the finite wave flume length, we split
the experiment into several stages and we reconstruct the
wave dynamics afterwards [29]. Namely, after starting the
breather wave generation repetitively with different initial
conditions given from theory, the wave profiles were
measured at 4.5 and 9 m from the flap. Measurements
at 9 m then serve as new initial conditions for the wave
maker in the next stage of the experiments. This process
is repeated 4 times to reach the propagation distance of
31.5 m. All measurements are then compared to the
theoretical predictions.
On the other hand, for light waves, the ideal excitation is

obtained through Fourier-transform optical pulse shaping
with phase and amplitude controls of the optical field in
the spectral domain. This optical processing is based on
spectral line-by-line shaping of a frequency comb source
and the subsequent amplification stage before coupling into
a 0.76- or 1.5-km-long segment of the same standard
single-mode optical fiber. After propagation, wave profiles
are then simultaneously measured in temporal and spectral
domains at the fiber output. The spectral shaping of an

FIG. 3. Experimental setups used to demonstrate the existence of superregular breathers based on (a) a water-wave tank and (b) a
nonlinear optical fiber workbench (OSO, optical sampling oscilloscope; OSA, optical spectrum analyzer).
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optical-frequency comb allows us to synthesize tailored
modulated initial conditions of the continuous wave
through a time-periodic pattern whose frequency is equal
to the spectral separation of the comb lines (i.e., here equal
to 20 GHz). We then restrict the theoretical parameters to
fit the limited time window over which we can inscribe
arbitrary localized perturbation on the continuous envelope
wave, but also observe the complete nonlinear dynamics.
For further details about the experimental setups, see
Appendixes B and C.

IV. RESULTS FOR WATER WAVES

Figure 4(a) shows the results of experiments carried out
in the water-wave tank by considering an initial localized

perturbation centered at t ¼ 0, and by using the same
parameters as in Figs. 1 and 2. After 18 m of propagation,
we clearly observe that such a perturbation develops into a
superregular pair of quasi-Akhmediev breathers that move
in opposite directions leaving behind (i.e., at the center
t ¼ 0) a nonperturbed plane wave. Note that the envelope
asymmetry between the two breathers has to be inserted
into initial conditions in order to take into account
breather propagation along the tank during the excitation.
Comparison of the experimental and theoretical results is
shown in Fig. 4(b) (see Appendix B). For each time series,
we also calculate the envelope profile corresponding to
the surface elevation of the wave trains to facilitate the
comparison with the theory and to highlight the analogy
with the light waves. The comparison between the mea-
sured wave profiles and the theoretical curves shows very
good agreement for both the amplitude and the phase of
the wave trains. Theoretical wave profiles are based on the
calculation of the free surface elevation from NLSE
solutions and variable ψ given by Eq. (1) to second order
in steepness (see Appendix B).
The reverse process implying the quasiannihilation of a

pair of quasi-Akhmediev breathers is depicted in Figs. 4(c)
and 4(d). Such nonlinear dynamics can be obtained by
applying time-reversal operation or reverse propagation,
which corresponds to θ1;2 þ π (i.e., ξ becomes −ξ in
Figs. 1 and 2). The parameters of the superregular one-
pair breather solution are also slightly changed due to
experimental restrictions, in particular, shifting parameters
(now μ1 ¼ −2 and μ2 ¼ 2, see Appendix A for discussion
of the shifting of μ1;2). We experimentally confirm here the
quasiannihilation dynamics of the initial pair of quasi-
Akhmediev breathers into a localized perturbation centered
at t ¼ 0, after 31.5 m of propagation. The agreement
with theoretical predictions is again excellent, thus dem-
onstrating the existence of superregular breathers in hydro-
dynamics, in particular, for describing the nonlinear
modulation instability in the framework of localized
perturbations. Note that amplitudes are slightly lower in
the experiments than theoretical prediction, in particular,
due to the dissipation naturally existing when performing
experiments in water-wave facilities [45].

V. RESULTS FOR LIGHT WAVES

The parameters of the superregular one-pair breather
solution are slightly changed (R ¼ 1.4, α ¼ 0.4, μ1 ¼ −2,
and μ2 ¼ 2) due to the restrictions of the optical workbench
used here (i.e., to prevent from any deviation from the
NLSE), in particular, with ε ¼ 0.4. However, the creation
of a pair of breathers propagating in opposite directions as
well as their quasiannihilation into a relatively small and
localized perturbation of the continuous wave (reversible
dynamics) are indeed observed even for a large value of ε,
in excellent agreement with the theoretical solutions.
All the experimental parameters are embedded into two
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FIG. 4. Experimental water-wave measurements of both crea-
tion and annihilation of a pair of breathers compared to
theoretical predictions. The initial conditions are generated taking
into account the breather propagation along the tank during the
excitation. (a),(c) Evolution of time series of surface elevation
measurement (blue lines) as a function of propagation distance
for creation and annihilation dynamics, respectively. The surface
elevation is kept in normalized units so that the amplitude of the
unperturbed wave train is 1 (in dimensional units, it corresponds
to 1 cm). The corresponding envelopes of the wave trains (black
lines) are calculated using the Hilbert transform (see Appendix B).
(b),(d) Theoretical predictions of time series of surface elevation
(red lines) as a function of propagation distance for creation and
annihilation dynamics, respectively. The envelope of the ana-
lytical solution is shown by black line.
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fundamental theoretical parameters R and α defining the
breather, which makes the design of such experimental
systems very difficult. Here, the use of the static line-by-
line shaping technique of the optical frequency comb also
implies the time-periodic generation of localized perturba-
tions. Future ultrafast optical systems based on a genuine
dynamic pulse-shaping technique might allow us to dem-
onstrate the annihilation of successive or isolated localized
perturbations with various shapes.
Figure 5 reports the development of a small localized

perturbation into a pair of breathers for two propagation
distances, when θ1;2 ¼ π=2. By comparing Fig. 5(a)
with Fig. 5(b), we clearly reveal that each element of the
measured periodic wave (i.e., a 50-ps time window)
perfectly agrees with theory. Note that no interaction occurs
between neighboring elements of the periodic pattern on
the studied distance. To complete our experimental char-
acterization in optics since no phase information is

readily available in the temporal domain, direct spectral
measurements of the evolving intensity profile are per-
formed. They are shown in Fig. 5(c). A strong spectral
broadening is observed when compared to the initial
spectrum of the perturbed continuous wave, thus con-
firming the nonlinear focusing of perturbations. The
excellent signal-to-noise ratio in our experiments also
allows the theoretical predictions to be satisfied over a
50-dB dynamic range.
Moreover, we study the reverse process corresponding

to the quasiannihilation of a pair of breathers into a
small localized perturbation of the continuous wave (i.e.,
θ1;2 ¼ π=2þ π), as shown in Fig. 6. Here, we confirm the
quasiannihilation dynamics after 760 m of propagation,
whereas for longer propagation (i.e., 1500 m) we note the
emergence of a single localized peak as already shown in
the space-time evolution from Fig. 1(c) when looking in
the reverse propagation direction. The corresponding spec-
tral signatures are reported in Fig. 6(c). In particular, the
quasiannihilation of breathers is associated with significant
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FIG. 5. Experimental light-wave measurements of the crea-
tion of a pair of breathers compared to theoretical predictions.
(a),(b) Evolution of the square root of intensity profiles in the
temporal domain as a function of propagation distance obtained
in experiments and corresponding amplitude profiles from
theory, respectively. The wave profiles are kept in normalized
units so that the amplitude of the unperturbed wave train is 1.
Note that we generate a periodic pattern of the exact solution in
our experiments due to the intrinsic features of the frequency-
comb-based system; each element of the pattern is delimited by
dashed lines. (c) Comparison of the corresponding power
spectra (blue solid lines for experiments and red open circles
for theory). Note that the theoretical spectra are sampled with
the repetition rate of the experimental pattern and the delta-
function component at the pump wavelength (i.e., the continu-
ous envelope wave) is not shown.
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FIG. 6. Experimental light-wave measurements of the quasian-
nihilation of a pair of breathers compared to theoretical pre-
dictions. (a),(b) Evolution of the square root of intensity profiles
in the temporal domain as a function of propagation distance
obtained in experiments and corresponding amplitude profiles
from theory, respectively. Note that we generate a periodic pattern
of the exact solution in our experiments due to the intrinsic
features of the frequency-comb-based system; each element of
the pattern is delimited by dashed lines. (c) Comparison of the
corresponding power spectra (blue solid lines for experiments
and red open circles for theory). Note that the theoretical spectra
are sampled with the repetition rate of the experimental pattern
and the delta-function component at the pump wavelength
(i.e., the continuous envelope wave) is not shown.
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spectral narrowing. Indeed, the energy distributed in the
multiple initial sidebands comes back to the pump and its
adjacent first harmonics before being redistributed during
the next nonlinear focusing.

VI. DISCUSSION AND CONCLUSION

From the mathematical point of view, breather solutions
of the NLSE are defined as unstable waves. Nonideal
conditions will induce the emergence of asymmetric wave
profiles or/and introduce some complex spatial recurrence
phenomenon. The unstable wave will diverge from the ideal
NLSE dynamics during propagation. However, in practice,
it is worth mentioning that the main signatures of breather
dynamics will persist and be strongly noticeable as reported
in previous experimental works in optics and using non-
ideal conditions. Note that exact breather solutions exist in
the case of more complex integrable models such as the
Hirota equation, taking into account higher-order terms
similar to third-order dispersion, nonlinear dispersion, etc.
(see Ref. [46] and the references therein). But, in the
presence of cavity boundary conditions and significant
dissipation, the issue of modulation instability would be
strongly impacted [47]. Even if the modulation instability
process is known as a possible common precursor of
complex breathing localized structures, the underlying
dynamics strongly depends on the dissipative nature of
the system. For instance, a continuous wave can be
destabilized by weak perturbations leading to the emer-
gence of well-known Turing patterns via modulation
instability. But more complex intermittent dynamics with
nontrivial periodicity can be observed in distinct configu-
rations of dissipative optical systems [48,49].
The experimental setups used here to demonstrate the

existence of superregular breathers in nearly conservative
physical systems, i.e., water waves and nonlinear fiber
optics, were designed in such a way as to prevent any
contribution from higher-order effects beyond the second-
order dispersion and the cubic nonlinearity. In particular,
the nature of such additional terms in generalized NLSEs
may strongly differ between both systems, thus making the
analysis and comparison of experimental results more
difficult. In optics, we prefer to avoid the detrimental
effects of Raman scattering and third-order dispersion,
whereas in hydrodynamics we try to restrain the impact
of higher-order dispersion and the mean flow. Our work
explicitly confirms the analogy of complex nonlinear
dynamics between wave propagation in optical Kerr media
and water waves and, therefore, in a general context of
weakly nonlinear dispersive media, when the NLSE accu-
rately approximates the governing equation of the media of
interest [50]. Note that the main differences between our
two experimental approaches lie in only two technical
aspects related to substantially different temporal scales of
breather waves: (i) the initial shaping of the perturbation on
the plane wave and (ii) the measurement of wave profiles.

In water-wave experiments, one directly drives the paddle
to modulate the surface height of the water in the temporal
domain on a time scale of seconds. In contrast, for light
waves, the ultrafast excitation on a time scale of pico-
seconds can only be obtained through Fourier-transform
optical pulse shaping with phase and amplitude controls of
the optical field in the spectral domain. For wave mea-
surements that are performed at a fixed point, we obtain
both amplitude and phase of the wave trains in the temporal
domain for water waves, whereas in optics, we record the
intensity profiles of a wave envelope in both time and
frequency domains.
In conclusion, we report the first successful experimental

evidence of fundamental theoretical “building blocks,”
called superregular breather waves, that describe the gen-
eral scenario of modulation instability. In particular, our
results show both creation and annihilation of nonlinear
oscillatory wave dynamics from or towards small localized
perturbations. As a consequence, this also constitutes
an experimental proof of time-reversal invariance of the
general scenario of modulation instability due to the
intrinsic properties of the NLSE. Unlike all previous
experimental studies of limiting cases of breather solutions,
we investigate here the unexplored class of small localized
perturbations related to the broad class of quasibreather
solutions and their interaction. In addition, we provide
simultaneous demonstrations in two distinct disciplines of
wave physics, namely, optics and hydrodynamics. Such a
multidisciplinary approach reveals once again the uni-
versal character of the modulation instability of continuous
envelope waves with respect to small perturbations through
different time scale analysis: on a second time scale for
water waves and on a picosecond time scale for light waves.
We believe that these results represent a major step towards
a global understanding of the nonlinear stage of modulation
instability, one of the most ubiquitous types of instabilities
in nature, as well as a first attempt to solve wave turbulence
in integrable systems. It is worth mentioning that our
exceptional capability to manipulate light waves and water
waves that confirms the frontier of nonlinear wave theory
at different physical scales will strongly impact the numer-
ous disciplines where modulation instability plays an
important role in pattern formation mechanisms.
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APPENDIX A: THEORETICAL TOOLS

We find a general multibreather solution of the focusing
NLSE by using a powerful integration technique—the
dressing method. Integration of the focusing NLSE in
the presence of a background plane wave requires the study
of the auxiliary linear Zakharov-Shabat system [22] with
the complex spectral parameter λ ¼ λRe þ iλIm. The sol-
ution of this system (wave function) has a cut on the real
axes where −A < λRe < A (here, A is amplitude of the
background wave). Each breather adds a simple pole to the
wave function at some point of the λ plane, including
possibly the cut (in this case, we obtain the Akhmediev
breather). Coordinates of the pole in the λ plane describe
the main breather properties (amplitude, group velocity,
period of oscillation, etc.). We use the Joukowsky trans-
form, which maps the cut onto the circle of unit radius and
the λ plane onto the outer part of this circle, so that the
coordinates of the pole are described by the radial and angle
coordinates R and α. Furthermore, each breather has two
additional parameters μ and θ, which describe phase shifts
in space and time and between different breathers.
Zakharov and Gelash have found that the cut in the λ

plane allows construction of such a configuration of poles
(when the poles are paired near the cut on the opposite
sides) that a corresponding solution must be a small
perturbation of the initial plane wave at the moment of
breather collision. These solutions were called superregu-
lar. The theoretical details can be found in Refs. [33,34].
Here, we briefly discuss how the simplest one-pair super-
regular solution [see Eq. (1)] can be obtained starting from
the general two-breather solution. The general two-breather
solution has four main parameters, R1;2, α1;2, and four
additional phase-shift parameters, μ1;2, θ1;2 (subscripts 1
and 2 correspond to the first and second breather). To
construct a one-pair superregular breather, first, we have to
demand the phases of the solution to be the same at �∞
by the τ coordinate at any fixed ξ, since a small perturbation
of the plane wave background cannot change the phase
of the whole solution at infinity. This happens when
breathers move in opposite directions and α1 ¼ −α2 ¼ α.
Interestingly, that in this case, if R1 ¼ R2 ¼ 1, the solution
is a pure plain wave. This means that two Akhmediev
breathers with opposite values of angular parameter com-
pletely annihilate each other. As a result, when R1 and R2

are close to 1, we observe quasiannihilation—two quasi-
Akhmediev breathers almost annihilate at the moment of

collision with the formation of a small perturbation of the
plane wave. Thus, the amplitude of the perturbation is
controlled by the difference of R1;2 from the unity. In
general, it is not necessary to demand that R1 ¼ R2 ¼ R,
but here we study only this simple case. Now, ε ¼ R − 1
can be considered as the small parameter in our theory.
The last important step is adjusting the phase parameters
μ1;2, θ1;2. In principle, annihilation can be observed at
wide range of μ1;2, θ1;2; however, as we mention in Sec. II,
the most effective annihilation occurs when θ1 þ θ2 is
close to π.
The detailed description of the impact of parameters μ

and θ can be found in Refs. [33,34]. Here, we only mention
that θ corresponds to phase shifts between breathers and
affects the shape of the perturbation. By changing μ, we can
shift the breather’s collision in time and space from the
point (0,0) to the point ξ0¼ðμ1−μ2Þ=4γ, τ0¼ðμ1þμ2Þ=4η,
where γ and η are defined in Eq. (1). However, it should
be noted that changing μ leads to the changing phase shifts
between the breathers as well. That is why we measure
different superregular perturbations in experiments with the
growth of perturbation and annihilation of two quasi-
Akhmediev breathers.

APPENDIX B: WATER WAVE TANK

All experiments are conducted in deep-water conditions,
meaning that the tanh of the product of the wave number
k0 ¼ 10 radm−1 and of the water depth of 1 m is the unity.
The single-flap wave-generating paddle is activated and
controlled by a hydraulic cylinder and the flap displace-
ment is checked to be proportional to the generated surface
height. The water-surface elevation at any given point is
measured by a capacitance wave gauge with a sensitivity of
1.06 V=cm and a sampling frequency of 0.5 kHz. In order
to excite the modulation instability in the tank, one has to
fix the initial amplitude a0 and the wave number of the
carrier wave k0. These two parameters define the steepness
a0k0 of the quasiregular wave. The frequency of the carrier
wave is given by the dispersion relation of linear deep-
water wave theory, ω0 ¼ ðgk0Þ1=2, where g is the gravita-
tional acceleration. The surface elevation ηðz; tÞ is related
to the NLSE solution ψ to second order in steepness as
follows:

ηðz; tÞ ¼ Re

�
ψðz; tÞeiðk0z−ω0tÞ þ 1

2
k0ψ2ðz; tÞe2iðk0z−ω0tÞ

�

ðB1Þ

The correspondence between the theory and experiment
can be retrieved by recalling that dimensional distance
z (m) and time t (s) are related to the previous rescaled
variables by z ¼ τ=ð ffiffiffi

2
p

k20a0Þ þ cgt and t ¼ 2ξ=ðk20a20ω0Þ,
with cg ¼ ω0=ð2k0Þ. Using these latter relations and
inverting the scaling, the analytical solution, multiplied
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by the carrier amplitude a0, is then written in dimensional
form, satisfying the hydrodynamic NLSE [4], in order to
define the exact initial conditions of modulation instability
and then observe the expected wave dynamics at any
desired location in the wave tank. This automatically
provides the initial wave profile at the wave maker and
consequently the signal that drives the paddle.
In Figs. 4(a) and 4(c), the initial conditions for the water

surface are determined by Eq. (B1) evaluated at z ¼ 0
and for the carrier amplitude a0 ¼ 0.01 m and steepness
a0k0 ¼ 0.1, while the breather parameters are R ¼ 1.15,
α ¼ 0.4, θ1;2 ¼ π=2þ π, μ1;2 ¼ 0 and R ¼ 1.15, α ¼ 0.4,
θ1;2 ¼ π=2, μ2;1 ¼ �2, respectively. Note that we added π
in the initial values of θ1;2 due to our choice of physical
scaling described above. At a specific distance, the tem-
poral variation of the envelope can be easily reconstructed
from the surface measurements, by use of the Hilbert
transform [23]. Deviations can be attributed to higher-order
effects that cannot be captured within the standard NLSE.
As expected, the agreement becomes worse when non-
linearity is significantly increased during the breather
compression process. An experimentally observed asym-
metry can be explained in terms of higher-order NLS
equations with odd terms such as the modified NLSE [51]
or similar [52,53] equations that account for the formation
of asymmetric wave packets.

APPENDIX C: OPTICAL WORKBENCH

The experimental setup shown in Fig. 3(b) is mainly
based on high-speed telecommunications-grade compo-
nents. The initial frequency comb is generated by the
implementation of a 20-GHz repetition rate pulse source
centered at 1550 nm based on the nonlinear compression
of an initial beat signal in a cavityless optical-fiber-based
device. More details about a similar fiber-based frequency
comb source can be found in Ref. [54]. The spectrum of
such a pulse source can be approximated as a series of
Dirac δ functions separated by the repetition rate; it is
characterized by a typical triangular spectrum on a loga-
rithmic scale whose spectral width depends on the non-
linear compression. Here, the source delivers nearly 3.3-ps
pulses with ∼5-W peak power. A programmable optical
filter (wave shaper) provides an extremely fine control of
the amplitude and phase characteristics of each line of the
frequency comb. The high resolution (∼1 GHz) of this
solid-state liquid crystal on silicon system allows us to
select or control individual spectral peaks of the comb.
Relative intensity (over a 50-dB dynamic range) and phase
differences of 24 sidebands with the central peak at
1550 nm (i.e., the background wave) are managed to
define the exact initial conditions of modulation instability.
An erbium-doped fiber amplifier is used to amplify and
fix the average power of the synthesized wave according to
the theoretical parameters (for each element of the periodic
pattern) before coupling into a 0.76- or 1.5-km-long

segment of the same standard single-mode optical fiber
(Corning SMF-28) with group velocity dispersion
β2 ¼ −21.1 ps2 km−1, linear losses αdB ¼ 0.2 dB km−1,
and nonlinearity γ ¼ 1.2 W−1 km−1. At the fiber output,
the optical intensity profile is characterized using an
ultrafast optical sampling oscilloscope with subpicosecond
resolution and a high-dynamic-range optical spectrum
analyzer with 2.5-GHz resolution.
The correspondence between theory and experiment can

be retrieved by recalling that the dimensional distance z (m)
and time t (s) are related to the previous normalized
parameters by z ¼ ξLNL and t ¼ τt0, where the character-
istic (nonlinear) length and time scales are LNL ¼ ðγP0Þ−1
and t0 ¼ ðjβ2jLNLÞ1=2, respectively. The dimensional field
Eðz; tÞ (W1=2) is E ¼ P1=2

0 ψ , P0 being the average power
of the perturbed continuous wave, here equal to 0.74 W.
In Figs. 5 and 6, the initial conditions at the fiber input are
ψ (R ¼ 1.4, α ¼ 0.4, θ1;2 ¼ π=2, μ2;1 ¼ �2, ξ ¼ −1, τ)
and ψ (R ¼ 1.4, α ¼ 0.4, θ1;2 ¼ π=2þ π, μ2;1 ¼ �2,
ξ ¼ −2.85, τ), respectively. By calculating spectral
(phase and intensity) profile differences between the initial
frequency comb and the corresponding Fourier transform
of the initial condition at the fiber input, one can apply the
resulting (phase and intensity) corrections as a pulse-
shaping mask to the wave shaper. Measured experimental
wave profiles in both time and frequency domains are
almost indistinguishable from predictions in Figs. 5 and 6,
since the cumulated fiber losses are quite low over the
propagation distance studied here. In particular, fiber
characteristics are chosen in accordance with both spectral
bandwidth and peak power of the wave evolving into the
fiber in order to avoid the potential impact of higher-order
dispersive or nonlinear effects [55]. Numerical simulations
based on the NLSE and the generalized nonlinear
Schrödinger equation, known to provide an accurate
description of the propagation of any optical wave in
optical fibers [55], are initially performed and then com-
pared to design the experimental test bed according to the
theoretical parameters.
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