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Abstract

Background: Evaluating the influence of climate variability on enteric disease incidence may improve our ability to predict
how climate change may affect these diseases.

Objectives: To examine the associations between regional climate variability and enteric disease incidence in New Zealand.

Methods: Associations between monthly climate and enteric diseases (campylobacteriosis, salmonellosis, cryptosporidiosis,
giardiasis) were investigated using Seasonal Auto Regressive Integrated Moving Average (SARIMA) models.

Results: No climatic factors were significantly associated with campylobacteriosis and giardiasis, with similar predictive
power for univariate and multivariate models. Cryptosporidiosis was positively associated with average temperature of the
previous month (b= 0.130, SE = 0.060, p ,0.01) and inversely related to the Southern Oscillation Index (SOI) two months
previously (b= 20.008, SE = 0.004, p ,0.05). By contrast, salmonellosis was positively associated with temperature (b
= 0.110, SE = 0.020, p,0.001) of the current month and SOI of the current (b = 0.005, SE = 0.002, p,0.050) and previous
month (b = 0.005, SE = 0.002, p,0.05). Forecasting accuracy of the multivariate models for cryptosporidiosis and
salmonellosis were significantly higher.

Conclusions: Although spatial heterogeneity in the observed patterns could not be assessed, these results suggest that
temporally lagged relationships between climate variables and national communicable disease incidence data can
contribute to disease prediction models and early warning systems.
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Introduction

Global climate change is projected to increase the frequency

and intensity of extreme climatic events such as floods, droughts

and cyclones [1,2]. These climatic conditions have been associated

with increased enteric disease risk [3–7]. Moreover, atypical

weather known to accompany climatic phenomena such as El Niño

have been implicated in enteric disease outbreaks worldwide [8].

Despite this evident association with climatic factors, our

understanding of the impacts of regional climate variability on

infectious disease risk is driven primarily by research focussed on

mosquito borne diseases such as malaria [9] and dengue [10] and

diseases such as cholera [11] and influenza [12]. Examining the

associations between regional climate linked to the El Niño/

Southern Oscillation (ENSO) and enteric disease will develop our

understanding of climatic triggers for enteric infections as well as

improve disease forecasts.

The effect of ENSO on global climate, through inter-annual

fluctuations in temperature, precipitation and atmospheric circu-

lation at distant locations is termed teleconnection. The New

Zealand climate shows a moderate teleconnection to ENSO at

seasonal to interannual scales, with generally cooler and drier

conditions during the El Niño phase and warmer and wetter

conditions during the La Niña phase [13]. Such climatic variations

are likely to affect enteric disease incidence either directly, through

effects on pathogen competence, or indirectly, by influencing

transmission pathways and host behaviour [14,15].

While locality specific impacts of climate change on disease risk

will depend on a number of interacting climatic and non-climatic

factors; larger scale, regional disease patterns are more likely to be

dominated by extrinsic climate forcing [16]. To date, there are no

published studies taking a comparative approach to assessing the

influence of such large scale environmental processes across

multiple diseases over an entire region. Such an analysis would

enable comparisons with other regions [17,18]. This would allow

the impacts of global climate variability and change on enteric

disease risk to be better evaluated.

New Zealand reports some of the highest enteric disease rates

among industrialised countries [19]. Associations between tem-

perature and salmonellosis [20] and rainfall and cryptosporidiosis

and giardiasis [21,22] as well as distinct seasonal disease patterns

[16] suggest that climate variability is an important determinant of
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enteric disease. Importantly, the need for increased research

around climate change and infectious disease risks to inform

adaptation responses in New Zealand has been identified as a

priority [23].

Seasonal Auto-Regressive Moving Average (SARIMA) model-

ling is a statistical approach to model and forecast time series

which are non-stationary and where the observations are

seasonally dependant and autocorrelated [24]; key characteristics

of our dataset. When modelling the association between climate

variation and cryptosporidiosis incidence in Australia, model

assessments indicated that the seasonal ARIMA model had better

predictive ability than Poisson models [25], with similar results

obtained when comparing regression models for salmonellosis

transmission in Australia [26]. In this study, we use SARIMA

models to analyse national enteric disease incidence in relation to

ENSO as measured by the Southern Oscillation Index (SOI) and

weather variability (average monthly temperature and rainfall).

Methods

Case data
All notified, laboratory confirmed cases of campylobacteriosis,

salmonellosis, cryptosporidiosis and giardiasis during the period

1997–2008 in New Zealand were obtained from the National

Notifiable Disease Surveillance system (EpiSurv), operated by the

Institute of Environmental Science and Research (ESR) for the

Ministry of Health. To better evaluate the temporal pattern of

associations between climate and disease notifications, only cases

with a reported onset date were used. In total, 79193 cases of

campylobacteriosis, 14084 cases of (non-typhoidal) salmonellosis,

8092 cases of cryptosporidiosis and 10424 cases of giardiasis were

included in the analysis.

Using onset date, cases were aggregated into counts by month

over the study period. National incidence rates were calculated

using the monthly number of cases as the numerator and the 2001

census population as the denominator [27]. To lessen the effect of

extreme values (e.g. outbreaks) on model outcomes and to

normalise the data, the natural logarithm of monthly incidence

rates was used (hereafter referred to as monthly incidence).

Climate data
For 1997–2008, daily surface average temperature (uC) and

average rainfall (millimetres) were obtained from surface temper-

ature and precipitation time series records constructed from

gridded climate data and spatially averaged over New Zealand as

specified by latitude (35.25S) to (47.75S) and longitude (166.25E)

to (177.75E) [28]. This data source has been used extensively for

the association of climatic factors with vector borne diseases in the

Pacific [29] vector distribution in Gambia [30] and salmonellosis

in New Zealand [20]. The daily values were aggregated monthly.

The Southern Oscillation Index (SOI) is the most commonly

used index to measure the intensity of an ENSO event. It is based

on the differences in atmospheric pressure between Tahiti in the

eastern equatorial Pacific and Darwin, Australia in the west

Pacific, expressed as a standard deviation from the norm. Negative

anomalies are generally associated with El Niño events and

positive anomalies with La Niña events. The monthly SOI was

obtained from the Australian Bureau of Meteorology. All climate

data covered the same time intervals as the disease data.

Data analysis
In order to investigate delayed effects of climate variability on

disease outcomes, climate variables were temporally lagged by up

to two months. All climate variables that showed a cross

correlation with disease incidence up to a lag of two months were

included in the model. A multivariate seasonal autoregressive

integrated moving average (SARIMA) model was used to examine

the combined effect of climatic variables on enteric disease

incidence for each of the diseases separately. As both the

dependent and independent variables exhibited periodicity, they

were seasonally differenced before analysis (as described below).

Model specification
Using incidence data from 1997–2007, a SARIMA model was

fitted to disease data and used to predict incidence rates for each of

the four diseases in 2008 [31]. To check for seasonal effects, the

time series plot of monthly incidence was examined and an

Augmented Dickey-Fuller (ADF) test was used. To achieve a

stationary time series, monthly incidence was seasonally differ-

enced by replacing each observation by the difference between

itself and the observation a year previously. The climatic variables

were also seasonally differenced.

To examine the independent contribution of climatic variables

to enteric disease incidence a Seasonal ARIMA model that

includes seasonality, referred to as SARIMA(p, d, q)(P, D, Q),

where p denotes the AR order, d the differencing order and q the

MA order that was used. P, D and Q denote the seasonal order of

AR, differencing, and MA, respectively. Akaike’s Information

Criterion (AIC) was used to assist model selection [32]. To check

for seasonal effects, and help identify the model parameters, the

Autocorrelation function (ACF) and partial autocorrelation

function (PACF) were analysed. The residuals were further

examined for autocorrelation using ACF and PACF.

Goodness of fit was examined through Portmanteau test for

white noise in residuals and a scatter plot of residuals versus fitted

values. Furthermore, the disease dataset was divided into two: one

(1997–2007) was used for the model fitting process (parameter

estimation), and another for prediction (2008). To verify model fit,

the predictive ability of both models (with and without climatic

variables) was assessed using the Diebold- Mariano test, which

tests the null hypothesis of equal accuracy using Mean Absolute

Percentage Error (MAPE) and Mean Absolute Error (MAE).

Lower MAPE and MAE values indicate a better fit of the data.

Finally, a plot of time series on the cumulative sums of actual and

predicted values was used to assess model validity. All of the

analyses were conducted using STATA v11.1 (StataCorp LP,

College Station, TX, USA).

Results

Descriptive analyses
Descriptive statistics for the disease notification and weather

variables are presented in Table 1. Correlations between the

differenced independent variables indicate that relationships

between monthly surface temperature, rainfall and SOI were

neither strong nor statistically significant (Table 2).

Model specification
The log transformed and differenced time series showed less

periodicity than the original monthly incidence, with no apparent

trend (Figure 1). The transformed time series were considered

stationary based on ADF tests (Table 3).

For campylobacteriosis, the best model was SARIMA (1, 0, 0)

(2, 0, 0)12 (Log-likelihood = 23.63, AIC = –37.26) (Table 4).

Campylobacteriosis incidence was positively associated with the

temperature of the previous two months, but there was no

relationship with precipitation or SOI (Table 5). The model

Climate Variability and Enteric Disease Incidence
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estimated without the climatic variables was a slightly better fit

than the model with these variables (Table 4).

For salmonellosis, a SARIMA (1, 0, 0) (1, 0, 0)12 model was the

best fit (Log-likelihood = –20.37, AIC = 48.74) (Table 4). The

temperature and SOI of the current month, and lagged by 1 and 2

months were associated with incidence, but there was no

relationship with precipitation (Table 5). The model estimated

with the climatic variables was a better fit than the model without

these variables (i.e. the log-likelihood increased, while AIC

decreased) (Table 4).

For cryptosporidiosis, the best fitting model was SARIMA (1, 0,

0) (1, 0, 0)12 (Log-likelihood = –78.53, AIC = 165.06) (Table 4).

Temperature and precipitation of the current month, temperature

(lagged by 1 and 2 months) and the SOI (lagged by 2 months) were

each associated with cryptosporidiosis onset (Table 5). The model

estimated with the climatic variables was a better fit than the

model without these variables (Table 4).

For giardiasis, the best model was SARIMA (1, 0, 0) (1, 0, 1)12

(Log-likelihood = –20.37, AIC = 48.74) (Table 4). The temper-

ature and precipitation of the current month and SOI of the

previous 2 months were associated with disease (Table 5). There

was no apparent difference in models estimated with the climatic

variables compared to models without these variables (Table 4).

For all four diseases, the plots of the ACF and PACF of the

residuals of the chosen models showed no significant temporal

correlation between residuals at different lags (Figure 2) and the

scatter plot of the predicted values against the residuals showed no

discernible pattern (Figure 2). Portmanteau Q statistics for

campylobacteriosis, salmonellosis, cryptosporidiosis, and giardiasis

of 51.22, 53.09, 51.22 and 41.85, respectively.

Validation model
Out-of-sample predictions for the year 2008 were compared

with the observations. The chosen models (SARIMA (1, 0, 0) (2, 0,

0)12 for campylobacteriosis, SARIMA (1, 0, 0) (0, 0, 1)12 for

salmonellosis, SARIMA (1, 0, 0) (1, 0, 0)12 for cryptosporidiosis

and SARIMA (1, 0, 0) (1, 0, 1)12 for giardiasis) were realistically

appropriate models for forecasting incidence (Figure 3). Results of

the Diebold-Mariano test for forecasting accuracy indicated that

for salmonellosis and cryptosporidiosis the multivariate models

were better, while values for the unadjusted and multivariate

models for campylobacteriosis and giardiasis were not significantly

different from each other (Table 6). Finally, a plot of the predicted

and actual rates along with the cumulative sums of actual and

predicted values for disease incidence showed that the models were

a reasonable fit (Figure 3).

Discussion

The findings from our study suggest that inter annual climate

variability, indicated by the ENSO phenomenon (measured by the

SOI) in association with regional temperature and precipitation

has a general influence on enteric disease incidence. In particular,

we have shown that regional climatic factors are significant

predictors of salmonellosis and cryptosporidiosis but not campy-

lobacteriosis or giardiasis.

Temperature and SOI of the current month and SOI of the

previous month were positively and significantly associated with

monthly salmonellosis incidence, with a dominant summer peak in

cases (Figure 1b). These results are consistent with previous

research, globally [18] and in New Zealand [20]. Due to the

ENSO driven teleconnection patterns for New Zealand, positive

SOI or La Niña like conditions are typically characterised by

anomalous north-easterly airflows [33], bringing warmer, wetter

weather to most of the country [34]. Given the thermophilic

nature of Salmonella spp. [35], an increase in summer temperature

could increase pathogen multiplication [36]. This increased

pathogen load could subsequently be easily spread through food

[37], water [38] or contaminated environments [39]. As food is the

dominant source of Salmonella in many countries [40,41], an

increase in summer temperatures could increase the risk of food-

borne transmission. There may be a temporal lag (delay) between

climate variation and increase in disease notification where

contamination is related to food production or distribution [42].

Sustained warmer temperatures could increase length of trans-

mission seasons, enhancing opportunities for food handling errors

leading to enteric disease outbreaks [43]. Indeed, enhanced food

hygiene regulations over time may be partly responsible for recent

weakening of the relationship of salmonellosis with temperature in

New Zealand [20].

Livestock are also an important enteric pathogen reservoir in

New Zealand with salmonellosis (Salmonella brandenburg) inci-

dence in humans related to the lambing season [44]. Therefore, it

is plausible that agricultural runoff and subsequent contamination

of drinking water supplies has a role to play in disease

transmission. Private well water, prone to contamination has been

associated with increased salmonellosis risk [45]. Such a transmis-

sion pathway would also result in a delayed disease response.

Interestingly, despite the distinct epidemiologies of different

Salmonella serotypes [46], broad associations with regional climate

were detected in our study. Nonetheless, this delayed effect is

similar to those reporting positive lagged relationships between

salmonellosis and temperature in England and Wales [18,47],

Canada [48] and Australia [49].

Analysis of long term data in New Zealand shows a 0.5uC
warming since 1950 [50], a decrease in the diurnal temperature

range [51], fewer days with temperatures below 0uC and an

increase in the number of days with temperatures above 30uC in

warmer locations [52]. Although sub national patterns in the

intensity and range of these effects are acknowledged, based on the

results of the present study, increasing temperatures in New

Table 1. Descriptive statistics for the disease and climatic
variables in New Zealand, during 1997–2008.

Variable Mean ±SD Minimum Maximum

Campylobacteriosis
incidence*

14.9065.88 4.84 34.33

Salmonellosis incidence* 2.8561.24 0.96 6.74

Cryptosporidiosis incidence* 1.6461.43 0.24 5.94

Giardiasis incidence* 1.9360.48 0.96 3.48

Rainfall (mm) 142.16635.50 63.00 240.39

Temperature (uC) 10.7163.46 4.63 17.62

SOI 1.98614.79 –37.70 42.90

*Average monthly incidence /100000 population.
doi:10.1371/journal.pone.0083484.t001

Table 2. Spearman’s correlation coefficients between
independent climatic variables.

Variable Temperature (6C) SOI

Rainfall (mm) 0.13 0.007

Temperature (uC) 0.01

doi:10.1371/journal.pone.0083484.t002
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Figure 1. Time series of raw and log transformed monthly incidence (after differencing) of campylobacteriosis (A-B), salmonellosis
(C-D), cryptosporidiosis (E-F), and giardiasis (G-H) in New Zealand, 1997-2008.
doi:10.1371/journal.pone.0083484.g001

Table 4. Regression coefficients of the chosen SARIMA models (with and without climatic predictors) on the monthly incidences
of campylobacteriosis, salmonellosis, cryptosporidiosis and giardiasis in New Zealand.

Variable Model without climate variables abcd Model with climate variables efgh

b SE p-value b SE p-value

CAMPYLOBACTERIOSIS

Autoregression 0.79 0.05 ,0.001 0.79 0.06 ,0.001

Seasonal autoregression (1) –0.73 0.09 ,0.001 –0.73 0.10 ,0.001

Seasonal autoregression (2) –0.28 0.10 ,0.01 –0.28 0.10 ,0.01

Temperature -2months previous 0.01 0.01 0.48

SALMONELLOSIS

Autoregression 0.71 0.07 ,0.001 0.63 0.07 ,0.001

Seasonal autoregression –0.50 0.06 ,0.001 –0.48 0.07 ,0.01

Temperature current month 0.11 0.02 ,0.001

SOI current month 0.005 0.002 ,0.05

SOI previous month 0.005 0.002 ,0.05

CRYPTOSPORIDIOSIS

Autoregression 0.75 0.04 ,0.001 0.73 0.05 ,0.001

Seasonal autoregression –0.56 0.08 ,0.001 –0.61 0.08 ,0.001

Temperature previous month 0.13 0.04 ,0.01

SOI -2months previous –0.008 0.004 ,0.05

GIARDIASIS

Autoregression 0.44 0.08 ,0.001 0.39 0.08 ,0.001

Seasonal autoregression –0.24 0.11 ,0.05 –0.24 0.13 0.06

Seasonal moving average –0.85 0.23 ,0.001 –0.78 0.18 ,0.001

Temperature current month 0.02 0.01 0.14

Precipitation current month –0.0004 0.0003 0.29

SOI -2months previous –0.001 0.001 0.40

aCampylobacteriosis, log-likelihood = 23.63, AIC = –37.26.
bSalmonellosis, log-likelihood = –20.37, AIC = 48.74.
cCryptosporidiosis, log-likelihood = –78.53 AIC = 165.06.
dGiardiasis, log-likelihood = 39.10 AIC = –68.20.
eCampylobacteriosis, log-likelihood = 23.39, AIC = –34.79.
fSalmonellosis, log-likelihood = –4.65, AIC = 29.31.
gCryptosporidiosis, log-likelihood = –68.00, AIC = 154.00.
hGiardiasis, log-likelihood = 39.48 AIC = –62.97.
doi:10.1371/journal.pone.0083484.t004

Table 3. Results of the Augmented Dickey-Fuller test of the transformed, seasonally differenced time series for all four diseases.

Variable{ Dickey-Fuller test for unit root

ta
` 1% 5% 10%

Campylobacteriosis –3.97** –3.50 –2.88 –2.57

Salmonellosis –5.39** –3.50 –2.88 –2.57

Cryptosporidiosis –4.18** –3.50 –2.88 –2.57

Giardiasis –10.00** –3.50 –2.88 –2.57

{Log-transformed and seasonally differenced monthly incidence /100000 population.
**Significant at the 0.01 level.
`is the computed ADF test statistic which is compared to the critical values at significant levels a= 0.01, 0.05 and 0.1. If the test statistic is less than the critical value, then
the null hypothesis is rejected, and thus the variable is stationary.
doi:10.1371/journal.pone.0083484.t003
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Zealand could favour higher Salmonella loads in the environment

due to the well-established link between bacteria and temperature.

At the same time, warmer temperatures could also affect social

habits such as increased outdoor activity, potentially enhancing

opportunities for Salmonella transmission. In New Zealand, a 15%

increase in salmonellosis for every 1uC rise in average monthly

temperature has been predicted [20]. Similarly, in Australia,

compared with the Years Lost due to Disabilities (YLDs) in 2000,

‘‘increasing temperature and demographic changes may lead to a

9%–48% increase in the YLDs for Salmonella infection by 2030 and

a 31%–87% increase by 2050 in the temperate region, and a

51%–100% increase by 2030 and an 87%–143% increase by 2050

in the subtropical region, if other factors remain constant’’ [53].

Importantly, in Europe, projections of the economic costs of

additional cases of salmonellosis resulting from climate change

effects in the period 2071–2100 range from 140 million Euro to

280 million/year [54]. Taken together, these findings suggest the

potential for salmonellosis to become a major social and economic

liability as a consequence of climatic changes in New Zealand.

For cryptosporidiosis, average temperature of the previous

month was positively associated with monthly incidence, while

SOI two months previously was inversely related with incidence. A

similar positive association with temperature of the previous

month has been reported in the United States [4], Australia [25]

the United Kingdom [55] and previously in New Zealand [22]. In

the previous New Zealand study, authors suggested that recrea-

tional activities such as swimming and outdoor camping may be

important in driving transmission in autumn (time of year when an

association with temperature was reported [22]).

A spring peak in cryptosporidiosis (Figure 1c) is thought to be

caused by agricultural practices, notably the birth of livestock [56].

Significantly higher cryptosporidiosis rates in rural areas [21] and

outbreaks linked to farm visits [57] support this. Thus, the positive

association with temperature could be due to an indirect effect of

climate, whereby seasonal exposure to high pathogen loads

typically takes place in warmer conditions. Conversely, the spring

season is when the strongest linear relationship between the state

of the Southern Oscillation (measured by the SOI) and New

Zealand temperature and precipitation anomalies is seen [58].

Although the lagged response may be attributed to reporting

delays, we attempted to minimise this bias by using the case onset

date rather than reporting date.

The negative association of cryptosporidiosis with SOI in this

study suggests a link with El Niño like conditions, which, in New

Zealand, are typically characterised by an increased frequency of

cold south-westerly airflows [34], leading to decreased tempera-

tures and drier than usual conditions [59]. This could have

important implications for the predominantly waterborne Crypto-

sporidium spp. In England and Wales, 20% of waterborne disease

outbreaks in the twentieth century were due to extended periods of

low rainfall, as opposed to 10% associated with heavy rainfall [61].

A global analysis of diarrhoeal incidence in children found a

negative linear association with rainfall [62], consistent with the

results of a cross-sectional study in the Pacific Islands [63]. In

Australia, a negative relationship between weekly rainfall, relative

humidity, and cryptosporidiosis incidence, and a positive associ-

ation with temperature, suggest that extended dry periods may

also affect transmission [64]. Negative values of the SOI are linked

to reduced peak flow and flood frequency in major river systems in

New Zealand [60]. Droughts or prolonged dry periods can lead to

greater effluent pathogen concentration in water sources which

can be flushed out by subsequent periods of rainfall. Such

conditions have been known to overwhelm water supply

infrastructure in the past leading to cryptosporidiosis outbreaks

[7,65]. Transmission through waterways may also partly explain

the lag between SOI and disease incidence found here.

Consistent with global trends attributed to anthropogenic

climate change, increased variability in rainfall patterns and

drought intensity have been observed in New Zealand [52].

Moreover, relationships between river flow regimes and inter-

decadal climatic changes [66] as well as a relationship between

SOI and water quality (independent of changes in flow linked to

rainfall variability) [67] have been reported. Such changes may be

influential in driving future patterns of waterborne cryptosporid-

iosis. However, the effect of rainfall on disease incidence can be

modified by the quality of drinking water supplies, with better

quality drinking water providing a protective effect [21]. Thus,

improving the quality of drinking water supplies is likely to be a

useful adaptation measure against expected rainfall extremes.

Changes in rainfall patterns could also have important

consequences for New Zealand pasture production [68]. Given

the importance of zoonotic transmission from livestock [56],

changing pasture production could result in geographical shifts in

agricultural systems/practices with follow on effects for health.

Exploring the influence of interactions between climatic and land

use processes on enteric disease risk would provide a useful

baseline for future enteric disease projections.

The lack of an apparent relationship of climatic factors with

campylobacteriosis is in keeping with the literature which shows

mixed results. In Australia an inverse relationship between weekly

temperature and campylobacteriosis cases in Adelaide was shown,

while a positive relationship was reported in Brisbane [69].

Previously, a spatial analysis of campylobacteriosis determinants in

New Zealand found that climate was not significantly associated

with the rate of human infections [70,71]. A detailed examination

of campylobacteriosis seasonality in New Zealand and other

European countries found that the seasonal peak in New Zealand

was the most variable [72], indicating a seasonal trigger that may

be unrelated to climate. One possible reason for this finding is that

historically, retail poultry has been the dominant source of

Table 5. Spearman’s rank cross correlation coefficients of
(seasonally differenced) disease incidence and climatic
variables in New Zealand.

Variable Lag0 Lag1 Lag2

CAMPYLOBACTERIOSIS

Temperature - - 0.15

Rainfall - - -

SOI - - -

SALMONELLOSIS

Temperature 0.46 0.21 0.32

Rainfall - - -

SOI 0.31 0.30 0.32

CRYPTOSPORIDIOSIS

Temperature 0.27 0.20 0.16

Rainfall -0.15 - -

SOI - - 0.24

GIARDIASIS

Temperature 0.13 - -

Rainfall -0.12 - -

SOI - - 0.24

doi:10.1371/journal.pone.0083484.t005

Climate Variability and Enteric Disease Incidence
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Campylobacter infection in humans [73], with infections being

positively associated with consumption of inadequately cooked

chicken [74], fast food outlet density [71] and urban residence

[70]. This suggests that the summer peak seen here may be more

reasonably related to activities such as summer barbequing and

consumption of undercooked chicken [75], or contamination rates

in chicken flock [76]. As a significant decline in campylobacteriosis

in New Zealand following industry led interventions has been

noted [77], it is likely that strengthening food production practices

and food hygiene may be an adequate adaptation to reduce

campylobacteriosis risk with climate change [78]. The drastic 54%

decline in campylobacteriosis cases in 2008 compared with

previous years [77] may also indicate why the model forecasts in

this study did not perform that well (Figure 3).

The absence of a relationship between climate and giardiasis

rates seen here is in contrast to an earlier study in which spatial

patterns in giardiasis notifications were positively, albeit weakly,

associated with temperature [21]. In New Zealand, high disease

rates in urban areas [79] and a significant increase in infection risk

linked to changing baby diapers has been reported [80]. This

evidence coupled with the relatively small late summer-early

Figure 2. Autocorrelation plots, partial autocorrelation plots of the residuals and scatter plot of residuals against the predicted
values of the seasonal autoregressive moving average SARIMA model fitted to the natural logarithm differenced disease
incidence. Campylobacteriosis SARIMA (1, 0, 0) (2, 0, 0)12 (A-C), salmonellosis SARIMA (1, 0, 0) (1, 0, 0)12 (D-F), cryptosporidiosis SARIMA (1, 0, 0) (1, 0,
0)12 (G-I), giardiasis SARIMA (1, 0, 0) (1, 0, 1)12 (J-L). The x-axis gives the number of lags in months and the grey shaded areas represent the 95%
confidence interval.
doi:10.1371/journal.pone.0083484.g002
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autumn increase in cases (Figure 1d) suggest that human activity

may be primary drivers of giardiasis incidence [16].

The topography of New Zealand plays an important role in

affecting the influence of global circulation fluctuations on local

temperature and rainfall patterns [34] as well as amplifying

differences in regional patterns [33]. Our nationally aggregated

analysis was unable to capture spatial heterogeneity in climate-

disease associations [69] (Figure S1). Geographical differences in

the relative importance of different transmission mechanisms were

also not considered. Nonetheless, large-scale variations in atmo-

spheric circulation in the Southern Hemisphere (represented by

the SOI) influence local weather characteristics in New Zealand

through their effects on rainfall extremes [81], river flow [60],

temperature and mean sea level pressure [82] and annual

snowlines on glaciers [83]. Thus, there is a growing body of

evidence showing a link between regional weather response and

atmospheric circulation. This suggests that evaluating the influ-

ence of inter-annual climate variability in association with regional

climate may help identify disease sensitivity to future changes in

global and local climate.

Counter-intuitively, large scale climate indices, of which the

SOI is one, can outperform local climatic factors when predicting

species’ dynamics [84]. While local measures of climate may fail to

capture the complexity of the relationships between local weather

and ecological processes, climate indices may reflect these

associations better, although incompletely [84]. As climate indices

represent a composite of climatic variables it may be argued that

they are better indicators of natural climate variation than single

weather variables [85]. In New Zealand, ENSO related variations

in atmospheric circulation are dominant drivers of regional

temperature and precipitation patterns [86].

This study has implications for development of adaptation

strategies in response to predicted climates. Adaptation responses

such as environmental and food safety regulations are more

applicable at a regional scale as opposed to a local community

scale. ENSO parameters may contribute to development of early

warning systems for enteric diseases. Such systems would probably

provide the most useful predictions during El Niño or La Niña

events. The fact that El Niño events can often be forecast several

months in advance can increase the prediction lead time for early

warning systems based on ENSO parameters. Although the link

between atmospheric circulation and regional temperature and

precipitation is widely acknowledged, this study highlights the

limited understanding of interactions between the two in driving

disease patterns. Although preliminary, this study provides key

considerations for regional climate change adaptation options in

New Zealand.

Our study was limited by data quality, as notification data may

vary in space and time due to reporting biases and other disease

surveillance artefacts. We attempted to reduce this bias by

considering monthly incidence and the onset date of cases.

However, no major changes were made regarding the surveillance

of these notifiable diseases from 1997–2008 suggesting that the

completeness of reporting is likely to have remained the same over

this time period. Although notified cases represent only a portion

of actual incidence in the community [87], the main aim of this

study was to study the temporal association between disease

incidence and climate. It seems unlikely that there were substantial

seasonal variations in reporting which might have introduced bias.

The patterns reported here could differ by pathogen strain [88];

however strain specific information was not available. As the

analyses were done nationally, spatial heterogeneity in climate

could not be accounted for. A related limitation is the temporal

scale of the study. While monthly data have been used for similar

studies [31], weekly data might be more appropriate, particularly

to establish effects of heavy rainfall. Finally, population factors

influencing disease incidence like demographics, socio-economic

characteristics and immunity status and pathogen level factors like

reservoirs and virulence were not considered. In New Zealand,

poor communities are less likely to seek medical attention for

minor enteric diseases than rich communities, meaning that the

completeness of notification varies by socio economic position

[89]. While disease incidence is mediated by a variety of

interacting factors, hygiene practices and socio-economic factors

do not vary on a monthly timescale and so cannot confound the

temporal associations reported here.

Conclusions

This study complements the understanding of the relationship

between climatic variables and enteric disease incidence by

characterising the association between regional weather, a

measure of inter-annual climate variability and the incidence of

specific enteric diseases in New Zealand. Salmonellosis was

positively associated with warmer, wetter conditions while

cryptosporidiosis incidence was linked to cooler, drier conditions.

Figure 3. SARIMA model of forecasting weather variation in New Zealand (A-C-E-G). Actual monthly incidence /100000 population (black
line), rates predicted by the chosen SARIMA models for each disease (grey dashed line) and rates predicted for the validation period ( January to
December 2008) (red dashed line). (B-D-F-H) Cumulative monthly incidence /100000 population of the actual rates (black line) and rates predicted by
the chosen SARIMA models for each disease (red dashed line) from January to December 2008 (validation period). Campylobacteriosis (A-B),
salmonellosis (C-D), cryptosporidiosis (E-F), giardiasis (G-H). The y axis gives the monthly incidence and the x axis represents time in months.
doi:10.1371/journal.pone.0083484.g003

Table 6. Forecasting accuracy of SARIMA unadjusted and multivariate (with climatic predictors) models for all four diseases.

Unadjusted Multivariate

MAPE MAE MAPE MAE

Campylobacteriosis 1.29 0.16 1.28 0.16

Salmonellosis 1.01 0.21 0.90 0.19*

Cryptosporidiosis 1.17 0.31 1.14* 0.33*

Giardiasis 1.41 0.14 1.33 0.14

*Significant at the 0.05 level.
doi:10.1371/journal.pone.0083484.t006
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These results highlight regional climate forcing as a factor

influencing enteric disease incidence, emphasising the potential

effect of future regional climate change on enteric disease risk.

Such an analysis offers insights into potential adaptation options

for climate change related health impacts in New Zealand. By

analysing historical disease patterns, such investigations can

enhance disease prediction models [90], identify diseases that are

potentially useful markers of changes in global climate or local

weather [91] and contribute to the development of climate based,

early warning systems.

Supporting Information

Figure S1 Mean monthly temperature (B) and rainfall
(C) across four cities in New Zealand (A). The graphs show

average monthly temperature and rainfall values in Nelson, Taupo

and Christchurch as correlated with average monthly values in

Auckland. Values in red are those for Auckland.
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