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PURPOSE. We investigated the expression profile of and identify all microRNAs (miRNAs) that
potentially regulate inflammation in a light-induced model of focal retinal degeneration.

METHODS. Sprague Dawley (SD) rats aged 90 to 140 postnatal days were exposed to 1000 lux
white fluorescent light for 24 hours. At 24 hours, and 3 and 7 days after exposure, the animals
were euthanized and retinas processed for RNA. Expression of 750 miRNAs at 24 hours of
exposure was assessed using low density array analysis. Significantly modulated miRNAs and
their target mRNAs were used to assess the potential biological effects. Expression of seven
miRNAs, potentially modulating inflammation, was investigated across a protracted time
course after light exposure using quantitative PCR. Photoreceptor cell death was analyzed
using TUNEL.

RESULTS. Intense light exposure for 24 hours led to differential expression of a number of
miRNAs, 37 of which were significantly modulated by 2-fold or more. Of those, 19 may
potentially regulate the inflammatory immune response observed in the model. MicroRNAs
-125-3p, -155, -207, -347, -449a, -351, and -542-3p are all upregulated at 24 hours of exposure
along with peak photoreceptor cell death. The MiRNAs -542-3p and -351 reached maximum
expression at 7 days after exposure, while -125-3p, -155, -207, -347, and -449 reached a peak
expression at 3 days.

CONCLUSIONS. The results of the study show that miRNAs are modulated in response to light
damage (LD). These miRNAs potentially regulate the inflammatory immune response,
triggered as a result of the acute retinal damage, which is a key mediator of retinal
degeneration in this model and age-related macular degeneration.
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MicroRNAs (miRNAs) are small evolutionarily conserved
noncoding RNA sequences that modulate a range of

biological processes,1 including cell death2,3 and inflamma-
tion.4 They are approximately 22 to 25 nucleotides long and
provide a second layer of posttranscriptional gene regulation by
targeting messenger RNAs (mRNAs) for degradation or repres-
sion of translation,5 and are found in abundance in the central
nervous system (CNS).6,7

Age-related macular degeneration (AMD) is a progressive
degenerative disease of the retina that causes irreversible vision
loss and accounts for up to 50% of central blindness cases
worldwide. The involvement of inflammatory processes in the
pathogenesis of AMD was documented in the 1980s8 and its
central role confirmed by gene association studies.9–11 Subse-
quently, a large number of inflammatory factors and cofactors,
particularly in the complement pathways, have been implicated
in the disease process (see review12).

The acute retinal light damage (LD) model in rats has
features in common with dry AMD,13,14 including cell death
and inflammation.14 This model has been used to investigate
the involvement of chemokines and macrophages in the
progression of retinal degeneration.15 Following LD, a lesion
formed by the death of photoreceptors and atrophy of the RPE
presents on the visual axis and enlarges over time, even in the
absence of the damaging stimulus.14 In this model photore-
ceptor death is associated with expression of chemokines by

Müller glia, recruitment of macrophages, and deposition of
C3,16 and attenuation of macrophage recruitment, by silencing
expression of the chemokine Ccl2, reduces photoreceptor cell
death.17 Similar patterns of chemokine expression, macrophage
recruitment, C3 deposition, and photoreceptor cell death are
present in the normally aging rat,18 indicating that the model
represents many of the features of normal aging of the retina.

Recent evidence supports the idea that miRNAs are involved
in inflammation.19,20 Many miRNAs are rapidly upregulated in
response to inflammatory cues and may either promote the
duration and magnitude of inflammation21 or silence it.22 In
this study we investigated the modulation of miRNAs in the rat
LD model of focal retinal degeneration and explored the
transcriptional profile of their target genes in the retina
following LD, with a focus on identifying miRNAs that modulate
expression of genes involved in the inflammatory response.

METHODS

Animals and Light Damage

Animal handling and treatment protocols were done in
accordance with the ARVO Statement for the Use of Animals
in Ophthalmic and Vision Research, and were approved by the
Australian National University (ANU) Animal Ethics Committee.
Sprague Dawley (SD) rats aged 90 to 140 postnatal days raised
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in dim (5 lux) cyclic light (‘‘dim-reared’’) were used for the
study. Light damage was induced by exposure to bright light
(1000 lux) from an overhead white fluorescent source
(COLDF2 2 3 36W IHF; Thorn Lighting, Brisbane, Australia)
for a period of 24 hours. Food was provided ad libitum. At the
end of the exposure period animals were either euthanized
immediately by intraperitoneal injection of barbiturate over-
dose (60 mg/kg bodyweight, Valabarb; Virbac, Carros, France),
or were returned to dim light (5 lux) conditions for 3 or 7 days
before euthanasia. Retinal tissue was collected immediately for
analysis. Age-matched, dim-reared animals were used as
controls. All experimental groups were n¼ 5, unless otherwise
stated.

Tissue Collection

The retina from the right eye of each animal was excised
through a corneal incision and placed in RNAlater solution
(Ambion Biosystems, Austin, TX, USA), stored at 48C overnight
then transferred to �808C. The left eye from each animal was
enucleated, the superior margin marked, then immersed in 4%
paraformaldehyde for 3 hours at 48C. The anterior segment was
removed, then the eye cups replaced in fresh 4% paraformal-
dehyde overnight at 48C, and subsequently prepared for
paraffin embedding. Eyes were sectioned at 6 lm on a
microtome on the vertical axis. Only sections containing the
optic nerve were used for analysis.

RNA Extracted From Rat Retina

Total RNA was extracted from retinal samples using the
mirVana miRNA isolation kit (Ambion Biosystems), according
to manufacturer’s protocol. The concentration of the RNA was
determined by ND-1000 spectrophotometer (Nanodrop Tech-
nologies, Wilmington, DE, USA) and quality using the 2100-
Bioanalyser (Agilent Technologies, Santa Clara, CA, USA). Only
RNA samples with a A260/A280 ratio above 1.9 and an RNA
integrity number (RIN) greater than 8.0 were used for the
study. The RNA samples were stored at �808C before
performing TaqMan miRNA array studies.

TaqMan miRNA Array and Analysis

The RNA from dim-reared control retinas and 24-hour light-
exposed retinas were used for miRNA array card analysis. Total
RNA (700 ng) from each animal was reverse transcribed to two
different cDNA pools (each containing 350 ng of miRNA-
specific cDNA) using the Megaplex RT Primers, Rodent Pool A
and B Set v3.0 (Applied Biosystems, Carlsbad, CA, USA) and
TaqMan miRNA RT kit (Applied Biosystems) according to
manufacturer’s protocol; a 7.5-lL reaction mixture, including
50 U Multiscribe Reverse Transcriptase and 20 U RNase
inhibitor. Card A contains well characterized miRNAs in
miRBase v16.0 (available in the public domain at www.
mirbase.org), while B contains uncharacterized ones. Both A
and B samples then were hybridized to the respective TaqMan
Array Rodent MicroRNA Cards v3.0 (A and B), which are
preconfigured microfluidic 384-well format plates. Each well in
the microfluidic card consists of a TaqMan chemistry-based
primer probe set for a unique miRNA or other RNA (control
sequences). A total of 20 microRNA cards was run (10 A cards
and 10 B cards). The microfluidic cards then were run on the
ViiA 7 Real-time PCR machine (Applied Biosystems) to
generate the raw expression data.

The expression data were compiled and analyzed using
PARTEK Genomic Suite 6.6 software (Partek, Inc., St. Louis,
MO, USA). Amplification data for the target miRNAs were first
normalized by subtracting the endogenous control (Y1) values.

Differential expression was examined using the 1-way ANOVA
statistic with a significance cutoff of P < 0.05. The statistical
robustness of the expression data was visualized with principle
component analysis (PCA), provided within the Partek
Genomic Suite 6.6 software. MicroRNA expression distribution
was visualized using the volcano plot tool embedded within
the Partek software. A list of significantly regulated miRNAs
was generated from the volcano plot by selecting for miRNAs
that changed ‡2-fold and had a P value of <0.05. These highly
modulated miRNAs were used for biological functional analyses
using PARTEK Genomic Suite 6.6.

Biologic Functional Analyses

We used data from a previous microarray analysis,23 identifying
genes modulated by light damage in this same LD model, to
monitor up- or downregulation of the predicted target genes of
the miRNAs found to be significantly regulated in the present
study. The pre-existing microarray data were imported into
Partek along with the Affymetrix CEL files to compare the two
expression data. The predicted targets were determined using
TargetScan v6.2 embedded in the PARTEK Genomic Suite 6.6
software (Partek, Inc.). Then, the data were subjected to
functional analysis via Gene Ontology (GO) enrichment
provided in PARTEK Genomic Suite 6.6 and clustered
according to biological processes.

Quantitative Real-Time PCR

The cDNA was synthesized using the TaqMan MicroRNA RT kit
(Applied Biosystems) according to manufacturer’s protocol; a
15-lL reaction mixture, including 500 ng to 1 lg RNA, 50 U
Multiscribe Reverse transcriptase, 3 lL 53 miRNA specific RT
primer and 3.8 U RNase Inhibitor. The miRNA amplification
was measured using commercially available miRNA specific
TaqMan hydrolysis probes (Applied Biosystems) detailed in
Table 1. The hydrolysis probes were used according to the
manufacturer’s directions in a 10-lL reaction mix along with
TaqMan Gene Expression Mastermix and the cDNA. Fluores-
cence was measured by the FAM 510 nm channel in the 7900
HT Real-time PCR machine (Applied Biosystems), ROX passive
reference dye present in the Gene Expression Mastermix was
used to normalize samples in individual wells. Each biological
sample was amplified in a technical replicate and the average
critical threshold cycle (Ct) value was used to determine the
change in expression. Fold change was calculated using the
DDCt method, where target miRNAs were normalized to the
expression of small nuclear RNA U6 (reference RNA), which
showed no differential expression in this study. Gel electro-
phoresis was used to access amplification specificity, and
statistical analysis was performed using 1-way ANOVA and

TABLE 1. TaqMan Small RNA Probes Used

miRNA ID Accession # Product #

mmu-miR-155 MIMAT0000165 002571

hsa-miR-125b-3p MIMAT0004592 002378

mmu-miR-351 MIMAT0000609 001067

mmu-miR-542-3p MIMAT0003172 001284

hsa-miR-449a MIMAT0001541 001030

rno-miR-347 MIMAT0000598 001334

mmu-miR-207 MIMAT0000240 001198

U6 snRNA NR_004394 001973

mmu-miR-182 MIMAT0005300 002599

hsa-miR-183 MIMAT0000860 002269

mmu-miR-96 MIMAT0000818 000186

mmu-miR-467d MIMAT0004886 002518
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Student’s t-test, using Prism (GraphPad Software V5; GraphPad

Software, Inc., La Jolla, CA, USA).

Analysis of Cell Death

We used the TUNEL labeling techniqueto quantify cell death

over the LD time course, in retinal cryosections using a

previously published protocol.23 The TUNEL-positive cells in

the outer nuclear layer (ONL) were counted across the full
length of the retinal sections cut in the vertical meridian,
including at the optic nerve head. Cells were counted at 1-mm
intervals across retinal sections, the final count from each
animal was averaged from at least two sections, with four or
five animals analyzed for each experimental condition.
Statistical analysis was performed using 1-way ANOVA and
Student’s t-test, using Prism (GraphPad Software V5).

FIGURE 1. The number of TUNEL-positive photoreceptor nuclei in the ONL was used to estimate progression of retinal degeneration at three time
points. Representative TUNEL staining images are documented in (A–D), while total number of TUNEL-positive cells (across the entire retinas) is
quantified in (E).
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RESULTS

TUNEL Analysis

There was an evident increase in the number of photoreceptor
cells undergoing apoptosis following exposure to 24 hours of
bright light, consistent with our previous reports (Fig. 1). This
increase was more prominent in the superior retina approx-
imately 2 mm superotemporal to the optic disc, shown in the
representative image panels (Figs. 1A–D). We observed a peak
in the number of TUNELþ cells in the ONL after 24 hours of
bright light exposure followed by a significant decrease during
the postexposure periods, 3 and 7 days, as well as a progressive
thinning of the ONL/photoreceptor layer as described previ-
ously.15

MicroRNA Profiling

The PCA plot (Fig. 2) shows that the biological replicates are
clustered close together and that the majority of variation
between the Control and LD groups (50.3%) was due to LD,
rather than inherent variability within the groups. The volcano
plot (Fig. 3) shows that a large number of miRNAs were
modulated up or down by LD. A list of candidate miRNAs
(Table 2) was compiled by selecting those with a change of ‡2-
or ��2-fold, and P < 0.05. A total of 37 miRNAs of the 750
tested showed strong statistical significance and were selected
for further analysis.

The most highly upregulated miRNA was mmu-miR-467d
(66-fold), while mmu-miR-1224_mat was the most downregu-
lated (�16-fold). Of the 37 miRNAs, 26 were upregulated and
11 downregulated; 17 came from the miRNA array card A,
which represents the better characterized miRNAs in miRBase
v16.0 (available in the public domain at www.mirbase.org),

while 20 were from the not-so-well characterized group on
array card B.

Functional Analysis of miRNAs

Each miRNA targets multiple mRNAs; therefore, the list of
predicted gene targets is much larger than the list of
significantly regulated miRNAs. The list of gene targets (from
the 2300 genes analyzed) of the 37 miRNAs were analyzed
using PARTEK, to gain insight into their biological relevance by
GO enrichment clustering based on ‘‘biological processes.’’
Through this process we identified the 10 most highly
represented gene ontology clusters (Table 3). The ‘‘biological
processes’’ with the highest enrichment scores include
positive regulation of cell proliferation (22.5502), inflammato-
ry response (19.9534), positive regulation of transcription
from RNA polymerase II promoter (19.7899), and angiogenesis
(19.3955). Table 4 shows the 19 miRNAs associated with
‘‘inflammatory response’’ and identifies the 30 gene targets of
those miRNAs. Functional clustering of those genes using the
DAVID Bioinformatics annotation tool 6.7 identifies 7 of 30
genes clustering into two families of chemokines; the Ccl (3, 4,
7, and 12) and Cxcl (1, 10, and 11) families.

Temporal Expression of Inflammation-Associated
miRNAs

Based on the expression signal-to-noise ratio (Critical F value¼
2.55), consistency across biological replicates, we selected
eight miRNAs involved in regulating inflammatory responses
for validation by quantitative PCR (qPCR). We tested the
expression levels of miR-125-3p, miR-155, miR-207, miR-351,
miR-449a, miR-542-3p, miR-467d, and rno-miR-347 at three
time points: 24 hours of light exposure, and 3 and 7 days after
exposure (Figs. 4A–C). In addition to these, we verified the
expression pattern of mRNA cluster miR-183/96/182 at the
three time points (Fig. 4D), which has been shown previously
to express selectively in photoreceptors, is modulated in
rodent models of retinal degenerations, and due to environ-
mental light conditions.

Two different expression patterns of the miRNA subset
were detected across the time points. Five miRNAs (miR-207,
-347, -125b-3p, -155, and -449a) reached peak expression at 3
days after exposure (Figs. 4A, 4B); in contrast, two miRNAs,
(miR-542-3p and -351) were continuously upregulated over the
time course (Fig. 4C). We were unable to generate consistent
fold change values for miR-467d across the biological replicates
due to very high (end stage) Ct cycle numbers.

MicroRNA cluster miR-183/96/182 exhibited a downward
expression trend across the LD time points, with all three
miRNAs showing significant reduction in expression at the 3-
day time point. Only miR-183 and -96 expression reduced
significantly at the 24-hour mark, while only miR-183 and -182
showed significant reduction at 7 days after LD.

DISCUSSION

The results of this study showed that miRNAs are modulated in
response to LD. Indeed, two of the most highly regulated gene
clusters targeted by these miRNAs are ‘‘positive regulation of
the transcription from RNA polymerase II promoter’’ and
‘‘negative regulation of DNA dependent transcription.’’ This
essentially reflects that light damage causes regulation of the
retinal transcriptome. The other clusters include genes that
regulate cell proliferation, cell adhesion, angiogenesis, and our
target category, the inflammatory response.

FIGURE 2. The 3-D principle component analysis. Each sphere

represents a sample and the circle represents the centroid of each
distribution. Samples from animals not exposed to LD (red) are more
tightly clustered than samples from LD animals (blue), indicating less
variability in miRNA expression profiles in control animals compared to
animals exposed to LD. The majority of the variance between the two
different conditions is explained by the PC-1 axis.
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Features of the Light Damaged Retina

The LD-mediated retinal degeneration has been studied
extensively since the landmark study of Noell et al.24 in
1966. In LD, photoreceptors degenerate in the superotemporal
portion of the rat retina, at the area centralis, where there is a
peak density of cones, and ganglion cell density is at its
highest.25,26 In this respect, the area centralis is homologous to
the human macula. Furthermore, the protracted degeneration
of photoreceptors and RPE cells triggered by LD in rat retina,
and the associated breakdown of the blood retina barrier (BRB)
mimic certain histopathological features of dry AMD.13,14,27

Oxidative damage and inflammation have roles in the
pathophysiology of light-induced retinal degeneration.

Cell Proliferation and Angiogenesis in LD. A surprising
finding of the functional clustering analysis is the high
representation of target genes involved in cell proliferation
and angiogenesis, since neither of these functions feature
prominently in the LD model. There are two possible
explanations for this. The first is that, because a single miRNA
can regulate translation of multiple genes, the list of ‘‘target
genes’’ introduced into Partek for clustering is not necessarily
the actual targets of the miRNAs we have identified. For
example, miR-449a is enriched in ‘‘inflammatory response’’
and ‘‘angiogenesis’’ clusters exhibiting putative binding sites
for interleukin 23 receptor mRNA, involved in the immune

response, and angiopoietin-1 receptor mRNA, which facilitates
blood vessel formation.

A second possibility is that genes in cell proliferation
pathways and/or angiogenic pathways may be upregulated so
that the tissues are induced into a ‘‘pro-angiogenesis’’ or ‘‘pro-
proliferation’’ state, without activating all the genes required
for angiogenesis or proliferation to take place. Proliferation of
non-neuronal retinal cells (astrocytes, microglia, and Müller
cells) has been well documented in retinal degenerations,
including AMD as a response to intense retinal stress.28–30

While angiogenesis has not been reported in the LD model
previously, it is possible that leukostasis could cause local
hypoxia leading to modulation of angiogenic factors, the
effects of which might only be detected following much longer
survival periods than explored here.

Cell Adhesion and Inflammation in LD. Cell adhesion
has a role in a variety of different biological functions,
including cell–cell interactions that are part of the immuno-
logical response. It now is well established that retinal
degeneration that follows LD in this model is mediated by
significant inflammatory processes, and the high representa-
tion of gene targets in this functional cluster might be expected
on this basis. We have previously identified a range of
inflammatory genes upregulated following LD. These include
several that encode proteins of the complement system (CFD,
C3, C1s, C4b, C5r1) along with several chemokines/cytokines
(Ccl2, MCP-3, A21a, A6)16,17,31–33 involved in recruitment of

FIGURE 3. Volcano plot of miRNA expression levels against probability. Only data points lying above the dotted line are significant (P � 0.05). The
solid vertical line indicates zero change in gene expression. Points to the right (green) represent candidates that were upregulated by LD, while
points to the left (red) were downregulated.
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macrophages, monocytes, and other leucocytes. Some also
have been associated with AMD, including C3, Ccl2, and
Cx3CL1.34–36

Expression Time Course of miRNas After Light
Exposure

In this study, we find 8 of 37 miRNAs that are involved in
various aspects of regulation of the immune response. Further,
our qPCR findings showed that seven of these are modulated

across the 7-day time course of the experiment. The MiR-467d
showed inconsistent and/or undetectable fold change values
across the time course, potentially due to low target
abundance. Hence, its significant upregulation in the miRNA
array analysis could be attributed to a false-positive result as a
result of the ‘‘Monte Carlo effect.’’37

While all seven of the eight selected miRNAs are
upregulated after 24 hours of light damage, in parallel with
the TUNEL-positive cells in the ONL, only two (351 and 542-
3p) continued to rise beyond 3 days of exposure. Those that
reached peak expression at 3 days most likely have roles in the
acute phase of retinal damage, while 351 and 542-3p are more
likely to mediate changes in the retinal environment during the
postacute phase of degeneration in this model. While miR-351
is associated with neuronal and myogenic progenitor cell
differentiation,38,39 and miR-542-3p has been reported to
inhibit tumor angiogenesis,40 their roles in retinal remodeling
after LD remain to be determined.

The long-term effects of acute bright light exposure are well
known13,14 and these new data provide insight into genes that
may be key players during this phase. The targets of these two
miRNAs include the chemokines CXCL1 and 10, IL6, TNF, and
CD276. Chemokines CXCL1 and 10 are small molecules
belonging to the CXC chemokine family and function as
chemoattractants responsible for leukocyte trafficking. While
not much is known about their role in AMD or light-induced
retinal degeneration, they have been shown to facilitate the
recruitment of lymphocytes to lesion site in atherosclerosis
and other inflammatory conditions of the cardiovascular
system.41 Both IL6 and TNF are potent proinflammatory
cytokines implicated in a wide variety of inflammation-
associated disease states. Of these TNF-a (one of the most
common forms of TNF) has been looked at extensively in AMD
and shown to express readily by macrophages present in the
choroidal neovascular (CNV) membranes of AMD patients.42

Additionally, anti-TNF agents are being used currently as a
therapeutic strategy for wet AMD.43

Five miRNA demonstrate peak expression at 3 days after
exposure. Of particular interest is the upregulation of miR-155
(increased 55-fold), which facilitates the inflammatory re-
sponse44 and targets complement factor H (CFH),45 a major
inhibitor of the alternative complement pathway. The Y402H
SNP in the CFH gene is a major risk factor for AMD and
multiple variants confer elevated or reduced risk of the
disease.9,11 MicroRNA-155 binds directly to the 30-UTR of
CFH to facilitate activation of the complement pathway in
Alzheimer’s disease.46 In vitro, miR-155 favors the pro-
inflammatory (M1) polarization of immune cells by repressing
expression of anti-inflammatory (M2) characteristic pro-
teins,47,48 and miR-155–deficient mice have a reduced inflam-
matory macrophages response.21 Peak expression of miR-155
in this model at 3 days after light exposure, correlates well with

TABLE 2. Candidate miRNAs

miRNA ID P Value Fold Change F Statistic

mmu-miR-467d 0.00537844 66.934 9.22497

mmu-miR-155 0.00502399 55.9242 6.02627

mmu-miR-466h 0.0395309 49.8464 2.27494

mmu-miR-220 0.0149566 30.91 3.98379

mmu-miR-125b-3p 0.0231669 17.3396 2.54936

mmu-miR-207 0.00461902 13.4394 5.0048

mmu-miR-449a 0.00346565 10.2821 4.96975

mmu-miR-467c 0.0121979 9.33694 3.5032

mmu-miR-291-5p 0.0149867 7.41014 2.6742

mmu-miR-542-3p 0.00820295 7.16889 4.76784

mmu-miR-715 0.00948857 6.65874 3.27612

rno-miR-347 0.0431166 5.4159 2.71173

mmu-miR-494 0.0108949 5.20176 3.94319

mmu-miR-351 0.00859523 4.86756 3.45553

mmu-miR-1894-3p_mat 0.0145028 4.48047 3.77757

mmu-miR-582-3p 0.0339127 4.4609 8.80396

hsa-miR-223 0.00343764 4.34528 6.58455

mmu-miR-685 0.00584433 4.03733 6.29025

mmu-miR-1971_mat 0.000432933 3.9048 8.13198

mmu-miR-300 0.0460522 3.78183 3.94242

mmu-miR-1195 0.0273212 3.43057 2.88671

mmu-miR-2183_mat 0.000281241 3.15076 13.0543

mmu-miR-509-3p 0.0192239 2.9015 2.50254

mmu-miR-335-3p 0.00999525 2.76217 5.50385

hsa-miR-214 0.0291568 2.42738 2.23578

mmu-miR-466k_mat 0.0278496 2.2071 3.31638

mmu-miR-720 0.0108249 �2.22245 3.07113

mmu-miR-376b# 0.00855768 �2.41404 3.26994

hsa-miR-124# 0.0217727 �3.01279 2.69783

hsa-miR-411# 0.00789667 �3.08945 3.39888

mmu-miR-337 0.00319273 �3.23811 4.88565

mmu-miR-466d-5p 0.00911546 �3.27501 4.25185

rno-miR-743a 0.0272182 �3.56685 2.27946

mmu-miR-1939_mat 0.0208102 �5.05438 3.73398

mmu-miR-1306_mat 0.012169 �7.46789 2.87234

mmu-miR-742 0.00173378 �12.9825 22.0727

mmu-miR-1224_mat 0.0184421 �16.0222 19.4625

TABLE 3. Highly Represented Clusters of Biological Functions Modulated by Candidate miRNAs

Biological Process Enrichment Score Enrichment P Value GO ID

Positive regulation of cell proliferation 22.5502 1.61E-10 GO: 8284

Inflammatory response 19.9534 2.16E-09 GO: 6954

Positive regulation of transcription from RNA polymerase II promoter 19.7899 2.54E-09 GO: 45944

Angiogenesis 19.3955 3.77E-09 GO: 1525

Negative regulation of cell proliferation 17.4925 2.53E-08 GO: 8285

Cell adhesion 16.9623 4.30E-08 GO: 7155

Cell–cell adhesion 16.9308 4.44E-08 GO: 16337

Negative regulation of transcription, DNA-dependent 16.8136 4.99E-08 GO: 45892

Transcription, DNA-dependent 16.5114 6.75E-08 GO: 6351

Transport 16.0281 1.09E-07 GO: 6810
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our previous findings showing peak M1 immune cell recruit-
ment at the site of damage at 3 days.15

MicroRNA-207 is upregulated in response to neurotro-
phins,49 that promote photoreceptor cell survival.50 Peak
expression of mir-207 at 3 days may reflect an attempt by the
retina to protect its remaining photoreceptor cell population.
In addition, upregulation of miR-207 might sustain the
downregulation of one of its predicted targets carbohydrate
(N-acetylglucosamine-6-O) sulfotransferase 2 (Chst2), which
stimulates the formation of L-selectins on vascular endothelial
cell surfaces, to mediate adhesion of lymphocytes around the
sites of inflammation.51 Less is known about miR-125b-3p,
which also had peak expression at 3 days after light exposure,
and recently been shown to be a potential biomarker for
inflammatory bowel disease.52

Two other miRNAs reaching peak expression at 3d are miR-
347 and miR-449a. Neither has been implicated previously in
modulating the inflammatory immune response. MicroRNA-
347 promotes neuronal apoptosis53 and miR-449a is a known
tumor suppressor that promotes cell death.54,55 Our analysis
showed that all five miRNAs have putative binding sites in the
30UTR s of chemokine, cytokine, and other inflammatory
effector proteins (Table 4), indicating that further character-
ization of their roles in inflammation is warranted.

It is evident from the above expression profiles that the
majority of the inflammation related miRNAs show a rapid and
sustained increase in expression due to bright light exposure,
implying a stricter translational control of their respective
targets. However, we know from our previous studies that
many cytokines and chemokines (including the ones identified
as targets in this study) exhibit increased expression due to
bright light exposure.15,23 This discrepancy in the expression

levels of miRNAs and their target genes could be a facet of the
complex regulatory networks, compensatory or otherwise,
that are at play inside cells/tissues during ageing, disease, and/
or damage. Furthermore, there is a growing body of evidence
supporting the hypothesis that expression levels of some
miRNAs may be directly proportional to the amount of target
sites available. A phenomenon known as ‘‘target mediated
miRNA protection’’ (TMMP).56

We also analyzed the expression pattern of miRNAs of the
miR183/96/182 cluster (Fig. 4D), which have been shown to
occur selectively in the photoreceptor layer. Previous studies
have implied the role of this cluster in normal photoreceptor
morphogenesis and functioning, maintaining the retinal
circadian cycle and having a protective role in bright light–
induced retinal degeneration.57,58 Unlike Zhu et al.,59 who
showed an upregulation of these miRNAs due to environmen-
tal light conditions (30-minute exposure to 10,000 lux light),
our model showed a downward expression trend under a more
sustained (24-hour) exposure of bright (1000 lux) light. This
discrepancy could be due to the more chronic degenerative
state of the retina in our experimental paradigm inherent in
retinal degenerations.

CONCLUSIONS

In this study, we identified 37 miRNAs upregulated by LD,
including seven that regulated the inflammatory response,
which is a key mediator of retinal degeneration in this model,
and in AMD. The miRNAs are endogenously-occurring mole-
cules that can be safely introduced in vivo without triggering a
nonspecific immune response. Because these miRNAs regulate
multiple genes and pathways simultaneously, they provide new

TABLE 4. List of miRNAs and the Predicted Gene Targets Implicated in Inflammation

miRNA ID Gene Symbol Gene Names

mmu-miR-467d Il20rb Interleukin 20 receptor b
mmu-miR-467c Cd14 CD14 antigen

mmu-miR-466h Myd88 Myeloid differentiation factor 88

mmu-miR-466d-5p Rela V-rel reticuloendotheliosis viral oncogene homolog A

mmu-miR-125b-3p Ccl4 Chemokine (C-C motif) ligand 4

mmu-miR-155 Chst2 Carbohydrate sulfotransferase 2

mmu-miR-207 Il1b Interleukin 1, b
mmu-miR-351 Tnfrsf1a Tumor necrosis factor receptor superfamily, member 1a

mmu-miR-449a Il23r Interleukin 23 receptor

mmu-miR-494 Cxcl11 Chemokine (C-X-C motif) ligand 11

mmu-miR-509-3p Gal Galanin prepropeptide

mmu-miR-542-3p Ccl12 Chemokine (C-C motif) ligand 12

mmu-miR-685 Nfkbiz Nuclear factor of j light polypeptide gene enhancer in B-cells inhibitor, f
rno-miR-347 Ccl7 Chemokine (C-C motif) ligand 7

mmu-miR-300 Cxcl10 Chemokine (C-X-C motif) ligand 10

mmu-miR-715 Il6 Interleukin 6

mmu-miR-720 Tnf Tumor necrosis factor

mmu-miR-220 Ccl3 Chemokine (C-C motif) ligand 3

mmu-miR-582-3p Cxcl1 Chemokine (C-X-C motif) ligand 1

Spn Sialophorin

Hmox1 Heme oxygenase (decycling) 1

Agt Angiotensinogen

Jak2 Janus kinase 2

Sbno2 Strawberry notch homolog 2

Clcf1 Cardiotrophin-like cytokine factor 1

Zfp36 Zinc finger protein 36

Cd276 CD276 antigen

Ier3 Immediate early response 3

Pla2g4a Phospholipase A2, group IVA

Alox5ap Arachidonate 5-lipoxygenase activating protein
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potential therapeutic targets with far-reaching biological
outcomes suitable for management of complex retinal disor-
ders, like AMD.
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