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In recent years, the use of variational analysis techniques in lattice QCD has been demonstrated to be
successful in the investigation of the rest-mass spectrum of many hadrons. However, due to parity mixing,
more care must be taken for investigations of boosted states to ensure that the projected correlation
functions provided by the variational analysis correspond to the same states at zero momentum. In this
paper we present the parity-expanded variational analysis (PEVA) technique, a novel method for ensuring
the successful and consistent isolation of boosted baryons through a parity expansion of the operator basis
used to construct the correlation matrix.
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I. INTRODUCTION

One of the most widely recognized successes of lattice
QCD has been its application to hadron spectroscopy [1–4].
The rest masses of not only the ground states but also many
excited states can be extracted through a combination of
effective mass techniques and variational analysis. Within
the baryon sector alone significant progress has been made
[5–12]. However, the study of excited states in lattice QCD
is still a challenging endeavor and has not reached the
maturity of ground state computations. This is particularly
true in simulations near the physical value of the pion mass.
Once an understanding of the spectra is obtained, the

logical progression is to investigate the structure of these
hadrons, and again latticeQCDprovides the tools needed for
the precise determination of hadronic matrix elements. Key
to lattice QCD’s ability to investigate hadronic structure is
the computation of two- and three-point correlation func-
tions for each hadronic state of interest at both zero and
nonzero final state momenta. While the zero momentum
two-point case corresponds to the rest-mass analysis and is
well understood, at nonzero momentum more care must be
taken to ensure the energy eigenstates are cleanly extracted,
especially when investigating excited states.
In this paper, we investigate the use of variational analysis

techniques to extract correlation functions for excited states
of spin-1=2 baryons at nonzero momentum. In Sec. II, we
briefly describe the conventional approach andhighlight how
states of the opposite parity can intrude into the analysis.
Section III demonstrates the parity-expanded variational
analysis (PEVA) technique, a novel approach to overcoming
this shortfall. This method will be central to future baryon

form-factor calculations involving excited states, for exam-
ple electromagnetic structure and transition analyses.
In Sec. IV, we present results comparing the conven-

tional parity projection approach to the PEVA technique,
demonstrating the removal of opposite-parity contamina-
tions from two-point correlators through strong cross-parity
contributions to the operator structure of the four lowest
lying states. These results are calculated on the PACS-CS
(2þ 1)-flavor full-QCD ensembles [1], made available
through the ILDG [13]. They are 323 × 64 lattices with
β ¼ 1.90, and employ an Iwasaki gauge action with non-
perturbativelyOðaÞ-improved Wilson quarks. In particular,
we demonstrate proof of principle on the ensemble with
the second lightest quark mass. This ensemble consists of
400 gauge field configurations with κu;d ¼ 0.13770, cor-
responding to a pion mass of 280 MeV.

II. PARITY MIXING AT NONZERO MOMENTUM

Eigenstates of nonzero momentum are not eigenstates of
parity, so we categorize states by the way they transform in
their rest frame. We call states that transform positively
under parity in their rest frame “positive parity states” (and
label them Bþ), and states that transform negatively under
parity in their rest frame “negative parity states” (B−).
Conventional spin-1=2 baryon spectroscopy uses one or

more operators fχig which couple to both positive and
negative parity states as

hΩjχijBþ;p; si ¼ λB
þ

i

ffiffiffiffiffiffiffiffiffi
mBþ

EBþ

r
uBþðp; sÞ; ð1aÞ

hΩjχijB−;p; si ¼ λB
−

i

ffiffiffiffiffiffiffiffi
mB−

EB−

r
γ5uB−ðp; sÞ; ð1bÞ*Corresponding author.
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and transform under parity as

χi → γ4χ
i: ð2Þ

These operators are used to construct two-point corre-
lation functions,

Gijðp; tÞ≡
X
x

e−ip·xhΩjχiðxÞχ̄jð0ÞjΩi; ð3Þ

which in the Pauli representation have the Dirac structure

Gijðp; tÞ ¼
X
B�

e−EB� tλB
�

i λ̄B
�

j
−iγ · p�mB�

2EB�
ð4Þ

(for more details see Sec. III).
For clarity, Eq. (4) is formulated for the case of a fixed

boundary condition in the temporal direction, as used
herein. It is also applicable to the common case of an
(anti-)periodic boundary condition in the temporal direc-
tion on lattices with large Euclidean time extents where the
contributions of backward-running baryon states are neg-
ligible. The case of non-negligible backward-running states
is presented at the end of Sec. III A.
These correlation functions contain states of both par-

ities, so conventionally we take the spinor trace with some
projector Γ, defining GijðΓ; p; tÞ≡ trðΓGijðp; tÞÞ. If we
choose Γ ¼ Γ� ≡ ðγ4 � IÞ=2, we get the parity-projected
correlators

GijðΓ�; p; tÞ≡ trðΓ�Gijðp; tÞÞ

¼
X
Bþ

e−EBþ tλB
þ

i λ̄B
þ

j
EBþ �mBþ

2EBþ

þ
X
B−

e−EB− tλB
−

i λ̄B
−

j
EB−∓mB−

2EB−
: ð5Þ

At zero momentum, EB ¼ mB, so the parity-projected
correlators contain only positive or negative parity states:

GijðΓþ; 0; tÞ ¼
X
Bþ

e−mBþ tλB
þ

i λ̄B
þ

j ; ð6aÞ

GijðΓ−; 0; tÞ ¼
X
B−

e−mB− tλB
−

i λ̄B
−

j : ð6bÞ

However, at nonzero momentum, EB ≠ mB and the parity-
projected correlators include OððE −mÞ=2EÞ opposite-
parity contaminations. This situation was investigated in
[14], where a projector of the form

Γ�ðpÞ≡ 1

2

� mB∓
0

EB∓
0
ðpÞ γ0 � I

�
ð7Þ

was introduced to remove a single contaminating state, the
lowest state of the opposite parity. However, if there is more
than one nearby state contaminating the correlation func-
tion, the additional contaminating state will still remain.
Another option is to take the trace with γ4 to get

Gijðγ4; p; tÞ ¼
X
B

e−EBtλBi λ̄
B
j ; ð8Þ

where the sumoverBnowcontainsbothparities.Wecan then
use standard correlation matrix techniques to isolate the
excited state spectrum of both parities simultaneously.
However, we are isolating both positive and negative parity
states in a single correlation matrix rather than in separate
positive and negative parity-projected correlation matrices.
For a given operator basis, we are hence only able to isolate
half as many states of each parity.We are also destroying the
parity information encoded in theDirac structure, preventing
one from distinguishing whether a particular state has
positive or negative rest-frame parity. A technique similar
to this appears to be used by Lang and Verduci in [10].

III. USING AN EXPANDED OPERATOR BASIS

A. Physics at the hadronic level

We wish to expand the operator basis of the correlation
matrix with operators that utilize the Dirac structure to
isolate energy eigenstates while maintaining a signature of
their rest-frame parity. By considering the Dirac structure
of the correlation function

P
xe

−ip·xhΩjγ5χiðxÞχ̄jð0ÞjΩi
(which captures the cross-parity mixing), we find that
the on-diagonal blocks are proportional to σkpk. To access
this signal, we need a projector with a γ5γkp̂k term. Hence,
we introduce a novel momentum-dependent projector Γp ≡
1
4
ðIþ γ4ÞðI − iγ5γkp̂kÞ which allows us to construct a set of

“parity-signature” projected operators

χip ¼ Γpχ
i; ð9aÞ

χi
0
p ¼ Γpγ5χ

i: ð9bÞ

The primed indices denote the inclusion of γ5, inverting the
way the operators transform under parity.
Unlike the conventional baryon interpolators χi, these

operators have definite parity at zero momentum and hence
transform as eigenstates of parity

χi0 → χi0; ð10aÞ

χi
0
0 → −χi00 : ð10bÞ

Making use of this property at zero momentum, we
introduce the nomenclature that operators with unprimed
indices are “positive parity operators” (χþ) and operators
with primed indices are “negative parity operators” (χ−).
We use these terms in quotes here as these operators are
only definite in parity at zero momentum, and while the
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operators at nonzero momentum have a clear connection to
the definite parity operators at zero momentum, they are not
themselves definite in parity.
Drawing on the spinor structure for an on-shell baryon of

momentum p, we find that

Γpuðp;↑Þ ¼
1

4
ðIþ γ4ÞðI − iγ5γkp̂kÞ

0
BBBBB@

1

0
p3

Eþm

p1þip2

Eþm

1
CCCCCA

¼ 1

2

0
BBB@

1 − p̂3

−p̂1 − ip̂2

0

0

1
CCCA; ð11aÞ

and

Γpγ5uðp;↑Þ ¼
1

4
ðIþ γ4ÞðI − iγ5γkp̂kÞ

0
BBBBB@

−p3

Eþm

−p1−ip2

Eþm

−1
0

1
CCCCCA

¼ 1

2

jpj
Eþm

0
BBB@

1 − p̂3

−p̂1 − ip̂2

0

0

1
CCCA: ð11bÞ

Thus, Γpγ5uðp;↑Þ ¼ jpj
EþmΓpuðp;↑Þ. Similarly, we find

that Γpγ5uðp;↓Þ ¼ jpj
EþmΓpuðp;↓Þ. Thus, these operators

couple to the states of interest with a consistent Dirac
structure,

hΩjχipjBþ;p; si ¼ λB
þ

i

ffiffiffiffiffiffiffiffiffi
mBþ

EBþ

r
ΓpuBþðp; sÞ; ð12aÞ

hΩjχipjB−;p; si ¼ λB
−

i
jpj

EB− þmB−

ffiffiffiffiffiffiffiffi
mB−

EB−

r
ΓpuB−ðp; sÞ;

ð12bÞ

hΩjχi0p jBþ;p; si ¼ λB
þ

i
jpj

EBþ þmBþ

ffiffiffiffiffiffiffiffiffi
mBþ

EBþ

r
ΓpuBþðp; sÞ;

ð12cÞ

hΩjχi0p jB−;p; si ¼ λB
−

i

ffiffiffiffiffiffiffiffi
mB−

EB−

r
ΓpuB−ðp; sÞ: ð12dÞ

At zero momentum, χip and χi
0
p couple only to states of

positive and negative parity respectively. However, as we
boost to nonzero momenta, the operators couple to states of
both parities.
We seek a set of “perfect” operators fϕα

pg that perfectly
isolate energy eigenstates, that is,

hΩjϕα
pjBβ;p; si ¼ δαβ

ffiffiffiffiffiffi
mα

Eα

r
zαΓpuαðp; sÞ: ð13Þ

Using the linearity of the operator space, and assuming that
the set fχip; χi0pg spans the whole space, the perfect operators
can be written as linear combinations of these operators:

ϕα
p ¼

X
i

vαi ðpÞχip þ
X
i0
vαi0 ðpÞχi

0
p ; ð14aÞ

ϕ̄α
p ¼

X
i

uαi ðpÞχ̄ip þ
X
i0
uαi0 ðpÞχ̄i

0
p : ð14bÞ

To find the values of the coefficients vαi ðpÞ, vαi0 ðpÞ, uαi ðpÞ,
and uαi0 ðpÞ, we consider the correlation matrix Gðp; tÞ
formed from the blocks

Gijðp; tÞ≡
X
x

e−ip·xhΩjχipðxÞχ̄jpð0ÞjΩi; ð15aÞ

Gij0 ðp; tÞ≡
X
x

e−ip·xhΩjχipðxÞχ̄j
0
p ð0ÞjΩi; ð15bÞ

Gi0jðp; tÞ≡
X
x

e−ip·xhΩjχi0pðxÞχ̄jpð0ÞjΩi; ð15cÞ

Gi0j0 ðp; tÞ≡
X
x

e−ip·xhΩjχi0pðxÞχ̄j
0
p ð0ÞjΩi: ð15dÞ

By inserting a complete set of states I ¼P
B;sjB;p; sihB;p; sj between the operators, and noting

our use of Euclidean time and fixed boundary conditions
(or negligible backward-running state contributions), we
can rewrite the correlation matrix as

Gijðp; tÞ ¼
X
B;s

e−EBthΩjχipð0ÞjB;p; sihB;p; sjχ̄jpð0ÞjΩi;

ð16Þ
et cetera.
By substituting in the expressions from Eq. (15), and

using the relation Γpð−iγ · pþmBÞΓp ¼ ΓpðEB þmBÞ, we
can rearrange each block to factor out the Dirac structure
[see Eq. (A1) in the Appendix], giving

Gijðp; tÞ ¼ Γp

"X
B�

e−EB� tλB
�

i λ̄B
�

j
EB� �mB�

2EB�

#
; ð17aÞ

Gij0 ðp; tÞ ¼ Γp

"X
B�

e−EB� tλB
�

i λ̄B
�

j
jpj

2EB�

#
; ð17bÞ
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Gi0jðp; tÞ ¼ Γp

"X
B�

e−EB� tλB
�

i λ̄B
�

j
jpj

2EB�

#
; ð17cÞ

Gi0j0 ðp; tÞ ¼ Γp

"X
B�

e−EB� tλB
�

i λ̄B
�

j
EB�∓mB�

2EB�

#
: ð17dÞ

Noting that trðΓpÞ ¼ 1, the spinor trace of the correlation
matrix Gðp; tÞ, denoted Gðp; tÞ, obeys the relation
Gðp; tÞ ¼ ΓpGðp; tÞ.
Now, if we right multiply the traced correlation matrix

Gðp; tÞ by the column vector

uα
þðpÞ≡ ðuαþ1 ðpÞ;…; uα

þ
n ðpÞ; uαþ

10 ðpÞ;…; uα
þ

n0 ðpÞÞ⊤

corresponding to the positive parity state Bαþ , then the
components of the resulting vector are given by

ðGðp; tÞuαþðpÞÞi ¼ e−Eαþ tλα
þ

i z̄α
þ Eαþ þmαþ

2Eαþ
; ð18aÞ

ðGðp; tÞuαþðpÞÞi0 ¼ e−Eαþ tλα
þ

i z̄α
þ jpj
2Eαþ

: ð18bÞ

Details are provided in Eq. (A2) of the Appendix.
Note that both the primed and unprimed components

depend on the same coupling parameters λα
þ

i . So, putting
together the components from Eqs. (18a) and (18b), the
full vector is given byGðp; tÞuαþðpÞ ¼ λαþ z̄αþe−Eαþ t, for an
appropriately defined vector λαþ.
Similarly, for uα

−ðpÞ corresponding to the negative parity
state Bα− , Gðp; tÞuα−ðpÞ ¼ e−Eα− tλα− z̄α− .
Now if we instead consider left multiplication by the row

vector

vαðpÞ≡ ðvα1ðpÞ;…; vαnðpÞ; vα10 ðpÞ;…; vαn0 ðpÞÞ;

we get

vαðpÞGðp; tÞ ¼ zαλ̄αe−Eαt: ð19Þ

Moreover, if we sandwich Gðp; tÞ between vαðpÞ and
uβðpÞ, we get

vαðpÞGðp; tÞuβðpÞ ¼ e−Eαtzαz̄βδαβ
Eα þmα

2Eα
: ð20Þ

Thus, we can construct correlation functions that contain
single energy eigenstates by sandwiching Gðp; tÞ between
vαðpÞ and uαðpÞ, giving

Gαðp; tÞ≡ vαðpÞGðp; tÞuαðpÞ
¼ e−Eαtzαz̄α

Eα þmα

2Eα
: ð21Þ

Since the t dependence of both Gðp; tÞuαðpÞ and
vαðpÞGðp; tÞ is constrained to the exponential, we can
express it via the recurrence relations

Gðp; tþ ΔtÞuαðpÞ ¼ e−EαðpÞΔtGðp; tÞuαðpÞ; ð22aÞ

vαðpÞGðp; tþ ΔtÞ ¼ e−EαðpÞΔtvαðpÞGðp; tÞ: ð22bÞ

That is, uαðpÞ and vαðpÞ are respectively the right and left
generalized eigenvectors of Gðp; tþ ΔtÞ and Gðp; tÞ, with
generalized eigenvalue e−EαðpÞΔt.
In the case of non-negligible backward-running states

on an (anti-)periodic lattice with temporal extent T, we
can generalize Eq. (16) to include the backward-running
baryons as in the meson case [15]:

Gijðp; tÞ
¼

X
B;s

e−EBt hΩjχipð0ÞjB;p; sihB;p; sjχ̄jpð0ÞjΩi

∓X
B̄;s

e−EBðT−tÞ hΩjχ̄jpð0ÞjB̄;p; sihB̄;p; sjχipð0ÞjΩi;

ð23Þ

where the outer product of Dirac spinor indices is
implicit and the sign of the second term reflects periodic/
antiperiodic boundary conditions respectively, with the
source on the boundary.
The operator overlaps for the backward-running baryons

are given by

hB̄þ;p; sjχipjΩi ¼ λB
−

i

ffiffiffiffiffiffiffiffi
mB−

EB−

r
Γpγ5vB̄þðp; sÞ; ð24aÞ

hB̄−;p; sjχipjΩi ¼ λB
þ

i
jpj

EB− þmB−

ffiffiffiffiffiffiffiffiffi
mBþ

EBþ

r
Γpγ5vB̄−ðp; sÞ;

ð24bÞ

hB̄þ;p; sjχi0p jΩi ¼ λB
−

i
jpj

EB− þmB−

ffiffiffiffiffiffiffiffi
mB−

EB−

r
Γpγ5vB̄þðp; sÞ;

ð24cÞ

hB̄−;p; sjχi0p jΩi ¼ λB
þ

i

ffiffiffiffiffiffiffiffiffi
mBþ

EBþ

r
Γpγ5vB̄−ðp; sÞ: ð24dÞ

With these definitions, the formalism described above may
be applied in the same manner, noting that
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X
s

vB̄�ðp; sÞv̄B̄�ðp; sÞ ¼ −
iγ · pþmB∓

2mB∓
: ð25Þ

The backward-running states will appear as negative-
energy opposite-parity partners to each of the forward-
running states, with couplings suppressed by a factor of
e−EBT . Thus, given a sufficiently large operator basis, the
PEVA technique can be used unmodified to simultaneously
isolate both forward-running states and their backward-
running partners.

B. Calculation at the quark level

To simplify the numerical calculation of Gðp; tÞ, we use
the idempotence of Γp and the invariance of the trace
operation under cyclic permutations to rewrite it as

Gijðp; tÞ ¼ tr

�X
x

e−ip·xhΩjΓpχ
iðxÞχ̄jð0ÞΓpjΩi

�

¼ tr

�
Γp

X
x

e−ip·xhΩjχiðxÞχ̄jð0ÞjΩi
�

¼ GijðΓp; p; tÞ; ð26Þ

and similarly

Gij0 ðp; tÞ ¼ Gijð−γ5Γp; p; tÞ; ð27aÞ

Gi0jðp; tÞ ¼ GijðΓpγ5; p; tÞ; ð27bÞ

Gi0j0 ðp; tÞ ¼ Gijð−γ5Γpγ5; p; tÞ: ð27cÞ

Thus if we consider N interpolators, χi, i ¼ 1, …, N, we
can calculate each of the four N × N blocks of our full
2N × 2N correlation matrix simply by taking the spinor
trace of the unprojected correlators with the appropriate
combination of Γp and γ5, much like we would with Γ� in a
conventional parity projection at p ¼ 0.
At zero momentum, the off-diagonal blocks Gij0 ðp; tÞ

andGi0jðp; tÞ will be zero, as they are proportional to jpj, so
we can treat the top-left and bottom-right blocks separately.
Since at zero momentum χip couples only to positive parity
states and χi

0
p couples only to negative parity states, the top-

left block will contain only positive parity states and the
bottom-right only negative. Thus, we can solve the gen-
eralized eigenvalue equation for the positive and negative
parity sectors separately. This is equivalent to the conven-
tional parity-projected analysis using Γ� ¼ 1

2
ðγ4 � IÞ.

However, at nonzero momentum there will be contributions
from states of both parities in all four blocks, and the
conventional technique will suffer from opposite-parity
contaminations. The PEVA technique addresses this prob-
lem by utilizing a parity-expanded basis to simultaneously
isolate energy eigenstates of both rest-frame parities.

IV. RESULTS

As a first investigation of the PEVA approach, we isolate
the four lowest lying states of the nucleon on the lattice (the
ground state, the first two negative parity excitations, and
the first positive parity excitation). We consider the conven-
tional parity projectors Γþ and Γ− acting on an 8 × 8
correlation matrix as well as the PEVA technique, which
expands this to a 16 × 16 correlation matrix. The original
eight-operator basis is formed from the conventional
spin-1=2 nucleon operators χ1 ¼ ϵabc½ua⊤ðCγ5Þdb�uc and
χ2 ¼ ϵabc½ua⊤ðCÞdb�γ5uc, with 16, 35, 100, or 200 sweeps
of gauge-invariant Gaussian smearing [16] applied at the
quark source and sinks in creating the propagators. For
each level of smearing, we calculate 3200 quark propa-
gators by making use of eight shifted sources on an
ensemble of 400 gauge field configurations. We perform
both analyses and extract the effective energies of the states
at the seven momenta described in Table I, ranging from
p2 ¼ 0.166 GeV2 to p2 ¼ 0.996 GeV2.
We can gain insight into the amount of “leakage”

between different parity sectors by considering the corre-
lation matrix eigenvector elements corresponding to oper-
ators that couple primarily to states of the opposite parity. In
Fig. 1 we plot the eigenvector components of the four
lowest lying states isolated by the 16 × 16 expanded basis
correlation matrix at each of the seven momenta. The
coloration of the data points correspond to the operator
structure associated with that component of the eigenvector
(χþ1 ¼ Γpχ1, χþ2 ¼ Γpχ2, χ−1 ¼ Γpγ5χ1, or χ−2 ¼ Γpγ5χ2)
and the shapes of the data points correspond to the number
of sweeps of gauge-invariant Gaussian smearing applied in
creating the propagators.
If we start by examining the first extracted state, shown in

Fig. 1(a), we see that the eigenvectors at all momenta are
dominated by the components in the left-hand plot, corre-
sponding to the positive parity operators. In particular, at
zero momentum, the contributions from the negative parity
operators (in the right-hand plot) are consistent with zero.
This clearly indicates that it is a positive parity state, as
expected for the ground state nucleon. If we now look at the
next extracted state, shown in Fig. 1(b), we see that this time

TABLE I. Momenta used in this analysis. Physical units are
obtained from p (l.u.) by multiplying by 2π=32a, with
a ¼ 0.0951 fm.

# p (l.u.) p2 (GeV2)

1 (0,0,0) 0.000
2 (1,0,0) 0.166
3 (1,1,0) 0.332
4 (1,1,1) 0.498
5 (2,0,0) 0.664
6 (2,1,0) 0.830
7 (2,1,1) 0.996
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FIG. 1 (color online). Momentum-squared dependence of the PEVA eigenvectors associated with the ground state nucleon and first
three excitations, showing the contribution from positive parity operators (χþ1 , χ

þ
2 ), negative parity operators (χ−1 , χ−2 ), and different

levels of gauge-invariant Gaussian smearing (16, 35, 100, and 200 sweeps).
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the eigenvectors are dominated by the components in the
right-hand plot, corresponding to the negative parity oper-
ators, and the contribution from positive parity operators
at zero momentum is consistent with zero. This clearly
indicates that this is a negative parity state, the first negative
parity excitation of the nucleon. The next two states, shown
in Figs. 1(c) and 1(d), show similarly clear parity signals,
corresponding to the second negative parity and the first
positive parity excitation of the nucleon respectively.
While the contributions from opposite-parity operators

at zero momentum are consistent with zero, at nonzero
momentumwe see statistically significant contributions from
operators of both parities. This is observed for all four states,
even at a single lattice unit of momentum. This demonstrates
that parity mixing has a significant effect on the operator
structure of states at all nonzero momenta accessible on the
lattice. This will have nontrivial implications for calculating
three-point functions, but it is interesting to consider the
simplest case of the effect on two-point functions and
determinations of the effective energy.
For each state, we first fit the eigenstate-projected

correlators at p ¼ ð0; 0; 0Þ with a single-state ansatz and
find a fit window which produces an acceptable χ2=degrees
of freedom (DOF). We then step through the lattice
momenta listed in Table I in ascending order, keeping
the lower bound of the fit window fixed. The upper bound
of the fit window is reduced as necessary to remove
excessively noisy points. For each state at each nonzero
momenta, the χ2=DOF for a fit to our single state ansatz is
calculated for the resulting fit window. High values of the
χ2=DOF indicate that the correlator suffers from contami-
nation by multiple states. Since they produce the same
correlators at zero momentum, this process results in the
same fit windows for states extracted by both the 16 × 16
PEVA correlation matrix and the conventional 8 × 8
correlation matrices projected by Γþ and Γ−.
Figure 2 provides a comparison of the states extracted by

the conventional 8 × 8 correlation matrices and the states
extracted by the 16 × 16 PEVA correlation matrix. The
upper panel of Fig. 2 shows the effective energies for each
state as a function of momentum. We expect the effective
energy of the energy eigenstates to follow the dispersion
relation Eα ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

α þ p2
p

. These are plotted on the graph as
shaded bands for each state α. The lower panel of Fig. 2
shows the χ2=DOF values for each of these fits.
Contamination of our projected states shows up as a failure
of the single-state ansatz as indicated by high χ2=DOF.
We see an acceptable χ2=DOF distribution for all fits

other than those for the first negative parity excitation as
extracted by the conventional 8 × 8 correlation matrices
(open triangles). Due to the faster-decaying exponential
dependence of excited state contaminations, the ground
state effective energy can be cleanly extracted even when
contaminated by opposite-parity states. The effective mass
for the first positive parity excitation and the second

negative parity excitation do not appear to suffer from
significant cross-parity contamination. However the eigen-
vector structure shown in Figs. 1(c) and 1(d) suggests that
these states do have nontrivial opposite-parity contributions
at finite momentum. A likely explanation for this is that the
contaminating states are either close in energy to the
eigenstate being projected, so they do not significantly
change the correlator, or they have significantly higher
energy, so like the ground state, the correlator is protected
by Euclidean time evolution.
In the case of the first negative parity excitation, we do

see significant cross-parity mixing. For the conventional

FIG. 2 (color online). Momentum-squared dependence
of the effective energy fits (upper panel) and associated
χ2=DOF (lower panel) for the ground state (○), first (△) and
second (□) negative parity excitations, and first positive parity
excitation (⬠) of the nucleon. Results are plotted for both the
full 16 × 16 PEVA technique (filled points) and the conven-
tional 8 × 8 analyses projected by Γþ and Γ− (open points).
Shaded bands indicate the expected dispersion relation (Eα ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
α þ p2

p
). The ground state and the first negative parity

excitation extracted by the PEVA technique are displayed at
the actual momenta used, while other points are offset where
necessary for clarity.
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8 × 8 correlation matrix analysis the extracted effective
energies lie between the dispersion relations for the first
negative parity excitation and the ground state, which along
with high χ2=DOF values clearly indicates contamination

by the (opposite-parity) ground state. By contrast the PEVA
technique provides fits with an acceptable χ2=DOF dis-
tribution, allowing us to remove these opposite-parity
contaminations and cleanly isolate this first negative parity
excited state, as illustrated in Fig. 3.

V. CONCLUSION

We have shown that conventional baryon spectroscopy
methods applied at nonzero momentum can produce corre-
lators that are significantly contaminated by opposite-parity
states. This could in turn lead to significant errors in the
determination of three-point correlation functions. We have
presented the PEVA technique to address and resolve this
issue. The method is equivalent to conventional parity
projection methods at zero momentum, but at nonzero
momentum effectively removes opposite-parity contamina-
tions. This can have a marked effect on two-point correlation
functions, such as that for the lowest lying negative parity
excitation of the nucleon as shown in Sec. IV. The approach
is cost effective as the basis expansion amounts to simply
pre- or postmultiplying (or both) the projection matrix Γp by
γ5. The PEVA technique isolates nonzero momentum energy
eigenstates while maintaining a signature of the state’s rest-
frame parity, key to understanding the content of finite
momentum spectra in lattice QCD.
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APPENDIX: DIRAC STRUCTURE

To factor out the Dirac structure from Eq. (16), we substitute in the expressions from Eq. (15), and use the relation
Γpð−iγ · pþmBÞΓp ¼ ΓpðEB þmBÞ to write

Gijðp; tÞ ¼
X
Bþ;s

e−EBþ tλB
þ

i λ̄B
þ

j
mBþ

EBþ
ΓpuBþðp; sÞūBþðp; sÞΓp þ

X
B−;s

e−EB− tλB
−

i λ̄B
−

j
mB−

EB−

jpj2
ðEB− þmB−Þ2 ΓpuB−ðp; sÞūB−ðp; sÞΓp

¼
X
Bþ

e−EBþ tλB
þ

i λ̄B
þ

j Γp
−iγ · pþmBþ

2EBþ
Γp þ

X
B−

e−EB− tλB
−

i λ̄B
−

j

�
EB− −mB−

EB− þmB−

�
Γp

−iγ · pþmB−

2EB−
Γp

¼ Γp

"X
B�

e−EB� tλB
�

i λ̄B
�

j
EB� �mB�

2EB�

#
; ðA1aÞ

FIG. 3 (color online). Euclidean time dependence of the
effective energy of the first negative parity excitation at
p ¼ ð1; 0; 0Þ. The effective energy of the state isolated by the
conventional 8 × 8 correlation matrix (open symbols) has a clear
nontrivial time dependence all the way up to where the signal
disappears into noise, with no clear plateau, and lies significantly
below the state projected by the 16 × 16 PEVA correlation matrix
(filled symbols). The fits indicated by the solid lines are obtained
using the systematic method described in Sec. IV and give the
values used in Fig. 2. In the case of the conventional 8 × 8
correlation matrix (open symbols), this fit has an unfavorable
χ2=DOF of 6.6, indicating that multiple states are present in the
correlator. A significant deviation from the systematic approach
used here would allow us to move the lower bound of the fit
window to a later time slice of t=a ¼ 24, and take advantage of
the degradation of the signal-to-noise ratio to find an acceptable
χ2=DOF. This fit, indicated by the dashed line, has a χ2=DOF of
0.70 and a value of 1.36� 0.04ðstatÞ � 0.14ðsystÞ, where the
estimate of the systematic error is obtained by considering
multiple fit windows with acceptable χ2=DOF.
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Gij0 ðp; tÞ ¼ Gi0jðp; tÞ

¼
X
B�

e−EB� tλB
�

i λ̄B
�

j
jpj

EB� þmB�
Γp

−iγ · pþmB�

2EB�
Γp

¼ Γp

�X
B�

e−EB� tλB
�

i λ̄B
�

j
jpj

2EB�

�
; ðA1bÞ

Gi0j0 ðp; tÞ ¼
X
Bþ;s

e−EBþ tλB
þ

i λ̄B
þ

j

�
EBþ −mBþ

EBþ þmBþ

�
Γp

−iγ · pþmBþ

2EBþ
Γp þ

X
B−;s

e−EB− tλB
−

i λ̄B
−

j Γp
−iγ · pþmB−

2EB−
Γp

¼ Γp

�X
B�

e−EB� tλB
�

i λ̄B
�

j
EB�∓mB�

2EB�

�
: ðA1cÞ

Now, if we right multiply the traced correlation matrix Gðp; tÞ by the column vector

uα
þðpÞ≡ ðuαþ1 ðpÞ;…; uα

þ
n ðpÞ; uαþ

10 ðpÞ;…; uα
þ

n0 ðpÞÞ⊤

corresponding to the positive parity state Bαþ , then the components of the resulting vector are given by

ðGðp; tÞuαþðpÞÞi ¼ Gijðp; tÞuαþj ðpÞ þ Gij0 ðp; tÞuαþj0 ðpÞ

¼ tr
�X

Bβ ;s

e−EβthΩjχipjBβ;p; sihBβ;p; sjϕ̄αþ
p jΩi

�

¼ tr
�X

Bβ ;s

e−Eαþ tδα
þβλα

þ
i z̄α

þ mαþ

Eαþ
Γpuαþðp; sÞūαþðp; sÞΓp

�

¼ tr

�
e−Eαþ tλα

þ
i z̄α

þΓp
−iγ · pþmαþ

2Eαþ
Γp

�

¼ e−Eαþ tλα
þ

i z̄α
þ Eαþ þmαþ

2Eαþ
; ðA2aÞ

ðGðp; tÞuαþðpÞÞi0 ¼ Gi0jðp; tÞuαþj ðpÞ þGi0j0 ðp; tÞuαþj0 ðpÞ

¼ tr

�X
Bβ ;s

e−Eαþ tδα
þβλα

þ
i z̄α

þ jpj
Eαþ þmαþ

mαþ

Eαþ
Γpuαþðp; sÞūαþðp; sÞΓp

�

¼ e−Eαþ tλα
þ

i z̄α
þ jpj
2Eαþ

: ðA2bÞ

Here we have the overlap of the perfect operator ϕ̄αþ
p with some state Bβ, as given in Eq. (13), which introduces the term

δα
þβz̄α

þ
, eliminating the sum over states and leaving us with a single energy eigenstate αþ.
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