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Infinite hierarchy of nonlinear Schrödinger equations and their solutions
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We study the infinite integrable nonlinear Schrödinger equation hierarchy beyond the Lakshmanan-Porsezian-
Daniel equation which is a particular (fourth-order) case of the hierarchy. In particular, we present the generalized
Lax pair and generalized soliton solutions, plane wave solutions, Akhmediev breathers, Kuznetsov-Ma breathers,
periodic solutions, and rogue wave solutions for this infinite-order hierarchy. We find that “even- order”
equations in the set affect phase and “stretching factors” in the solutions, while “odd-order” equations affect the
velocities. Hence odd-order equation solutions can be real functions, while even-order equation solutions are
always complex.
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I. INTRODUCTION

It is well-known that the one-dimensional fundamental
nonlinear Schrödinger equation (NLSE) is integrable [1]. This
fact has allowed the achievement of significant progress in
the analysis of nonlinear optics, water waves, Bose-Einstein
condensates, and many other fields of nonlinear physics. The
possibility of writing solutions of the NLSE in an analytical
form has stimulated numerous experimental works in these
areas. Initial developments in soliton solutions have been
strengthened recently by the advances in breather solutions.
Various families of solutions are presented in Ref. [2].

Although the NLSE is one of the fundamental equations
in physics, it is not the only one which is integrable. In
particular, various extensions of the NLSE are known. For
example, Painlevé analysis of deformed NLS and Hirota
equations are given in Ref. [3]. Kano [4] considered small
perturbations of the NLSE that allowed him to keep the
modified equation nearly integrable. Such extensions expand
the areas of applicability of integrable equations and provide
efficient ways to apply evolution equations in practice. For
example, they may help to clarify the physics of wave blow-up
and collapse phenomena [5], as higher intensities require
higher-order terms to be included.

In the present work, we provide an extension of the NLSE
to infinite-order equations that comprise the NLSE hierarchy.
Namely, we consider extensions of the NLSE where additional
terms can have arbitrarily large coefficients. This extension
creates the infinite hierarchy of equations that are integrable
with an infinite number of arbitrary real coefficients. The addi-
tional terms in the equation include higher-order dispersion of
all orders and higher-order dispersion of nonlinear terms. The
arbitrariness of coefficients allows us to go well beyond the
simple NLSE. We define the invariant integrands of the NLSE
as

pj+1 = ψ
∂

∂ t

(
pj

ψ

)
+

∑
j1+j2=j

(pj1pj2 ), (1)

where j = 1,2,3, · · · ,∞ and j1 and j2 are nonzero positive
integers which add up to j , noting that order is important.
For example, if j = 1 there are no such integers and so the
right summation is zero, while for j = 4, we have (j1,j2) =

(1,3),(3,1), and (2,2), so that∑
j1+j2=4

(
pj1pj2

) = 2p1p3 + p2
2.

We take p1 = |ψ |2 to start with. Hence, the first few
functionals are

p2 = ψψ∗
t ,

p3 = |ψ |4 + ψψ∗
t t ,

p4 = ψ[ψt (ψ
∗)2 + 4ψ∗

t |ψ |2 + ψ∗
t t t ]. (2)

With this formulation, all signs are positive. Now, we define
the j th operator in the NLS hierarchy as

Kj (ψ,ψ∗) = (−1)j
δ

δ ψ∗

[∫
pj+1dt

]
, (3)

where we have taken the functional derivative of the invariant
to get the higher-order operator. Again, all signs are positive
in each Kj . For example, K2 = ψtt + 2ψ |ψ |2, which is easily
recognizable as an NLSE operator.

For higher orders, the j th operator (j � 3) can be presented
in the following form:

Kj = ∂j ψ

∂ tj
+ 2j |ψ |2 ∂j−2 ψ

∂ tj−2
+ [1 + (−1)j ]ψ2 ∂j−2 ψ∗

∂ tj−2

+ j (j − 3) ψ ψ∗
t

∂j−3 ψ

∂ tj−3
+ · · · . (4)

There are only two terms when j = 3, as the last two terms
reduce to zero: K3 = ψttt + 6|ψ |2ψt . For j � 4, the next term
to be added is

2[j − 1 − (−1)j ] ψψt

∂j−3 ψ∗

∂ tj−3
.

For j � 5, the next term to be added is

j (j − 1) ψt ψ∗ ∂j−3 ψ

∂ tj−3
.

Finally, the term with no derivative in Kj is

j !

[(j/2)!]2
ψ |ψ |j (5)

if j is even, j = 2,4,6, · · · , and zero if j is odd.
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The equation which includes the whole infinite hierarchy is

F [ψ(x,t)] = iψx +
∞∑

j=1

(α2jK2j − i α2j+1K2j+1) = 0, (6)

where each coefficient αj , j = 2,3,4,5, · · · ,∞, is an arbitrary
real number. In all expressions here, x is the propagation
variable and t is the transverse variable (time in a moving
frame), with the function |ψ(x,t)| being the envelope of the
waves.

In Ref. [2] and many papers, including Refs. [6–8], we
have taken α2 = 1

2 . This normalization has certain convenient
features. For example, rogue wave triplets with this scaling
are circular rather than elliptical in the (x,t) plane [9]. On
the other hand, some authors, e.g., Zakharov and Shabat [1]
and Kano [4], set α2 = 1. Any value of α2 can be used in our
present work [10–13], including zero. Hence, our solutions
cover equations like ψx − α3(ψttt + 6|ψ |2ψt ) = 0, which do
not involve the basic NLSE operator at all. The latter is a
significant advance over previous works.

Thus, the whole equation takes the following form:

F [ψ(x,t)] = iψx + α2K2[ψ(x,t)] − iα3 K3[ψ(x,t)]

+α4K4[ψ(x,t)] − iα5 K5[ψ(x,t)]

+α6K6[ψ(x,t)] − iα7 K7[ψ(x,t)]

+α8K8[ψ(x,t)] − i α9K9[ψ(x,t)]

+ · · · = 0, (7)

where the combined operator F [ψ(x,t)] represents the whole
hierarchy of integrable equations.

In the lowest, second order, we obtain the fundamental
nonlinear Schrödinger equation:

iψx + α2K2 = iψx + α2(ψtt + 2ψ |ψ |2) = 0.

Keeping additionally the third-order operator K3, we obtain
the Hirota equation:

iψx + α2(ψtt + 2ψ |ψ |2) − iα3[ψttt + 6|ψ |2ψt ] = 0.

In the next generalization, we keep K4 as the fourth-order (j =
4) operator. It is known as the Lakshmanan-Porsezian-Daniel
(LPD) operator (starting with the fourth-order derivative):

K4[ψ(x,t)] = ψtttt + 8|ψ |2ψtt + 6ψ |ψ |4 + 4ψ |ψt |2
+ 6ψ2

t ψ∗ + 2ψ2ψ∗
t t . (8)

Continuing the process, we can keep K5 as the fifth-order
(j = 5), i.e., quintic, operator (starting with the fifth-order
derivative):

K5[ψ(x,t)] = ψttttt + 10|ψ |2ψttt + 30|ψ |4ψt + 10ψψtψ
∗
t t

+ 10ψψ∗
t ψtt + 20ψ∗ψtψtt + 10ψ2

t ψ∗
t .

This expression can be written in a shorter form:

K5[ψ(x,t)] = ψttttt + 10|ψ |2ψttt + 10(ψ |ψt |2)t

+ 20ψ∗ψtψtt + 30|ψ |4ψt . (9)

The quintic equation has been considered, in a different
context, by Hoseini and Marchant [14]. Further, K6 is the sixth-
order (j = 6), i.e., sextic, operator (starting with the sixth-
order derivative):

K6[ψ(x,t)] = ψttttt t +[60ψ∗|ψt |2 + 50(ψ∗)2ψtt +2ψ∗
t t t t ]ψ

2

+ψ[12ψ∗ψtttt + 8ψtψ
∗
t t t + 22|ψtt |2]

+ψ[18ψtttψ
∗
t + 70(ψ∗)2ψ2

t ] + 20(ψt )
2ψ∗

t t

+ 10ψt [5ψttψ
∗
t + 3ψ∗ψttt ] + 20ψ∗ψ2

t t

+ 10ψ3[(ψ∗
t )2 + 2ψ∗ψ∗

t t ] + 20ψ |ψ |6. (10)

We present the heptic and octic operators in the Appendix.
We repeat, the coefficients αj are arbitrary real constants.

They do not have to be small. This allows us to go well
beyond the simple extension of the NLSE with corrective
and perturbative terms. In the particular case when only α3 is
nonzero, the equation is known as the Hirota equation [6,15].
Furthermore, when only α4 is nonzero, the equation is known
as the LPD equation [16–18]. In this case, the coefficients
within the K4 operator (8) were found using Painlevé analysis
of the equation describing the Heisenberg spin chain. Thus,
particular cases in the hierarchy have physical relevance. The
equation when two coefficients α3 and α4 are arbitrary has
been considered earlier in Refs. [7,8]. In particular, soliton
solutions of this equation are given in Ref. [7], while rogue
wave solutions are presented in Ref. [8]. In those papers, α4 is
denoted by γ . The KdV is studied in [19,20].

We believe that the sextic, heptic, and octic operators of the
NLS hierarchy are presented here for the first time. Although
we do not present here the ninth-order operator K9[ψ], with
coefficient α9 to save space, the results we give for first-order
solitons and rogue waves does include it and all higher orders
to infinity.

II. GENERAL OBSERVATIONS

A. Scaling

If we have a solution, ψ(x,t ; α2,α3,α4, . . .), of the full
equation, then we can generate a scaled solution by mul-
tiplying the function by an arbitrary real constant, c, mul-
tiplying t by c, leaving x unchanged, and multiplying
each αj in the solution by cj . Hence the new solution is
c ψ(x,c t ; c2α2,c

3α3,c
4α4, . . .). If all αj = 0 for j � 3, i.e.,

we have the fundamental NLSE only, then the scaling α2 →
c2α2 is equivalent to scaling x by a factor of c2, thus agreeing
with the well-known scaling of NLSE solutions (e.g., see [21]
and Eq. (2.3) of Ref. [2]). However, when more operators are
included in the equation, it is important to note that the αj ’s in
the solution are scaled, not the variable x. This will be clear
from the solutions analyzed in this paper. This scaling is not
trivial, and so we retain the c factors throughout the solutions,
for ease of use.

B. Odd-numbered equations

First, we make some general observations. If all even-
labeled coefficients are zero, i.e. α2n = 0, n = 1,2,3, . . . ,∞,
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then we have

ψx =
∞∑

j=1

α2j+1K2j+1.

These can have real-valued solutions. For example, the first
such equation is ψx = α3(ψttt + 6|ψ |2ψt ). If we assume that
ψ = f (y) is a real even function where y = t + x v3, then for
a localized solution [f (y) → 0 for y → ∞], we have v3f =
α3 (f ′′ + 2f 3). For convenience, we set f (0) = 1. This shows
that v3 = α3 and f ′(y) = f

√
1 − f 2. Hence f = sech(y) =

sech(t + x v3).
Similarly, the j = 2 equation, with y = t + x v5 re-

duces to v5f
′ = α5 (f5y + 10f 2f3y + 30f 4f ′ + 40ff ′f2y +

10f 3
y ). Then v5 = α5 and f = sech(t + x v5). This pattern will

be seen later with more complicated solutions. We will be able
to plot ψ rather than just |ψ | for these solutions.

C. Even-numbered equations

If all odd-labeled coefficients are zero, i.e., α2n+1 = 0, n =
1,2,3, . . . ,∞ then the equation becomes

iψx +
∞∑

j=1

α2jK2j = 0.

Now the solutions take the form ψ = eiφxg(t). In the NLSE
case, when j = 1, for the localized solution which is even
in t , we have α2(g2

t + g4) = φg. For convenience, we now
take g(0) = 1. This shows that φ = α2 and g′(t) = g

√
1 − g2.

Hence g = sech(t) and ψ = eiα2xsech(t).
Similarly, for the j = 2 equation, we have α4 (g4t +

8g2g2t + 6g5 + 10gg2
t + 2g2g2t ) = φg and solution ψ =

eiα4xsech(t). Again, this structure will be seen for other types
of solutions.

D. Plane wave solutions

In order to illustrate the usefulness of the approach, we
start with the simplest plane wave solution of the extended
NLS equation. If the solution ψ is independent of t , then we
see from Eq. (5) that

iψx + ψ

∞∑
n=1

(
2n

n

)
α2n|ψ |2n = 0,

where
(2n

n

)
is a binomial coefficient. So

iψx + 2α2ψ |ψ |2 + 6α4ψ |ψ |4 + 20α6ψ |ψ |6 + · · · = 0.

Thus, for the unit-background forward-propagating plane
wave solution to Eq. (7), ψp = exp(iφ x), we have (with
j = 2n)

φ = 2α2 + 6α4+20α6 + · · ·=
∞∑

n=1

(
2n

n

)
α2n =

∞∑
n=1

(2n)!

(n!)2
α2n.

Thus, for an arbitrary background of the plane wave, we can
write the solution as

ψp = c exp

(
ixc2

∞∑
n=1

(2n)!

(n!)2
α2nc

2n−2

)

= c exp[ixc2(2α2 + 6c2α4 + 20c4α6

+70c6α8 + 252c8α10 + · · · )], (11)

recalling that α2 does not have to be 1/2.
Here c is the arbitrary amplitude of the plane wave and

the series in Eq. (4) contains even coefficients of Eq. (7). The
simple nature of the scaling is apparent, with arbitrary back-
ground level c causing each coefficient α2n to be multiplied
by c2n. The expression (4) represents the solution of Eq. (7)
of any order up to infinite one. The presence of only even
terms in this expression is related to the fact that we deal with
the forward-propagating wave. Any skewness in the (x,t) plane
would result in the addition of odd terms. We do not present this
case as this would go beyond the simplicity of our illustrative
example. In order to construct more complicated solutions of
Eq. (7), we have to find its Lax pair. These solutions can also
be found for the equation with an infinite number of terms.

E. First-order soliton solutions

The first-order soliton of Eq. (7), taking α2 and all other
coefficients αj to be arbitrary, is

ψs = c exp(ixφs)sech(ct + xvs), (12)

where the phase is

φs =
∞∑

n=1

α2nc
2n

= c2(α2 + c2α4 + c4α6 + c6α8 + c8α10 + · · · ), (13)

and where the velocity is

vs =
∞∑

n=1

α2n+1c
2n+1 (14)

= c3(α3 + c2α5 + c4α7 + c6α9 + · · · ).

The background level c is arbitrary. It is clear from the
expression that the velocity depends on the third-, fifth-,
seventh-, and ninth-order coefficients α2n+1, while the phase
depends on the fourth-, sixth-, and eighth-order coefficients
α2n. Plainly, for the unit background, each term has a unit
coefficient. When only α3 and α4 are nonzero, it reduces to a
result in Ref. [7]. So this solution applies for infinitely many
orders in the original equation. It confirms and generalizes the
brief derivations on odd- and even-numbered equations above.

III. GENERALIZED ROGUE WAVES AND RELATED
SOLUTIONS

Again, we allow for all operator coefficients (αj , j =
3,4,5, · · · ,∞) to be arbitary. Then

ψ(x,t) = c

[
4

1 + 2i Br x

D(x,t)
− 1

]
eiφr x, (15)
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FIG. 1. Plot of the rogue wave, Eq .(15), solution of Eq. (7), with
c = 1, α4 = 1

4 , and all other αj ’s being zero.

where D(x,t) = 1 + 4B2
r x

2 + 4(ct + vr x)2 and

Br =
∞∑

n=1

n(2n)!

(n!)2
α2nc

2n

= 2c2(α2 + 6c2α4 + 30c4 α6 + 140c6 α8

+ 630c8α10 + · · · ). (16)

Here c is the arbitrary background level. The coefficient φ in
the exponential factor is then equal to

φr = c2
∞∑

n=1

(2n)!

(n!)2
α2nc

2n−2

= 2c2(α2 + 3c2α4 + 10c4 α6 + 35c6 α8 + 126c8α10 + · · · ).

(17)

Finally, the velocity is

vr =
∞∑

n=1

(2n + 1)!

(n!)2
α2n+1c

2n+1

= 2c3(3α3 + 15c2 α5 + 70c4 α7 + 315c6α9

+1386c8 α11 + · · · ). (18)

The velocity clearly depends only on the coefficients of
odd-order operators: the Hirota operator with v = 6c3α3 when
the other αj ’s are zero, the fifth-order operator (quintic, with
v = 30c5α5 when the other αj ’s are zero), the seventh-order
operator (heptic, with v = 140c7α7 when the other αj ’s are
zero), etc. We note that the exponential factor, φ, and the
stretching factor, Br , here depend only on the coefficients of
even-order operators. When αj = 0, for all j > 4, it reduces
to a result in Ref. [8].

If we have only even-numbered equations, then φr and
Br are nonzero, and we obtain complex-valued, zero-velocity
solutions resembling that of the NLSE (which is the α2 case).
An example is given in Fig. 1.

If we have only odd-numbered equations (see Sec. II B),
then φr = Br = 0, and we obtain the real-valued solution

ψ(x,t) = c

[
4

4(ct + vr x)2
− 1

]
.

FIG. 2. Plot of the moving soliton on a background, Eq. (15),
with c = 1, α5 = 1

16 , and all other αj ’s being zero.

Then, along the diagonal line ct + vr x = 0, we have ψ(x,t) =
3c . So, this solution resembles a moving soliton on a
background (though the shape is different from the “sech”
function) and does not have the single peak which is a feature
of solutions of the full equation which contains at least one
even-labeled term. An example is given in Fig. 2. Earlier
works, e.g., Ref. [6], included both α2 and α3 terms and hence
found rogue waves with a single maximum.

If we have at least one even-numbered equation with
at least one odd-numbered equation, the resulting solution
looks like an NLSE rogue wave [22], with the central part
having a velocity (see Ref. [6]). An example is given in
Fig. 3. We stress that this is a remarkably simple result for
an equation that can contain hundreds of terms, each with
various derivatives. It could help explain the appearance of
rogue waves in a multitude of physical, biological, financial,
and social situations, going well beyond the j = 3 and 4 cases
that have been previously analyzed.

IV. GENERALIZED AKHMEDIEV BREATHERS AND
RELATED SOLUTIONS

The basic NLSE breather explains the evolution of modula-
tion instability (e.g., see Sec. 3.7 of Ref. [2]). Here, we consider
all odd- and even-order equations. The odd-order equations
basically modify the breather velocity when compared to the
basic NLSE breather, as is already known for the Hirota
(α3 �= 0) case. On the other hand, the even-order equations

FIG. 3. Plot of the rogue wave, Eq. (15), with c = 1, α4 = 1/4,
α5 = 1

16 , and all other αj ’s being zero.
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basically modify the phase of the basic NLSE breather and
introduce a “stretching factor” in x in the nonphase part of
the solution. We take an arbitrary background, i.e., any real
c, while noting that the scaling is relatively simple once the
c = 1 case is known. Thus, the general breather on the arbitrary
background c is

ψb = ceix φ

(
1 + κ[κC(x) + i

√
4 − κ2S(x)]√

4 − κ2 cos[κ(ct + vbx)] − 2C(x)

)
,

(19)

where

C(x) = cosh

(
Bb κ

√
1 − κ2

4
x

)
,

S(x) = sinh

(
Bb κ

√
1 − κ2

4
x

)
,

with κ being an arbitrary real frequency in the range of
modulation instability, i.e., 0 < κ < 2.

Now the velocity is

vb =
∞∑

n=1

α2n+1c
2n+1 (2n + 1)!

n!

(
n∑

r=0

(−1)rκ2r r!

(n − r)!(2r + 1)!

)
.

We now sum the series on the right, obtaining a closed form
result:

vb =
∞∑

n=1

α2n+1 c2n+1 (2n + 1)!

(n!)2 2F1

(
1, − n;

3

2
;
κ2

4

)
, (20)

where 2F1 is the hypergeometric function [23]. In our range,
if κ is small, then this function can be approximated:

2F1

(
1, − n;

3

2
;
κ2

4

)
≈ 1 − n

6
κ2 + n

60
(n − 1)κ4 + · · · .

(21)

In fact, for any κ in our range, 2F1(1, − n; 3
2 ; κ2

4 ) is exactly
a polynomial in κ with n + 1 terms, with the highest power
being κ2n. Thus,

vb = α3c
3 (6 − κ2) + α5c

5 (30 − 10κ2 + κ4)

+α7c
7 (140 − 70κ2 + 14κ4 − κ6) + α9c

9 (630

− 420κ2 + 126κ4 − 18κ6 + κ8) + α11c
11 (2772

− 2310κ2 + 924κ4 − 198κ6 + 22κ8 − κ10) + · · ·
For κ → 0, from Eqs.(20) and (21), we have

vb =
∞∑

n=1

α2n+1 c2n+1 (2n + 1)!

(n!)2
= 6α3c

3 + 30α5c
5

+ 140α7c
7 + 630α9c

9 + 2772α11c
11 + · · ·

agreeing with the rogue wave result, Eq. (18). Thus, the
velocity given by Eq. (18) is the low-frequency (κ → 0) limit
(for any c) of Eq. (20).

Similarly, the stretching factor is given by

Bb = 2
∞∑

n=0

α2n+2c
2n+2 (2n + 1)!

(n!)2 2F1

(
1, − n;

3

2
;
κ2

4

)

= 2[α2c
2 + α4c

4 (6 − κ2) + α6c
6 (30 − 10κ2 + κ4)

FIG. 4. Plot of the complex Akhmediev breather, Eq. (19),
solution of Eq. (7), with κ = 1, c = 1, α4 = 1

4 , and all other αj ’s
being zero.

+α8c
8 (140 − 70κ2 + 14κ4 − κ6) + α10c

10 (630

− 420κ2 + 126κ4 − 18κ6 + κ8) + α12c
12(2772

− 2310κ2 + 924κ4 − 198κ6 + 22κ8 − κ10) + · · · ].

The κ → 0 limit is

Bb(κ = 0) = 2
∞∑

n=0

α2n+2c
2n+2 (2n + 1)!

(n!)2
,

agreeing with the rogue wave result, Eq. (16). The phase is:

φ =
∞∑

n=1

α2nc
2n (2n)!

(n!)2
= 2(α2c

2 + 3α4c
4 + 10α6c

6 + · · · ).

Note that the phase matches that of the plane wave solution,
Eq. (13), and the rogue wave, Eq. (17). Thus, the rogue wave,
Eq. (15), can also be obtained as the low-frequency (κ → 0)
limit of the breather given by Eq. (19).

We have |φ(0,0)| = |c|(1 + √
4 − κ2); this decreases from

a maximum of 3|c| when κ = 0 to a minimum of |c| when
κ = 2. Again, if we have only even numbered equations, then
vb = 0, and the breather solution resembles that of the NLSE.
An example is given in Fig. 4.

If we have only odd-numbered equations, then φb = Bb =
0, and the solution ψb(x,t) of Eq. (19) becomes real-valued.
An example is given in Fig. 5. It does not “breathe” and so
we can describe it as a solution related to a breather. If at least

FIG. 5. Plot of the real-valued nonbreathing solution related to
the Akhmediev breathers, Eq. (19). It is a solution of Eq. (7), with
κ = 1, c = −1, α5 = 1

16 , and all other αj ’s being zero.

012206-5



A. ANKIEWICZ et al. PHYSICAL REVIEW E 93, 012206 (2016)

FIG. 6. Plot of the complex Akhmediev breather, Eq. (19),
solution of Eq. (7), with κ = 1, c = 1, α4 = 1

4 , α5 = 1
5 , and all other

αj ’s being zero.

one even and one odd coefficient are nonzero, then φb, Bb, and
vb are all nonzero. The example of this solution is shown in
Fig. 6. It is similar to the one in Fig. 4 but has nonzero velocity.

Beyond the NLSE solution, only the Hirota case [6] when
vb = α3(6 − κ2) and fourth-order case [24] were previously
known. This new solution can provide a considerable extension
of applicability to problems of modulation instability in
physics, chemistry, etc.

V. GENERALIZED KUZNETSOV-MA BREATHERS AND
MOVING SOLITONS

The NLSE Kuznetsov-Ma breather is given by Eq. (3.63)
of Ref. [2]. The generalized Kuznetsov-Ma breather can be
written as

ψm = c
√

2eix(φm) 2(1 − a1)Cs(x) − √
2
√

a1Cm(x,t) + 2i
√

1 − 2a1Sm(x)√
2Cm(x,t) − 2

√
a1Cs(x)

,

(22)

where

Cm(x,t) = cosh[2
√

1 − 2a1 (c t + vm x)],

Cs(x) = cos(2
√

1 − 2a1Bm x),

Sm(x) = sin(2
√

1 − 2a1Bm x),

with a1 being an arbitrary real number within the interval
0 < a1 < 1

2 . The velocity is

vm =
∞∑

n=1

4nα2n+1c
2n+1

(
1 +

n∑
r=1

(2r − 1)!!ar
1

r!

)
. (23)

This can be written in closed form:

vm =
∞∑

n=1

4nα2n+1c
2n+1

[
1√

1 − 2a1
− an+1

1

(2n + 1)!!

(n + 1)!
2F1

×
(

1,n + 3

2
; n + 2; 2a1

)]
. (24)

Thus, we have

vm = 4c3(a1 + 1)α3 + 8c5
(
3a2

1 + 2a1 + 2
)
α5

+ 32c7
(
5a3

1 + 3a2
1 + 2a1 + 2

)
α7

+ 32c9(35a4
1 + 20a3

1 + 12a2
1 + 8a1 + 8

)
α9

+ 128c11
(
63a5

1 + 35a4
1 + 20a3

1 + 12a2
1 + 8a1 + 8

)
α11

+ · · · .

The result in Eq. (24) can also be expressed as

vm =
∞∑

n=1

2n−1α2n+1c
2n+1

n!
√

1 − 2a1

× [2n+1n! − (2n + 1)!!B1/2(2a1,n + 1))], (25)

where the incomplete beta function Bz(a,b) is defined as∫ z

0 ta(1 − t)b−1 dt .

For the upper point in the parameter range, i.e., for a1 → 1
2 ,

we have

lim
a1→ 1

2

vm =
∞∑

n=1

c2n+1 (2n + 1)!α2n+1

(n!)2

= 6c3α3 + 30c5α5 + 140c7α7

+ 630c9α9 + 2772c11α11 + · · · , (26)

again agreeing with the rogue wave result, Eq. (18).
The stretching factor Bm is given by

Bm = 2
∞∑

n=0

4nα2n+2c
2n+2

[
1√

1 − 2a1

− an+1
1

(2n + 1)!!

(n + 1)!
2F1

(
1,n + 3

2
; n + 2; 2a1

)]
. (27)

Further,

lim
a1→ 1

2

Bm = 2c2α2 + 12c4α4 + 60c6α6

+ 280c8α8 + 1260c10α10 + · · · ,

i.e., it is the rogue wave result of Eq. (16). The phase is

φm =
∞∑

n=1

(2n)!

(n!)2
α2nc

2n(2a1)n

= 2a1(2c2α2 + 12a1c
4α4 + 80a2

1 c6α6

+ 560a3
1 c8α8 + 4032a4

1c
10α10 + · · · ), (28)

recalling that we usually set α2 = 1
2 . For the upper point in the

parameter range,

lim
a1→ 1

2

φm = 2c2α2 + 6c4α4 + 20c6α6

+ 70c8α8 + 252c10α10 + · · · ,

i.e., it is the rogue wave result of Eq. (17).
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FIG. 7. Plot of the Kuznetsov-Ma breather solution given by
Eq. (22). It is a solution of Eq. (7), with a1 = 1

8 , c = 1, α4 = 1
4 ,

and all other αj ’s being zero.

So if we only consider odd-order equations, i.e., those with
coefficients α3, α5, α7, etc., then only the velocity changes,
while the stretching factor Bm and the phase φm are zero.
This makes ψm of Eq. (22) real. If we only consider even-
order equations, i.e., those with coefficients α2, α4, α6, etc.,
then only the stretching factor Bm and the phase φm change,
while the velocity remains equal to zero. Thus, the rogue wave
given by Eq. (15) can also be obtained as the upper parameter
(a1 → 1/2) limit of the Kuznetsov-Ma breather of Eq. (22).
Again here, if we have only even-numbered equations, then
vm = 0, and the breather solution resembles that of the NLSE.
An example is given in Fig. 7.

If we have only odd numbered equations, then φm =
Bm = 0, and the solution ψm(x,t) of Eq. (22) becomes
real-valued. An example is given in Fig. 8. In contrast to
the odd-equations’ Akhmediev breathers, these contain no
trigonometric functions and hence do not feature periodicity.
We describe them as solutions related to the Kuznetsov-Ma
breather. They resemble a moving soliton on a background,
like the rogue wave shown in Fig. 2.

VI. PERIODIC SOLUTIONS

A. Elliptic dn solutions

The NLSE dn solution has been given in Eq. (3.65) of
Ref. [2]. We are now in a position to give periodic solutions of
the full infinite equation, where we recall that α2 and all other

FIG. 8. Plot of the nonbreathing solution, Eq. (22). It is a solution
of Eq. (7), with a1 = 1

8 , c = −1, α5 = 1
5 , and all other αj ’s being zero.

The background level is 1
2 and the maximum value is 3

2 .

coefficients αj are arbitrary. It is given by

ψs = c exp(ixφd )dn(ct + xve,m), (29)

where dn is a Jacobi elliptic function [23], with real modulus
m such that 0 < m < 1. For the definition of m, we have
dn(y,m) = 1 − 1

2m y2 + · · · . The phase term is

φd =
∞∑

n=1

α2nc
2n (2n)!

(n!)2 2F1(−n, − n; −2n; m). (30)

We find that this can be expressed in terms of Pn, the set of
orthogonal Legendre polynomials of the first kind:

φd =
∞∑

n=1

α2nc
2nmnPn

(
2

m
− 1

)
. (31)

These well-known polynomials are P1(y) = y, P2(y) = 1
2

(3y2 − 1), P3(y) = 1
2y(5y2 − 3), P4(y) =

1
8 (35y4 − 30y2 + 3), P5(y) = 1

8y(63y4 − 70y2 + 15),
etc. Thus,

φd = (2 − m)c2α2 + (
6 − 6m + m2)c4α4

+ (
20 − 30m + 12m2 − m3

)
c6α6 + (

70 − 140m

+ 90m2 − 20m3 + m4
)
c8α8 + (252 − 630m

+ 560m2 − 210m3 + 30m4 − m5)c10α10 + · · · .

Further, the velocity is

ve =
∞∑

n=1

α2n+1c
2n+1 (2n)!

(n!)2 2F1(−n, − n; −2n; m). (32)

Similarly, this can be simplified to

ve =
∞∑

n=1

α2n+1c
2n+1mn Pn

(
2

m
− 1

)
, (33)

where Pn is a member of the same set of orthogonal Legendre
polynomials of the first kind. So

ve = (2 − m)c3α3 + (
6 − 6m + m2

)
c5α5 + (20

− 30m + 12m2 − m3)c7α7 + (70 − 140m

+ 90m2 − 20m3 + m4)c9α9 + (252 − 630m

+ 560m2 − 210m3 + 30m4 − m5)c11α11 + · · · .

As with most solutions, the even-order equations affect the
phase, while the odd-order equations affect the velocity. In this
case, the solution functions have the same form, though the
set of coefficients (the αj ’s) differ. If we have only odd-label
equations, then φd = 0 and the solution of Eq. (29) is real.

If m = 1 we have Pn(1) = 1, and

ceiφdxdn(ct + vex,1) = ceiφsx sech( t + vsx),

since φd (m = 1) = ∑∞
n=1 α2n, agreeing with Eq. (13), and

ve = ∑∞
n=1 α2n+1, agreeing with Eq. (14). Thus, we have

reproduced the fundamental “sech” soliton result covering all
operators.
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B. Elliptic cn solutions

The NLSE cn solution has been given by Eq. (3.66) of
Ref. [2]. We now give the elliptic cn solution of the full infinite
equation. We can write it in a convenient way using hyperbolic
functions as follows:

ψs = c√
2

coth(ζ ) eiφcxcn

[
ct + xvc

sinh(ζ )
,
1

2
cosh2(ζ )

]
, (34)

where cn is a Jacobi elliptic function [23], with ζ real. With
our modulus definition, cn(y,m) = 1 − 1

2y2 + 1
6 ( 1

4 + m)y4 +
· · · . The phase term can be expressed in terms of Pn, the set
of orthogonal Legendre polynomials of the first kind:

φc =
∞∑

n=1

α2nc
2n sinh−2n(ζ ) Pn(sinh2(ζ ))

= α2c
2 + α4

2
c4[3 sinh4(ζ ) − 1]csch4(ζ )

+α6

2
c6[5 sinh6(ζ ) − 3 sinh2(ζ )]csch6(ζ )

+α8

8
c8[35 sinh8(ζ ) − 30 sinh4(ζ ) + 3]csch8(ζ )

+α10

8
c10[63 sinh10(ζ ) − 70 sinh6(ζ )

+15 sinh2(ζ )] csch10(ζ ) + · · · . (35)

This can be reexpressed in a more compact form:

φc = α2c
2 + α4

2
c4[3 − csch4(ζ )] + α6

2
c6[5 − 3 csch4(ζ )]

+ α8

8
c8[35 − 30 csch4(ζ ) + 3 csch8(ζ )]

+ α10

8
c10[63 − 70 csch4(ζ ) + 15 csch8(ζ )] + · · ·

Similarly, the velocity is

vc =
∞∑

n=1

α2n+1c
2n+1 sinh−2n(ζ )Pn[sinh2(ζ )]

= α3c
3 + α5

2
c5[3 − csch4(ζ )] + α7

2
c7[5 − 3 csch4(ζ )]

+ α9

8
c9[35 − 30 csch4(ζ ) + 3 csch8(ζ )]

+ α11

8
c11[63 − 70 csch4(ζ ) + 15 csch8(ζ )] + · · · ,

(36)

where Pn is a member of the same set of orthogonal Legendre
polynomials.

On the other hand, the solution can be written without
hyperbolic functions:

ψs = c√
2

√
s + 1 eiφcxcn

[√
s(ct + xvc), 1

2 (1 + s−1)
]
. (37)

Then

φc =
∞∑

n=1

α2nc
2nsnPn

(
1

s

)

= c2α2 + α4

2
c4(3 − s2) + α6

2
c6(5 − 3s2)

+ α8

8
c8(35 − 30s2 + 3s4)

+ α10

8
c10(63 − 70s2 + 15s4) + · · · (38)

and

vc =
∞∑

n=1

α2n+1c
2n+1snPn

(
1

s

)

= c3α3 + α5

2
c5(3 − s2) + α7

2
c7(5 − 3s2)

+α9

8
c9(35 − 30s2 + 3s4)

+α11

8
c11(63 − 70s2 + 15s4) + · · · . (39)

Again, the even-order equations affect the phase, while
the odd-order equations affect the velocity. If we have only
odd-label equations, then φc = 0 and solution of Eq. (34)
is real. In this case, the solutions have the same form, with
the set of coefficients (the αj ’s) being different. If s = 1,
i.e., sinh(ζ ) = 1, we have Pn(1) = 1, so the solution given in
Eq. (37) reduces to Eq. (12), viz., ceiφsxsech( t + vsx), as is
the case in Sec. VI A.

VII. THE CASE OF x-DEPENDENT COEFFICIENTS

A. Solitons

We have considered the coefficients to be constants, but
we now allow them to vary on propagation, so that αm =
αm(x). In a fiber, this would correspond to different sections
possessing different physical and optical characteristics. For
example, suppose that just one of the coefficients, viz., α2j (x),
in Eq. (6) is nonzero. Then

iψx + α2j (x) K2j (x,t) = 0,

for a particular j . We note that K2j (x,t) contains no derivatives
with respect to x. We now transform to a new variable, X, such
that

dX

dx
= α2j (x), i.e., X =

∫
α2j (x)dx.

Then iψX + K2j (X,t) = 0. Here the coefficient is a constant,
viz., unity, and we can use the constant-coefficient solutions
already found, simply by making the following replacement:
α2j x → ∫

α2j (x) dx. The velocities, stretching factors, and
phases are modified in this way for all the solutions given
above. For example, if we take j = 1, we have the NLS
only, K2 = ψtt + 2|ψ |2 ψ . The soliton solution is, from
Eq. (12), ψ = exp[iα2x]sech(t). When α2 = α2(x), we have
ψ = exp[i

∫
α2(x)dx]sech(t).

We can generalize this by allowing all operator coefficients
to be nonzero and to be functions of x. Then the soliton solution
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FIG. 9. Plot of the soliton, Eq. (40), moving under the influence
of operators with variable coefficients.

of maximum amplitude c is

ψm = c exp

[
i

∞∑
n=1

c2n J2n(x)

]
sech

[
t +

∞∑
n=1

c2n+1J2n+1(x)

]
,

(40)

where Jm(x) = ∫
αm(x)dx. If each coefficient is constant, then

Jm(x) = αmx, and

ψm = c exp[ix
∞∑

n=1

c2nα2n]sech

[
t + x

∞∑
n=1

c2n+1α2n+1

]
,

as in Eqs. (13) and (14).
To plot an example, let us use Gaussian functions to switch

the operators “on” and “off” during soliton propagation. We
set α2(x) = exp[− 1

2x2], α3(x) = − exp[− 1
2 (x − 3)2], α4(x) =

exp[ 1
2 (x − 6)2], and α5(x) = 2 exp[− 1

2 (x − 9)2]. Hence J2 =√
π
2 erf( x√

2
), etc. We plot the solution, from Eq. (40), in

Fig. 9. Clearly, the third-order operator, mediated by α3, moves
the soliton towards the right, while the fifth-order operator,
mediated by α5, moves the soliton towards the left. The other
two operators affect phase only, and not velocity. In parts
where the Gaussians are almost zero, the soliton propagates
with unchanged velocity and phase.

Using Eq. (15), or varying α2(x), the NLS unit-background
rogue wave becomes

ψ(x,t) =
[

4
1 + 4iJ2(x)

1 + 4t2 + 16J 2
2 (x)

− 1

]
e2iJ2(x). (41)

B. Kuznetsov-Ma breathers

We now consider a Kuznetsov-Ma breather, but allow for
variable coefficients. We take

α2(x) = γ sech2

(
x − 10

8

)
, α3(x) = −γ

4
sech2

(
x − 50

8

)
,

α4(x) = γ

6
sech2

(
x − 90

8

)
.

We can still use the result of Eq. (22), again with each
αnx with

∫
αn(x) dx. Here we take a1 = 1/8. Thus vm of

Eq. (24) is replaced by vm = −9γ tanh ( x−50
8 ), Bm of Eq. (27)

is replaced by Bm = 4γ [4 tanh ( x−10
8 ) + 3 tanh ( x−90

8 )], and

FIG. 10. Plot of the Kuznetsov-Ma breather in the case of variable
coefficients. The pattern shows the influence of three operators with
coefficients which vary on propagation.

φm of Eq. (28) is replaced by

φm = 4γ tanh

(
x − 10

8

)
+ γ

2
tanh

(
x − 90

8

)
.

This example, with γ = 1
2 , is shown in Fig. 10. In this figure,

the angled propagation (at around x = 50) is due to nonzero
velocity (vm) being introduced by the third-order operator,
with coefficient α3(x), as this operator differs strongly from
zero only around x = 50. The breather peaks, around x = 10
and x = 90, are due to the influence of coefficients α2(x) and
α4(x), respectively, as these coefficients differ substantially
from zero only near these values of x. Hence, as in Fig. 7,
peaks occur in these regions.

VIII. CONCLUSION

In conclusion, we have presented the infinite integrable
NLSE hierarchy beyond the LPD equation, which is a
particular fourth-order case of the hierarchy. Specifically, we
have presented explicit forms of the equations and given gen-
eralized soliton solutions, plane wave solutions, Akhmediev
breathers, Kuznetsov-Ma breathers, and periodic and rogue
wave solutions for this infinite-order hierarchy. We have found
that even-order equations in the set affect phase and stretching
factors in the solutions, while odd-order equations affect the
velocities. Hence odd-order equation solutions can be real
functions, while even-order equation solutions are always
complex. Of special interest is the possibility of using variable
coefficients in the hierarchy to influence evolution dynamics.
Examples of such evolution are given.
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APPENDIX

Following Eq. (10), we now present K7, the seventh-order (j = 7), i.e., heptic, operator (starting with the seventh-order
derivative):

K7[ψ] = ψttttt t t + 70ψ2
t tψ

∗
t + 112ψt |ψtt |2 + 98|ψt |2ψttt + 70ψ2[ψt [(ψ

∗
t )2 + 2ψ∗ψ∗

t t ]

+ψ∗(2ψttψ
∗
t + ψtttψ

∗)] + 28ψ2
t ψ∗

t t t + 14ψ[ψ∗(20|ψt |2ψt + ψttttt ) + 3ψtttψ
∗
t t

+ 2ψttψ
∗
t t t + 2ψttttψ

∗
t + ψtψ

∗
t t t t + 20ψtψtt (ψ

∗)2] + 140|ψ |6ψt + 70ψ3
t (ψ∗)2 + 14(5ψttψttt + 3ψtψtttt )ψ

∗.

There is an infinite number of higher-order operators. The highest one that we provide here is K8, which is the eighth-order
(j = 8), i.e., octic, operator (starting with the eighth-order derivative):

K8[ψ] = ψttttt t t t + 14ψ3[40|ψt |2(ψ∗)2 + 20ψtt (ψ
∗)3 + 2ψ∗

t t t tψ
∗ + 3(ψ∗

t t )
2 + 4ψ∗

t ψ∗
t t t ]

+ψ2[28ψ∗(14ψttψ
∗
t t + 11ψtttψ

∗
t + 6ψtψ

∗
t t t ) + 238ψtt (ψ

∗
t )2 + 336|ψt |2ψ∗

t t + 560ψ2
t (ψ∗)3

+ 98ψtttt (ψ
∗)2 + 2ψ∗

t t t t t t ] + 2ψ{21ψ2
t [9(ψ∗

t )2 + 14ψ∗ψ∗
t t ] + ψt [728ψttψ

∗
t ψ∗ + 238ψttt (ψ

∗)2

+ 6ψ∗
t t t t t ] + 34|ψttt |2 + 36ψttttψ

∗
t t + 22ψttψ

∗
t t t t + 20ψtttttψ

∗
t + 161ψ2

t t (ψ
∗)2 + 8ψttttt tψ

∗}
+ 182ψtt |ψtt |2 + 308ψttψtttψ

∗
t + 252ψtψtttψ

∗
t t + 196ψtψttψ

∗
t t t + 168ψtψttttψ

∗
t + 42ψ2

t ψ∗
t t t t

+ 14ψ∗(30ψ3
t ψ∗

t + 4ψtttttψt + 5ψ2
t t t + 8ψttψtttt ) + 490ψ2

t ψtt (ψ
∗)2 + 140ψ4ψ∗[(ψ∗

t )2 + ψ∗ψ∗
t t ] + 70ψ |ψ |8.
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