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Fluctuations of work in nearly adiabatically driven open quantum systems
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We extend the quantum jump method to nearly adiabatically driven open quantum systems in a way that allows
for an accurate account of the external driving in the system-environment interaction. Using this framework,
we construct the corresponding trajectory-dependent work performed on the system and derive the integral
fluctuation theorem and the Jarzynski equality for nearly adiabatic driving. We show that such identities hold as
long as the stochastic dynamics and work variable are consistently defined. We numerically study the emerging
work statistics for a two-level quantum system and find that the conventional diabatic approximation is unable
to capture some prominent features arising from driving, such as the continuity of the probability density of
work. Our results reveal the necessity of using accurate expressions for the drive-dressed heat exchange in future
experiments probing jump time distributions.
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I. INTRODUCTION

The last two decades have witnessed great advancements in
nonequilibrium thermodynamics and near-adiabatic evolution.
In particular, fluctuation relations [1–3] have opened a new
way to tackle the obscure nature of nonequilibrium processes.
Perhaps the most well-known of these is the Jarzynski
equality [2] that connects the average exponentiated work
performed on a driven system with the free-energy difference
between the initial and the final thermal distributions.

In recent years, there have been numerous theoretical
approaches aimed toward extending the classical fluctuation
relations to the quantum regime [4–18] with increasing
emphasis on open quantum systems [19–41]. Typically the
definition of work includes the change in the internal energy
of the system obtained using the so-called two-measurements
approach (TMA) [4,5] based on performing von Neumann
measurements of the system energy at the beginning and at the
end of the protocol. Due to difficulties in reliably implementing
these measurements to date, the only experimental realizations
of work distributions in essentially closed quantum sys-
tems [42] have been achieved with an alternative method based
on the characteristic function of the work distribution [43,44].
However, promising approaches to overcome these difficulties
have been suggested [45–47].

For open quantum systems, the heat exchange between
the system and a heat bath is added to the corresponding
internal energy change to obtain the work performed. To
model the work statistics, the quantum jump method can be
used, as previously studied for the Lindblad equation with a
time-independent dissipative part [29,33–35]. However, in the
presence of a strong drive, the dissipative part may become
time dependent, which has been proven to affect the fluctuation
relations [23,38–40]. In addition, the heat value associated with
the transitions may change.

The effect of time-dependent dissipation on work has been
previously studied theoretically in the adiabatic limit [7,48].
However, these studies do not provide quantitative estimates

on the correction induced by the finite speed of driving on
the work distributions. To advance beyond the bounds of the
adiabatic limit, the adiabatic renormalization [49,50] provides
an effective tool to study the dynamics in the case of nearly
adiabatic driving. The adiabatic renormalization procedure can
be used for open quantum systems by accurately taking into
account the effect of driving on the dissipation in the derivation
of the master equation [51–53]. In the adiabatic renormaliza-
tion procedure for open quantum systems, the error related to
the time-local adiabatic parameter typically decreases quickly
with increasing number of basis rotations [53]. Thus, for nearly
adiabatic driving, a rather low number of basis rotations is
sufficient.

In this paper, we extend the quantum jump method to nearly
adiabatically driven open quantum systems by uniting the
quantum jump theory with a master equation formalism utiliz-
ing the adiabatic renormalization. Thus, we may consistently
account for the influence of external driving on the system-
environment interaction. Using this framework, we study the
nonequilibrium work relations for nearly adiabatic driving. To
this end, we construct the corresponding trajectory-dependent
work and derive the integral fluctuation theorem and the
Jarzynski equality. We show that such identities hold as long
as the stochastic dynamics and work variable are consistently
defined. To illustrate the results, we consider a sinusoidally
driven open two-level system with a large driving amplitude.
We investigate the resulting work statistics for the zeroth-,
first-, and second-order adiabatic renormalization. We observe
that the conventional diabatic approximation for the dissipative
transitions is unable to capture some of the prominent features
arising from driving, such as the continuity of the probability
density of work.

Our theoretical predictions are potentially experimentally
observable, for example, with the calorimetric scheme [47]
providing the amount of heat released from the system to its
environment. However, our results are even more important
for schemes in which only the jump times are measured
[54–56] together with the system Hamiltonian. In this case,
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the experimental dynamics is accurately described by a great
number of basis rotations in the adiabatic renormalization
scheme, but if a high-order theory presented in this paper
is not employed to extract the work distributions, the resulting
fluctuation relations are not precisely satisfied.

The paper is organized as follows. In Sec. II, we provide a
short summary of the adiabatic renormalization procedure. In
Sec. III, we present the master equation for the driven system
utilizing the renormalization. In Sec. IV, we introduce the
two-level model system and analytically derive the quantities
relevant to the master equation. In Sec. V, we apply the
quantum jump method to the master equation of Sec. III and
derive the resulting fluctuation relations. In Sec. VI, we present
the numerical analysis of the work statistics. The conclusions
are drawn in Sec. VII.

II. ADIABATIC RENORMALIZATION

We examine a quantum system described by the Hamil-
tonian ĤS(t), where the time dependence is caused by the
action of external control fields inducing driven dynamics. In
addition, the system is coupled to an environment such that
the total Hamiltonian reads

Ĥ (t) = ĤS(t) + V̂ + ĤE, (1)

where V̂ is the system-environment coupling operator and
ĤE is the environment Hamiltonian. We further assume that
the coupling operator factorizes as V̂ = Ŷ ⊗ X̂, where Ŷ and
X̂ operate in the system and the environment Hilbert spaces,
respectively.

To access the dissipative dynamics for nearly adiabatic driv-
ing, we apply the adiabatic renormalization procedure [49,50]
as introduced in Ref. [53] in the context of open quantum
systems. This allows for a basis selection that can be used
to consistently account for the joint effect of driving and
dissipation. Let us diagonalize the Hamiltonian ĤS(t) in a
time-independent basis {|m〉} using the eigendecomposition
as ˆ̃H (1)

S (t) = D̂
†
1(t)ĤS(t)D̂1(t) corresponding to the eigen-

problem ĤS(t)|m(1)(t)〉 = E(1)
m (t)|m(1)(t)〉, where D̂1|m〉 =

|m(1)(t)〉 is normalized and nondegenerate for each m. The
states {|m〉} are here referred to as diabatic. If we similarly
transform the total density operator ρ̂(t) in the Schrödinger
picture as ˆ̃ρ(1)(t) = D̂

†
1(t)ρ̂(t)D̂1(t), the evolution of ˆ̃ρ(1)(t) is

governed by the effective Hamiltonian [52,53]

ˆ̃H (1)(t) = ˆ̃H (1)
S (t) + �ŵ1(t) + ˆ̃V (1)(t) + ĤE, (2)

where ˆ̃V (1)(t) = D̂
†
1(t)V̂ (t)D̂1(t) = D̂

†
1(t)Ŷ D̂1(t) ⊗ X̂(t) and

ŵ1(t) = −iD̂
†
1(t) ˙̂D1(t). The notation ȧ denotes the explicit

time derivative of arbitrary quantity a.
If we define a further unitary transformation D̂2(t) render-

ing ˆ̃H (1)
S (t) + �ŵ1(t) diagonal in the diabatic basis, the evolu-

tion of the density matrix ˆ̃ρ(2) = D̂
†
2

ˆ̃ρ(1)D̂2 = D̂
†
2D̂

†
1ρ̂D̂1D̂2 is

governed by [52]

ˆ̃H (2)(t) = ˆ̃H (2)
S (t) + �ŵ2(t) + ˆ̃V (2)(t) + ĤE, (3)

where ˆ̃H (2)
S (t) = D̂

†
2(t)[ ˆ̃H (1)

S (t) + �ŵ1(t)]D̂2(t), ˆ̃V (2)(t) =
D̂

†
2(t) ˆ̃V (1)(t)D̂2(t), and ŵ2 = −iD̂

†
2(t) ˙̂D2(t). After n succes-

sive coordinate transformations defined in a similar manner,

the corresponding density operator is expressed as ˆ̃ρ(n) =
(D̂(n)

S )†ρ̂D̂
(n)
S and D̂

(n)
S = ∏n

i=1 D̂i = D̂1D̂2 · · · D̂n−1D̂n. The
evolution of ˆ̃ρ(n) is subsequently governed by an effective
Hamiltonian of

ˆ̃H (n) = ˆ̃H (n)
S + �ŵn + ˆ̃V (n) + ĤE, (4)

where ˆ̃H (n)
S = D̂

†
n[ ˆ̃H (n−1)

S + �ŵn−1]D̂n, ˆ̃V (n) = (D̂(n)
S )†V̂ D̂

(n)
S ,

and ŵn = −iD̂
†
n

˙̂Dn. Note that each coordinate transformation
defines a set of time-dependent basis states {|m(n)〉 = D̂

(n)
S |m〉}

that iteratively provide a better approximation of the closed-
system evolution for smooth nearly adiabatic driving in the
sense that driving-induced transitions between the states
are suppressed. For n = 1, these states correspond to the
eigenstates of ĤS , referred to as the adiabatic states. For n � 2,
the states correspond to the eigenstates of D̂

(n−1)
S [ ˆ̃H (n−1)

S +
�ŵn−1](D̂(n−1)

S )†, referred to as the (n − 1)th-order superadia-
batic states.

III. DRIVEN DISSIPATIVE DYNAMICS

We assume that the system-environment coupling in Eq. (1)
is weak, so that we can adopt the approach used to derive
the master equations for nearly adiabatically driven two-level
quantum systems introduced in Refs. [51–53,57] for the
reduced system density operator ρ̂S = TrE{ρ̂}. For a general
two-level quantum system, we denote the diabatic states as |g〉
and |e〉. We employ the secular approximation [58,59] in the
derivation detailed in Appendix A and obtain

˙̂ρS = − i

�
[ĤS,ρ̂S]

+
2∑

i=0

(
L̂(n,i)ρ̂SL̂

†
(n,i) − 1

2
{L̂†

(n,i)L̂(n,i),ρ̂S}
)

, (5)

where the error is of the third order in the coupling strength
and linear order in the local (super)adiabatic parameter
αn = ||ŵn||/ω(n)

01 , where �ω
(n)
01 = E(n)

e − E(n)
g such that E(n)

e =
〈e| ˆ̃H (n)

S |e〉 and E(n)
g = 〈g| ˆ̃H (n)

S |g〉. We denote the Hilbert-

Schmidt norm by ||ŵn(t)|| =
√

TrS{ŵn(t)†ŵn(t)}. In order
for Eq. (5) to give an accurate approximation of the real
dynamics, the local (super)adiabatic parameter must satisfy
αn � 1. For nearly adiabatic driving, this condition is usually
satisfied already with a rather low number of basis rotations.
The Lindblad operators are given by

L̂(n,0) = √
�(n,0)|g(n)〉〈e(n)|, L̂(n,1) = √

�(n,1)|e(n)〉〈g(n)|,
(6)

L̂(n,2) = √
�(n,2)(|e(n)〉〈e(n)| − |g(n)〉〈g(n)|),

where the transition rates take the form

�(n,0) = S
(
ω

(n)
01

)∣∣m(n)
2

∣∣2, �(n,1) = S
(−ω

(n)
01

)∣∣m(n)
2

∣∣2,
(7)

�(n,2) = S(0)
∣∣m(n)

1

∣∣2,
where m

(n)
1 = 〈g(n)|Ŷ |g(n)〉 = −〈e(n)|Ŷ |e(n)〉, m

(n)
2 =

〈g(n)|Ŷ |e(n)〉, and the reduced spectral density
of the noise source is defined as S(ω) =∫∞
−∞ dτTrE{ρ̂EX̂I (τ )X̂I (0)}eiωτ /�

2. Here we use the
conventional notation for operators in the interaction picture
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with respect to ĤE such that X̂I (t) = eiĤEt/�X̂e−iĤE t/�. The
system part of the noise coupling operator, Ŷ , is traceless in
the two-state basis following the convention used in the master
equation of Refs. [52,53] without additional transformation
steps. Above, we assume that the system time scales are much
longer than the environment autocorrelation time such that the
Markov and adiabatic-rate approximations apply [51–53,57].

Based on Appendix A, the unitary part of the Liouville
operator in Eq. (5), which corresponds to the closed-system
evolution, can be written as

ĤS = E(n)
e |e(n)〉〈e(n)| + E(n)

g |g(n)〉〈g(n)|
+ �w(n)

ge (|g(n)〉〈e(n)| − |e(n)〉〈g(n)|) + �Ŵn, (8)

where w
(n)
kl = 〈k|ŵn|l〉, Ŵn = −i(D̂(n)

S )∂t [(D̂
(n)
S )†], and we

assumed w(n)
gg = w(n)

ee = 0 and w(n)
eg = (w(n)

ge )∗ = −w(n)
ge , corre-

sponding to the phase selection used in this paper [52]. Further-
more, the total rotational term has the convenient identity in the
nth-order basis representation of 〈k(n)|Ŵn|l(n)〉 = −i〈k̇(n)|l(n)〉.
Note that if ŵn is neglected due to slow driving, ĤS ≈
D̂

(n)
S

ˆ̃H (n)
S (D̂(n)

S )† + �Ŵn yields (super)adiabatic evolution in
the nth-order basis, that is, the driving-induced corrections
to the closed-system state are fully accounted for by the basis
selection and the corresponding transitions between the basis
states are completely suppressed.

IV. TWO-LEVEL MODEL SYSTEM

Our two-level model system is described by the Hamilto-
nian

ĤS(t) = �ω0

2
σ̂z + λ(t)(σ̂+ + σ̂−), (9)

where the Pauli operators are defined as σ̂z = |e〉〈e| − |g〉〈g|,
σ̂+ = |e〉〈g|, and σ̂− = |g〉〈e|, and ω0 is the resonance angular
frequency. The states |g〉 and |e〉 are the ground and excited
states, respectively, of the undriven system (λ = 0) and we
have conveniently selected them as the diabatic states. The
system is steered in such a way that the full effect of the
external fields is included in the time-dependent real control
parameter λ(t). The effective energy level diagram related to
the environment-induced transitions for this model system is
schematically presented in Fig. 1.

The slow driving is accounted for by the time-dependent
basis transformations which shift the transition frequencies
and alter the corresponding dissipative rates. Note that the
transformation scheme is only limited by the assumptions
on (super)adiabaticity (αn � 1), the system-environment cou-
pling strength, and the environment autocorrelation time.
Thus, the transformation scheme allows for an arbitrary drive
strength as long as the time derivatives of the drive are small
enough to guarantee αn � 1. The model system describes, for
instance, a spin- 1

2 particle in a time-dependent magnetic field
	B(t) = −[�ω0	z + 2λ(t)	x]/(�γ ), where γ is the gyromagnetic
ratio and (	x,	y,	z) are the Cartesian unit vectors chosen such
that the time-independent component of the magnetic field is
along z. The model is applicable beyond spin systems, and the
theory derived retains its validity provided that the two-level
approximation is satisfied under the action of the external
drive; i.e., the two-level approximation does not essentially

FIG. 1. (Color online) Schematic illustration of the effective en-
ergy level diagram of an externally driven two-level quantum system
coupled to an environment. (a) A two-level system S with level
separation �ω0 between |e〉 and |g〉 undergoing environment-induced
transitions at rates �(0,i) experiences an external drive D. (b) After
transformation D̂1, the environment induces transitions at rates �(1,i)

between states |e(1)〉 and |g(1)〉 of the driven system S + D separated
by �ω

(1)
01 . (c) Further transformation D̂2 yields transitions at rates �(2,i)

between states |e(2)〉 and |g(2)〉 separated by �ω
(2)
01 .

distort the instantaneous energy spacing of the system. A
notable example of nonapplicability is the harmonic oscillator
driven with one of its canonical variables, for which the above
two-level approximation produces incorrect eigenenergies.

We assume the following form of the coupling operator

Ŷ = g∗σ̂+ + gσ̂−, (10)

where g denotes the complex coupling strength related to the
two-level operations. In this paper, we adopt the convention
of g carrying the units of energy, implying that X̂ is
dimensionless. We choose our two-state model system to
mathematically facilitate a comparison [60] with Ref. [29],
which proposes a physical realization of the system as a
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superconducting device [61,62] monitored by calorimetry of
the coupled environment [47].

The instantaneous eigenenergies of ĤS(t) take the form

E
(1)
e/g = ±

√
(�ω0)2 + 4λ2

2
. (11)

The corresponding adiabatic states are |e(1)〉 = C(1)
ee |e〉 +

C(1)
eg |g〉 and |g(1)〉 = C(1)

ge |e〉 + C(1)
gg |g〉, where

C(1)
eg =

{
1 + 1

4λ2
[�ω0 +

√
(�ω0)2 + 4λ2]2

}−1/2

,

C(1)
ee = C(1)

eg

1

2λ
[�ω0 +

√
(�ω0)2 + 4λ2],

C(1)
gg =

{
1 + 1

4λ2
[�ω0 −

√
(�ω0)2 + 4λ2]2

}−1/2

,

C(1)
ge = C(1)

gg

1

2λ
[�ω0 −

√
(�ω0)2 + 4λ2]. (12)

Note that these states explicitly define the first coordinate
transformation as D̂1 = |e(1)〉〈e| + |g(1)〉〈g|. In Eqs. (11)
and (12) and in the following, we omit explicitly marking the
time dependence for each variable for notational convenience.

As an example of the renormalization procedure, we
present the first-order superadiabatic states by defining w(1)

mn =
〈m|ŵ1|n〉 = −i〈m|D̂†

1
˙̂D1|n〉, whose two-level components

can be solved directly from Eq. (12). In fact, utilizing the
instantaneous eigenproblem allows us to write

w(1)
mn = −i

〈m(1)| ∂ĤS

∂λ
λ̇|n(1)〉

E
(1)
n − E

(1)
m

(13)

for m 
= n. In our case, this component takes the form

w(1)
ge = −iλ̇

[
C(1)

ee

(
C(1)

gg

)∗ + C(1)
eg

(
C(1)

ge

)∗]
E

(1)
e − E

(1)
g

, (14)

and it can be shown using Eq. (12) that w(1)
eg = (w(1)

ge )∗ = −w(1)
ge

and w(1)
ee = w(1)

gg = 0. These identities are due to our convenient
phase selection for the adiabatic states and correspond to the
optimal phase selection method introduced in Ref. [52], based
on tracking the Berry connection [63] in order to minimize the
local adiabatic parameter at all times. However, we expect
that the effect of the method on the reduced dynamics is
weak compared to that of the coordinate transformations in
the dissipative approach that we adopt in the following.

We can solve the eigenproblem [ ˆ̃H (1)
S (t) +

�ŵ1(t)]|m̃(2)(t)〉 = E(2)
m (t)|m̃(2)(t)〉 to obtain

E
(2)
e/g = ±1

2

√(
E

(1)
e − E

(1)
g

)2 + 4�2
∣∣w(1)

ge

∣∣2, (15)

where the quantities defined in Eqs. (11) and (14) are used.
The corresponding eigenstates are |ẽ(2)〉 = C(2)

ee |e〉 + C(2)
eg |g〉

and |g̃(2)〉 = C(2)
ge |e〉 + C(2)

gg |g〉, where

C(2)
eg =

[
1 + 1∣∣�w

(1)
ge

∣∣2
(
E(2)

e − E(1)
g

)2
]−1/2

,

C(2)
ee = C(2)

eg

1

�w
(1)
ge

(
E(2)

e − E(1)
g

)
,

C(2)
gg =

[
1 + 1∣∣�w

(1)
ge

∣∣2
(
E(2)

g − E(1)
g

)2
]−1/2

,

C(2)
ge = C(2)

gg

1

�w
(1)
ge

(
E(2)

g − E(1)
g

)
. (16)

Note that the diagonal parts of ŵ1 do not appear in Eqs. (15)
and (16) due to the optimal phase selection method described
above. Hence, the second unitary transformation is defined
as D̂2 = |ẽ(2)〉〈e| + |g̃(2)〉〈g|, and the first-order superadia-
batic states are |e(2)〉 = D̂1D̂2|e〉 = [C(2)

ee C(1)
ee + C(2)

eg C(1)
ge ]|e〉 +

[C(2)
ee C(1)

eg + C(2)
eg C(1)

gg ]|g〉 and |g(2)〉 = D̂1D̂2|g〉 = [C(2)
ge C(1)

ee +
C(2)

gg C(1)
ge ]|e〉 + [C(2)

ge C(1)
eg + C(2)

gg C(1)
gg ]|g〉. By using the eigen-

problem defined above, we have for w(2)
mn = −i〈m|D̂†

2
˙̂D2|n〉

the identity

w(2)
mn = −i

〈m̃(2)|∂t

( ˆ̃H (1)
S + �ŵ1

)|ñ(2)〉
E

(2)
n − E

(2)
m

(17)

for m 
= n. For our two-level system, this results in

w(2)
ge = −i

{(
C(2)

ge

)∗[
C(2)

ee Ė(1)
e − �C(2)

eg ẇ(1)
ge

]
+ (

C(2)
gg

)∗[
C(2)

eg Ė(1)
g + �C(2)

ee ẇ(1)
ge

]}
× 1

E
(2)
e − E

(2)
g

, (18)

where we used (w(1)
ge )∗ = −w(1)

ge . Using Eqs. (11), (12),
and (14), the time derivatives can be expressed in terms of
the control parameter as

Ė
(1)
e/g = ±λ̇

2λ√
4λ2 + �2ω2

0

, (19)

and

ẇ(1)
ge = −iλ̈

�ω0λ

4λ3 + �2ω2
0λ

+ i(λ̇)2 8�ω0λ(
4λ2 + �2ω2

0

)2 . (20)

Equation (16) implies that C(2)
eg ,C(2)

gg ∈ R and iC(2)
ee ,iC(2)

ge ∈ R,
which yield w(2)

eg = (w(2)
ge )∗ = −w(2)

ge . We can additionally
show using Eq. (16) that w(2)

ee = w(2)
gg = 0 corresponding

to the optimal phase selection for the first-order
superadiabatic states [52]. The higher-order superadiabatic
bases are accessed by continuing the procedure. To
allow for an analytical treatment up to the first
superadiabatic basis, we additionally write m

(1)
1 =

2Re{g(C(1)
gg )∗C(1)

ge }, m
(1)
2 = g(C(1)

gg )∗C(1)
ee + g∗(C(1)

ge )∗C(1)
eg ,

m
(2)
1 = (|C(2)

gg |2 − |C(2)
ge |2)m(1)

1 + 2Re{C(2)
ge (C(2)

gg )∗m(1)
2 }, and

m
(2)
2 = [(C(2)

gg )∗C(2)
eg − (C(2)

ge )∗C(2)
ee ]m(1)

1 + (C(2)
gg )∗C(2)

ee m
(1)
2 +

(C(2)
ge )∗C(2)

eg (m(1)
2 )∗, where the state amplitudes are given in

Eqs. (12) and (16).
Using Eqs. (14) and (18), the (super)adiabatic parameter

αn = ||ŵn||/ω(n)
01 can be evaluated for n = 1,2 to analyze the

adiabaticity of the driving cycle and the accuracy of Eq. (5)
with regards to the selected driving protocol. We assume that
the system is under strong sinusoidal driving such that

λ(t) = λ0 sin(ωdt), (21)
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FIG. 2. (Color online) Adiabatic (solid line) and first superadia-
batic (dashed line) parameters during the driving cycle. We assume
that λ0 = �ω0/2 and ωd = 3ω0/10. The length of the sinusoidal
driving cycle is defined by Tdrive = 2π/ωd .

where λ0 and ωd denote the amplitude and angular frequency
corresponding to the prescribed protocol, respectively. The
adiabatic and first superadiabatic parameters for the selected
driving cycle are shown in Fig. 2. They indicate that the
error in the master equation [Eq. (5)] stemming from the
remaining inaccuracy in the selection of the dynamical basis
is mitigated by the renormalization procedure up to the first
superadiabatic basis. Such mitigation is generally true for
further basis rotations. The closer the system is to the adiabatic
limit [63], the more rotations can be carried out to improve
accuracy.

V. QUANTUM TRAJECTORIES AND WORK

To access the distribution of work injected into the open
quantum system during the driving protocol, we utilize the
so-called quantum jump method, also referred to as the
quantum stochastic wave function method or the Monte Carlo
wave function technique [64–68]. The method is based on
unraveling the quantum evolution given by a master equation
in the Lindblad form into stochastic trajectories describing
single realizations of the dissipative dynamics [69,70]. Each
trajectory represents a pure state evolution of the open quantum
system under continuous measurements of its environment,
corresponding to either nonunitary time evolution of the state
vector or its instantaneous transitions referred to as quantum
jumps. Consequently, the continuous measurements allow
for in situ monitoring of the system state [71]. For each
trajectory, work is obtained as a combination of applying
the TMA [4,25,26] to extract the internal energy of the
system ES(t) and allocating to each quantum jump event j

the corresponding heat transferred to the environment Q(tj ).
In accordance with the first law of thermodynamics, the
trajectory-dependent work performed on the system during
a driving protocol tinit → tfinal is W = �ES + Qtot, where
�ES = ES(tfinal) − ES(tinit), and the total heat transferred
to the environment is Qtot = ∑

j Q(tj ), where the summa-
tion is over all jump events taking place along the single
trajectory.

Let us denote the state vector of the open system by |φ(t)〉.
The non-Hermitian effective Hamiltonian yielding the time-

evolution during a jump-free interval [64–68] is defined by

Ĥ
(n)
eff (t) = ĤS(t) − i�

2

2∑
i=0

L̂
†
(n,i)(t)L̂(n,i)(t), (22)

where the Lindblad operators are given in Eq. (6). The
corresponding nonunitary effective time evolution operator is

Û
(n)
eff (t2,t1) = T exp

{
− i

�

∫ t2

t1

Ĥ
(n)
eff (τ )dτ

}
, (23)

where T is the time ordering. We define a small time step �t

during which each event takes place and, correspondingly, the
evolved state can be accurately approximated by

|φ(t + �t)〉 = �ÎS − i�tĤ
(n)
eff (t)

�Nφ(t + �t)
|φ(t)〉, (24)

where Nφ(t + �t) = ||[1 − i�tĤ
(n)
eff (t)/�]|φ(t)〉|| accounts

for the normalization of the state, and ÎS is the identity
operator acting in the Hilbert space of the two-level system.
The probability for a jump event to occur during the same time
interval is given by pn(t) = ∑2

i=0 p(n,i)(t), where p(n,i)(t) =
�t〈φ(t)|L̂†

(n,i)(t)L̂(n,i)(t)|φ(t)〉 accounts for the contribution
of the ith Lindblad operator [64–68]. If a jump event
occurs, it takes place along the ith channel with probability
p(n,i)(t)/pn(t) and the system collapses after the jump to the
normalized state,

|φ(t + �t)〉 = L̂(n,i)√
p(n,i)/�t

|φ(t)〉. (25)

The number of basis rotations directly affects both the
jump probabilities as well as the states after the jump and
no-jump events. The physical framework related to each
realization is best understood using the nth (super)adiabatic
basis. The second term in Eq. (22) for Ĥ

(n)
eff (t) is anti-Hermitian

and diagonal in this basis, causing environment-induced
population transfer between the basis states, whereas ĤS(t)
accounts for all direct driving-induced transitions between the
states. Each jump event corresponds to either an instantaneous
collapse [see Eqs. (6) and (25)] to the nth ground state [L̂(n,0)],
an instantaneous collapse to the nth excited state [L̂(n,1)], or a
phase flip [L̂(n,2)] within this basis. This framework extends the
approach of Ref. [29], where the effect of driving is omitted
in the formulation of the dissipator. Such an approach can
be considered to be formally equal to the level of recursion
n = 0 such that ˆ̃H (0)

S (t) = ĤS(t ′) and ˆ̃H (0)
S |k(0)〉 = E

(0)
k |k(0)〉,

where t ′ is an arbitrary fixed time instance. Selection of t ′
such that λ(t ′) = 0 corresponds to the treatment of Ref. [29]
for the two-level system. Here the assumption is that the
driving is weak enough for its effect on the environmental
transitions to be negligible. This implies that the transition
rates are determined by a constant energy gap �ω0 with each
jump projecting the state to an eigenstate of σ̂z. In addition,
the dephasing channel in the quantum jump method was not
considered in Ref. [29].

The change in the trajectory-dependent internal energy
is defined using the TMA through projective measurements
in the eigenbasis of ĤS(t) such that ES(tinit) = E

(1)
k (tinit)

and ES(tfinal) = E
(1)
l (tfinal), where k and l denote which
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eigenenergy was obtained at the initial and final time instances,
respectively. In addition, we denote the probability distribu-
tion of the initial measurement results as Pinit[ES(tinit)] =∑

m P [E(1)
m (tinit)]δ[ES(tinit) − E(1)

m (tinit)], where P [E(1)
m (tinit)]

denotes the probability of measuring the mth eigenenergy.
Within the present quantum jump method, the heat transfer
associated with a jump at t = tj is determined by the Lindblad
operators in Eq. (6) and given by Q(n)(tj ) = �ω

(n)
01 (tj ) if the

jump occurs along the i = 0 channel, by Q(n)(tj ) = −�ω
(n)
01 (tj )

if it occurs along the i = 1 channel, and by Q(n)(tj ) = 0 if
it occurs along the i = 2 channel. Note that even though
no heat transfer occurs along the dephasing channel, it still
contributes to the stochastic dynamics and should be included.
The trajectory-dependent work corresponding to the nth-order
dynamics is given by

W (n) = �ES + Q
(n)
tot , (26)

where the total heat is defined by Q
(n)
tot = ∑

j Q(n)(tj ). The n

dependence of the stochastic dynamics is naturally inherited
by the trajectory-dependent work through the heat exchange
term. As the description of the dissipative dynamics becomes
more accurate with increasing n, so does the heat allocated to
each jump event. Consequently, the total heat Q

(n)
tot approaches

the physically observable n-independent heat.
Equation (5) is in the Lindblad form [72] for each n.

Additionally, the corresponding Lindblad operators defined
in Eq. (6) satisfy a local detailed balance condition [38,39]
as L̂(n,0) ∝ L̂

†
(n,1) and L̂(n,2) = L̂

†
(n,2). Thus, the stochastic

dynamics defined above can be shown to fulfill the integral
fluctuation theorem such that [73]〈

P̄
[
Ē

(1)
l (tinit)

]
P
[
E

(1)
k (tinit)

] N∏
j=1

�̄(n,mj )(t̄j )

�(n,mj )(tj )

〉
(n)

= 1, (27)

where the multiplication is over all jump events occurring
along a single N -jump trajectory, mj denotes the channel
along which the j th jump event takes place, the notation ā

refers to the value taken by arbitrary a during the traversal of a
time-reversed trajectory [25], and 〈· · ·〉(n) denotes an ensemble
average over all the possible trajectories generated by the
nth-order stochastic dynamics. In particular, P̄ [Ē(1)

l (tinit)] is
the probability to obtain Ē

(1)
l (t̄) = E

(1)
l (t) from the projective

measurement taking place at the initial time t̄ = tinit of the
time-reversed evolution. The transition rates corresponding to
the time-reversed dynamics are given by �̄(n,0)(t̄j ) = �(n,1)(tj ),
�̄(n,1)(t̄j ) = �(n,0)(tj ), and �̄(n,2)(t̄j ) = �(n,2)(tj ). Note that the
temporal variables are simply connected by t̄ = (tinit + tfinal) −
t , e.g., t̄j = (tinit + tfinal) − tj . Because �̄(n,2)(t̄j )/�(n,2)(tj ) =
1, the dephasing channel does not directly contribute to the
trajectory-dependent product in Eq. (27) and, hence, only
affects the left-hand side through the dynamics of the state,
that is, within the confines of the ensemble averaging.

Let us assume that the system is initially in thermal
equilibrium at temperature T such that P [E(1)

m (tinit)] =
e−βE

(1)
m (tinit)/Z(tinit), where β = 1/(kBT ), kB denotes the Boltz-

mann constant, and Z(t) = TrS{e−βĤS (t)} is the system parti-
tion function. If we select the initial state of the time-reversed
evolution such that P̄ [Ē(1)

l (tinit)] = e−βE
(1)
l (tfinal)/Z(tfinal), it

corresponds to the same equilibration by the heat bath as that
prior to the original evolution, and Eq. (27) takes the form〈

e−β[E(1)
l (tfinal)−E

(1)
k (tinit)]

N∏
j=1

�̄(n,mj )(t̄j )

�(n,mj )(tj )

〉
(n)

= e−β�F , (28)

where �F = F (tfinal) − F (tinit) = −β−1 ln[Z(tfinal)/Z(tinit)]
is the free-energy difference between a reference equilibrium
state described by the Hamiltonian ĤS(tfinal) and the initial
equilibrium state. The above-described properties of the time-
reversed evolution yield �̄(n,mj )(t̄j )/�(n,mj )(tj ) = e−βQ(n)(tj ) for
each dissipative channel, assuming that the noise source
follows detailed balance S(ω(n)

01 ) = eβ�ω
(n)
01 S(−ω

(n)
01 ) at all times.

Using this definition, Eq. (28) yields the Jarzynski equality [2]
for nearly adiabatic driving,

〈e−βW (n)〉(n) = e−β�F . (29)

Notably, this identity always holds when the nth-order defini-
tion for the trajectory-dependent work is consistently used in
association with the nth-order stochastic dynamics. However,
a typical experimental probe of the dynamics is only able
to determine the jump time distribution [54–56,74] and not
directly the heat transfer associated to each jump. In this
case, the evaluation of the work distribution must externally
impose to each detected jump event the corresponding heat
transfer and, accordingly, adopt a definition for the trajectory-
dependent work. Depending on the adopted definition, the
Jarzynski equality may or may not be accurately retrieved
using the experimental jump time distribution. For nearly
adiabatic driving, this means that using a low-order definition
for the work can potentially result in significant error in
determining the free-energy difference even if the trajectories
are accurately traced by the experiment.

VI. WORK STATISTICS FOR NEARLY ADIABATIC
DRIVING

In the following numerical calculations, we assume that the
sinusoidally driven system is initially in thermal equilibrium
and that the noise spectrum is Ohmic such that S(ω) =
2μω/[�(1 − e−β�ω)] [75], where μ is the damping constant
related to the noise source. This spectral density fulfills the
detailed balance condition and is also applicable to a variety
of physical cases. Furthermore, we introduce dephasing by
assuming that S(0) = 2μkBT0/�

2, where T0 is the effective
dephasing temperature.

The numerical calculations are carried out for the first three
orders of basis transformations in the adiabatic renormaliza-
tion scheme, i.e., n = 0,1,2. The calculations are performed
using the master equation of Eq. (5) in the corresponding
nth-order superadiabatic basis. The parameters are selected
such that the angular frequency and amplitude of the sinu-
soidal driving protocol are ωd = 3ω0/10 and λ0 = �ω0/2,
respectively, the system-environment coupling strength is g =
�ω0/(5

√
2), the effective bath and dephasing temperatures

are T = �ω0/(2kB) and T0 = 2T = �ω0/kB , and the damping
constant is μ = 1/(�ω2

0) given in the units of inverse power
corresponding to the unit convention adopted above. The
dynamics are recorded over three consecutive drive cycles
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FIG. 3. (Color online) Population of the excited diabatic state,
ρee, using dynamics calculated with n basis rotations in the adiabatic
renormalization scheme. The length of a single sinusoidal cycle is
Tdrive = 2π/ωd . The parameters are selected such that ωd = 3ω0/10,
λ0 = �ω0/2, g = �ω0/(5

√
2), T = �ω0/(2kB ), T0 = 2T , and μ =

1/(�ω2
0). The system is initialized to the Gibbs state corresponding to

the above bath temperature. The driving protocol is discretized using
107 equidistant time steps and the number of trajectories is 107.

such that the initial state is the thermal equilibrium state
corresponding to the above bath temperature. With these
system parameters, the local superadiabatic parameter α2 is
relatively small, as shown in Fig. 2, such that the superadiabatic
results provide a faithful approximation of the real dynamics.
The effect of the basis rotations to the dynamics is illustrated
in Fig. 3, where the population of the excited diabatic state
ρee = 〈e|ρ̂S |e〉 is calculated using different numbers of basis
rotations (n = 0,1,2) in the renormalization scheme.

Although all approximative orders of dynamics closely
follow each other at the beginning of the drive, both the accu-
mulation of the nonadiabatic corrections and the discrepancy
between the bases in which dissipation acts, result in a clear
difference in the populations during the three drive cycles.
This difference is especially pronounced between the diabatic
basis and the higher-order bases due to relatively slow driving,
implying that n = 1 provides a rather accurate approximation
of the dynamics. Based on Fig. 3, n = 3 would not provide a
significant correction to the population dynamics.

In Fig. 4, we present the probability distributions of work
calculated numerically using a finite number of trajectories
[see Appendix C for the exact definition of the probability
densities of work, dn(W (n))]. The distributions are calculated
utilizing different numbers of basis rotations to describe the
interplay between driving and dissipation. Note that both the
dynamics and the trajectory-dependent work W (n) depend on
the number of transformations carried out. For n = 0, the
trajectory-dependent work can only obtain discrete value as
multiples of �ω0 indicated by the relevant distribution in
Fig. 4 consisting of δ peaks. Using higher-order dynamics
enables the time-dependent driving to be accounted for in
the environment-induced transitions and, consequently, the
probability distributions become continuous in work as evident
from Fig. 4. This continuity is a fundamental consequence of
driving and not caused by nonadiabatic transitions due to the
selection of a nonvanishing driving frequency. In the adiabatic
limit, the direct driving-induced transitions vanish from the
jump-free evolution but the time dependence of the exchanged
heat for each transition event still remains.

−2 −1 0 1 2 3 4 5−2

−1

0

1

2

W (n)/(h̄ω0)

lo
g 1

0(
d

n
)

FIG. 4. (Color online) Probability density of work dn(W (n)) using
different numbers of basis rotations, n, in the adiabatic renormaliza-
tion scheme. The solid line (blue) corresponds to n = 0, the dashed
line (red) to n = 1, and the dash-dotted line (green) to n = 2. The
density function is calculated with a bin size 10−2/(�ω0) and the
parameters are selected to be the same as in Fig. 3.

The asymmetry of the distributions in Fig. 4 with respect
to W (n) = 0 is caused by two factors: the selection of the
initial state as the Gibbs distribution and the assertion of a
noise source fulfilling detailed balance. This is embodied by
the Jarzynski equality in Eq. (29) setting a definite condition
for the resulting distribution. For a closed loop in the control
parameter space, �F = 0 implying that e−βW (n)

weighted by
the probability density must integrate to unity and, hence, more
density must always be found on the positive work values.
To emphasize the necessity of defining the work variable
in an accurate manner, we present probability densities of
work d ′

2(W (n)) such that the dynamics are calculated using
n = 2 but the work variable uses n = 0,1,2 in Fig. 5. In other
words, d ′

2(W (n)) uses P (n)
→ = P (2)

→ for all n in Eq. (C1). For
the nearly adiabatic evolution studied, d ′

2(W (1)) and d ′
2(W (2))

are nearly equal, but d ′
2(W (0)) yields a completely different

work distribution, as the zeroth-order approximation for the
work variable is unable to capture the time-dependent effect
of driving on the heat distribution.

In Table I, we present the ensemble averaged exponentiated
and first two moments of work using n = 0,1,2. Note that

−1 0 1 2−2

−1

0

1

2

W (n)/(h̄ω0)

lo
g 1

0(
d

2)

FIG. 5. (Color online) Probability density of work d ′
2(W (n)) using

an nth-order work variable while fixing the dynamics to n = 2. The
solid line (blue) corresponds to n = 0, the dashed line (red) to n = 1,
and the dash-dotted line (green) to n = 2. The density function is
calculated with a bin size 10−2/(�ω0) and the parameters are selected
to be the same as in Fig. 3.
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TABLE I. The exponentiated work and the first two moments of work using its nth-order definition in conjunction with the dynamics of
equal order (top rows) as well as that of n = 2 (bottom rows). The top rows are calculated with 107 time steps, 2 × 107 trajectories for n = 1,2,
and 108 trajectories for n = 0. The bottom rows are calculated with 106 time steps and 3 × 108 trajectories. The statistical uncertainty arising
from averaging over the trajectories is estimated using the standard error of the mean, σ . In the table, the error estimates allow a maximum of
1.96σ deviation corresponding to a 95% confidence interval of the mean. The system parameters are selected to be the same as in Fig. 3.

n = 2 n = 1 n = 0

|1 − 〈e−βW (n) 〉(n)| (1 ± 3) × 10−4 (0 ± 4) × 10−4 (5 ± 7) × 10−4

〈W (n)〉(n)/(�ω0) (693 ± 1) × 10−4 (969 ± 2) × 10−4 (3335 ± 1) × 10−4

〈(W (n))2〉(n)/(�ω0)2 (952 ± 2) × 10−4 (1373 ± 2) × 10−4 (5915 ± 3) × 10−4

|1 − 〈e−βW (n) 〉(2)| (1 ± 9) × 10−5 (11 ± 9) × 10−5 (867 ± 6) × 10−5

〈W (n)〉(2)/(�ω0) (6923 ± 3) × 10−5 (6901 ± 3) × 10−5 (5055 ± 3) × 10−5

〈(W (n))2〉(2)/(�ω0)2 (9507 ± 4) × 10−5 (9450 ± 4) × 10−5 (6473 ± 3) × 10−5

the top rows of the table correspond to values obtained
using dn(W (n)), whereas the bottom rows employ d ′

2(W (n)).
As predicted by Eq. (29), we do not observe a statistically
significant deviation from the Jarzynski equality when using
the consistently computed work distribution dn(W (n)) for each
order. Here we choose 1.96σ deviation (the 95% confidence
interval) to define the threshold for a statistically significant
deviation. For dn(W (n)), the moments of work are different
for each n due to the differences in the work variables and
the probability densities in Fig. 4. As expected, the difference
between n = 0 and n = 1 is much greater than that between
n = 1 and n = 2.

In Table I, the work distribution d ′
2(W (n)) is consistent

with the Jarzynski equality within the statistical uncertainty
for n = 2 guaranteed by Eq. (29). For d ′

2(W (0)), however, we
observe a clear statistically significant discrepancy with the
Jarzynski equality as the average exponentiated work deviates
from unity by almost 300σ . For d ′

2(W (1)), we also observe a
statistically significant discrepancy with the Jarzynski equality
although it is much less pronounced compared with d ′

2(W (0)).
Due to nearly adiabatic driving, the first two moments of work
using d ′

2(W (n)) deviate less than 1% between n = 1 and n = 2,
whereas n = 0 shows greatly different behavior.

VII. CONCLUSIONS

We have extended the quantum jump method to nearly
adiabatically driven open quantum systems using adiabatic
renormalization and derived the required formalism to obtain
the stochastic dynamics with respect to the number of renor-
malization steps. Our framework allows for the quantum jumps
to account for the external driving such that both the transition
rates and the basis in which the jumps occur become time
dependent. We have constructed the corresponding trajectory-
dependent work including the time-dependent heat exchange
and derived both the integral fluctuation theorem and the
Jarzynski equality for nearly adiabatic driving. Interestingly,
it turns out that in this case they both hold even for strong
driving as long as the stochastic work variable and dynamics
are consistently defined. We expect that a similar framework
and identities can be obtained for strong driving beyond the

adiabatic limit as the quantum jumps carry the requirement
for proper basis selection to any driving speed. We leave
such considerations for future work, but note that the shortcut
Hamiltonians in transitionless quantum driving [76] offer a
prominent starting point without the requirement of periodicity
in the Floquet theory [77].

We have numerically investigated the work statistics for a
nearly adiabatically driven two-level quantum system using
different orders of adiabatic renormalization. The level of
approximation has a significant effect on both the probability
density of work and the corresponding ensemble averaged
values. In particular, the diabatic approximation for the dissi-
pative transitions was shown to be unable to capture some of
the prominent features emerging in the probability density that
arise from driving. These include the fundamental continuity
property of the probability density which we observed in the
higher orders of the theory. Our observations are potentially
critical for future experiments probing only the quantum jump
time distributions [54–56] and not the exchanged heat. To
obtain the work statistics, such experiments require one to im-
pose an exchanged heat to each jump event. The conventional
scheme using the eigenstates of the undriven Hamiltonian
leads to significant error that is potentially visible in, for ex-
ample, the resulting identification of the free-energy difference
between the initial and final reference equilibrium states.
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APPENDIX A: SECULAR MASTER EQUATION FOR
NEARLY ADIABATICALLY DRIVEN QUANTUM SYSTEMS

In Ref. [53], a two-level master equation for nearly
adiabatic driving is derived using an arbitrary number n

of basis rotations in the adiabatic renormalization scheme.
Based on the analysis in Ref. [52], it can be shown
that such master equation corresponds to the so-called
nonsteered evolution after (n + 1) rotations when a linear
order approximation in αn is used for the (n + 1)th basis
states. Following this line of thinking, we assume that
αn+1 � αn and ˆ̃H (n+1) ≈ ˆ̃H (n+1)

S + ˆ̃V (n+1) + ĤE , which
yields the Bloch equations for nearly adiabatic driving
dρ̃(n)

gg /dt = −2�m[(w(n)
ge )∗ρ̃(n)

ge ] − (�(n)
ge + �(n)

eg )ρ̃(n)
gg + �(n)

eg

and dρ̃(n)
ge /dt = iw(n)

ge (2ρ̃(n)
gg − 1) + i(w(n)

ee − w(n)
gg )ρ̃(n)

ge +
iω

(n)
01 ρ̃(n)

ge − (�(n)
eg /2 + �(n)

ge /2 + 2�(n)
ϕ )ρ̃(n)

ge , where ρ̃
(n)
kl =

〈k| ˆ̃ρ(n)
S |l〉 = 〈k(n)|ρ̂S |l(n)〉, �ω

(n)
01 = E(n)

e − E(n)
g , such that

E(n)
e = 〈e| ˆ̃H (n)

S |e〉 and E(n)
g = 〈g| ˆ̃H (n)

S |g〉, w
(n)
kl = 〈k|ŵn|l〉,

�(n)
ge = |〈e(n)|Ŷ |g(n)〉|2S(−ω

(n)
01 ), �(n)

eg = |〈e(n)|Ŷ |g(n)〉|2S(ω(n)
01 ),

and �(n)
ϕ = |〈g(n)|Ŷ |g(n)〉|2S(0), where we denote S(ω′) =∫∞

−∞ dτTrE{ρ̂EX̂I (τ )X̂I (0)}eiω′τ /�
2 [78]. Importantly,

we assumed 〈g(n)|Ŷ |g(n)〉 = −〈e(n)|Ŷ |e(n)〉 as well as the
feasibility of the secular approximation for the (n + 1)th-order
nonsteered evolution to neglect the nonsecular terms originally
included in Ref. [52]. The approximation is justified in our
analysis as we are interested in the population dynamics rather
than small contributions to the coherences. The error in this
master equation is of the third order in the system-environment
coupling strength and of the first order in αn.

The master equation above translates to

˙̃̂ρ(n)
S = − i

�

[ ˆ̃H (n)
S + �ŵn, ˆ̃ρ(n)

S

]

+
2∑

i=0

(
ˆ̃L(n,i) ˆ̃ρ(n)

S
ˆ̃L†

(n,i) − 1

2

{ ˆ̃L†
(n,i)

ˆ̃L(n,i), ˆ̃ρ(n)
S

})
, (A1)

where the right-hand side is defined by the Lindblad operators

ˆ̃L(n,0) =
√

�
(n)
eg |g〉〈e|, ˆ̃L(n,1) =

√
�

(n)
ge |e〉〈g|,

(A2)
ˆ̃L(n,2) =

√
�

(n)
ϕ (|e〉〈e| − |g〉〈g|).

Notice that the component form is immediately
retrieved as 〈k| ˙̃̂ρ(n)

S |l〉 = 〈k|∂t [(D̂
(n)
S )†ρ̂S(D̂(n)

S )]|l〉 =
∂t [〈k|(D̂(n)

S )†ρ̂S(D̂(n)
S )|l〉 = ∂t ρ̃

(n)
kl , since |k〉,|l〉 are fixed in

time. To obtain a straightforward interpretation of the driven
evolution for the Monte Carlo wave function method used in
our stochastic analysis, we define a transformation back to
the original Schrödinger picture as ÂB = (D̂(n)

S )Â(D̂(n)
S )† for

arbitrary operator Â. The time derivate of ˆ̃ρ(n)
S deconstructs as

˙̃̂ρ(n)
S = ∂t

[(
D̂

(n)
S

)†]
ρ̂S

(
D̂

(n)
S

)+ (
D̂

(n)
S

)†
ρ̂S∂t

[(
D̂

(n)
S

)]
+ (

D̂
(n)
S

)† ˙̂ρS

(
D̂

(n)
S

)
, (A3)

and hence( ˙̃̂ρ(n)
S

)B = ˙̂ρS + [(
D̂

(n)
S

)
∂t

[(
D̂

(n)
S

)†]
,ρ̂S

]
, (A4)

where we used the unitarity of D̂n for every n. Back
transforming Eq. (A1) with the help of Eq. (A4) results in
Eq. (5) in the main text. Note that the unitary part in Eq. (5) is
retrieved from D̂

(n)
S [ ˆ̃H (n)

S + �ŵn](D̂(n)
S )† + �Ŵn = ĤS , where

Ŵn = −i(D̂(n)
S )∂t [(D̂

(n)
S )†] stems from Eq. (A4).

APPENDIX B: DERIVATION OF THE INTEGRAL
FLUCTUATION THEOREM IN EQ. (27)

Let us consider an open quantum system whose dynamics
are determined by a Lindblad equation of the form

˙̂ρS = − i

�
[ĤS,ρ̂S]

+
M∑
i=0

(
L̂i ρ̂SL̂

†
i − 1

2
{L̂†

i L̂i ,ρ̂S}
)

, (B1)

where the number of dissipative channels is M + 1 and the
Lindblad operator corresponding to the channel i is given
by L̂i(t) = √

�i(t)Âi(t). Every operator in this expression is
potentially time dependent. To exactly unravel the dynamics,
we apply the quantum jump method with the two-measurement
approach as described in Sec. V of the main text such that
each event takes place over an infinitesimal time interval δt .
The probability of the system to traverse a single N -jump
trajectory is given by

P→
[
E

(1)
k (tinit),E

(1)
l (tfinal),

{
L̂mj

}N

j=1,{tj }Nj=1

]

= P
[
E

(1)
k (tinit)

]⎡⎣ N∏
j=1

pmj
(tj )p0(tj ,tj−1)

⎤
⎦

×p0(tfinal,tN )P
[
E

(1)
l (tfinal)

]
, (B2)

where E
(1)
k (tinit) and E

(1)
l (tfinal) are the measured eigenenergies

in the TMA for this particular realization, P [E(1)
k (tinit)] and

P [E(1)
l (tfinal)] are the corresponding probabilities, respectively,

pmj
(tj ) is the probability for a jump event to occur along

the mj th channel during [tj ,tj + δt], and p0(tj+1,tj ) is the
probability of no jumps to occur during the time interval
[tj ,tj+1], that is, between two subsequent jump events. Note
that we use the notation t0 = tinit in the product to account
for the no-jump evolution between the initial projective
measurement and the first jump event. In the following, we
denote the initial and final eigenstates corresponding to the
measured energies as |k(1)(tinit)〉 and |l(1)(tfinal)〉, respectively.
All of the probabilities on the right-hand side of Eq. (B2)
beyond that corresponding to the initial measurement are
conditional in the sense that they depend on the earlier traversal
history.

Similarly to the main text, the no-jump evolution during the
time interval [tj ,tj+1] is given by

Ûeff(tj+1,tj ) = T exp

{
− i

�

∫ tj+1

tj

Ĥeff(t)dt

}
, (B3)

where the non-Hermitian effective Hamiltonian is Ĥeff(t) =
ĤS(t) − i�

∑
i L̂

†
i (t)L̂i(t)/2. The state after the no-jump

022126-9



S. SUOMELA et al. PHYSICAL REVIEW E 91, 022126 (2015)

evolution is

|ψ(tj+1)〉 = Ûeff(tj+1,tj )√
p0(tj+1,tj )

|φj (tj )〉, (B4)

where |φj (tj )〉 is the state after the j th jump event has occurred
at tj given by

|φj (tj )〉 = L̂mj√
pj (tj )/δt

|ψ(tj )〉, (B5)

where the probability of the jump event to take place along the
mj th channel is given by

pmj
(tj ) = δt〈ψ(tj )|L̂†

mj
L̂mj

|ψ(tj )〉

= δt

p0(tj ,tj−1)
〈φj−1(tj−1)|Û †

eff(tj ,tj−1)

× L̂†
mj

L̂mj
Ûeff(tj ,tj−1)|φj−1(tj−1)〉. (B6)

In addition, the probability for the no-jump evolution occurring
can be written as [64–68]

p0(tj+1,tj ) = ||Ûeff(tj+1,tj )|φj (tj )〉||2. (B7)

The above notation accounts for the no-jump evolution after
the initial measurement and the first jump event by adopting
the convention |φ0(t0)〉 = |k(1)(tinit)〉.

The final projective measurement is carried out after a no-
jump evolution has occurred during the time interval [tN ,tfinal]
and yields E

(1)
l (tfinal) with the probability

P
[
E

(1)
l (tfinal)

] = |〈l(1)(tfinal)|Ûeff(tfinal,tN )|φN (tN )〉|2
p0(tfinal,tN )

. (B8)

Using Eqs. (B6)–(B8), we have the identities

pmj
(tj )p0(tj ,tj−1)

= δt〈φj−1(tj−1)|Û †
eff(tj ,tj−1)L̂†

mj

×L̂mj
Ûeff(tj ,tj−1)|φj−1(tj−1)〉 (B9)

and

p0(tfinal,tN )P
[
E

(1)
l (tfinal)

]
= |〈l(1)(tfinal)|Ûeff(tfinal,tN )|φN (tN )〉|2. (B10)

Hence, the traversal probability for the N -jump trajectory in
Eq. (B2) takes the form

P→
[
E

(1)
k (tinit),E

(1)
l (tfinal),

{
L̂mj

}N

j=1,{tj }Nj=1

]

= P
[
E

(1)
k (tinit)

]|〈l(1)(tfinal)|Ûeff(tfinal,tN )|φN (tN )〉|2
N∏

j=1

δt〈φj−1(tj−1)|Û †
eff(tj ,tj−1)L̂†

mj
L̂mj

Ûeff(tj ,tj−1)|φj−1(tj−1)〉

= (δt)NP
[
E

(1)
k (tinit)

] ∣∣∣∣∣∣〈l(1)(tfinal)|Ûeff(tfinal,tN )

⎡
⎣ N∏

j=1

L̂mN+1−j
Ûeff(tN+1−j ,tN−j )

⎤
⎦ |k(1)(tinit)〉

∣∣∣∣∣∣
2

= (δt)NP
[
E

(1)
k (tinit)

] [ N∏
i=1

�mi

] ∣∣∣∣∣∣〈l(1)(tfinal)|Ûeff(tfinal,tN )

⎡
⎣ N∏

j=1

ÂmN+1−j
Ûeff(tN+1−j ,tN−j )

⎤
⎦ |k(1)(tinit)〉

∣∣∣∣∣∣
2

, (B11)

where after the second equality we used the identity
|φj (tj )〉〈φj (tj )|L̂mj

= L̂mj
stemming from Eq. (B5), we de-

note L̂mj
= L̂mj

(tj ), �mj
= �mj

(tj ), and Âmj
= Âmj

(tj ), and
the ordering of the operator products is defined the same way
as in Sec. II.

In order to formulate the integral fluctuation theorem,
we follow the standard approach [19,23,25,38–40,79,80]
and study the time-reversed counterparts of the trajectories
generated by Eq. (B1). We denote reversed time by t̄ = (tinit +
tfinal) − t . Moreover, we define the N -jump time-reversed
trajectory corresponding to the time-forward one presented
above by carrying out the first measurement in the TMA at
t̄ = tinit, yielding Ē

(1)
l (tinit), and the second measurement at t̄ =

tfinal, yielding Ē
(1)
k (tfinal), where we denote Ē(1)

s (t̄) = E(1)
s (t),

s ∈ {k,l}. We denote the corresponding energy eigenstates

by |s̄(t̄)〉 = |s(t)〉 and s ∈ {k,l}. The time-reversed trajectory
is traversed by reversing the system dynamics and by im-
posing N quantum jumps occurring at times τj = (tinit +
tfinal) − tN+1−j due to time-reversed jump operators ˆ̄Lm̄j

(τj ) =√
�̄m̄j

(τj )Â†
m̄j

(tN+1−j ), where the index m̄j is related to the

indexing of the forward trajectory as m̄j = mN+1−j [81] and
�̄m̄j

denotes the transition rate of the time-reversed jump.
At this point, we assume that the values of the reversed
transition rates can be chosen freely. They will be specified
later by requiring Eq. (B19) to be satisfied. Note that τj is
formulated in such a way that the time-reversed jump events
occur in increasing order. The unitary part of time-reversed
evolution is governed by ˆ̄HS(t̄) = −ĤS(t), where the minus
sign reverses the intrinsic system dynamics. Therefore, the
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time-reversed trajectories correspond to the unraveling of the
Lindblad equation

d ˆ̄ρS

dt̄
= − i

�
[ ˆ̄HS(t̄), ˆ̄ρS(t̄)]

+
M∑
i=0

[
ˆ̄Li(t̄) ˆ̄ρS(t̄) ˆ̄L†

i (t̄) − 1

2
{ ˆ̄L†

i (t̄)
ˆ̄Li(t̄), ˆ̄ρS(t̄)}

]
,

(B12)

where ˆ̄Li(t̄) =
√

�̄i(t̄)Â
†
i (t). Equation (B12) guarantees that

the time-reversed trajectories are true quantum trajectories.
Similarly to the time-forward trajectory, the state after the

j th jump in the time-reversed trajectory is given by

|φ̄j (τj )〉 =
ˆ̄Lm̄j√

p̄j (τj )/δt
|ψ̄(τj )〉, (B13)

where the jump probability is

p̄m̄j
(τj ) = δt〈ψ̄(τj )| ˆ̄L†

m̄j

ˆ̄Lm̄j
|ψ̄(τj )〉, (B14)

and the state after the no-jump evolution is given by

|ψ̄(τj+1)〉 =
ˆ̄Ueff(τj+1,τj )√
p̄0(τj+1,τj )

|φ̄j (τj )〉. (B15)

Here the time-reversed no-jump evolution is governed by

ˆ̄Ueff(τj+1,τj ) = T̄ exp

{
− i

�

∫ τj+1

τj

ˆ̄Heff(t̄)dt̄

}
, (B16)

where ˆ̄Heff(t̄) = ˆ̄HS(t̄) − i�
∑

i
ˆ̄L†

i (t̄)
ˆ̄Li(t̄)/2 and T̄ denotes

time ordering in reversed time. Note that this effective
Hamiltonian accounts for the reversal of the control protocol
and the reversed jump processes. The control protocol is
given in real time and, hence, time-reversal is applied for
ĤS , whereas the jump operators are defined in reversed time
by default. In addition, the no-jump probability is obtained
from

p̄0(τj+1,τj ) = || ˆ̄Ueff(τj+1,τj )|φ̄j (τj )〉||2. (B17)

The probability to traverse the above-defined time-reversed
trajectory is obtained similarly to the time-forward one and
takes the form

P̄→
[
Ē

(1)
l (tinit),Ē

(1)
k (tfinal),

{ ˆ̄Lm̄j

}N

j=1,{τj }Nj=1

]

= (δt)NP̄
[
Ē

(1)
l (tinit)

] [ N∏
i=1

�̄m̄i

]∣∣∣∣∣ 〈k̄(1)(tfinal)| ˆ̄Ueff(tfinal,τN )

×
⎡
⎣ N∏

j=1

Â†
mj

ˆ̄Ueff(τN+1−j ,τN−j )

⎤
⎦ |l̄(1)(tinit)〉

∣∣∣∣∣∣
2

, (B18)

where we denote ˆ̄Lm̄j
= ˆ̄Lm̄j

(τj ), �̄m̄j
= �̄m̄j

(τj ), and Âmj
=

Âmj
(tj ). If we assume for all t the condition

M∑
i=0

ˆ̄L†
i (t̄)

ˆ̄Li(t̄) =
M∑
i=0

L̂
†
i (t)L̂i(t), (B19)

where the summation is over all dissipative channels, the
forward and reversed in time no-jump evolution operators can
be shown to fulfill

ˆ̄Ueff(τj+1,τj ) = Û
†
eff(tN+1−j ,tN−j ), (B20)

where one should be mindful of the transformation
τj = (tinit + tfinal) − tN+1−j when applying the expression. For
example, in the case of a Lindblad equation which contains a
decay channel Âk(t) = Â

†
i (t) for each channel Âi , Eq. (B19) is

satisfied by defining the reversed transitions such that �̄i(t̄) =
�k(t). With this assumption, Eqs. (B11) and (B18) allow us to
write the trajectory-dependent entropy production [19] as

R
[
E

(1)
k (tinit),E

(1)
l (tfinal),

{
L̂mj

}N

j=1,{tj }Nj=1

]

= ln

[
P→

(
E

(1)
k (tinit),E

(1)
l (tfinal),

{
L̂mj

}N

j=1,{tj }Nj=1

)
P̄→

(
Ē

(1)
l (tinit),Ē

(1)
k (tfinal),

{ ˆ̄Lm̄j

}N

j=1,{τj }Nj=1

)
]

= ln

⎧⎨
⎩P

[
E

(1)
k (tinit)

]
P̄
[
Ē

(1)
l (tinit)

] N∏
j=1

�mj
(tj )

�̄m̄j
(τj )

⎫⎬
⎭

= ln

⎧⎨
⎩P

[
E

(1)
k (tinit)

]
P̄
[
Ē

(1)
l (tinit)

] N∏
j=1

�mj
(tj )

�̄mj
(t̄j )

⎫⎬
⎭ , (B21)

where the product counts over all jump events in the trajectories
and in the last line the product was reorganized using the
relations m̄j = mN+1−j and t̄j = (tinit + tfinal) − tj . This
allows a more convenient expression in terms of comparing
individual jump processes between the trajectories.

Following the conventional approach to fluctuation rela-
tions in, e.g., Refs. [3,25], we define the probability distribution
of the trajectory-dependent entropy production in Eq. (B21)
for forward-time evolution as

d(R) =
∑
k,l

∞∑
N=0

∑
{L̂mj

}Nj=1

1

N !

N∏
i=1

∫ tfinal

tinit

dti

× 1

(δt)N
P→

[
E

(1)
k (tinit),E

(1)
l (tfinal),

{
L̂mj

}N

j=1,{tj }Nj=1

]
× δ

{
R − R

[
E

(1)
k (tinit),E

(1)
l (tfinal),

{
L̂mj

}N

j=1,{tj }Nj=1

]}
,

(B22)

where the first summation is over all possible initial and final
measurement results, the second summation is over all possible
numbers of jumps a single trajectory can undergo, and the third
summation is over all possible sets of jump operators with N

jumps. The integrations account for all possible jump times
during an N -jump trajectory. The corresponding expression
for the time-reversed evolution is

d̄(R) =
∑
k,l

∞∑
N=0

∑
{ ˆ̄Lm̄j

}Nj=1

1

N !

N∏
i=1

∫ tfinal

tinit

dτi

× 1

(δt)N
P̄→

[
Ē

(1)
l (tinit),Ē

(1)
k (tfinal),

{ ˆ̄Lm̄j

}N

j=1,{τj }Nj=1

]
× δ

{
R + R

[
E

(1)
k (tinit),E

(1)
l (tfinal),

{
L̂mj

}N

j=1,{tj }Nj=1

]}
,

(B23)
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where we have used the fact that the entropy productions in
the reversed and forward trajectories have the same magnitude
but different sign stemming from Eq. (B21). As a direct
consequence of Eqs. (B21)–(B23), the following detailed
fluctuation theorem holds:

d(R)

d̄(−R)
= eR. (B24)

The only assumptions needed for Eq. (B24) are that the
condition in Eq. (B19) is fulfilled and that {|k(1)

init/final(tinit/final)〉}
forms a basis for the system, that is, that the initial and final
measurements are able to probe the corresponding full Hilbert
space. Equation (B24) implies that the integral fluctuation
theorem holds such that

〈e−R〉 = 1, (B25)

where 〈· · ·〉 denotes an ensemble average over the R distri-
bution given in Eq. (B22). Inserting the definition of R in
Eq. (B21) into Eq. (B25) yields the final form of the integral

fluctuation theorem as〈
P̄
[
Ē

(1)
l (tinit)

]
P
[
E

(1)
k (tinit)

] N∏
j=1

�̄mj
(t̄j )

�mj
(tj )

〉
= 1. (B26)

Equation (5) is in the Lindblad form and using Eq. (6) it
can be shown that the condition in Eq. (B19) is fulfilled for
the sets {L̂(n,i)(t)}2

i=0 and { ˆ̄L(n,i)(t̄)}2
i=0 by asserting �̄(n,0)(t̄) =

�(n,1)(t), �̄(n,1)(t̄) = �(n,0)(t), and �̄(n,2)(t̄) = �(n,2)(t). Hence,
the integral fluctuation theorem takes the form of Eq. (27) in
the main text. Note especially that in this case the stochastic
dynamics is generated by nth-order master equation and
correspondingly the transition rates and the ensemble average
depend on n.

APPENDIX C: PROBABILITY DISTRIBUTION OF WORK
IN THE nth-order APPROXIMATION

Using the notation introduced in Appendix B, the proba-
bility distribution of work using the nth-order dynamics can
generally be written as

dn(W (n)) =
∑
k,l

∞∑
N=0

∑
{L̂mj

}Nj=1

1

N !

N∏
i=1

∫ tfinal

tinit

dti

× 1

(δt)N
P (n)

→
[
E

(1)
k (tinit),E

(1)
l (tfinal),

{
L̂mj

}N

j=1,{tj }Nj=1

]
× δ

{
W (n) − W (n)

[
E

(1)
k (tinit),E

(1)
l (tfinal),

{
L̂mj

}N

j=1,{tj }Nj=1

]}
, (C1)

where the trajectory-dependent work W (n) is given in Eq. (26)
and P (n)

→ is given in Eq. (B11) such that the available dissi-
pative channels correspond to the set of Lindblad operators

{L̂(n,i)(t)}2
i=0 in Eq. (6). Note especially that both P (n)

→ and
W (n) depend on the number of transformations through the
jump operators.
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