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Abstract

Background: Using whole exome sequencing to predict aberrations in tumours is a cost effective alternative to
whole genome sequencing, however is predominantly used for variant detection and infrequently utilised for
detection of somatic copy number variation.

Results: We propose a new method to infer copy number and genotypes using whole exome data from paired
tumour/normal samples. Our algorithm uses two Hidden Markov Models to predict copy number and genotypes
and computationally resolves polyploidy/aneuploidy, normal cell contamination and signal baseline shift. Our
method makes explicit detection on chromosome arm level events, which are commonly found in tumour samples.
The methods are combined into a package named ADTEx (Aberration Detection in Tumour Exome). We applied
our algorithm to a cohort of 17 in-house generated and 18 TCGA paired ovarian cancer/normal exomes and evalu-
ated the performance by comparing against the copy number variations and genotypes predicted using Affymetrix
SNP 6.0 data of the same samples. Further, we carried out a comparison study to show that ADTEx
outperformed its competitors in terms of precision and F-measure.

Conclusions: Our proposed method, ADTEx, uses both depth of coverage ratios and B allele frequencies calculated
from whole exome sequencing data, to predict copy number variations along with their genotypes. ADTEx is
implemented as a user friendly software package using Python and R statistical language. Source code and sample
data are freely available under GNU license (GPLv3) at http://adtex.sourceforge.net/.
Background
Tumourigenesis is associated with the acquisition of
genomic aberrations [1,2] including copy number al-
terations (CNAs) and loss of heterozygosity (LOH),
which activate oncogenes or deactivate various classes
of genes that play crucial roles in cancer development [1].
Previously, such data has been generated from array com-
parative genomic hybridisation (aCGH) and single nucleo-
tide polymorphism (SNP) genotyping arrays [3-5] but the
implementation of massively parallel sequencing (MPS)
technologies has provided novel opportunities for using
sequencing data to generate equivalent genomic aberration
information. In the cancer genomics field it has become a
routine to perform whole genome sequencing (WGS) or
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whole exome sequencing (WES) on DNA extracted from
tumour tissues [2,6,7]. WES is particularly popular for large
sequencing projects seeking to identify disease-specific
mutations since it is significantly cheaper than WGS and
involves reduced analytical complexity, but typically seeks
only to identify single nucleotide variants and small inser-
tions-deletions [8,9]. CNAs have been successfully de-
tected in gene panel targeted resequencing projects [10],
however, the bioinformatics tools for upscaling this to
exomes are lacking. With the efforts of large sequencing
consortia, such as The Cancer Genome Atlas (TCGA)
network and International Cancer Genome Consortium
(ICGC) [11] and individual research groups, many whole
exome sequencing projects involving thousands of tumours
are currently underway. However, somatic CNA identifica-
tion by means of WES data is still in its early stages and
needs the development of new robust computational
methods and algorithms.
entral Ltd. This is an Open Access article distributed under the terms of the
/creativecommons.org/licenses/by/4.0), which permits unrestricted use,
, provided the original work is properly credited. The Creative Commons Public
mons.org/publicdomain/zero/1.0/) applies to the data made available in this

https://core.ac.uk/display/162635577?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://adtex.sourceforge.net/
mailto:saman@unimelb.edu.au
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Amarasinghe et al. BMC Genomics 2014, 15:732 Page 2 of 12
http://www.biomedcentral.com/1471-2164/15/732
Computational methods have been published for de-
tecting CNAs in targeted resequencing data including
whole exome sequencing [7,12-19], although majority of
these methods are designed for analysing variations in
germline DNA and perform poorly when applied to the
detection of somatic CNAs in tumour samples. Control-
FREEC [20] is a method developed for WGS tumour
data and more recently supports the application to WES
data. ExomeCNV [7] and VarScan 2 [14] are designed
for CNA identification in tumour WES data, however,
they do not predict absolute copy number in non-diploid
samples. Other methods can predict absolute copy num-
bers in non-diploid tumour samples, but only if the ploidy
is known a priori [12,20] which is rarely the case or is
impractical to obtain.
Simultaneous generation of depth of coverage (DOC)

ratios and B allele frequencies (BAFs) would facilitate
the identification of aneuploidy and polyploidy present
in cancer samples. A diploid genome would only have
BAFs of 0, 0.5 and 1, corresponding to AA, AB and BB
genotypes, whereas, for example, a triploid genome, as-
suming no tumour heterogeneity or normal contamin-
ation, would have allele ratios of 0, 0.33, 0.67 and 1
regions corresponding to AAA, AAB, ABB and BBB ge-
notypes and a baseline DOC ratio of one which is simi-
lar to a diploid tumour genome. To generate ratios and
allele frequencies from WES data, we need to align them
to the reference genome and identify the SNPs. Another
issue impeding the use of WGS and WES for somatic
CNA identification is non-tumour cell contamination,
which is present in the majority of tumour tissues. Nor-
mal DNA contamination attenuates the signal-to-noise
ratio in BAF and coverage ratio signals by altering their
values towards a normal diploid genome pattern. Conse-
quently, a high normal cell contamination would make it
impossible to differentially detect somatic variations in
tumour cells. Among the previously published methods,
ExomeCNV [7] requires tumour purity to be known
a priori while Control-FREEC [20] does not. Previous
studies on SNP genotyping array data [4,21] suggested the
use of Hidden Markov Models (HMM) to predict CNA
and LOH events with a parameter training procedure,
which inherently models the normal contamination.
When analysing exome sequencing data, it is important

to overcome the intrinsic noise present in data itself, which
hinders its ability to accurately predict CNAs. Programs
such as XHMM [13] and CoNIFER [15], which are
applicable to CNA detection in germline DNA studies,
perform principle component analysis and singular value
decomposition, to remove the noise present in WES data
and normalise the read counts. However, these methods
are not applicable in single tumour/matched normal
sample pairs. A potential way to overcome this issue is
to implement discrete wavelet transformation (DWT) in
normalising exome ratios as we have reported previously
[12]. DWT normalisation can achieve higher precision
(that is, lower number of false positives) while main-
taining a comparable or superior sensitivity compared
to other methods.
Overall, the three above mentioned issues, (i) noise in

WES data, (ii) ploidy and (iii) normal cell contamination
in tumour samples have not been simultaneously evalu-
ated by any of the computational methods applicable to
WES tumour data. Although our previously proposed
method [12] considers these three issues, it requires prior
knowledge of contamination and tumour ploidy. Therefore,
in the current study, we propose a new approach named
Aberration Detection in Tumour Exome (ADTEx), which
automatically estimates the three aspects important to
WES tumour data and predicts CNA events and genotypes
of SNPs associated with these regions. Further, ADTEx
makes explicit predictions on chromosome arm level CNA
events, which is a pattern commonly observed across many
tumour types.
Results and discussion
ADTEx for aberration detection in tumour exome
ADTEx consists of two HMMs to predict copy number
alterations and genotypes in WES data of paired tumour/
normal samples. Two types of signals were generated
from the exome data, DOC ratios and BAFs. Copy
number analysis using ratios can be complemented by the
computation of BAFs to determine ploidy and zygosity.
Here, we propose to apply these two types of signals to pre-
dict the zygosity state of segments in the genome targeted
by exome capture.
One HMM is used to predict CNAs, which in com-

bination with BAF signal can be used to estimate
ploidy of the tumour and predict the absolute copy
numbers. A second HMM is used to predict zygosity or
genotype of each CNA segment. The overall framework
of the method is given in Additional file 1: Figure S1.
We applied our method to 17 in-house tumour sam-
ples derived from ovarian cancer patients to assess the
performance of the method. We selected ten samples
with different aberration types from those 17 samples
to compare the performance of ADTEx against existing
somatic CNA prediction methods. Further, we evalu-
ated the performance of ADTEx on publicly available
18 paired ovarian cancer/normal samples downloaded
from the TCGA project.
The parameters in our two HMMs were trained using

an expectation maximisation (EM) algorithm [22]. Given
these estimated parameters, the maximum likelihood of
the hidden state sequence is determined using Viterbi al-
gorithm [23]. In the first HMM, to detect copy number, we
applied EM algorithm for each chromosome separately,
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while in the second HMM, we pooled all chromosomes
and estimated parameters jointly. However, in the sec-
ond HMM, the initial state distribution was computed
separately for each chromosome.
Aberrations detection in 17 ovarian cancer samples
We used 17 paired ovarian tumour/normal samples to
evaluate the performance of our proposed method (Table 1
and Additional file 1: Table S1). The samples were se-
quenced on an Illumina HiSeq 2000 (one pair) and the Illu-
mina Genome Analyzer IIx (16 pairs). Exon capture was
performed using the 51 Mb Agilent SureSelect Human
All Exon V4 (one pair), the 36.5 Mb Roche NimbleGen
EZ Exome SeqCap V2 (11 pairs) and the 26 Mb Roche
NimbleGen EZ Exome SeqCap V1 platform (five pairs).
Each WES sample was aligned to the reference genome,
GRCh37, using BWA [24]. The predicted aberrations in
exome samples were validated by Affymetrix SNP 6.0
data generated for the same samples. ASCAT [25] was
used to predict CNAs from the SNP array data.
Correlation between SNP array data and WES data
Manual inspection of the ratio plots between SNP 6.0
array data and whole exome sequencing data proved to be
highly consistent. We also observed statistically significant
positive correlation (Additional file 1: Figure S2) between
SNP 6.0 data ratios and exome depth of coverage ratios.
To obtain these, we partitioned the exome into windows
containing five exons and computed the mean normalised
DOC ratios in each partitioned window. Mean SNP 6.0 in-
tensity ratios were calculated from the probes overlapping
the exonic windows. The Spearman’s rank correlation was
calculated between these two data sets for three different
tumour samples (Additional file 1: Figure S2) and the
Spearman’s rho ranged from 0.63 to 0.81 (p value <0.001).
This evaluation demonstrates that WES is comparable
with SNP 6.0 array data for the analysis of CNAs.
Table 1 Summary of the exome sequencing data

Exome platform Agilent SureSelect Huma
All Exon Version 4

No of paired samples 1 × 2

Target size 51Mbp

Sequencing platform Illumina HiSeq

Read length 101 bp

Avg. mapped reads (BWA)* 102,082,760

Avg. on target reads* 95,930,467

Avg. bases mapped to target regions* 9.7Gbp

Average coverage per targeted base 189.28

*Per sample.
Polyploidy detection in exome data
To predict the copy number of each exonic locus, we first
needed to establish a method for predicting the polyploidy
status of each tumour sample. Additional file 1: Figure S3
shows the properties of BAF to detect correct ploidy by our
method. In each case, ADTEx accurately determined the
copy number status of the regions corresponding to base-
line ratio, by comparing BAFs and predicted copy number.
This estimation is only possible when the BAFs of the
tumour sample at normal heterozygous loci are available,
DOC ratios alone would not allow correcting for this.
Overall, prediction accuracies of the ploidy detection

were measured by calling copy number at each exonic locus
and validating them against the calls made by ASCAT on
SNP 6.0 array data (Figure 1 and Additional file 1: Table S2).

Comparison with SNP genotyping array data
CNA were evident in 14 of the 17 samples, which were
therefore used to evaluate the performance of CNA pre-
dictions. LOH was predicted in all 17 samples (including
three samples with copy neutral LOH), which were there-
fore used in the genotype prediction evaluation. A repre-
sentative comparison between exome results and SNP 6.0
results are shown in Figure 1a for the sample OV12.
We evaluated ADTEx predicted CNAs against those

predicted by ASCAT on SNP 6.0 array data, which we
assumed as the ground truths. Sensitivity, specificity,
precision and accuracy were computed for each sample
(Figure 1 and Additional file 1: Table S2). Each exon
was treated as a point of measure for the performance
calculation with true positives (TPs) considered those
exons identified by both ASCAT and ADTEx as gains/
losses and false positives (FPs) considered those exons
predicted by ADTEx as gains/losses and copy neutral by
ASCAT. True negatives (TN) and false negatives (FN) were
recognised in the same manner. ADTEx had median values
of 94.1% sensitivity, 98.3% specificity, 94% precision and
98% accuracy for detecting CNAs. Triploidy and tetraploidy
were each present in 2 of 14 samples while most of other
n Roche NimbleGen EZ
Exome SeqCap Version 2

Roche NimbleGen EZ
Exome SeqCap Version 1

11 × 2 6 × 2

36Mbp 26Mbp

Illumina GAIIx Illumina GAIIx

100 bp 79 bp, 100 bp and 101 bp

86,607,431 77,433,963

78,038,985 70,758,116

7.8Gbp 6.8Gbp

216.91 204.68



Figure 1 Performance comparison and evaluation of ADTEx predictions against data from Affymetrix SNP 6.0 genotyping arrays.
(a) Comparison of predictions on sample OV12. Copy number predictions by ASCAT (top panel), copy number predictions by ADTEx (second
panel), LOH predictions by ASCAT (third panel) and LOH predictions by ADTEx (bottom panel). The top two panels show the exon level depth of
coverage ratios and each colour represents the predicted copy number, while bottom two panels show the tumour BAF of heterozygous loci in
the matched normal sample with colours representing the predicted LOH status. (b) Performance metrics of ADTEx copy number predictions
computed as accuracy, precision, sensitivity and specificity and (c) performance metrics of ADTEx LOH predictions on all samples.
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samples were aneuploid (Additional file 1: Figure S4 and
Additional file 2). As shown in Additional file 1: Figure S5a,
a high proportion of the genome was affected by duplica-
tions with an average of 26.6% of the genome amplified
compared with just 4% deleted. The smallest deletion and
amplification detected by ADTEx were 100pb and 80 bp
long respectively, while the largest deletion and amplifica-
tion were 181Mbp and 243Mbp in length respectively. The
resolution of the smallest CNA detected was restricted to
the smallest exon detected as a CNA.
For large scale (>0.1 of the chromosome) CNA events,

we further assessed the performance of ADTEx based on
the number of events detected by the method. According
to the results from SNP arrays, there were 150 large scale
events in all samples (Additional file 1: Table S11). ADTEx
detected 145 events, which is a sensitivity of 96.7%. For the
assessment, an event predicted by ASCAT is considered to
be correctly detected by ADTEx when there is more than
50% overlap between the predictions made by two methods.
Figure 1c shows the performance measurements of

ADTEx on LOH predictions, evaluated considering ASCAT
predictions as ground truths (Additional file 1: Table S3).
The heterozygous SNP loci in matched normal sample were
retained for this analysis. Further, we filtered out the SNP
loci that fell outside of the regions of the predicted copy
number variant and copy neutral segments for the relevant
sample. Each SNP locus was considered as a performance
measurement point with true positives considered those
SNP loci identified as having LOH by both ASCAT and
ADTEx and false positive events considered those SNP loci
defined by ASCAT as non-LOH but predicted by ADTEx
as LOH. Median values of sensitivity and specificity were
90.1% and 99.7%.
The distribution of the total length of LOH of a sam-

ple ranged from a minimum of 0.1 Mb to maximum of
1,577 Mb with a mean of 273 Mb. Additional file 1:
Figure S5b shows the distribution of the genomic propor-
tion of allelic imbalance presents in each sample. Additional
file 1: Figure S6 shows different types of LOH events identi-
fied using ADTEx on whole exome sequencing data.
Performance metrics for detecting allele specific copy

number alterations (ASCNA) were reported as median
sensitivity of 96.8% and specificity of 98.2% and are sum-
marised in Additional file 1: Table S4 in terms of sensitivity,
specificity, precision and accuracy.

Performance evaluation on TCGA data
Next, we evaluated the performance of ADTEx on high-
grade serous ovarian adenocarcinoma samples sequenced
as part of TCGA project [26]. We downloaded BAM
files of 18 paired tumour/normal samples sequenced at
Washington University from the Cancer Genomics Hub
(CGHub). These were sequenced using Illumina Genome
Analyzer IIx and target capture was performed by Agilent
SureSelect Human exome platform. All samples have been
aligned to the GRCh37-lite. The number of reads mapped
to the targeted regions ranged from 57,215,953 to
118,126,167 (Additional file 1: Table S5).
To evaluate the somatic CNA detection of ADTEx, we

also downloaded the raw Affymetrix SNP 6.0 files of the
same samples from TCGA data portal. Then, as before,
we carried out CNA detection on SNP 6.0 data using
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ASCAT algorithm [25]. These results were treated as the
ground truths for the evaluation. Each sample has very
high aberration rate with focal and large scale CNAs,
typical of this tumour type.
In detecting somatic CNA, ADTEx showed median sen-

sitivity of 93.7%, precision 79.3% and F-measure of 83.0%.
F measure was computed using the following equation.

F score ¼ 2� sensitivity � precision
sensitivity þ precision

The largest detected CNA segment was 242,433,351 bp
long in length and smallest detected CNA was 120 bp
long. On average 1,035 CNA segments per tumour were
detected by ADTEx (Additional file 3). In all samples,
76,341 exons were identified as losses and 2,357,365 exons
were identified as gains. Therefore, for each tumour sam-
ple there were about 135,000 altered exons and this num-
ber is consistent with the reported values [14] for ovarian
cancer samples. Sensitivity, precision and F-measure for
detecting LOH were computed as 92.9%, 96.3% and 94.5%
respectively, relative to ASCAT predictions.

Comparison with other copy number predicting algorithms
Methods compared
In order to demonstrate the effectiveness of our proposed
method, we carried out a comparison between ADTEx
and other somatic CNA detecting algorithms. We selected
ExomeCNV [7], VarScan 2 [14] and Control-FREEC [20]
for the comparison as they were developed for WES data
generated from paired tumour/normal samples. Further,
we evaluated the performance of our previous work de-
scribed in Amarasinghe et al., 2013 [12] and details of
the evaluation are given below separately in the section
“Comparison with previous work”. We selected ten
samples from a in-house data set, with different copy
number aberrations to compare the competing methods.
These samples contain focal aberrations, chromosome
arm-level and full chromosomal events. In all cases we
used SAMtools pileup/mpileup [27] to generate coverage
files as inputs for the three competing exome based
methods. Supplementary Methods section in Additional
file 1 describes the parameter settings used with each
method.

Results from the comparison study
The overall performance of the four methods is shown
in Figure 2 and Table 2. Additional file 1: Table S6 gives
the performance matrix of each method on each sample.
VarScan2 does not predict the absolute copy number,
instead it predicts gains/losses and copy neutral regions.
Accordingly, in Figure 2a, VarScan2 result shows losses,
neutral regions, and gains as having copy 1, 2 and 3.
Figure 2b shows the performance metrics of each
method in terms of sensitivity, specificity, precision
and accuracy. We were particularly interested in sensi-
tivity [no. of TP/(no. of TP + no. of FN)] and precision
[no. of TP/(no. of TP + no. of FP)] as the performance
measures to base our comparison. Therefore, we report
the F measure values here.
The calculated mean (median) F-measure values for

ADTEx, ExomeCNV, VarScan2 and Control-FREEC were
91.5% (92.3%), 76.5% (90.6%), 82.0% (84.7%) and 76.0%
(82.5%) respectively. Overall, both mean and median per-
formance scores of ADTEx were better compared to other
methods. VarScan2 ranked second and ADTEx showed
12% increase in terms of mean F measure over VarScan2.
As per the Table 2, ADTEx showed superior or compar-
able performance in terms of mean and median values of
all performance measures compared to other competing
methods. The main reason for superior results produced
by ADTEx compared to other methods is that it simul-
taneously evaluates specific characteristics of tumour
WES data, namely (i) noise, (ii) ploidy and (iii) normal
cell contamination.
Figure 2a shows the copy number predictions of the

four methods on chromosome 3 for the sample OV1.
Interestingly, Control-FREEC appeared to misidentify
the normal regions as it misjudged the baseline of the
ratios, resulting in the prediction of copy neutral re-
gions as amplifications and deletions as copy neutral.

Comparison of small CNAs
SNP genotyping arrays cannot be used to detect smaller-
size CNAs (<1Mbp) due to limited resolution. To assess
the performance at this level, we compared smaller
(<1Mbp) CNAs detected by ADTEx with three other
exome based methods. Overall, ADTEx, ExomeCNV,
VarScan 2 and Control-FREEC detected 448, 7167, 4618
and 1494 CNA events, respectively, of which 79%, 94%,
93% and 82% were identified as smaller than 1Mb. Iden-
tification of high percentages of smaller events by all
four methods can be attributed to the sparse nature of
WES data. As ADTEx performs noise reduction in WES
data, many of the smaller CNAs predicted by other three
methods are integrated into larger CNAs predicted by
ADTEx. The overlap between other methods and 354
smaller CNAs identified by ADTEx is given in Additional
file 1: Table S12. VarScan 2 identified 164 of those events,
which has the highest concordance rate.

Comparison of LOH and ASCNA predictions
Control-FREEC predicts LOH and ASCNA events
similar to ADTEx, hence we compared ADTEx LOH
and ASCNA predictions against the results from
Control-FREEC (Table 3 and Additional file 1: Table S7
and Table S8). Five samples with different variations
were chosen to carry out the comparison. ADTEx



Figure 2 (See legend on next page.)
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Figure 2 Results from the performance comparison of ADTEx with existing methods. (a) Top panel shows the DOC ratios of chromosome
3 of sample OV1. Second panel shows the predictions by ASCAT on SNP 6.0 data. Bottom 4 panels show copy number predictions by each of
the methods. (b) Performance metrics of ADTEx, ExomeCNV, VarScan2 and Control-FREEC on nearly diploid tumour samples. The results are based
on comparison against predictions by ASCAT on SNP 6.0 data as ground truths.
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outperformed Control-FREEC in terms of precision
and F-measure. The mean F-measure and precision of
ADTEx were calculated respectively as 89.5% and 89.1%
while that of Control-FREEC were 46.3% and 37.0% with
respect to LOH predictions. The mean F-measure and
precision values for ASCNA predictions were 83.7% and
82.0% for ADTEx and 66.1% and 68.1% for Control-
FREEC respectively.

Comparison with previous work
We described a copy number predicting algorithm in
Amarasinghe et al., 2013 [12]. The main differences be-
tween current work and the algorithm in Amarasinghe
et al., 2013 [12] are i) no a priori knowledge of contam-
ination or ploidy is required and ii) genotype status of
SNPs in each of the CNA segment predicted by ADTEx.
We evaluated the performance of Amarasinghe et al.,
2013 [12] using the ten samples in the comparison
study and also applied the method on triploid sample
OV8 (Table 2 on diploid samples and Additional file 1:
Table S9). The ploidy and contamination values were
chosen based on manual confirmation and prediction
made by ASCAT [25] on SNP 6.0 data of the same samples.
For the ten diploid samples we saw 4% and 5% increases in
median precision and F-measure values respectively for
ADTEx compared to Amarasinghe et al., 2013 [12]. Further,
for the OV8 sample ADTEx showed clear improvements in
terms of sensitivity, specificity, precision and accuracy.

Evaluation of the effect of normal cell contamination
We carried out computer simulations to evaluate the effect
of normal cell contamination on CNA and LOH predictions
by ADTEx. We use OV1 data sample to generate different
combination of data sets with 0.1 to 0.7 normal cell con-
tamination and read depths of 150X (original coverage),
60X and 400X. The original normal cell contamination is
predicted as 25%, therefore the expected contamination
levels can be calculated as 0.325, 0.4, 0.475, 0.55, 0.625, 0.7
and 0.775 respectively. For original coverage, ADTEx accur-
ately predicted the normal cell contamination up to 0.7
(Pearson correlation 0.99). Additional file 1: Figure S7 shows
the changes in the predicted values. The F measure per-
formance on CNA predictions (Additional file 1: Figure S8)
was reported taking the SNP 6.0 results as ground truths.
Relatively high F measure value is maintained (F measure
0.66) at the 0.55 contamination level for CNA detection.
The F measure performance of LOH predictions (Additional
file 1: Figure S9) suggests ADTEx performed well even at
0.625 normal cell contamination level (F measure 0.96).
At high levels of contamination (>0.7), prediction of CNA
is difficult due to the very low level of variation in the
depth of coverage ratios. Further, 150X and 400X coverage
showed better performance compared to 60X coverage.

Chromosome arm level copy number aberrations
Chromosome arm level or full chromosomal CNAs are
commonly observed across many tumour types [28,29].
Different tumour types have been reported to have recur-
rent arm level events on different chromosomes. For ex-
ample gain in chromosome 3 or 3q are more common in
cervical cancer while loss of chromosome 10 is common
in glioblastomas [28].
ADTEx explicitly predicts chromosome arm level

events based on the results generated by exon level copy
number predictions. The distribution of DOC ratios of
copy neutral regions is calculated from the exon level re-
sult. Then, statistical confidence level (assuming no
CNA) for each chromosome arm considering the mean
DOC ratio is produced based on the calculated distribu-
tion. At the 0.05 confidence level we were able to detect
44 chromosome p/q level events (15 gains and 29 losses)
and 30 full chromosome CNA events (15 of each gains
and losses) in the 17 in-house ovarian tumour samples.
According to the carefully curated list of chromosome
arm level CNAs (Additional file 1: Table S10) in those
ovarian cancer samples, ADTEx showed 96% sensitivity
and 99% specificity. Four single copy losses and one single
copy gain residing in samples with higher ploidy were not
detected as significant compared to copy neutral level.

Conclusion
We have described a new approach to infer somatic CNAs
and genotype states in WES data from tumour samples.
Our method both models and evaluates tumour related at-
tributes in WES data. Further, the proposed method expli-
citly predicts chromosome arm level CNA events, which
are commonly found in many tumour types. We imple-
mented this approach in a software called “Aberration De-
tection in Tumour Exome (ADTEx)”, which is freely
available under GNU General Public Licence v3 (GPLv3).
To our knowledge, ADTEx is the first attempt to computa-
tionally derive absolute copy numbers and genotypes using
WES data from tumour samples without any a priori
knowledge of levels of normal DNA contamination or



Table 2 Overall performance for CNA detection of each method in terms of mean / median values

Method ADTEx ExomeCNV VarScan 2 Control-FREEC Method [12]

Sensitivity 92.5% / 94.1% 92.3% / 94.2% 91.9% / 93.2% 75.5% / 89.8% 86.9% / 88.3%

Specificity 98.5% / 99.5% 95.1% / 97.5% 96.3% / 98.0% 90.3% / 99.8% 93.8% / 99.6%

Precision 91.9% / 96.8% 68.2% / 75.8% 76.4% / 80.2% 78.7% / 94.6% 84.6% / 92.9%

Accuracy 97.9% / 99.3% 95.3% / 96.4% 96.0% / 97.2% 90.1% / 99.2% 94.5% / 98.9%

F-Measure 91.5% / 92.3% 76.5% / 90.6% 82.0% / 84.7% 76.0% / 82.5% 85.2% / 87.8%

In the table, bold value in each line represents the best value of each performance measure.
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ploidy of the tumour samples. The algorithm takes DOC
ratios and BAFs as inputs and models them using Gaussian
distribution. Prior to applying HMM to derive CNAs and
genotypes, the DOC ratios are smoothed by discrete wave-
let transformation techniques. We applied the algorithm
to 35 (in-house and public data) paired ovarian tumour/
normal samples captured using three different targeted
capture platforms and sequenced using Illumina Genome
Analyzer II or HiSeq2000 sequencers. Further, to our
knowledge ADTEx is the only method that predicts
chromosome arm level CNA in WES data.
We demonstrated the superior performance of ADTEx

compared to existing methods. Most importantly, we
compared the performance of ADTEx against the results
generated by ASCAT on Affymetrix SNP 6.0 data and
showed that our method can produce results consistent
with SNP array data, the gold standard for detecting
CNAs. We believe that the integrated CNA and LOH
predictions in ADTEx will greatly improve the type and
usefulness of the data generated in large WES studies.
However, We have not addressed the issue of tumour

heterogeneity where some components of the tumour
biopsy will have different clonal outgrows harbouring
different genetic alterations. Clonal heterogeneity will re-
sult in an amalgamation of the signals present in both
subpopulations which may result in a reduced sensitivity
of ADTEx. This could be a future research direction that
can be pursued using WES data.

Methods
ADTEx processing pipeline is shown in Additional file 1:
Figure S1. Overall, the method consists of two HMMs.
Table 3 Comparison between LOH predictions of ADTEx
and Control-FREEC

Sample Sensitivity Precision F-measure

ADTEx C-FR* ADTEx C-FR* ADTEx C-FR*

OV1 97.8% 95.3% 98.0% 94.1% 97.9% 94.7%

OV2 79.1% 93.1% 59.6% 2.5% 68.0% 4.9%

OV4 93.7% 100% 98.3% 45.6% 95.9% 62.6%

OV7 92.6% 94.9% 93.8% 26.2% 93.2% 41.1%

OV11 89.5% 100% 96.0% 16.5% 92.6% 28.3%

*Control-FREEC.
One HMM predicts copy number alterations using noise
reduced DOC ratios and the other HMM predicts
tumour zygosity states at heterozygous SNP loci in nor-
mal samples. We have proposed a two stage HMM algo-
rithm, which ensures:

i) Increased performance in predicting CNAs by taking
all data points that are available (depth of coverage
ratios) for the evaluation of first HMM and then
calling zygosity on SNP loci in the second HMM.

ii) Computational efficiency, achieved through
dimensionality reduction in the first stage of HMM.

Calculation of DOC ratio and BAF
DOC ratios are calculated as the ratios between average
coverage per base of exonic regions in tumour and
matched normal samples using the following steps: (i)
coverage per base at targeted regions are calculated by
BEDTools software [30], (ii) average coverage per base is
calculated for each exonic region, (iii) regions with lower
average coverage than a predefined threshold (=10
reads) are excluded from the analysis, (iv) mean coverage
normalisation is performed for each sample and (v) ratio
between mean normalised DOC of tumour and matched
normal samples are calculated. These ratios showed ex-
tensive intrinsic noise particularly in low coverage re-
gions. We applied DWT denoising on ratios generated
from low coverage regions. DWT denoising helps to
achieve a higher sensitivity and precision [12].
BAF is calculated as the ratio between number of B al-

leles and total number of A and B alleles. Here, ‘A allele’
refers to the reference allele and ‘B allele’ refers to the
non-reference allele in DNA sequencing data when the
sequence reads are aligned to the reference genome. We
calculated SNP loci in both tumour and matched normal
samples by applying The Genome Analysis Toolkit
(GATK) software [31]. BAF at each SNP is then calcu-
lated applying the following formula,

BAFl ¼ B allele reads count at region l
Total reads count at region l

For example, based on the above formula BAF should
be around 0, 0.5 and 1 for genotypes AA, AB and BB,



Amarasinghe et al. BMC Genomics 2014, 15:732 Page 9 of 12
http://www.biomedcentral.com/1471-2164/15/732
respectively. If a BAF is deviated from these values, it
would mean that there is a possibility of copy number
alteration. For instance, a BAF value of 0.25 indicates a
genotype of AAAB.

DOC ratio baseline evaluation
DOC ratios can be used as an indication of the relevant
copy number present in tumour sample compared to
the matched normal sample. Copy number of a par-
ticular region and the DOC ratio has a direct relation-
ship in non-cancerous samples. For example, ratios of
one and two represent copy number two and four re-
spectively. However, due to the presence of extensive
abnormalities in tumour samples, mean DOC ratio will
differ from the nominal ratio of one. This change in the
signal is known as the baseline shift (Additional file 1:
Figure S3). We corrected for the baseline by identifying
the peaks of the distribution of the DOC ratios. Ratios
are normalised based on the value of the peak closest
to one.
On the other hand, the baseline ratio would not cor-

respond to copy number of two in most of the tumour
samples due to the presence of polyploidy and aneu-
ploidy. We successfully identified the copy number of
the baseline by evaluating BAF of each tumour sam-
ple. Correct identification of the copy number of the
baseline made it possible to predict the absolute copy
number in the tumour samples. Our approach, which
detects the baseline ploidy is explained in the follow-
ing section.

HMM to predict copy number variations and
identification of baseline ploidy
The definitions of hidden states are described in detail
in Additional file 1: Supplementary Methods. We model
the emission probability of DOC ratios by a Gaussian
distribution. The mean of the distribution depends on
the hidden state while standard deviation remains con-
stant for all states. Standard deviation was kept constant
after analysing the data and observing that there is not
much impact on the end result. In the current work, we
used expectation maximisation (EM) algorithm during
HMM parameter training step. We trained initial state
distribution, stationary transition matrix and mean of
the Gaussian distributions. We selected one chromo-
some at a time during the training step to clearly and
accurately capture the initial states and ratio variations
in chromosomes. This approach helped to achieve faster
computational time as well due to the reduced number
of data points. Finally, we applied Viterbi algorithm [23]
to predict the sequence of hidden states.
When the BAFs of tumour samples are present, we

fitted HMM for different base ploidy values (reflecting
different copy number 2, 3, and 4 states) and then
applied the following steps to determine the base
ploidy: (i) Select the SNPs which overlaps with the cap-
tured exonic regions, (ii) segment BAFs (bi as given in
Equation (1)) of SNPs using DNACopy [5] circular bin-
ary segmentation algorithm, (iii) estimate B allele count
(NB,i) for different values of contamination (α) as given
in Equation (2), (iv) calculate the cost of each estimation
by taking the distance between estimated NB,i and
rounded value of NB,i (as B allele counts cannot be
fractions) and (v) calculate the minimum summation
of distances that would give the best fit for the base
ploidy.

bi ¼ αþ 1−αð ÞNB;i

2αþ 1−αð ÞCT
ð1Þ

In Equation (1), CT represents the copy number of the
tumour that is predicted by the HMM. From Equation
(1) we can estimate NB,i:

NB;i ¼ bi � 2αþ 1−αð ÞCT½ �−α
1−αð Þ ð2Þ

This procedure identifies the absolute copy numbers
when base ploidy of the tumour sample is not known a
priori.

HMM to identify zygosity states
Definition of hidden states
The definitions of the hidden states to predict tumour
zygosity are shown in Table 4. ADTEx analyses po-

sitions, N ¼ tlf gl¼L
l¼1 , with heterozygous SNPs in the

matched normal sample. SNPs having BAF within 0.3
and 0.7 in normal sample were selected as heterozygous
regions (thresholds were selected as in [25]). The re-
moval of homozygous loci in the normal sample ensured
the detection of tumour-specific somatic LOH events.
As depicted in Table 4, each hidden state can be

uniquely identified with a copy number and zygosity
state. The copy number of each SNP locus is calculated
from the previous HMM predicting copy number.

Probability density function of observations
Mirrored BAFs (as defined below) around 0.5 are used
as the observations in the proposed HMM.

MirroredBAF ¼ 1−bl if bl > 0:5
bl otherwise

�

Normal cell proportion (α) and standard deviation (σb)
of BAF signal are considered as main parameters of the
observation distribution. We assumed mirrored BAF



Table 4 Definitions of hidden states in ADTEx zygosity detection HMM

State Copy Copy number alteration status Genotype BAF Zygosity

1 0/1 Deletion A,B 0,1 LOH

2 2 Copy neutral with LOH AA,BB 0,1 LOH

3 2 Normal AB 0.5 HET

4 3 Three copies with LOH AAA,BBB 0,1 LOH

5 3 Three copies with duplication of one allele AAB, ABB 0.33,0.67 ASCNA

6 4 Four copies with LOH AAAA,BBBB 0,1 LOH

7 4 Four copies with duplication of both alleles AABB 0.5 HET

8 4 Four copies with duplication of one allele AAAB,ABBB 0.25,0.75 ASCNA

9 5 Five copies with LOH AAAAA,BBBBB 0,1 LOH

10 5 Five copies with duplication of one allele AAAAB,ABBBB 0.2,0.8 ASCNA

11 5 Five copies with duplication of both alleles AAABB,AABBB 0.4,0.6 ASCNA

12 6 Six copies with LOH AAAAAA,BBBBBB 0,1 LOH

13 6 Six copies with duplication in one allele AAAAAB,ABBBBB 0.17,0.83 ASCNA

14 6 Six copies with duplication in both alleles AAABBB 0.5 HET

15 6 Six copies with duplication in both alleles AAAABB,AABBBB 0.33,0.67 ASCNA
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signal is normally distributed with state specific mean
and a constant σ b for all states. If BAF of lth SNP is bl,
then observation probability distribution function (pdf)
for a hidden state Sk with associated copy number CT

can be formulated as:

f bljð α; σb;CT ; SkÞ ¼ 1
σb

∅
bl−μSk
σb

� �
ð3Þ

Here, state specific mean (μSk ) is given by:

μSk ¼
αþ 1−αð ÞNB Skð Þ
2αþ 1−αð ÞCT Skð Þ ð4Þ

where, NB(Sk) is the expected B allele count for state Sk.

Non-stationary transition matrix
The state transition matrix is considered to be non-
stationary as described in [6,32]. The genomic distance
(d) between two SNPs is non-uniform and hence we cal-
culated the transition probabilities based on exponential
function utilizing d. Further, the transition probability
depends on the state specific copy number. For ex-
ample, if the current observation j, is assigned with a
copy number of two, then the model can only transit to
‘hidden state 2’ and ‘hidden state 3’ (Table 4) from previ-
ous state i.
Al i; jð Þ ¼ cl jð Þ �
pl

1−pl
# of zygosity states in a copy state−1

8<
:

Where,

pl ¼ 1−
1
2

1−e
−dl
2L

� �� �
ð5Þ

cl jð Þ ¼ 1 j∈copy state
0 otherwise

�
ð6Þ

In equation (5), L is chosen to be 2 Mb.

Expectation maximisation (EM) algorithm
EM algorithm has been used in various parameter esti-
mation tasks including HMM [23]. In the following text
we describe the EM algorithm that is used to estimate
HMM parameters. We pooled data points from all the
chromosomes for the parameter training. The pooled
training procedure helped to make sure that all hidden
states would be covered during parameter selection.
However, the joint estimation of parameters did not
favour the determination of initial state distribution (π )
as it can vary at the beginning of each chromosome.
Therefore, we trained a separate initial state distribution
for each chromosome.
i ¼ j or zygosity same in i and j

otherwise
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We can derive the partial log likelihood function for
observation distribution as:

E LLbð Þ ¼
XL
l¼1

XK
k¼1

γ tð Þ
l Skð Þ log

1ffiffiffiffiffiffi
2π

p
� �

−logσb−
bl−μsk


 �2

2 σbð Þ2

2
64

3
75

ð7Þ

In the above Equation (7), γ l (Sk) is the posterior prob-
ability of lth SNP to be in state Sk, which is calculated
using forward-backward algorithm [23]. By taking the
derivative with respect to α and setting it to zero, we de-
rive the following equation regarding normal cell con-
tamination estimation:

α tþ1ð Þ ¼

XL

l¼1

XK

k¼1
1−NB Skð Þ

P tð Þ
T

� �
bl−

NB Skð Þ
P tð Þ
T

� �

XL

l¼1

XK

k¼1
γ tð Þ
l

1−NB Skð Þ
P tð Þ
T

� � ð8Þ

Where PT = 2α + (1 − α)CT(Sk) and t = EM iteration
number. The algorithm is constrained to identify α in
the interval of 0 ≤ α ≤ 0.7, so if α(t+1) is less than 0 or
greater than 0.7, it will be set to 0 or 0.7 respectively.
Estimated α as per Equation (8) is used to update state

dependent means. Although, the presence of normal cell
contamination, shrinks BAFs to 0.5, it does not affect
BAFs in the ‘HET’ states of the HMM. Hence, mean of
these ‘HET’ states are calculated as per the typical EM
training step described in [22].
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of the TCGA samples made by ADTEx.
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