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Abstract

Background: Two-dimensional polyacrylamide gel electrophoresis (2D PAGE) is commonly used to identify
differentially expressed proteins under two or more experimental or observational conditions. Wu et al (2009)
developed a univariate probabilistic model which was used to identify differential expression between Case and
Control groups, by applying a Likelihood Ratio Test (LRT) to each protein on a 2D PAGE. In contrast to commonly
used statistical approaches, this model takes into account the two possible causes of missing values in 2D PAGE:
either (1) the non-expression of a protein; or (2) a level of expression that falls below the limit of detection.

Results: We develop a global Bayesian model which extends the previously described model. Unlike the univariate
approach, the model reported here is able treat all differentially expressed proteins simultaneously. Whereas each
protein is modelled by the univariate likelihood function previously described, several global distributions are used
to model the underlying relationship between the parameters associated with individual proteins. These global
distributions are able to combine information from each protein to give more accurate estimates of the true
parameters. In our implementation of the procedure, all parameters are recovered by Markov chain Monte Carlo
(MCMC) integration. The 95% highest posterior density (HPD) intervals for the marginal posterior distributions are
used to determine whether differences in protein expression are due to differences in mean expression intensities,
and/or differences in the probabilities of expression.

Conclusions: Simulation analyses showed that the global model is able to accurately recover the underlying global
distributions, and identify more differentially expressed proteins than the simple application of a LRT. Additionally,
simulations also indicate that the probability of incorrectly identifying a protein as differentially expressed (i.e., the
False Discovery Rate) is very low. The source code is available at https://github.com/stevenhwu/BIDE-2D.

Keywords: Two-dimensional polyacrylamide gel electrophoresis (2D PAGE), Global Bayesian model, Differentially
expressed protein, Markov chain Monte Carlo (MCMC)
Background
Two-dimensional polyacrylamide gel electrophoresis (2D
PAGE) separates hundreds or thousands of proteins sim-
ultaneously by their isoelectric point and molecular weight
[1]. There are two main approaches to analyse 2D PAGE:
(1) an image-based approach, which analyses the raw or
preprocessed gel images [2,3], and (2) a spot-based
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approach, whereby a standard analytical pipeline is used
to identify up- or down-regulated proteins by gel scan-
ning, spot-detection and spot-matching using appropriate
software [4,5]. Data obtained are expressed as absolute or
relative protein intensities, typically transformed into log-
values. By detecting statistically significant differences in
the spot intensities under different experimental or sam-
pling conditions, 2D PAGE is a useful technique for ex-
ploring potentially differentially expressed proteins.
Most of the commercial packages for 2D PAGE analysis

include several standard statistical analysis methods, for ex-
ample, two-sample Student's t-tests, Analysis of Variance,
and Principal Component Analysis [6,7]. Nonetheless, a
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significant challenge with most 2D PAGE analyses is the
problem of missing values, whereby spots on one gel are
not identified, or matched with, spots on another gel [8].
This should not come as a surprise: the expression of pro-
teins varies from individual to individual from one experi-
mental condition to the next, along with technical variation
between gels. Previously, we proposed a likelihood-based
model that identified differentially expressed proteins, and
which accounted for missing values by positing a class of
proteins where the probability of non-expression is greater
than zero [9]. In particular, we divided missing values into
two categories, due either to the non-expression of a pro-
tein, or a level of expression that fell below the limit of de-
tection [3,10]. The likelihood function utilized a mixture of
the two probabilistic models, thus allowing both possible
causes of missing values. By applying a Likelihood Ratio
Test (LRT), we classified a protein as “differentially
expressed” if there was statistically significant support for
either a difference in mean expression intensities or a differ-
ence in the probabilities of expression across the two
categories.
In this paper, we extend our univariate likelihood model

to a global model. The aim of a global model is to utilize
the relationship between spots so that information about
expression probabilities and differences in mean expression
intensities can be modeled coherently across all spots. The
global likelihood model proposed in this paper maintains
all the advantages of the local model proposed previously,
that is, the incorporation in the model of probabilities of
expression and a limit of detection. Additionally, the global
model includes several parametric probability functions
that deliver the expected probability of expression and
mean expression intensities for individual spots. In other
words, the probability of expression and the mean expres-
sion intensity for any given spots are random variables
drawn from global distributions of these variables, and the
parameters of these global distributions are estimated from
all expression data. While the characterization and use of
global distributions of expression frequencies and inten-
sities is not novel [11,12], this is the first time that this type
of approach has been applied to the problem of modeling
protein abundance in 2D PAGE. The empirical distribu-
tions of these data sets lend themselves to approximations
by well-studied statistical distributions, and their use in
statistical inference delivers greater power to detect differ-
entially expressed spots. We illustrate the properties of the
global model using simulated data, where the true para-
meters of the probabilities of expression, and the mean ex-
pression intensities are known.

Methods
The Global Bayesian Model
In our paper, the global model is applied to a case–con-
trol experimental design, where subjects belong to either
a Case (disease) or Control group. Under the simplest
experimental design, individuals are assigned to either
the Case or Control group, and each subject has a sam-
ple that is processed using 2D-PAGE. This approach
produces as many 2D-PAGE gels as there are subjects,
and after application of the appropriate software algo-
rithms, a list of “spots” is produced (corresponding to
proteins that were expressed on at least one gel), along
with the intensities of these spots for each gel. Before
any analysis is carried out, we calculate the relative in-
tensities by dividing the intensity of individual spots by
the sum of all intensities on the corresponding gel, fol-
lowed by log2 transformation. In many instances, there
will be no intensity value for a given protein, indicating
(as previously noted), that the spot was not expressed or
not detected. These spots are indicated by “NA” in the
dataset.
The global model proposed here is a hierarchical

model with two layers. The first layer is referred to as
the local layer. This layer calculates the likelihood for an
individual protein, with each protein having its own
parameters. The second or “global” layer connects all
parameters from the local layers together. Parameters
associated with this layer are referred to as global para-
meters. Since the model attempts to recover a large
number of parameters, it is analytically and computa-
tionally cumbersome to obtain estimates within a
likelihood-based framework. Instead, we have chosen to
use Bayesian Markov chain Monte Carlo (MCMC) inte-
gration (described below), which is a computationally
tractable approach. More importantly, Bayesian MCMC
integration allows us to specify prior probability distri-
butions that capture what we expect our parameters to
look like when there is no difference between Case and
Control. Since the point of Bayesian inference is to re-
cover the posterior distribution (i.e., the distribution of
the model parameters, after the incorporation of new
data), any significant deviation between the posterior
and the prior distributions is a signal that there are stat-
istical differences between Cases and Controls.
The local layer
The local layer focuses on the expression of an individ-
ual spot and can be described by four parameters. These
four parameters are: 1) the mean for control group ex-
pression intensity μ, 2) the difference between case and
control mean expression intensities δ, (i.e., the mean for
the case group is calculated by μ1 = μ0 + δ), 3) the prob-
ability of expression for the control group p0, which can
be expressed as a function of κ and 4) the difference be-
tween probabilities of expression between the two
groups, τ. The probabilities of expression for the Control

and Case groups are calculated by p0 ¼ exp κð Þ
1þ exp κð Þ and
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p1 ¼ exp κþτð Þ
1þ exp κþτð Þ respectively. Both groups are assumed to

have the same standard deviation for expression inten-
sities, σs, the details of which will be discussed later.
The likelihood of a parameter is defined as the prob-

ability of obtaining the observed data given a specified
value of that parameter. Let L(Θs) be the likelihood asso-
ciated with the expression intensity of protein s on the
gel, where Θs = (μs, δs, κs, τs, σs, d), and the subscripts de-
note parameters specified for protein s. Cx,s,i denotes the
intensity of protein s for subject i from group x (“1” for
the Case group and “2” for the Control group), and d is
a constant representing the limit of detection. The uni-
variate likelihood can be rewritten as:

L Θsð Þ ¼
Yn
i¼1

f
�
C1;s;i

��μs; κs; σ2
s ; d
� Ym

j¼1

f C2;s;j μs; δs; κs; τs; σ
2
s ; d

�� ��
ð1Þ

The likelihood for each individual protein intensity, Cx,

s,i is calculated by the univariate likelihood model pro-
posed previously;

f
�
Cx;s;i μx; σ

2
x; ρx; d

�� � ¼
1� ρx
� �þ ρx

Zd
�1

1

σx
ffiffiffiffiffiffi
2π
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2σ2
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 !
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ρx
λ

1

σx
ffiffiffiffiffiffi
2π

p exp � Cx;s;i � μx
� �2
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 !" #
otherwise

8>>>>><
>>>>>:

ð2Þ
and λ is the scaling factor to ensure the truncated nor-
mal distribution integrates to one:

λ ¼
Zv
d

1

σx
ffiffiffiffiffiffi
2π

p exp � y� μx
� �2

2σ2x

 !
dy ð3Þ

where d is the limit of detection and ν is the maximum
expression value.

Briefly, the univariate model allows for two cases in
Equation 1:

(1) When the intensity, Cx,s,i is less than the level of
detection, the the likelihood function reflects a
mixture of the possibilities that either the protein was
not expressed (i.e., 1 – ρx, where ρx is the probability
of expression), or that the protein was expressed but
fell below the level of detection (the second term on
the right hand side of the first row, in Equation 2).

(2) When the intensity is greater than the level of
detection, the likelihood function is given by a
truncated normal distribution, with the lower tail
truncated at d, the level of detection (second row of
Equation 2).
The joint likelihood for all proteins at the local layer is
the product of the likelihood for each individual protein
and can be calculated as:

L ΘLð Þ ¼
YS
s¼1

L ΘSð Þ ð4Þ

where L(ΘL) is the likelihood for all proteins at the local
layer and S is the total number of proteins in the 2D
PAGE experiment.

The global layer
The global layer ties all the parameters in the local layer
together. All mean expression intensities for the individ-
ual proteins from the Control group are assumed to be
normally distributed with mean ug and standard devi-
ation σg. The likelihood function is:

f
�
μs μg ; σg
��� �

¼ 1

σg
ffiffiffiffiffiffi
2π

p exp �
μs � μg

� �2
2σ2g

0
B@

1
CA ð5Þ

All proteins are assumed to have the same standard
deviation of expression intensities (measured on the log
scale), which is calculated by multiplying σg by the spot
standard deviation scalar parameter ψ. Therefore the
spot standard deviation σs = ψσg is used to calculate the
likelihood for each spot in the local layer. This allows
the model to efficiently estimate the spot standard devi-
ation and explore the potential relationship between σs
and σg.
To model the distribution of mean expression inten-

sities for proteins from the Case group, we use δs as the
difference between mean expression intensities between
Case and Control groups. Each 2D PAGE experiment
detects a large number of proteins (800 ~ 1200) and the
difference between two mean expression intensities δs is
generally close to zero for most of the proteins. An ap-
propriate distribution for δs is the exponential distribu-
tion, which has a peak at 0. However, since there can be
both negative and positive values of δs, we use a modi-
fied Laplace distribution centered at zero. The Laplace
distribution is essentially two exponential distributions,
decaying symmetrically in both directions, from a mean
of zero. The modification we make is to allow each side
of the Laplace distribution to be weighted differently.
This allows different numbers of Case group proteins to
be up regulated (positive values of δs) or down regulated
(negative values of δs). The proportion of up-regulated
proteins is φδ, and is bounded between zero and one.
Therefore the proportion of down-regulated proteins
can be calculated as 1-φδ. The likelihood function for δs
is:
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f
�
δs
��λδ ;ϕδ

� ¼ 1� ϕδð Þλδe�λδ�δs δs < 0
ϕδλδe

�λδδs δs ≥ 0

�
ð6Þ

Both parameters relating to the probability of expres-
sion follow normal distributions: at the global layer, the
values of κs (the probability of individual protein expres-
sion in the Control group) are random variables drawn
from a normal distribution with mean μκ and standard
deviation σκ. Similarly, the parameters specifying the ex-
pression probabilities in the control and case groups, κs
and τs, are random variables of a normal distribution
with mean μτ and standard deviation στ. The likelihood
equations for these parameters are:

f
�
κs
��μκ; σκ

� ¼ 1

σκ
ffiffiffiffiffiffi
2π

p exp � κs � μκð Þ2
2σ2κ

 !
ð7Þ

and

f
�
τs
��μτ; στ� ¼ 1

στ

ffiffiffiffiffiffi
2π

p exp � τs � μτð Þ2
2σ2τ

 !
ð8Þ

In total, there are nine parameters at the global layer,
and the marginal likelihood for the local parameters can
be expressed as:

YS
s¼1

f μs; δs; κs; τs μg ; δg ;ψ; λg ;ϕδ ; μκ; δκ; μτ; δτ
��� ��

ð9Þ

Markov Chain Monte Carlo (MCMC)
Bayesian inference and the Metropolis-Hastings algorithm
Bayesian inference recovers the degree of belief in the
values of parameters by combining information from the
data and a priori knowledge of the distribution of model
parameters. The result is a posterior distribution p(θ|D),
which is often expressed as:

p θ Dj Þ∝p D θj Þp θð Þðð ð10Þ
Here, p(D|θ) denotes the likelihood function, and p(θ)

is the prior distribution of the parameter set θ. The pos-
terior distribution p(θ|D) summarizes the degree of be-
lief in θ, based on the observed data, D, and prior
knowledge of the parameter set.
For complex analyses, including the estimation of

parameters in many mixture models, it is often difficult
to obtain the posterior distribution directly. Markov
chain Monte Carlo (MCMC) integration is a computa-
tionally tractable and commonly used solution to the
problem. It is an iterative procedure which attempts to
recover the posterior distribution by sampling the per-
missible parameter space. One common implementation
of MCMC uses the Metropolis-Hasting algorithm
[13,14], which can be described by the following steps.
Step 1: Begin with initial state Θ.
Step 2: Make a small change to the parameter θi to θ*

according to a proposal distribution q(θ*|θi).
Step 3: Calculate the acceptance ratio α, using the

following formula:

α ¼ min 1;
f Θ� djð Þq θi θ�j� �
f Θi dj� �

q θ� θi
��� �

( )
ð11Þ

Generate μ from U(0, 1) and accept θi+1 = θ* if μ < α.
Otherwise θi+1 = θi.

Step 4: Set i = i + 1 and repeat Step 1.

The algorithm is repeated until the Markov chain is
sampling from the target distribution, typically the
(joint) posterior distribution of the parameter(s).
When the Markov chain reaches the stationary or

equilibrium distribution, the 95% highest posterior dens-
ity (HPD) region for the marginal posterior distribution
for each parameter can be calculated. The 95% HPD re-
gion consists of the smallest collection of potential par-
ameter values such that the marginal posterior
probability of the parameter falling into this region is at
least 95%.
Prior and proposal distributions
Bayesian inference requires a choice of prior distribu-
tions that reasonably characterize the uncertainty in the
parameter values before new data are added, or that are
based on distributional information that may be gleaned
from previous analyses [15]. Here, we have chosen prior
distributions using the former approach, although the
“reasonableness” (or otherwise) of these distributions
have been loosely assessed against previously obtained
data (Table 1). The method we describe can, of course,
be used for any set of prior distributions, and the soft-
ware we developed can be modified to accommodate al-
ternative priors; we recommend, however, that users
choose prior distributions that suit their specific experi-
mental design.
For the global mean expression intensity μg, we used a

normal distribution centered at −3 with a standard devi-
ation of 5 as the prior. The prior is centered at −3 as the
data are log-transformed relative protein expression in-
tensities. If a gel has 1000 proteins with identical expres-
sion intensities, then the mean relative percentage
volume expression will be 0.1 for each protein, which is
~ −3.3 when log2-transformed. However, since we do
not know the true mean volume, a relatively large stand-
ard deviation was assigned to the prior distribution of
relative expression intensities. There was insufficient in-
formation to provide a good estimate of the prior



Table 1 List of prior distributions used in the global
model

Global parameter θi Prior distribution p(θi)

μg Normal ~ (μ = −3,σ = 5)

σg Γ-1(shape = 0.001, rate = 0.001)

ψ Uniform ~ (0.001, 2)

λδ Exponential ~ (λ = 1)

φδ Beta ~ (alpha = 2,beta = 2)

μκ Normal(μ = 0,σ = 3)

σκ2 Γ-1 ~ (shape = 0.001,rate = 0.001)

μτ Normal ~ (μ = 0,σ = 3)

στ2 Γ-1 ~ (shape = 0.001,rate = 0.001)
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distribution for the global standard deviation σg, there-
fore a relatively flat inverse-gamma prior σg ~ Γ

-1

(0.001,0.001) was used [16].
The modified Laplace distribution is used to model the

difference between two mean expression intensities. This
distribution has two parameters: λδ is the rate for the ex-
ponential distribution component, and φδ is the propor-
tion of up-regulated proteins. The rate parameter has an
exponential prior of λδ ~ Exp (1). The proportion of up-
regulated proteins φδ is bounded between 0 and 1. If there
is approximately an equal number of up- and down- regu-
lated proteins then the value of φδ will be close to 0.5.
Therefore the density function for the prior should peak
around 0.5 and decrease as φδ moves toward 0 or 1, thus,
a Beta (2,2) distribution was used as the prior for φδ.
The means for both the probability of expression in

the Control group, μκ, and the difference between prob-
abilities of expression between the two groups, μτ, have
more stringent priors. A normal distribution centered
at 0 with a standard deviation of 3 is used for both
parameters. Under the reparameterisation procedures

described earlier, p0 ¼ exp κð Þ
1þ exp κð Þ and p1 ¼ exp κþλð Þ

1þ exp κþλð Þ, if the
probabilities of expression for the control group are
given by ρ0 = 0.95, this would correspond to κ ~2.94. We
believe that it is unnecessary to distinguish the probabil-
ity of expression between 0.95 and 1 because the differ-
ence is unlikely to be biologically significant. Therefore a
relatively small standard deviation was assigned to the
prior distribution to avoid κs or τs moving towards very
large values. Consequently, this also prevents false posi-
tive results which may occur when the model attempts
to distinguish the difference between probabilities of ex-
pression beyond 0.95.
A proposal distribution, q(θ), was used to generate a

candidate value θ* based on the current parameter value
θi with the probability q(θ*|θi). The proposal distributions
used in this paper are also given in Table 2, and are typical
for the types of parameters in our model. The following
describes the rationale for the use of non-standard pro-
posal distributions for a subset of parameters.
The proportion of up-regulated proteins φδ was

bounded between 0 and 1. Therefore a logit transform-
ation was applied to φδ to obtain a value without bound-
aries logit(φδ) = φδ /(1-φδ). A normal distribution with
mean set to logit(φδ) was then used to propose a new
value φδ'. Finally, an inverse-logit transformation was ap-
plied to φδ' to obtain the candidate value φδ* which is al-
ways between 0 and 1.
The global standard deviation, σg, the rate parameter

for the exponential distribution, λδ, the standard devi-
ation for the probabilities of expression, σκ, and the
standard deviation for the difference in the probabilities
of expression, στ, all have the same proposal distribu-
tions, a truncated normal distribution with lower bound
set to 0.01 and no upper bound. The theoretical lower
limit for these values is 0, but 0.01 was used for two rea-
sons. The first was that these values were extremely un-
likely to be less than 0.01 for any 2D PAGE experiments.
Hundreds of different proteins were separated in each
2D PAGE experiment and it is unlikely for all the pro-
teins to have very similar means and probabilities of ex-
pression. The mean of the exponential distribution is
1/λ, and the theoretical maximum intensity for a protein
on 2D PAGE is log2(100) ≈ 6.64. Therefore we expect λδ
to be greater than 0.01 because the mean value for δs
(the difference between two mean expression intensities)
is unlikely to be greater than 100. The second reason
was to prevent floating point underflow when comput-
ing extremely small likelihood values when the standard
deviation approaches 0.

Adaptive MCMC
Since MCMC is a technique that relies on a stochastic
perturbation to the current state to generate the next
state in a chain, the states are autocorrelated. Depending
on the proposal distributions used, there is a possibility
for states to persist in a part of parameter space, and
mix poorly. We used three different techniques to im-
prove the mixing of the Markov chain: tuning para-
meters, block updating and parameter expansion.
Roberts et al. [17] suggest that for a single dimension

problem the optimal acceptance ratio should be 0.43,
and 0.234 for higher dimension problems. During each
iteration, proposed values are recorded regardless of
whether they are accepted or not. The acceptance rate is
calculated and proposal distribution parameters updated
according to the following formula,

σnew ¼ σcurΦ
�1 ρopt

2

� �
Φ�1 ρcur

2

� � ð12Þ

where σnew is the standard deviation of the new proposal



Table 2 List of proposal distributions for both global and local parameters

Global parameter θi Proposal distribution q(θ*|θi)

μg Truncated-Normal ~ (μ = μg, lower = d, upper = log2(100))

σg Truncated-Normal ~ (μ = σg, lower = 0.01)

ψ Truncated-Normal ~ (μ = ψ, lower = 0.001, upper = 2)

λδ Truncated-Normal ~ (μ = λδ, lower = 0.01)

φδ φδ' = Normal ~ (μ = ln[φδ/(1-φδ)]), φδ* = exp(φδ')/[1 + exp(φδ')]

μκ Normal ~ (μ = μκ)

σκ Truncated-Normal ~ (μ = σκ, lower = 0.01)

μτ Normal ~ (μ = μτ)

στ Truncated-Normal ~ (μ = στ, lower = 0.01)

Local parameter θi Proposal distribution q(θ*|θi)

μs Normal ~ (μ = μs)

δs Normal ~ (μ = δs)

κs Normal ~ (μ = κs)

τs Normal ~ (μ = τs)

d = limit of detection. The standard deviation for all proposal distributions are controlled by the tuning parameters.

Wu et al. BMC Bioinformatics 2012, 13:137 Page 6 of 14
http://www.biomedcentral.com/1471-2105/13/137
distribution and σcur is the standard deviation of the
current proposal distribution. ρopt is the optimal accept-
ance ratio, ρcur the current acceptance ratio, and Φ-1 is
the inverse CDF of a standard normal distribution. If the
acceptance ratio is higher than the optimal acceptance
ratio, then the standard deviation for the proposal distri-
bution is increased to lower the acceptance ratio and
vice versa [18]. The standard deviation σnew is updated
once every 500 iterations and the current acceptance
ratio ρcur is averaged over 3000 iterations.
The second technique is block updating, which was

used to reduce the autocorrelation for related para-
meters [19]. A block is created by grouping two or more
related variables and updating them simultaneously. If
two variables are in the same block, then two values will
be proposed for each iteration of the chain. Only one
Metropolis-Hasting ratio will be calculated, and both
values are then either jointly accepted or rejected. For
example, if two parameters θ1 and θ2 are paired together,
then the joint acceptance ratio is calculated by:

α ¼ min

(
1;
f ðΘ���dÞqðθi1��θ�1Þqðθi2��θ�2Þ
f ðΘi

��dÞqðθ�1 θi1
�� �

qðθ�2 θi2
�� �

)
ð13Þ

At the local layer, we paired μs and δs together and κs
and τs together. At the global level, we paired μg and σg
together, λδ and φδ together, μκ and σκ together and, μτ
and στ together. Sometimes the variance parameter was
not able to move freely, especially when it approached
zero, resulting in poor mixing. The introduction of an
additional parameter which links mean and variance to-
gether can potentially reduce this issue [20]. This is
termed “parameter expansion” and it was implemented
here to reduce this problem.
Three parameters were added to the global likelihood

model. The term αμ was added to link global mean μg
and standard deviation σg, and was calculated in the fol-
lowing way:

μg ¼ αμμg 0 δ2g ¼ α2μσ
2
g0 ð14Þ

Within each iteration, instead of one block updating
which paired μg and σg

2 together, two block updating was
used after parameter expansion was implemented. One
block updates paired μg' and σg

2' together, and the other one
updates αμ. The other two parameters are ακ which links μκ
and σκ

2 together, and ατ which links μτ and στ
2 together.

These two parameters were implemented and updated in
the same way as αμ. All three parameters had a uniform
prior between 0.01 and 10, and a truncated normal distri-
bution was used as their proposal distribution (Table 3).
The mean of the proposal distribution is the current par-
ameter value and the standard deviation was controlled by
the tuning parameter descried in this section.
With the combination of block updating and param-

eter expansion, there were twelve parameters, including
nine parameters from the likelihood model and three
tuning parameters (α) described above. These para-
meters were grouped and updated in eight different
blocks.

Simulation analysis
In order to evaluate the global model, we simulated 2D-
PAGE data based on studies described in our previous



Table 3 Prior and proposal distributions used for the parameters introduced in the parameter expansions

Global parameter θi Prior distribution p(θi) Proposal distribution q(θ*|θi)

αμ Uniform ~ (0.01,10) Truncated-Normal ~ (μ = αμ, lower = 0.01)

ακ Uniform ~ (0.01,10) Truncated-Normal ~ (μ = ακ, lower = 0.01)

ατ Uniform ~ (0.01,10) Truncated-Normal ~ (μ = ατ, lower = 0.01)
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paper [9] and compared the results against those obtained
using the LRT proposed therein. A set of global distribu-
tions and global parameters were described above and
predefined for each simulation. All individual local para-
meters for each protein were drawn from the global distri-
butions. The probability of expression parameters for each
individual protein determined whether a protein was
expressed. The expression intensities for an expressed
protein were drawn from a normal distribution with an in-
dividual protein mean. The limit of detection was set to –
8.67, and any simulated value below this threshold was
treated as missing data. One hundred proteins were simu-
lated because of the amount of time required for a MCMC
chain to converge (approximately 20 ~ 24 hours for 100
proteins). The MCMC algorithm for the global likelihood
model was implemented using Java. Thinning was used to
reduce the autocorrelation and we sampled the states
every 1000 iterations. The MCMC chain ran for 50 million
iterations and we manually inspected the trace plot of the
posterior probability from multiple runs to check for any
inconsistencies. The first 10% of the data was discarded as
burn-in, to allow the Markov chain to reach the target dis-
tribution. The Effective Sample Size (ESS) calculated for
every parameter. The ESS is the effective number of
Figure 1 The trace plot (A) and density plot (B) for the log posterior p
“independent” samples from the Markov chain. All the
ESS were calculated using Tracer (http://beast.bio.ed.ac.
uk/Tracer) [21]; in our analyses, the minimum ESS was al-
ways greater than 1000. The trace plot and density plot
for the log posterior distribution from Simulation 1 are
shown in Figure 1.
Once we were confident that the Markov chain was

sampling the target distribution, the 95% highest HPD
for δs and τs was calculated. The local parameter δs and
τs represent the differences in mean expression inten-
sities between Case and Control groups and the prob-
ability of expression, respectively. There are three
scenarios whereby a protein may be classified as statisti-
cally differentially expressed: 1) If the 95% HPD for δs
does not include zero, 2) if the 95% HPD for τs does not
include zero, or 3) if the 95% HPDs for both parameters
do not include zero.

Simulation 1. Simulation based on a real experiment
100 differentially expressed proteins, with each protein
having different parameter values, were drawn from a glo-
bal distribution with the following parameters: the mean
expression intensities for the control group followed a
normal distribution with a mean of −5 and a standard
robability from Simulation 1.

http://beast.bio.ed.ac.uk/Tracer
http://beast.bio.ed.ac.uk/Tracer
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deviation of 1. The standard deviation for each individual
protein was 0.7. The difference between mean expression
intensities was drawn from a modified Laplace distribu-
tion (described in the global layer section) with λδ = 0.5
and φδ = 0.5. The parameter associated with the probabil-
ity of expression, κs was drawn from a normal distribution
with a mean of 1 and a standard deviation of 1, and τs was
drawn from a normal distribution with a mean of 0 and a
standard deviation of 2.

Simulation 2. Varying the global distribution of the
probabilities of expression
The second simulation was similar to Simulation 1, ex-
cept that the values of κs were no longer assumed to fol-
low a normal distribution. Instead, for each protein, κs
was drawn from a uniform distribution between −1 and
3, and τs was drawn from a uniform distribution be-
tween −2 and 2. All other global parameters were identi-
cal to those specified in Simulation 1.

Simulation 3. A smaller gap between mean expression
intensities and different distributions for the probabilities
of expression
In the previous two simulations, λδ for the modified
Laplace distribution was set to 0.5, which corresponds to
a difference between two mean expression intensities of
2. In Simulation 3, the difference between two mean ex-
pression intensities was set to 1.5 times the protein
standard deviation, which corresponds to λδ ≈ 0.66. This
was done because results from our previous study
showed that LRT had a reasonable performance when
the difference between the two mean expression inten-
sities was approximately 1.5 times the standard deviation
or higher. This simulation also tested the difference be-
tween two probabilities of expression when drawn from
two different distributions. For each individual protein,
κs was still drawn from a normal distribution with mean
1 and a standard deviation of 0.25, but τs was divided
into two groups. Half of the proteins were simulated
from a normal distribution with mean −3 and standard
Table 4 Summary of the global parameters for simulation 1,

Global parameter Mean from MCMC Lowe

μg −4.8

σg 1.06

ψ 0.65

λδ 0.57

φδ 0.57

μκ 0.89

σκ 1.00

μτ −0.22

στ 2.48
deviation of 0.25; the other half were simulated from a
normal distribution with mean 2 and standard deviation
of 0.25. Note that we assigned a relatively small standard
deviation to these distributions to obtain two non-
overlapping normal distributions. This extreme scenario
is used to test the flexibility of the Bayesian model. All
other global parameters were identical to Simulation 1.

Simulation 4. Estimating the false positive rate
This simulation attempted to investigate the number of
proteins falsely classified as differentially expressed when
there was no difference between two groups. The differ-
ence between local mean expression intensities δs and
the difference between local probabilities of expression
τs were fixed at 0 for all proteins. All other global para-
meters were identical to Simulation 1. This setting
makes two groups identical and allows us to estimate
the false positive rate of this model.

Application of model to 2D PAGE data
We also applied the global model to a 2D PAGE experi-
ment reported previously by Wu et al [9] in which we
selected differentially expressed spots based on a likeli-
hood ratio test This experiment contained 24 individuals,
with one gel per individual. Eight hundred and three spots
were detected and matched using commercial software.

Results and discussions
Both the global model and the LRT previously defined
in Wu et al (2009) were applied to the three simulations.

Simulation 1. Simulation based on a real experiment
The mean and the 95% HPD were calculated from the
marginal posterior distribution for all the global para-
meters and summarized in Table 4. The true values for
several global parameters were very accurately recovered:
the mean values recovered were very close to the true
values, for example, the recovered mean for μg was −4.8
(true value was −5), and the recovered mean for σg was
1.06 (true value = 1). The 95% HPD for most of the global
which is based on a real 2D PAGE experiment

r 95% HPD Upper 95% HPD True value

−5.02 −4.59 −5

0.92 1.22 1

0.56 0.75 0.7

0.46 0.69 0.5

0.45 0.67 0.5

0.66 1.15 1

0.78 1.24 1

−0.75 0.38 0

1.93 3.08 2



Figure 3 Number of proteins classified as differentially
expressed using each method in Simulation 1.
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parameters included the true values, for example, the
recovered mean for μκ was 0.89 with the 95% HPD be-
tween 0.66 and 1.15 while the true value was 1, the recov-
ered mean for μτ, was −0.22 with the 95% HPD between
−0.75 and 0.38, while the true value was 0.
Figure 2 shows the marginal posterior density and prior

distributions for the global parameters μκ and ψ. The mar-
ginal posterior distributions were substantially different
from the prior distributions used in the model. The ap-
proach of plotting the posterior distribution against that
of the prior is valuable, because it shows that the extent to
which the addition of new data reduces the uncertainty in
the model. The 95% HPDs were also calculated for all the
local parameters δs and τs, and 85 spots were classified as
differentially expressed. The LRT was applied to the same
dataset and only 71 spots were classified as differentially
expressed.
All but three of the 71 spots identified using the LRT

were also identified using the method reported here.
There were 12 differentially expressed proteins that were
not correctly classified by both methods. The Venn dia-
gram in Figure 3 summarizes the differentially expressed
spots classified by each method.
The recovered mean for the proportion of up-regulated

proteins φδ was 0.57 with the 95% HPD between 0.45 and
0.67 (the true value is 0.5). This implied that 57% of the
spots were considered as up-regulated, that is, the mean
expression intensity for the case group was higher than
the control group. Nevertheless, this does not represent
the proportion of statistically classified differentially
expressed proteins because the statistical classification of
up- or down regulation depends on whether the 95%
Figure 2 Marginal posterior density and prior distribution for the glo
HPD of δs for each protein includes zero. Under this cri-
terion, there were 38 spots that were (statistically) classi-
fied as up-regulated and 30 spots that were (statistically)
classified as down-regulated.
Simulation 2. The effect of the underlying global
distribution on the probabilities of expression
The mean and the 95% HPD were calculated from the
marginal posterior distribution for all the global
bal parameter (A) μκ and (B) ψ.



Figure 4 Number of proteins classified as differentially
expressed using each method in Simulation 2.
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parameters and are summarized in Table 5. The mean
for the four parameters μg, σg, ψ, and φδ, were very close
to the true value, with the absolute difference less than
0.1. The 95% HPD interval for λδ (0.5 and 0.79) also
included the true value 0.7.
Figure 4 summarizes the number of proteins classified

as statistically differentially expressed under each cat-
egory. The LRT classified 59 spots as differentially
expressed and the global likelihood model classified 89
proteins. Only one of the spot identified by the LRT was
not identified by the model reported here.
There were 38 spots classified as statistically up-

regulated and 25 spots classified as statistically down-
regulated. By examining the true values of 100 local
parameters, δs, the distributions of δs have heavier tail
for values greater than 0 then values less than 0 (there
are more δs greater than 5 then less than −5) (Figure 5)
hence the there are more spots are statistically classified
as up-regulated than down-regulated.

Simulation 3. Smaller difference between mean
expression intensities and alternative distributions for the
probabilities of expression
The mean and the 95% HPD were calculated from the
marginal posterior distribution for all the global para-
meters and are summarized in Table 6. The 95% HPD
intervals for most of the parameters included the true
values used to simulate the dataset. The two exceptions
were μτ and στ, which were parameters where recovery of
the true underlying distributions was not expected since
the local parameters τs were simulated from two distinct
normal distributions that did not overlap. Therefore a sin-
gle normal distribution was not expected to recover the
true values. Figure 6 shows the density plot for the 100
local parameters τ, and the probability density function
for the normal distribution with parameters μτ and στ
recovered by the global model. The global model adjusted
to this change in data by increasing the value of στ to a
large number with a mean value of 3.65 and 95% HPD
Table 5 Summary of the global parameters for simulation 2 w
uniform distributions

Global parameter Mean from MCMC Lower 9

μg −5.00 −5

σg 1.08 0.

ψ 0.69 0.

λδ 0.62 0.

φδ 0.54 0.

μκ 0.99 0.

σκ 1.29 1.

μτ −0.23 −0

στ 1.84 1.
interval between 2.89 and 4.46. This effectively created a
very wide normal distribution which was used to ensure
all the τs drawn from both underlying normal distributions
would have similar likelihoods. This demonstrates that the
global likelihood model is very robust and is able to adapt
to different distributions even if the local parameters were
not drawn from a single distribution.
Figure 7 summarizes the number of proteins classified

as differentially expressed under each category. The LRT
classified 67 spots as differentially expressed compared
to 78 in the global Bayesian model. The LRT only picked
up three spots that were missed by the method
described here.

Simulation 4. Estimating the false positive rate
The 95% HPDs were calculated for all the local para-
meters δs and τs, and all the HPD intervals contained zero.
here the probabilities of expression were drawn from

5% HPD Upper 95% HPD True value

.23 −4.79 −5

93 1.23 1

59 0.79 0.7

50 0.75 0.5

43 0.65 0.5

70 1.3 κ ~ Uniform(−1,3)

03 1.56 κ ~ Uniform(−1,3)

.67 0.22 τ ~ Uniform(−2,2)

41 2.29 τ ~ Uniform(−2,2)



Figure 5 Density for the true values of 100 local parameters δs.
This shows that the distributions for values of δs greater and less
than 0 were approximately symmetrical.

Figure 6 The density plot for the parameters τ and the global
distrubituon recovered by the model. The probability density
function Normal ~ (μτ = 0.5,στ = 3.38) where μτ and στ were
recovered by the global model.
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This implied that none of the proteins were classified as
differentially expressed. The simulations were repeated
with 18 and 24 gels in each group while all other para-
meters remained the same. Once again, in these further
simulations none of the proteins was classified as differen-
tially expressed. This demonstrates that the model we
propose here has a very low false positive rate.

2D PAGE Example
Figure 8 summarizes the number of proteins classified
as differentially expressed using the MCMC procedure
described here (separated according to whether the ex-
pression intensity, δ, or probability of expression, τ, dif-
fered between Case and Control), and the previously
described LRT procedure [9]. The univariate LRT
Table 6 Summary of the global parameters for simulation 3 w
expressions were drawn from two normal distributions

Global parameter Mean from MCMC Lowe

μg −5.18

σg 1.13

ψ 0.64

λδ 0.73

φδ 0.47

μκ 0.98

σκ 0.28

μτ −0.93

στ 3.65

* 50% τ ~ Normal (−3, 0.25), 50% τ ~ Normal (2, 0.25).
classified 33 spot as differentially expressed compared to
41 in the global Bayesian model. However, several spots
classified using the LRT were not identified by the global
model, and vice versa. Examination of the expression
data revealed that the global model was often able to
identify differentially expressed spots when the probabil-
ity of expression was low in both groups. This is most
likely due to the fact that the LRT does not have suffi-
cient power to detect differences when sample sizes in
both groups are small. In contrast, the global model uses
a common variance (obtained across all spots) for ex-
pression intensities, and this allows inferences to be
made even when sample sizes are low in both groups.
Of course, because the global model uses a common

variance for expression intensities, spots where the
here the difference between two probability of

r 95% HPD Upper 95% HPD True value

−5.39 −4.95 −5

0.98 1.29 1

0.55 0.73 0.7

0.57 0.89 0.7

0.35 0.60 0.5

0.83 1.12 1

0.11 0.46 0.25

−1.76 −0.16 *

2.89 4.46 *



Figure 7 Number of proteins classified as differentially
expressed using each method in Simulation 3.
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variances are significantly different from the common
variance will not necessarily be identified as differentially
expressed. This appears to account for those spots that
are identified by the LRT and not the global Bayesian
analysis.

Conclusions
We have demonstrated with simulated data that a global
Bayesian model is able to correctly identify more differ-
entially expressed proteins than the use of the LRT
Figure 8 Number of proteins classified as differentially
expressed using each method in 2D PAGE data.
proposed in the previous study. In all three simulation
analyses, the LRT classified approximately 60% of the
proteins as statistically differentially expressed, and the
global model classified between 75% and 89% of the pro-
teins. Additionally, with our simulated data, the global
model identified correctly identified almost all of the
proteins also identified by the LRT. The global model
accurately recovered the underlying global distributions
in all simulations. The 95% HPD for the five global para-
meters, μg, σg, ψ, λδ and φδ, always included the true
values used to simulate the dataset. The global distribu-
tions used in the model were fixed, but the results from
the simulation analyses showed that it can be adapted to
a wide range of different underlying distributions. In
simulation analysis 2, the model recovered a wide nor-
mal distribution to overcome the fact that the under-
lying distribution was a uniform distribution. In
simulation analysis 3, a very wide normal distribution
with standard deviation 3.65 was obtained when two
non-overlapping normal distributions were used as the
true distributions from which data were sampled. Finally,
simulations also demonstrated that the False Discovery
Rate was very low.
When we applied the global Bayesian analysis and the

LRT to real data, we uncovered some interesting dispar-
ities that appear to be related to how these methods
apply variance estimates. In particular, the global Bayesian
model estimates a common variance by combining data
available from all spots. This allows the model to estimate
the standard deviation more accurately if there is, indeed,
a common variance of expression intensities. By using
the 95% HPD to identify differentially expressed pro-
teins, additional information is provided on whether a
protein is differentially expressed due to the expression
intensities, probabilities of expression or possibly both.
The proportion of up- or down-regulated proteins can
be accurately estimated from the model by the global
parameter φδ. In contrast, the LRT uses only the vari-
ance of expression intensities identified for each spot. If
the number of expressed spots is low in both Case and
Control groups, the power to detect differences is com-
promised. This is an advantage of the global model
when the assumption of a common variance is appro-
priate. However, when this assumption is violated, the
global model does not identify the same spots as being
up- or down-regulated as the LRT. It may be possible
to apply a mixture of distributions allowing different
variances, to overcome this discrepancy. However, it is
a common to find with MCMC procedures that adding
more parameters, and integrating over these, affects
mixing and convergence to the stationary distribution.
It is, of course, true that a realistic biological system

involves several different groups of proteins, with each
group associated with different biological pathways that
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are frequently interconnected. In order to capture this
complex relationship, it is likely that the expressions of
different clusters of proteins will be best explained by
different underlying distributions. This will allow the
model to separate proteins into several different categor-
ies, with each category being represented by a unique
global distribution. Whereas the use of multiple global
distributions may result in a more accurate estimate of
these true global parameters, there is also the danger
that introducing new distributions (and new parameters)
will lead to overfitting and inflated variance estimates.
Several global statistical models developed for other high
throughput technologies such as microarrays, often at-
tempt to incorporate biological pathways [22]. The chal-
lenge with 2D PAGE is that the true identity of each
protein is usually unknown until differentially expressed
proteins are determined and then subjected to mass
spectroscopy for identification. Without this informa-
tion, it is very challenging to develop a global model
based on biological pathways.
Finally, one other assumption that our global Bayesian

model makes is that the variances of expression inten-
sities for the Case and Control groups are equal. We are
aware that this may be an unrealistic assumption; how-
ever, if we assume the alternative (i.e., unequal variances
for Case and Control), our implementation of the
MCMC has difficulty converging when the probability of
expression is low.
Any MCMC Bayesian analysis requires a choice of

prior distributions. Although we have designed priors
that appear to be a reasonable characterization of the
uncertainty in our parameter values, the model is gen-
eral enough to allow other priors to be substituted for
the ones we use. In this paper, we have not tried differ-
ent prior distributions, because we are demonstrating
how the Bayesian MCMC scheme may be implemented,
and we have applied our methods largely to simulated
data. With real-world data, it is standard practice when
applying Bayesian analyses to real data to test for the
sensitivity to different prior distributions.
One drawback of the MCMC approach is the amount

of time required for the Markov chain to converge. Mul-
tiple runs of Markov chains can be used to assess the
convergence and accuracy of the results. An example of
this is the Metropolis-coupled Markov chain Monte
Carlo (MC3) approach [23]. A typical 2D PAGE experi-
ments may have between 800 to 1200 expressed pro-
teins. With the current implementation, it took around
1.7 hours per million iterations for an experiment with
800 spots on a Intel i5 2.67 GHz CPU. As the number
of spots increases, the number of iterations and the
time required for the Markov chain to converge may
also increase. To improve the usability of this model, a
more efficient implementation, such as parallel MCMC,
should be used [24]. The source code and jar file are
available for download at https://github.com/stevenhwu/
BIDE-2D.
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