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Abstract
Quantumparameter estimation is central tomanyfields such as quantum computation, communica-
tions andmetrology. Optimal estimation theory has been instrumental in achieving the best accuracy
in quantumparameter estimation, which is possible whenwe have very precise knowledge of and
control over themodel. However, uncertainties in key parameters underlying the system are
unavoidable andmay impact the quality of the estimate.We showhere howquantumoptical phase
estimation of a squeezed state of light exhibits improvement when using a robustfixed-interval
smoother designedwith uncertainties explicitly introduced in parameters underlying the phase noise.

1. Introduction

Quantumparameter estimation [1] is the problemof estimating a classical variable of a quantum system. It plays
a key role in quantum computation [2], quantum communications [3, 4], quantumkey distribution [5],
metrology [6] and gravitational wave interferometry [7], etc. A common and technologically relevant example is
estimating an optical phase in a quantum system.Optimal estimation theory has earlier been considered in
devising and improving quantumparameter estimation techniques. Systematic approaches to optimal
estimation yield estimates with the lowestmean-square estimation error. This has helped achieve better
estimation accuracies than otherwise obtained previously [8, 9].

Nonetheless, the optimality of the estimation process relies on precise knowledge of the systemmodel.
However, this is usually unrealistic due to inevitablemodelling errors. Inmany cases, it is impossible to precisely
measure and determine values of relevantmodel parameters in an experiment. This is detrimental in problems
of quantum estimation because any uncertainty in our knowledge of the parameters in the systemmodelmay
result in considerable degradation in the estimation accuracy. It is, therefore, desired tomake the estimation
process robust to uncertainties in the underlyingmodel parameters [10, 11].

It is important inmany practical engineering problems to ensure that the criticalmeasures of the system
performance do not deviate beyond certain thresholds. Such thresholdsmark the point beyondwhich the
systemhas a high risk of breaking down or becoming unusable. In quantum estimation problems, performance
is typically determined by the error in the estimation process in the presence of uncertainty in the system. An
optimal estimator is optimized byminimizing a cost function to yield the leastmean-square estimation error for
exactmodel parameters.When themodel parameters are not the same as the true systemparameters, i.e. when
there is uncertainty in one ormore of themodel parameters, the true estimation errormay beworse than the
predicted optimal value. In aworst-case situationwith large uncertainties, this increase in the size of the
estimation errors could be significant. A robust estimator, on the other hand, can be designed by optimizing the
worst case of a cost function for an uncertain systemmodel. This allows the robust estimator to yield lower
estimation errors than the optimal estimator in theworst-case scenario. For example, in gravitational wave
detection, large estimation errorsmaymask a gravitational-wave event or imitate an event. Such a false event
may be avoided using a robust estimator, which has a sufficient guaranteedworst-case precision.
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In this paper, we aim to design a robust estimator for quantumphase estimation that provides guaranteed
worst-case performance. Robust quantumparameter estimationwas previously considered in [12] for
magnetometry. That paper employed heuristic feedbackmechanism to achieve robustness. By contrast, we
consider amore systematic approach to robust estimation in a state-space settingwith explicitlymodelled
uncertainty. Among other relatedworks, [13] proposed a robust quantumobserver for uncertain linear
quantum systems and [14] considered robustness in the context of coherent feedback. However, for linear
quantum systems,much of the rich classical estimation theorymay be applied. To our knowledge, the potential
application of classical robust estimation theory has not yet been explored in improving quantum estimation
techniques.

Quantumphase estimation has been area of active research recently [15–22]. Adaptive quantumphase
estimation of the continuously varying phase of a coherent state of light using smoothingwas demonstrated in
[8]. Fixed-interval smoothing uses both past and futuremeasurements in afixed time-interval to yield amore
accurate estimate than obtained using only pastmeasurements [23–30]. Using a robustfixed-interval smoother
[31], the estimation process for the adaptive experiment can be improved in the presence of uncertainty in the
underlying phase noise subject to anOrnstein–Uhlenbeck (OU) noise [32].While a coherent state has the same
uncertainty in both (amplitude and phase) quadratures, a squeezed state has reduced fluctuations in one of the
two quadratures at the expense of increasedfluctuations in the other. Using a squeezed state of light provides
quantum enhancement in adaptive phase tracking [9].Here, we illustrate the guaranteedworst-case
performance of the robust estimator for such a squeezed state [33].Wemodel the phase to be estimated as an
OUprocess to beginwith in our paper because [8] and [9] consider such a noisemechanism. The idea is to
demonstrate the improvement provided by our robust estimator over the optimal estimator used in the noise
setting of [9]. Such a stochastically varying phase resembles a continuous-time randomwalkwith a tendency to
return to themean phase of zero, a kind of noisy relaxation process that occurs inmany physical situations, and
ismore relevant for applications such as physicalmetrology and communication than a time-invariant (but
initially unknown) phase [9].

The robustfixed-interval smoothing scheme can aswell be applied to estimate a phase,modelled as a
resonant noise process with uncertainty in its parameters [34]. A related robustfiltering problem for coherent
state was considered by the authors forOUprocess in [35] and for resonant process in [36]. Here, we build on
the results in the conference paper [34] to provide interesting insights about the guaranteedworst-case
performance of the robust estimator.Moreover, we show that the performance improvement of the robust
estimator relative to the optimal estimator grows as the noise process becomesmore resonant.We also show
here that theworst-case performance of our robust estimator relative to the optimal estimator is better for
realistic lossy squeezed beams than that for ideal pure squeezed beams at the optimal degrees of squeezing. In
addition, we illustrate that our robust estimator exhibits an optimal photon number for which its relative
performance is the best with respect to the optimal estimator.

2.Optimal estimator

The optimal estimator in [9] involves an offline optimal smoother, in addition to aKalmanfilter in the feedback
loop. The feedbackKalmanfilter is a causalfilter. However, the smoother is acausal, since it is, in principle, a
combination of a forward-timeKalmanfilter and a backward-timeKalmanfilter, the estimates of which are
combined to yield the optimal smoothed estimate [37].While the forwardKalmanfilter is essentially the
feedback filter itself and uses only pastmeasurements, the backward filter yields its estimate based on future
measurements with respect to the time of the desired smoothed estimate within the chosen fixed time-interval
[0, τ]. A smoother, therefore, cannot be used to produce real-time estimates, and is usually used for offline data
processing orwith a delay with respect to the estimation time to yieldmore accurate estimates than obtained
using the feedbackKalmanfilter alone [8, 9].

2.1. Systemmodel
Weneed to define our system in terms of the process andmeasurementmodels in a state-space setting.

The processmodel is theOUnoise process thatmodulates the phaseϕ(t), to be estimated, of the continuous
optical phase-squeezed beam [9]:

t t v t˙ ( ) ( ) ( ), (1)ϕ λϕ κ= − +

where 01λ >− is the correlation time ofϕ(t), 0κ > is the phase variationmagnitude and v(t) is a zero-mean
whiteGaussian noise with unity amplitude.

The phase-modulated beam ismeasured by homodyne detection using a local oscillator, the phase of which
is adaptedwith thefiltered estimate tˆ ( )fϕ using feedback, thereby yielding a normalized homodyne output
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photocurrent [9]:

I t t t t t R W t( )d 2 ( ) ˆ ( ) d d ( ), (2)f sq
⎡⎣ ⎤⎦α ϕ ϕ≃ − +

( )R e 1 e , (3)f
r

f
r

sq
2 2 2 2p mσ σ= + − −

where α∣ ∣ is the amplitude of the input phase-squeezed beam, andW(t) is aWiener process arising from
squeezed vacuumfluctuations. The parameter Rsq is determined by the degree of squeezing (r 0m ⩾ ) and anti-
squeezing (r rp m⩾ ) and by f

2σ (see later).We use themeasurement appropriately scaled as ourmeasurement
model [33]:

t
R

I t t
R

t w t( )
1

( ) 2 ˆ ( )
2

( ) ( ), (4)f
sq sq

⎡⎣ ⎤⎦θ α ϕ α ϕ≔ + = +

where w W

t

d

d
≔ is also a zero-meanwhiteGaussian noise with unity amplitude.

Here, E v t v r N t r[ ( ) ( )] ( )T δ= − , E w t w r S t r[ ( ) ( )] ( )T δ= − , E v t w r[ ( ) ( )] 0T = , where E [ · ]denotes
the expectation value and ( · )δ is the delta function. Since v andw are of unity amplitude, bothN and S are
unity.

2.2. Forwardfilter
For the process andmeasurementmodels given by (1) and (4) respectively, the standard steady-state Kalman
filter is constructed by solving a continuous-time algebraic Riccati equation as in appendix A.

The steady-state Riccati equation to be solved for the forwardKalman filter is:

P
R

P2
4

0, (5)f f

2

sq

2λ α κ− − + =

where Pf f
2σ= is the forward filter error-covariance. The stabilizing solution of the above equation is:

P
R

R4

4
. (6)f

sq

2
2

2

sq

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟α

λ λ κ α= − + +

The forward filter equation is:

K

R

K

R
K wˆ̇

2
ˆ

2
, (7)f

f

f

f
f

sq sq

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ϕ λ

α
ϕ

α
ϕ= − + + +

where K f
R

R2
2 4sq 2

sq

⎛
⎝⎜

⎞
⎠⎟λ λ= − + +

α
κ α

∣ ∣
∣ ∣ is the forwardKalman gain.

2.3. Backwardfilter
The steady-state backwardKalmanfilter is constructed similarly as in appendix A.

The steady-state Riccati equation to be solved for the backwardKalman filter is:

P
R

P2
4

0, (8)b b

2

sq

2λ α κ− + =

where Pb b
2σ= is the backward filter error-covariance. The stabilizing solution of the above equation is:

P
R

R4

4
. (9)b

sq

2
2

2

sq

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟α

λ λ κ α= + +

The backward filter equation is:

K

R

K

R
K wˆ̇ 2 ˆ 2

, (10)b
b

b
b

b
sq sq

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ϕ λ

α
ϕ

α
ϕ= − + +

where Kb
R

R2
2 4sq 2

sq

⎛
⎝⎜

⎞
⎠⎟λ λ= + +

α
κ α

∣ ∣
∣ ∣ is the backwardKalman gain.

2.4. Smoother error
The smoother error, Ps

2σ= , is obtained by combining the forward and backwardKalmanfilter errors as in
appendix A, i.e.
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( )P P P , (11)s f b
1 1 1= +− − −

since the forward and backward estimates are independent. From (6), (9), (11), we get:

P
2

, (12)s

R
2 4 2

sq

κ

λ
=

+ κ α

whichmatcheswith equation (3) from [9].

3. Robust estimator

Here, we build a robustfixed-interval smoother, corresponding to the optimal smoother above, using the
technique from [31] as outlined in appendix B.

3.1. Uncertainmodel
The uncertainty is introduced in the parameter λ as follows: ,λ λ μΔλ→ − where 0 1μ⩽ < determines the
level of uncertainty in themodel, andΔ is an uncertain parameter satisfying:

1, (13)Δ∥ ∥ ⩽

which is of the form (B.2). Also, the noises v andw are assumed to satisfy the following bound for a suitable
constant d 01 > :

v w t d( )d , (14)
0

2 2
1∫ + ⩽

τ

which is of the form (B.3)withQ=R= 1.Moreover, no a priori information exists about the initial condition of
the state, and therefore, we chooseX0 = 0 in (B.4).

Then, the corresponding uncertain systemmodel takes the form:

B K B v

R
w

˙ ,

2
, (15)

1 1

sq

ϕ λϕ Δ ϕ

θ α ϕ

= − + +

= +

which is of the form (B.1).Here B1 κ= and K μλ κ= . Also, hereB2 =G=0 in (B.1), since there is no
known input u(t) in our case.Moreover, here t( )1Δ Δ= and t( ) 02Δ = in (B.1).

Remark.As outlined in appendix B, the robustfixed-interval smoother takes the formof an ellipse of possible
states and the centre of this ellipse is the robust smoother estimate. This robust smoother estimatewill be given
in terms of two quantities referred to as the forward filter state and the backward filter state, which are defined in
the following sections.

3.2. Forwardfilter
The steady-state forward Riccati equation used in the robust smoother, as obtained from (B.17), is:

X X
R

2
4

0. (16)2
2 2 2

sq
λ κ μ λ

κ
α− + + − =

The stabilizing solution of the above equation forX is:

X . (17)
R

2 2 2 4 2

sq
λ λ μ λ

κ
=

+ − + α κ

Next, the equation (B.19), that forms part of the robust smoother, for our case yields:

R R R
w˙

4 4 2
. (18)2 2 2

2

sq

2

sq sq

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟η λ μ λ α κ η α ϕ α= − − + + +

We then define the quantity, Xˆ
fϕ η= , which is referred to as the forward filter state.

Thus, the forward robustfilter equation is

L
R L R L

wˆ̇ ˆ 4

( )

2

( )
, (19)f f

2

sq sq

ϕ ϕ α κ
λ

ϕ α κ
λ

= − +
+

+
+
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where L
R

42 2 2
2

sq

λ μ λ α κ= − + ∣ ∣
.

For μ=0, (19) reduces to (7), i.e. the robust forward filter is simply the forwardKalmanfilter for zero
uncertainty level.

Remark.The quantity ˆ
fϕ is actually the centre of an ellipse defined by the solution to a robustfiltering problem;

see theorem3.1 in [31].However, this property will not be used here.

3.3. Backwardfilter
The steady-state backward Riccati equation for the robust smoother, as obtained from (B.18), is:

Y Y
R

2
4

0. (20)2
2 2 2

sq
λ κ μ λ

κ
α− − − + =

The stabilizing solution of the above equation forY is:

Y . (21)
R

2 2 2 4 2

sq
λ λ μ λ

κ
=

− + − + α κ

Next, the equation (B.21), that forms part of the robust smoother, in reverse-time yields:

R R R
w˙ 4 4 2

. (22)2 2 2
2

sq

2

sq sq

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ξ λ μ λ α κ ξ α ϕ α= − − + + +

We then define the quantity, Yˆ
bϕ ξ= , which is referred to as the backwardfilter state.

Thus, the backward robustfilter equation is

L
R L R L

wˆ̇ ˆ 4

( )

2

( )
, (23)b b

2

sq sq

ϕ ϕ α κ
λ

ϕ α κ
λ

= − +
− +

+
− +

where again L
R

2 2 2 4 2

sq
λ μ λ= − + α κ∣ ∣ .

For μ=0, (23) reduces to (10), i.e. the robust backwardfilter is the same as the backwardKalmanfilter for
zero uncertainty level.

Remark.The quantity ˆ
bϕ is actually the centre of an ellipse defined by the solution to a robust retrodiction (i.e.

backward-time filtering) problem; this is similar to the robust (forward) filtering problem considered in
theorem3.1 in [31]. However, this property will not be used here.

3.4. Robust smoother
The robust smoother estimate is the centre of the ellipse defined in (B.22) and is given in terms of ˆ

fϕ and ˆ
bϕ

according to the following formula:

X

X Y

Y

X Y
ˆ ˆ ˆ . (24)f bϕ ϕ ϕ=

+
+

+

4. Comparison of estimators

We shall now compare themean-square estimation errors of the optimal and robust estimators for the uncertain
system.

4.1. Error analysis
Given the forward and backward filter dynamics for the uncertain system, themean-square errors for 1Δ∣ ∣ ⩽
are computed using the followingmethod employing a Lyapunov equation.Here, we shall illustrate themethod
for the optimal estimator only. The errors for the robust estimatormay be calculated similarly.
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4.1.1. Forward filter
The uncertain system, given by

v˙ , (25)ϕ λϕ μΔλϕ κ= − + +

augmentedwith the forward-timeKalman filter (7)may be represented by the state-spacemodel:

x A x B w˙ , (26)= +

where x ˆ
f

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

ϕ
ϕ= , w v

w
⎡⎣ ⎤⎦= .

Thus, we have

A B K

0

,
0

0 .K

R

K

R
f

2 2f f

sq sq

⎡

⎣
⎢⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤

⎦
⎥⎥⎥

⎡
⎣⎢

⎤
⎦⎥

λ μΔλ

λ
κ

=
− +

− +
=α α

The steady-state state covariancematrixCS is obtained by solving the Lyapunov equation:

A C C A B B 0, (27)S S
T T+ + =

whereCS is the symmetricmatrix

C E x x
M

M N
. (28)S

T
f

f
T

f

⎡⎣ ⎤⎦
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

Σ
= =

Here, E [ ]TΣ ϕϕ= , M E [ ˆ ]f f

T
ϕϕ= , and N E [ ˆ ˆ ]f f f

T
ϕ ϕ= .

The estimation error can bewritten as:

e xˆ 1 1 , (29)f1
⎡⎣ ⎤⎦ϕ ϕ= − = −

which ismean zero since all of the quantities determining e1 aremean zero. The error covariance is then given as:

E e e M M N . (30)f
T

f f
T

f
2

1 1
⎡⎣ ⎤⎦σ Σ= = − − +

4.1.2. Backward filter
Whenour uncertainmodel (25), (4), which is driven byGaussianwhite noise, has reached steady state, the
output process will be a stationaryGaussian randomprocess, which is described purely by its auto-correlation
function. If we consider this output process in reverse time, this will also be a stationary randomprocess with the
same auto-correlation function. This follows from the definition of the auto-correlation function.Hence, the
statistics of the reversed time output process are the same as the statistics of the forward time output process.
Thus, the reversed time output process can be regarded as being generated by the same (and not time reversed)
process (25) that generated the forward time process [32].

The augmented system (26) for the backwardKalmanfilter (10) will then have

x A B
Kˆ ,

0

,
0

0
.

b
K

R

K

R
b

2 2b b

sq sq

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡

⎣
⎢⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤

⎦
⎥⎥⎥

⎡
⎣⎢

⎤
⎦⎥

ϕ
ϕ

λ μΔλ

λ
κ= =

− +

−
=α α

We then solve (27), with

C E x x
M

M N
, (31)S

T b

b
T

b

⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥

Σ
= =

where E [ ]TΣ ϕϕ= , M E [ ˆ ]b b

T
ϕϕ= , and N E [ ˆ ˆ ]b b b

T
ϕ ϕ= .

The error covariance for the backwardfilter is then:

E e e M M N , (32)b
T

b b
T

b
2

2 2
⎡⎣ ⎤⎦σ Σ= = − − +

where e ˆ
b2 ϕ ϕ= − .

4.1.3. Smoother error
The forward and backward estimates are not independent in general andwill have a cross-correlation term as
follows [32]:
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E e e M M , (33)fb
T

f
T

b
2

1 2
⎡⎣ ⎤⎦σ Σ αΣβ≔ = − − +

where Mf
T 1α Σ= − and Mb

1β Σ= − [27].
The overall smoother error for the optimal estimator is (see equation (25) in [32]):

( )
2

. (34)
f b fb

f b fb

2

2 2 2 2

2 2 2
σ

σ σ σ

σ σ σ
=

−

+ −

The term fb
2σ is zero, and so the forward and backward estimates are independent, in case of the optimal

estimator for the exactmodel, so that (34) reduces to (11).
However, in the case of the robust estimator, the formula (34) is replaced by the formula (see equation (23)

in [32]):

k k k k2 , (35)f b fb
2

1
2 2

2
2 2

1 2
2σ σ σ σ= + +

where k X

X Y1 =
+

and k Y

X Y2 =
+

from (24).

4.2. Comparison of the errors
The error-covariances of the robust smoother and the optimal smoother for the uncertain systemmay be
computed using the above technique by solving a Lyapunov equation, as a function ofΔ. Here, we choose the
value of μ and the other parameters as in [9], viz. 1 10 s2 6 1α∣ ∣ = × − , 1.9 104κ = × rad s−1, 5.9 104λ = ×
rad s−1, rm = 0.36 and rp = 0.59. Due to the implicit dependence of Rsq and f

2σ ((3) and (30)), we compute the

smoothedmean-square error (34) and (35) by running several iterations until f
2σ is obtainedwith an accuracy of

6 decimal places in each case. Figure 1 shows a comparison for μ=0.8, which corresponds to 80%uncertainty in
λ. At 0Δ = , where the nominal parameters for themodel exactlymatch those of the system, the optimal
smoother performs better than the robust smoother. This is to be expected because the smoother has been
optimized for those parameters. However, the robust smoother error is lower than that of the optimal smoother
asΔ approaches 1.We define ( )w

2σ μ as theworst-case estimation error for each value of μ, i.e. ( )w
2σ μ =

( 1, )2σ Δ μ= . So, if our system is not allowed to exceed an error threshold of say 0.0282 for this level of
uncertainty in λ, our robust estimator guarantees that the error is below this threshold, whereas the optimal
estimator breaches it in theworst case.

Figure 2 shows the comparison of theworst-case performance of the optimal and the robust estimators for
the uncertain system for 0 0.9μ⩽ ⩽ . Clearly, the robust estimator provides with better worst-case
performance than the optimal estimator for all levels of uncertainty in λ. Also, theworst-case robust estimator
error is below a desired threshold of say 0.029 for up to a higher level of uncertainty as compared to the optimal
estimator. This is exactly the power of robust design techniques.

5. Resonant noise process

Wenow consider a second-order resonant noise process, typically produced by a piezo-electric transducer
(PZT) driven by an inputwhite noise. Such a resonant process ismore complicated than the simplisticOUnoise
process considered before and better resembles the kind of noises that in practice corrupt the signal. The
simplified transfer function of a typical PZT is (see the supplementarymaterial of [38]) as follows:

Figure 1.Ornstein–Uhlenbeck noise: comparison of estimators for uncertainty bound μ=0.8.Here, ( )2σ Δ is the smoother error
covariance of the optimal and robust estimators plotted as a function of the uncertain parameter 1Δ∣ ∣ ⩽ .
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G s
s

v s s s
( )

( )

( ) 2
, (36)

r r
2 2

ϕ κ
ζω ω

≔ =
+ +

where κ is the gain, ζ is the damping factor, rω is the resonant frequency (rad s−1), v is a zero-meanwhite
Gaussian noise with unity amplitude andϕ is the PZT output thatmodulates the phase to be estimated.

5.1. Systemmodel (exact)
A state-space realization of the transfer function (36) is:

x Ax Bv˙ , (37)= +

where

x A B˙ ,
0 1

2
, 0 .

r r
2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦
ϕ
ϕ ω ζω κ≔ ≔ − − ≔

Equation (37) constitutes our processmodel, whereas themeasurement remains the same as (4). Thus, our
measurement equation is

Cx w, (38)θ = +

where C R2 0sq
⎡⎣ ⎤⎦α≔ ∣ ∣ .

In this paper, we choose parameter values which are particularly suited to the illustration of our key
robustness results and yet represent a possible physical situation, viz. 9 104κ = × , ζ=0.1 and

6.283 10r
3ω = × rad s−1 and 25 10 s2 4 1α∣ ∣ = × − .

5.2. Uncertainmodel
We introduce uncertainty inA as follows:

A A
0 0

0
, (39)

r
2

⎡
⎣⎢

⎤
⎦⎥μδω→ + −

where uncertainty is introduced in the resonant frequencyωr through δ. Although uncertainty inωrwould affect
both entries in the second rowof the abovematrix, themost significant effect will be in the r

2ω term. Indeed,
sincewe have a resonant system and rζ ω≪ , the uncertainty in 2 rζω− term can be neglected for simplicity and
to give a less conservative estimator.

Here, Δ δ≔ is an uncertain parameter satisfying 1Δ∣∣ ∣∣ ⩽ which implies 12δ ⩽ .Moreover, [0, 1)μ ∈
determines the level of uncertainty. From (B.1), the uncertainmodel here is:

x A B K x Bv

Cx w

: ˙ ( ) ,

: , (40)

Process model
Measurement model

Δ
θ

= + +
= +

where K 0r
2⎡

⎣⎢
⎤
⎦⎥≔ −μω

κ
.

5.3. Comparison of the estimators
The optimal and robust estimators can be constructed for the resonant noise case using the samemethod
employed in theOUnoise case before. Themean-square errors in estimation ofϕmay be computed using the

Figure 2.Ornstein–Uhlenbeck noise: comparison ofworst-case error covariances as a function of uncertainty bound μ. Here, ( )w
2σ μ is

the worst-case smoother error covariance of the optimal and robust estimators plotted as a function of the uncertainty bound
0 0.9μ⩽ ⩽ .
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error-analysis technique discussed before for both the optimal smoother and robustfixed-interval smoother as a
function of the uncertain parameter δ. Note thatPf,Kf in (6), (7),Pb,Kb in (9), (10),X in (17), andY in (21) are
2 × 2matrices, and not scalars, in this resonant noise case. Thus, the expressions in (30), (32) and (33) yield 2× 2
matrices, and not scalars, in this resonant noise case for both the optimal and robust smoothers, but the values
thatwe use to compute the effective smoother error (34) and (35) here are the (1, 1) entries in thesematrices,
sincewe are interested in the estimation errors inϕ and not ϕ̇ from x in (40). These values can be used to
generate a plot of the errors versus δ for a given value of μ to compare the performance of the robust smoother
and the optimal smoother for the uncertain system.Here, we used the nominal parameter values, and rm=0.48
and rp=1.11 to have an optimal squeezing level, for which the estimation error is theminimum for the exact
model [9]. Again, due to the implicit dependence of Rsq and f

2σ , we compute the smoothedmean-square error

(34)and (35) by running several iterations until f
2σ is obtainedwith an accuracy of 6 decimal places in each case.

It is also insightful to include in the graph the coherent state limit (CSL), which is theminimum theoretical
error reachable with a coherent beam [9]. TheCSL value is obtained by designing a different optimal smoother
for each value of the uncertain parameter in (40) (note rm, rp=0 and R 1sq = for coherent beam), and is given by

P (1, 1)s
2σ = from (11).We aswell include the standard quantum limit (SQL), which is theminimumphase

estimation error that can be obtainedwith coherent beamusing perfect heterodyne technique. Themethod to
compute the SQL for our resonant noisemodel is given in appendix C. The SQL value is obtained for our plots
for each value of the uncertain parameter in the processmodel in (40), with themeasurementmodel in (C.4).
Figure 3 shows the plot for μ=0.8.

One can see that the optimal smoother behaves better than the robust smoother when δ=0, as expected.
However, in theworst-case scenario, i.e. as δ approaches−1, the performance of the robust smoother is superior
to that of the optimal smoother. Nonetheless, we trade off the best-case performance in achieving it. It is also of
relevance that the robust estimator beats the SQLover a larger part of the uncertainty window than the optimal
estimator, although this is not the case with respect to theCSL for this value of μ.

Figure 4 depicts theworst-case performance of the estimators for 0 0.9μ⩽ ⩽ . Clearly, the robust estimator
outperforms the optimal estimator in theworst-case for all levels of μ. Also shown in the plot are the SQL and the
CSL. If the SQL or theCSL is considered as the allowed threshold for the estimation error, our robust estimator
provides guaranteedworst-case performance below this threshold for up to a larger uncertainty level when
compared to the optimal estimator.

Moreover, the improvementwith the robust smoother over the optimal smoother is better with the resonant
noise process considered here as compared to that withOUnoise process considered before. For example, while
theworst-case improvement for 80%uncertainty in theOUnoise case was∼0.08 dB, that in this resonant noise
case is∼2.13 dB. Indeed,OUnoise is the output of a non-resonant low-pass filter (LPF), driven bywhite noise.
Any uncertainty in the corner frequency of the LPF, represented by λ here, would not change themagnitude of
the phase noise asmuch as an equivalent amount of uncertainty in the resonant frequency rω for the resonant
noisemodel. In fact, the relative performance of our robust estimator grows as the noise process becomesmore
resonant. This is shown infigure 5, which plots theworst-case errors of the optimal and robust smoothers as a
function of the damping factor ζ, that determines the degree of resonance; i.e. the lower damping factor, the
more resonant the process is. Here, at each value of ζ, the squeezing level has been optimized to yield the
minimumerror for the exactmodel.

Figure 3.Resonant noise: comparison of the smoothers for uncertainty level μ=0.8.Here, ( )2σ δ is the smoother error covariance of
the optimal and robust estimators plotted as a function of the uncertain parameter 1δ∣ ∣ ⩽ .Moreover, CSL= coherent state limit and
SQL= standard quantum limit.
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Figure 6 shows a plot of theworst-case errors of the smoothers as functions of the squeezing level. Here, we
have plotted the errors for pure lossless squeezed beams (overall loss lsq = 0) and practical impure lossy squeezed
beamswith lsq = 0.33 (see the supplementarymaterial for [9]), and afixed uncertainty level of μ=0.4. Clearly,
our robust estimator not only beats the CSL over a wider range of squeezing levels (for both pure and impure
squeezing cases), but also can sustain higher levels of squeezing than the optimal estimator can, before the errors
rapidly increase due to excessive anti-squeezing noise.Moreover, our estimator ismore robust relative to the

Figure 4.Resonant noise: comparison ofworst-case error covariances as a function of uncertainty level μ. Here, ( )w
2σ μ is theworst-

case smoother error covariance of the optimal and robust estimators plotted as a function of the uncertainty level 0 0.9μ⩽ ⩽ .
Moreover, CSL= coherent state limit and SQL= standard quantum limit.

Figure 5.Resonant noise: comparison ofworst-case error covariances as a function of damping factor ζ. Here, ( )w
2σ ζ is theworst-case

smoother error covariance of the optimal and robust estimators plotted as a function of the damping factor ζ varying from 0.05 to 1.

Figure 6.Resonant noise: comparison ofworst-case error covariances as a function of squeezing level. Here, w
2σ is theworst-case

smoother error covariance of the optimal and robust estimators plotted as a function of the squeezing level varying from0 to−20 dB.
Moreover, CSL= coherent state limit.
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optimal estimator for practical squeezed beams than for ideal pure squeezed beams. This is due to the larger
worst-case performance benefit obtained in the practical case than in the ideal case at the optimal squeezing
levels.While the robust estimationworst-case error is∼0.15 dB lower than the optimal estimationworst-case
error at the optimal squeezing level of−12.9 dB for the lossless case, the robust estimationworst-case
performance is∼0.26 dB better than the optimal estimationworst-case performance at the optimal squeezing
level of−4.1 dB for the lossy case. That is, our estimator, whichwas designed to be robust to uncertainty in the
resonant frequencyωr, is also robust, relative to the optimal estimator, against the overall loss lsq, arising from
imperfect detectors, the optical parametric oscillator andmodulators.

Finally, we plot theworst-case errors of the estimators against the photon flux 2α∣ ∣ infigure 7.Here, at each
value of 2α∣ ∣ , the squeezing level has been optimized to yield the least worst-case robust estimation error. One
can choose to optimize the squeezing level on a different basis as well. Interestingly, not only do the two errors
scale differently with the photon flux, but also note there exists an optimumphotonflux, and therefore an
optimumphoton number, for which the robust estimator provides the best worst-case performance compared
to the optimal estimator. This is quite significant, given how important the achievable precision for available
finite quantum resources is in practice.

6. Conclusion

Thiswork considered robust quantumphase estimationwith explicitlymodelled uncertainty introduced in the
underlying system in a systematic state-space settingwithin themodern control theory paradigm. In particular,
we constructed a robustfixed-interval smoother for continuous phase estimation of a squeezed state of light
with uncertainty considered in the phase noise.We illustrated that our robust estimator provides guaranteed
worst-case performance as desired.We showed that theworst-case performance of our robust estimator with
respect to the optimal estimator improves with greater resonance in the phase noise.Moreover, we found that
robustness ismore useful for practical lossy squeezed beams, when compared to pure squeezed beams, ideally
limited byHeisenberg’s uncertainty principle. In addition, we saw that there is an optimal photon number for
which the performance of the robust estimator relative to the optimal estimator is the best. These results
demonstrate the significant impact that the rich theory of classical robust estimation can have on improving
quantumparameter estimation. They can pave theway for tackling practical challenges owing to unavoidable
parametric uncertainties facing quantumparameter estimation.
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Figure 7.Resonant noise: comparison ofworst-case error covariances as a function of photon flux.Here, ( )w
2σ α is theworst-case

smoother error covariance of the optimal and robust estimators plotted as a function of the photon flux varying from 4 104× to
10 s6 1− .
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AppendixA. Kalmanfiltering and optimal smoothing theory

Wefirst outline here the continuous-time formulation of theKalmanfilter, called theKalman–Bucyfilter. Then
we outline the optimal two-filter smoothing theory, as discussed in [37], but using our notation.

A.1. Kalmanfilter
The process andmeasurementmodels are assumed to be of the form:

x Ax Bv
y Cx Dw

: ˙ ,
: , (A.1)

Process model
Measurement model

= +
= +

where

E v t v r N t r

E w t w r S t r

E v t w r

( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) 0. (A.2)

T

T

T

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

δ

δ

= −

= −

=

Here, the noises v(t) andw(t) are assumed to be vector white-noise processes with zero cross-correlation. Also, x
(t) is the state of the process to be estimated and y(t) is themeasurement output. Note that thematricesA,B,C
andDmay be time-varying.

Then, the error-covariancematrix P of theKalmanfilter is the stabilizing solution of the followingmatrix
differential Riccati equation:

( )P AP PA PC DSD CP BNB P P˙ , (0) , (A.3)T T T T1
0= + − + =

−

where P0 is the initial error-covariance.
In the steady-state case, the Riccati equation to be solved to construct the Kalman filter is the following

algebraicRiccati equation:

( )AP PA PC DSD CP BNB 0. (A.4)T T T T1
+ − + =

−

Note that the above Riccati equation is quadratic inP.
The gain of theKalmanfilter, called theKalman gain, is then given as:

( )K PC DSD . (A.5)g
T T 1

=
−

The continuous Kalmanfilter equation is given as:

x Ax K y Cx x xˆ̇ ˆ ( ˆ), ˆ (0) , (A.6)g 0= + − =

where x̂ is the desired estimate of the state x and x0 is the initial state estimate.

A.2.Optimal smoother
The two-filter smoother, as its name suggests, consists of two differentfilters, one forward-time, and one
backward-time, whose estimates are combined to yield a final smoothed estimate [37].

Let us assume that data is available over afixed time-interval [0, ]τ , andwe desire an optimal smoothed
estimate x tˆ ( )s ′ at a point t0 τ< ′ < . The forward-time variables will be denotedwith subscripts, such as x̂ f ,

and backward-time variables with subscripts, such as x̂b. The process andmeasurementmodels for the forward-
time filter would be:

x Ax Bv
y Cx Dw
˙ ,

, (A.7)
= +
= +

where (A.2) holds. The time variable in this case is t, running forward in time.
Then, the steady-state Riccati equation to be solved for the forward filter is:

( )AP P A P C DSD CP BNB 0. (A.8)f f
T

f
T T

f
T1

+ − + =
−

Also thefilter equation is given as:

( )x Ax K y Cx xˆ̇ ˆ ˆ , ˆ (0) 0. (A.9)f f f f f= + − =
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Here, the forwardKalman gain is:

( )K P C DSD . (A.10)f f
T T 1

=
−

For the backwardfilter, it is convenient to define a new running time variable q that proceeds backward in
time.Note that q=0 corresponds to t= τ. The backward processmodel is then obtained by replacing the time
derivative in the above processmodel with qd d− :

x

q
Ax Bv

d

d
. (A.11)= − −

TheRiccati and filter equationsmay then be obtained by replacingA andB in the corresponding equations
for the forwardfilter with A− and B− , respectively.

The backward filter steady-state Riccati equation is:

( )AP P A P C DSD CP BNB 0. (A.12)b b
T

b
T T

b
T1

− − − + =
−

The backward filter equation is:

x

q
Ax K y Cx

d ˆ

d
ˆ ( ˆ ). (A.13)b

b b b= − + −

Here, the backwardKalman gain is:

( )K P C DSD . (A.14)b b
T T 1

=
−

The smoothing error-covariance is then computed as:

( )P t P P( ) . (A.15)s f b
1 1 1′ = +− − −

The equation for the smoothed estimate is then:

x t P t P x P xˆ ( ) ( ) ˆ ˆ . (A.16)s s f f b b
1 1⎡⎣ ⎤⎦′ = ′ +− −

Appendix B. Robustfixed-interval smoothing theory

Weoutline here the robustfixed-interval smoothing theory from [31], but using our notation. Consider an
uncertain systemdescribed by the state equations

x t A B t K x t B v t B B t G u t

y t C t K x t w t t Gu t

˙ ( ) [ ( ) ] ( ) ( ) [ ( ) ] ( ),

( ) [ ( ) ] ( ) ( ) ( ) ( ), (B.1)
1 1 1 2 1 1

2 2

Δ Δ
Δ Δ

= + + + +
= + + +

where x(t) is the state, y(t) is themeasured output, u(t) is a known input, v(t) andw(t) are noises.
A B B K G, , , ,1 2 andC arematrices. Furthermore, t( )1Δ and t( )2Δ are uncertaintymatrices satisfying

t Q t R( ) ( ) 1 (B.2)T T
1 2

1
2

1
2

⎡⎣ ⎤⎦Δ Δ ⩽

for all t, where Q Q 0T= > and R R 0T= > areweightingmatrices. Then, for a given finite time-interval [0, ]τ
and a given suitable constant d 01 > , we require the noises to satisfy the inequality

( )v t Qv t w t Rw t t d( ) ( ) ( ) ( ) d . (B.3)T T

0
1∫ + ⩽

τ

Let X X 0T
0 0= > be a givenmatrix, x0 be a given real vector, d 02 > be a given suitable constant. Then, we

assume the initial conditions x(0) satisfy the inequality

x x X x x d( (0) ) ( (0) ) . (B.4)T
0 0 0 2− − ⩽

This uncertain system is a special case of the uncertain system considered in equation (3.19) of [31] of the
following form:

x t Ax t B v t B u t

y t Cx t w t

z t Kx t Gu t

˙ ( ) ( ) ˜( ) ( ),

( ) ( ) ˜( ),

( ) ( ) ( ), (B.5)

1 2= + +
= +
= +

where the output z(t) defines the structure of the uncertainty in the uncertain systemmodel, and the quantities
v t(̃ ) and w t˜( ) are given by
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v t t z t v t

w t t z t w t

˜( ) ( ) ( ) ( ),

˜( ) ( ) ( ) ( ). (B.6)
1

2

Δ
Δ

= +
= +

Then, (B.1) is obtained by substituting (B.6) into (B.5).

Let us consider weightingmatrices Q Q˜ ˜ 0T= > and R R˜ ˜ 0T= > . Then, using (B.6), we have:

v t Qv t z t t Q t z t z t t Qv t

v t Q t z t v t Qv t

w t Rw t z t t R t z t z t t Rw t

w t R t z t w t Rw t

˜( ) ˜ ˜( ) ( ) ( ) ˜ ( ) ( ) ( ) ( ) ˜ ( )

( ) ˜ ( ) ( ) ( ) ˜ ( ),

˜( ) ˜ ˜( ) ( ) ( ) ˜ ( ) ( ) ( ) ( ) ˜ ( )

( ) ˜ ( ) ( ) ( ) ˜ ( ). (B.7)

T T T T T

T T

T T T T T

T T

1 1 1

1

2 2 2

2

Δ Δ Δ

Δ

Δ Δ Δ

Δ

= +
+ +

= +
+ +

Also, for a given constant 0ϵ > , the following holds, since Q̃ 0> :

t z t v t Q t z t v t( ) ( )
1

( ) ˜ ( ) ( )
1

( ) 0. (B.8)
T

1 1⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ϵΔ

ϵ
ϵΔ

ϵ
− − ⩾

This implies

z t t Qv t v t Q t z t z t t Q t z t

v t Qv t

( ) ( ) ˜ ( ) ( ) ˜ ( ) ( ) ( ) ( ) ˜ ( ) ( )

1
( ) ˜ ( ). (B.9)

T T T T T

T

1 1
2

1 1

2

Δ Δ ϵ Δ Δ

ϵ

+ ⩽

+

Similarly, since R̃ 0> , we have

t z t w t R t z t w t( ) ( )
1

( ) ˜ ( ) ( )
1

( ) 0. (B.10)
T

2 2⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ϵΔ

ϵ
ϵΔ

ϵ
− − ⩾

This implies

z t t Rw t w t R t z t z t t R t z t

w t Rw t

( ) ( ) ˜ ( ) ( ) ˜ ( ) ( ) ( ) ( ) ˜ ( ) ( )

1
( ) ˜ ( ). (B.11)

T T T T T

T

2 2
2

2 2

2

Δ Δ ϵ Δ Δ

ϵ

+ ⩽

+

Then, it follows from (B.7), (B.9), and (B.11) that:

v t Qv t w t Rw t z t t Q t z t

z t t R t z t

v t Qv t w t Rw t

˜( ) ˜ ˜( ) ˜( ) ˜ ˜( ) ( 1 ) ( ) ( ) ˜ ( ) ( )

( 1 ) ( ) ( ) ˜ ( ) ( )

1
1

( ) ˜ ( ) 1
1

( ) ˜ ( ). (B.12)

T T T T

T T

T T

2
1 1

2
2 2

2 2
⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

ϵ Δ Δ

ϵ Δ Δ

ϵ ϵ

+ ⩽ +
+ +

+ + + +

Now,we let

Q Q

R R

˜ 1

1
0,

˜ 1

1
0. (B.13)

2

2

ϵ

ϵ

=
+

>

=
+

>

Since 0ϵ > can be chosen to be arbitrarily small, then Q̃ and R̃ will be arbitrarily close toQ andR,
respectively.

Thus, using (B.13) and (B.2) in (B.12) and integrating, we get

( )

( )

v t Qv t w t Rw t t z z t

v t Qv t w t Rw t t

z t t d

˜( ) ˜ ˜( ) ˜( ) ˜ ˜( ) d d

1

1
( ) ( ) ( ) ( ) d

( ) d , (B.14)

T T T

T T

0 0

1

2 0

0

2
1

1

1
1

2

2

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

∫ ∫

∫

∫

ϵ

+ ⩽

+
+

+
+

⩽ ∥ ∥ +

τ τ

ϵ
τ

τ
ϵ
ϵ

+

+

wherewe have used (B.3).
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Wenow let

d d d
1

1
0 (B.15)

1

2 1 2
2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ϵ

=
+

+
+ >ϵ

Then, it follows from (B.4), (B.14) and (B.15) that the following integral quadratic constraint (IQC) is
satisfied by the uncertainty in the system (B.5):

( )x x X x x v t Qv t w t Rw t t d z t t( (0) ) ( (0) ) ˜( ) ˜ ˜( ) ˜( ) ˜ ˜( ) d ( ) d , (B.16)T T T
0 0 0

0 0

2∫ ∫− − + + ⩽ + ∥ ∥
τ τ

which corresponds to equation (3.20) in [31].
Asmentioned above, Q̃ and R̃ can be chosen to be arbitrarily close toQ andR, respectively. For simplicity, in

the sequel, wewill take Q Q˜ = and R R˜ = .
A steady-state solution to the robustfixed-interval smoothing problem for this uncertain system involves the

algebraic Riccati equations:

XA A X XB Q B X K K C RC 0, (B.17)T T T T
1

1
1+ + + − =−

YA A Y YB Q B Y K K C RC 0. (B.18)T T T T
1

1
1+ − − + =−

It will also include a solution to the differential equations:

t A B Q B X t C Ry t K G XB u t X x˙ ( ) ( ) ( ) ( ); (0) (B.19)T T T T
1

1
1 0 2 0 0 0

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦η η η= − + + + + =−

for t q[0, ]τ∈ − and

t A B Q B Y t C Ry t YB K G u t˙ ( ) ( ) ( ) ( ); ( ) 0 (B.20)T T T T
1

1
1 0 2 0

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ξ ξ ξ τ− = − + − − =−

for t q[ , ]τ τ∈ − . Here, y t y t( ) ( )0= is a fixedmeasured output of the uncertain system (B.5), defined on the
time interval [0, ]τ , and u t u t( ) ( )0= is afixedmeasured input to the uncertain systemdefined on the same time
interval.

Note that the formof (B.20)we are interested in is with respect to the running time variable q that proceeds
backward in time:

q A B Q B Y q C Ry q YB K G u q˙ ( ) ( ) ( ) ( ); (0) 0 (B.21)T T T T
1

1
1 0 2 0

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ξ ξ ξ= − + − − =−

for q t[0, ]τ∈ − .

Theorem1. (See theorem 5.1 in [31]) Assume that (B.17) has a solution such that X 0> and (B.18) has a solution
such that Y 0> . Then, the set X x u y d[ , ( · ) , ( · ) , ]q 0 0 0 0 0∣ ∣τ

τ τ
− of all possible states x q( )τ − at time qτ − for the

uncertain system (B.5), where (B.16) is satisfied, is bounded and is given by:

{
}

X x u y d x x Xx x q h

x Yx x q s d

, ( · ) , ( · ) , : 2 ( )

2 ( ) , (B.22)

q q q
T

q q
T

q

q
T

q q
T

q

0 0
0 0 0

⎡⎣ ⎤⎦ η τ

ξ τ

= − − +

+ − − + ⩽

τ
τ τ

τ τ τ τ τ

τ τ τ τ

− − − − − −

− − − −

where t( )η and t( )ξ are solutions to (B.19) and (B.20) and

{
}

{

}

h x X x y t Ry t u t G Gu t

t B Q B t u t B t t

s y t Ry t u t G Gu t

t B Q B t u t B t t

( ) ( ) ( ) ( )

( ) ( ) 2 ( ) ( ) d ,

( ) ( ) ( ) ( )

( ) ( ) 2 ( ) ( ) d . (B.23)

q
T

q
T T T

T T T

q
q

T T T

T T T

0 0 0
0

0 0 0 0

1
1

1 0 2

0 0 0 0

1
1

1 0 2

∫

∫
η η η

ξ ξ ξ

= + −

− +

= −

− −

τ
τ

τ
τ

τ

−
−

−

−
−

−

Clearly, the set of all possible states in (B.22) is an ellipsoid, and the best estimate of the state is chosen as the
centre of the ellipsoid.

Remark. In the above, Q̃ and R̃ have been chosen to be arbitrarily close toQ andR, respectively, which
corresponds to small ϵ. In the limit 0ϵ → , d in (B.15), and therefore in (B.16), approaches infinity. However, in
practice therewill be a trade-off between how close Q̃ and R̃ are toQ andR, respectively, and how large is d. The
proposed theory is perfectly valid forfinite values of d in the IQCof (B.16), and it is never intended that the limit
as d approaches infinity should be considered.
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Increasing the value of d increases the diameter of the state estimation ellipse. However, the centre of the
ellipse and hence the robust estimate is independent of d. Hence, in examples such as the one considered in this
paper, inwhichwe are only interested in the robust estimator (whose performance is validated via othermeans)
and not the estimation ellipse, it would not be a problem if the value of d chosen is very large (butfinite).

AppendixC. SQL for resonant noise

The SQL is set by theminimumerror in phase estimation that can be obtained using a perfect heterodyne
schemewith a coherent beam [32, 36].We use the fact that the heterodyne scheme ofmeasurement is, in
principle, equivalent to, and incurs the same noise penalty as the dual-homodyne scheme [8], such as in the
schematic depicted infigure C1 . A coherent signal at the input is phase-modulated using an electro-optic
modulator that is driven by the resonant noise source. Themodulated signal is then split using a 50–50
beamsplitter into two arms eachwith a homodyne detector (HD1 andHD2, respectively, with the local oscillator
phase ofHD1 2π out of phasewith that ofHD2). The ratio of the output signals of the two arms goes to an
arctan block. The output of the arctan block is fed to an optimal Kalman filter, that yields the phase estimatewith
theminimumestimation error.

The output signals of the two arms are [32, 36]:

( )

( )

I

I

1

2
2 sin ,

1

2
2 cos , (C.1)

1 1 2

2 3 4

α ϕ ν ν

α ϕ ν ν

= + +

= + −

where 1ν and 3ν aremeasurement noises of the twohomodyne detectors, respectively, and 2ν and 4ν are the
noises arising from the vacuumentering the empty port of the input beamsplitter corresponding to the two
arms, respectively. All these noises are assumed to be zero-meanwhiteGaussian noises.

The output of the arctan block is [32, 36]:

arctan
2 sin

2 cos
. (C.2)1 2

3 4

⎛
⎝⎜

⎞
⎠⎟ϑ

α ϕ ν ν
α ϕ ν ν

=
+ +
+ −

Assuming the input noises are small, a Taylor series expansion up tofirst-order terms of the right-hand side
yields [32, 36]:

1

2

1

2
. (C.3)1 2ϑ ϕ

α
ν

α
ν≈ + +

Expressing this equation in terms of x in (37), we get themeasurementmodel as [36]:

Cx D , (C.4)ϑ ν= +

where C 1 0⎡⎣ ⎤⎦= , D
1

2

1

2
⎡⎣ ⎤⎦= α α∣ ∣ ∣ ∣ and

1

2

⎡
⎣⎢

⎤
⎦⎥ν

ν
ν= .

The error covariancematrix of the optimal steady-state Kalman filter for the process given by (37) and the
measurement given by (C.4)may be obtained by solving an algebraic Riccati equation of the form (A.4) for P.
The error covariance of interest (i.e. that in estimatingϕ) is then P (1, 1)2σ = .

FigureC1. Schematic diagramof optimal dual-homodyne phase estimation.
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