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Abstract. A quantitative analysis is conducted on the impacts of experimental
imperfections in the input state, the detector properties, and their interactions
on photon-subtracted squeezed vacuum states in terms of a quantum non-
Gaussian character witness and Wigner function. Limitations of the non-
classicality and quantum non-Gaussian characteristic of Schrödinger kitten
states are identified and addressed. The detrimental effects of a photon-number
detector on the generation of odd Schrödinger kitten states at near-infrared
wavelengths (∼860 nm) and telecommunication wavelengths (∼1550 nm) are
presented and analysed. This analysis demonstrates that the high dark
count probability of telecommunication-wavelength photon-number detectors
significantly undermines the negativity of the Wigner function in Schrödinger
kitten state generation experiments. For a one-photon-subtracted squeezed
vacuum state at ∼1550 nm, an avalanche photodiode-based photon-number-
resolving detector provides no significant advantage over a non-photon-number-
resolving detector when imperfections, such as dark count probability and
inefficiency, are taken into account.
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1. Introduction

Non-Gaussian operations on states have attracted intense interest in quantum continuous
variable information processing as they provide significant advantages for universal quantum
computing [1], quantum teleportation [2], entanglement distillation [3, 4], high-precision
measurement [5] and proposed loophole-free tests of Bell’s inequalities [6]. Nowadays, two
main categories of non-Gaussian and non-classical optical quantum states with negative-valued
Wigner functions, such as Fock states [7–9] and photon-subtracted squeezed states [10–13],
have been experimentally generated based on parametric down-conversion (PDC) in nonlinear
crystals followed by photon number detection. In contrast to non-degenerate PDC for Fock
state generation, degenerate PDC is used to generate photon-subtracted squeezed states. A small
fraction of the squeezed vacuum beam is tapped off via a beam splitter and guided into a photon-
number detector. The tapped-off light is used as a trigger to condition the remaining beam into
a photon-subtracted squeezed vacuum state [11]. The projected state is referred to as an optical
‘Schrödinger kitten’ as it closely approximates an optical Schrödinger cat state with a small
amplitude [10, 11].

Photon-subtracted squeezed vacuum states with negative Wigner functions have been
successfully demonstrated using Ti:sapphire lasers at wavelengths around 860 nm and nonlinear
crystals such as potassium niobate (KNbO3) and periodically poled KTiOPO4 [10–13].
However, to our knowledge, a negative-valued Wigner function for Schrödinger kitten states
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at telecommunication wavelengths ∼1550 nm is yet to be experimentally demonstrated [14].
We hypothesize that the principal difference in Schrödinger kitten states generation between
860 and 1550 nm lies in the performance of photon-number detectors used in state
preparation, which may undermine the negativity of the Wigner functions. Non-Gaussian
states at telecommunication wavelengths are indispensable for secure optical quantum
telecommunication due to their low loss in optical fibres. Therefore, it is imperative to develop
a model to analyse the properties of Schrödinger kitten states, and improve the experimental
design based on the theory.

Historically, negativity in the Wigner function has been the standard criterion to identify
whether a state generated from an experiment is non-classical [15, 16]. However, the negative
Wigner function of a quantum state generated from an experiment easily degrades and becomes
positive since the quantum state is fragile to any loss before it arrives at the verifying detector.
Therefore, it is not suitable to solely rely on this criterion to characterize the non-classicality. To
resolve this conflict, Jezek et al [17, 18] proposed a quantum non-Gaussian character witness to
verify states with positive Wigner functions that cannot be prepared by merely using Gaussian
states and operations.

Dakna et al proposed the concept of ‘conditional measurement’ based on a lossless beam
splitter to generate a Schrödinger kitten state by subtracting photons from a squeezed vacuum
state. They developed a model by taking the squeezing level, beam splitter transmission, photon-
number detector inefficiency and non-photon-number-resolving ability into account [19, 20].
The impacts of these factors on the Wigner function and non-classicality of a state were
investigated by Olivares et al [21]. Kim et al [22] analysed the necessary conditions to obtain
a negative Wigner function for a realistic case including the input as a mixed state, threshold
detection, inefficient homodyne detection and mode purity in the subtraction path. The dark
count influence of an on–off photon-number detector on the Wigner function of a Schrödinger
kitten state was considered by Suzuki et al [23], and all of these imperfections were incorporated
into a model developed by Gerrits et al [13]. However, a quantitative analysis has not been
conducted of the impact all these experimental imperfections have on the negativity of the
Wigner function and on the quantum non-Gaussian character witness of Schrödinger kittens.
Particularly, a thorough comparison between kitten state generation at ∼860 nm and generation
at ∼1550 nm is yet to be explored.

In this paper, we quantitatively analyse the impacts of experimental parameters involving
the impurity of the input state, inefficiency of the photon-number detector, dark count
probability, non-photon-number-resolving ability, mode purity and the homodyne detector
inefficiency on Schrödinger kittens generation in terms of the quantum non-Gaussian
character witness proposed in [17, 18] and the Wigner function value at the origin, W (0, 0).
The comparisons between Schrödinger kittens at near-infrared wavelengths (∼860 nm) and
telecommunication wavelengths (∼1550 nm) are discussed, and principal limitations of state
generation at telecommunication wavelengths are identified.

The paper is organized as follows. In section 2, a Schrödinger kitten state model is
derived covering all possible experimental imperfections based on conditional measurement.
In section 3, the quantum non-Gaussian character witness introduced in [17, 18] is described.
In section 4, we present the physical mechanism for each experimental imperfection and
quantitatively analyse the effects of these on Schrödinger kitten state features. Concluding
remarks are given in section 5.
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Figure 1. Theoretical model for Schrödinger kitten state generation with
experimental imperfections. ρin21 = ρt1, r1: reflectivity of BS1; t1: tansmission
of BS1; r2: reflectivity of PBS; ρin11: input state density matrix of BS1; ρt1:
transmission state density matrix of BS1; ρr1: reflected state density matrix of
BS1; ρin21: input state density matrix of PBS; ρout21: output state density matrix of
PBS; ηHD: homodyne detection efficiency; BS1: beam splitter for modelling the
impurity of the squeezed vacuum state; HWP: half-wave plate; PBS: polarization
beam splitter; PND: photon-number detector; Vac: Vacuum state; BS2: beam
splitter for modelling the inefficiency of the homodyne detector. The HWP and
the PBS comprise a ‘magic’ reflector.

2. Schrödinger kitten state generation based on conditional measurement

A schematic diagram of a theoretical model for Schrödinger kitten state generation with
experimental imperfections is shown in figure 1 [13]. The model includes three parts: input
state, photon subtraction and state characterization. The photon subtraction unit is composed
of a ‘magic’ reflector that is arbitrarily tuneable via a half-wave plate and a polarization
beam splitter [11, 13]. Ideally, when an even (odd) number of photons is subtracted from
a pure squeezed vacuum state, an even (odd) kitten with a negative Wigner function can
be obtained. However, numerous factors can undermine the ability of such an experiment
to produce a Wigner function with negativity. These factors include optical elements related
to the experiment, such as the impurity of the input squeezed vacuum state, mode impurity
before the photon-number detector and inefficiency of the homodyne detector used to
characterize the quantum state. Imperfections in the photon-number detector can further
degrade the prepared state. These imperfections involve a high dark count probability, low
quantum efficiency and the non-photon-number-resolving ability of some detectors. Therefore,
a quantitative analysis of all these imperfections can shed light on the practical generation
of Schrödinger kitten states, particularly with regards to experiments at telecommunication
wavelengths.

2.1. Impure input state

PDC based on a second-order nonlinear process in nonlinear materials is an effective approach
to generate squeezed vacuum states. Ideally, a squeezed vacuum state consists of a photon
number distribution with only even photon numbers. Impurity in the state contaminates the
photon number distribution with odd photon number probabilities. This impurity can be
equivalent to loss in a pure squeezed vacuum state, and can be described as a pure squeezed
vacuum state followed by a beam splitter as shown in figure 1.
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A pure squeezed vacuum state with a squeezing angle of zero degree can be expressed
as [24]:

Ŝ(ξ)|0〉 =

∞∑
n=0

α2n|2n〉, (1)

where

α2n =
1

√
cosh ξ

√
(2n)!(− tanh ξ)n

2nn!
. (2)

The input state to BS1 is written as

|9in1〉 = Ŝ(ξ)|0〉in11|0〉1u. (3)

We have an output state as

|9out11〉 = Û |9in1〉

=

∞∑
n=0

α2n
â+2n

in11
√

(2n)!
(
√

r1̂a+
r1 +

√
t1̂a+

t1)
2n

|0〉r1|0〉t1

=

∞∑
n=0

2n∑
k=0

α2n

√
(2n)!

k!(2n − k)!
r

k
2

1 t
2n−k

2
1 |k〉r1|2n − k〉t1, (4)

where Û is the unitary operator of the beam splitter.
The transmitted density matrix after BS1 (i.e. the impure squeezed vacuum state) can be

obtained by tracing the output density matrix over r1 [25],

ρ̂t1 = Trr1 [̂ρout1]

=

∞∑
n,b=0

2 min(n,b)∑
k=0

√
(2n)!(2b)!

(2n − k)!(2b − k)!

α2nα2br k
1 tn+b−k

1

k!
|2n − k〉〈2b − k|, (5)

where

ρ̂out11 = |9out11〉〈9out11|. (6)

2.2. Conditional measurement based on a lossless beam splitter

According to the conditional beam splitter operator in [20], we have

|8〉out21 =
Ŷ |8in21〉

‖Ŷ |8in21〉‖
, (7)

where ‖‖ denotes the magnitude of a state vector and the non-unitary beam splitter operator is

Ŷ = 〈8out22|Û |8in22〉

=
t

n̂1
2

2 t
m
2

2 (−r∗

2 )m (̂a21)
m

√
m!

, (8)
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thus

ρ̂out21(m) = |8out21〉〈8out21|

=

tm
2

m! |r2|
2mt

n̂1
2

2 âm
21ρ̂in21̂a+m

21 t
n̂1
2

2

Tr[ tm
2

m! |r2|
2mt

n̂1
2

2 âm
21ρ̂in21̂a+m

21 t
n̂1
2

2 ]
, (9)

where ρ̂in21 = ρ̂t1 as shown in figure 1 and expressed in (5), and Tr[ ] denotes the trace of a
matrix.

2.3. Schrödinger kitten state prepared with an ideal photon-number-resolving detector

In the case of an ideal photon-number-resolving detector (PNRD) (i.e. no dark counts and the
quantum efficiency is 100%), we can obtain the projected state density matrix by substituting (5)
into (9),

ρ̂out21(m) =
ρPNRD(m)

Tr[ρPNRD(m)]
, (10)

where

ρPNRD(m) =

∞∑
n=0

∞∑
b=0

2 min(n,b)−m∑
k=0

α2nα2br k
1rm

2 (t1t2)
n+b−k

m!k!

×

√
(2n)!(2b)!

(2n − k − m)!(2b − k − m)!
|2n − k − m〉〈2b − k − m|. (11)

However, an ideal PNRD is unavailable in practical experiments. Avalanche photodiodes
(APDs) are usually used as photon-number detectors, where Si-APDs and InGaAs-APDs
are used to detect near-infrared wavelengths (∼860 nm) and telecommunication wavelengths
(∼1550 nm), respectively. Therefore, it is imperative to consider all possible imperfections of
the photon-number detector, including the dark count probability, quantum efficiency and the
non-photon-number-resolving ability, and implement a quantitative analysis on the impact of all
these experimental imperfections on the resultant quantum state.

2.4. Schrödinger kitten state prepared with an imperfect photon-number detector

2.4.1. Dark count probability and quantum efficiency. On the one hand, the existence of dark
counts causes ‘false’ clicks even if a photon is not actually subtracted. On the other hand,
some actual clicks are missed due to the inefficiency of the detector. Therefore, m-click events
may originate from m − 1, m − 2, . . . , 0 or m + 1, m + 2, . . . , actual photons being subtracted.
Consequently, the conditional state is a statistical mixture, which can be expressed as [13, 19]

ρ̂IMPNRD(m) =

∞∑
k=0

Q(k|m )̂ρout1(k), (12)

where Q(k|m) is defined as the conditioned probability, with which m photons would have been
subtracted, given that k photons are actually detected by the imperfect detector. According to
the Bayes rule, we can obtain the conditional probability

Q(k|m) =
P(m|k)S(k)

P(m)
, (13)
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where

S(k) =

∞∑
n=k

∞∑
l=0

∞∑
b=0

2 min(l,b)∑
s=0

α2nα2br s
1 t l+b−s

1 r k
2 tn−k

2

√
(2l)!(2b)!

(2l − s)!(2b − s)!

×
n!

k!s!(n − k)!
〈n|2l − s〉〈2b − s|n〉 (14)

is the probability of k photons being subtracted, which is calculated based on [27].

P(m|k) =

m∑
d=0

e−Pdc
(Pdc)

d

d!

k!ηm−d
APD (1 − ηAPD)k−m+d

(m − d)!(k − m + d)!
, (15)

where Pdc and ηAPD are the dark count probability and quantum efficiency of the detector,
respectively [26].

2.4.2. Non-photon-number-resolving ability. Most photon-number detectors used in experi-
ments so far are on–off or non-photon-number-resolving detectors (NPNRDs) without the ca-
pability to distinguish the specific number of detected photons. Different from PNRD, NPNRD
accepts k clicks even though the actual number of clicks can be larger than k. Thus we have [13]

ρ̂IMNPNRD(m) =

∞∑
k=m

Q(k )̂ρoutIMPNRD(k)∑
∞

k=m Q(k)
. (16)

2.5. Mode purity of subtracted photons

Mode purity, s ′, is defined as the probability that the photons detected by the photon-number
detector are mode matched to the local oscillator (LO) used in the kitten state characterization
via homodyne detection. As it is quite difficult to obtain perfect mode purity, the detected density
matrix of a projected state would be a mixed state consisting of the actual projected state and
the unprojected state (i.e. the input state with loss). Therefore, we have [22, 28]

ρ̂detect = s ′
∗ ρ̂projected + (1 − s ′) ∗ ρ̂input with loss. (17)

2.6. Schrödinger kitten state characterized by an inefficient homodyne detector

Homodyne detection is a typical approach used to characterize the projected state. The
homodyne detector efficiency is calculated as [11–13]

ηHD = ηQE ∗ ηt ∗ ζ 2, (18)

where ηQE is the quantum efficiency of the two photodiodes in the homodyne detector, ηt

is the transmission coefficient from the ‘magic’ reflector to the homodyne detector and ζ is
the visibility of interference fringes between the signal and LO, denoting the degree of mode
matching. Therefore, the total efficiency, ηHD, quantifies various categories of loss. As shown in
figure 1, the homodyne detection inefficiency can be simulated by a lossless beam splitter before
a perfect homodyne detector, and the density matrix measured with an inefficient homodyne
detector is given by [29]

〈l |̂ρdetect(ηHD)|n〉 =

∞∑
k=0

Bl+k,l(η)Bn+k,n(η)〈l + k |̂ρdetect|n + k〉 (19)
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in terms of the initial field density matrix ρ̂detect, where

Bl+k,l(η) =

√
(l + k)!

k!l!
ηl

HD(1 − ηHD)k. (20)

3. Character witness to identify the quantum non-Gaussian state and non-classical state

Up until very recently, negativity in the Wigner function has been widely used as the criterion
to identify the non-classicality of a state [15]. However, for some non-classical quantum states,
such as squeezed vacuum states, this criterion does not work because they possess positive
Wigner functions. In addition, some heralded quantum states have positive Wigner functions
that could not be prepared from Gaussian states and linear optical devices. Therefore, Jezek
et al [17, 18] proposed a non-classical and a quantum non-Gaussian witness. States beyond a
convex set of stochastic mixture of coherent states are defined as non-classical states. Similarly,
quantum non-Gaussian states are referred to as states beyond a convex set of stochastic mixture
of Gaussian states [17, 18].

The quantum non-Gaussian character witness is based on Fock state basis, and is
introduced as a linear combination of zero photon probability, p0, and one photon probability,
p1, in the Fock state basis density matrix [17, 18],

W (a) = ap0 + p1, (21)

where

p0 =
e−er sinh r

cosh r
, (22)

p1 =
e4r

− 1

4

e−er sinh r

cosh r 3
, (23)

a ∈ [0, 1] is a dimensionless number and r ∈ [0, ∞) is the squeezing parameter. A quantum
Gaussian boundary, WG(a), is defined as the maximum value of W (a) over a and r. The
quantum Gaussian character witness value is defined as W (a) − WG(a). If this witness value
is larger than 0, then the state is a quantum non-Gaussian state. For quantum states related to
squeezed states, such as squeezed single photon states or Schrödinger kitten states from photon-
subtracted squeezed states, the quantum non-Gaussian character witness is generalized by an
anti-squeezing operation [18]

W (a, s) = ap0(s) + p1(s), (24)

where

pn(s) = 〈n|S+(s )̂ρS(s)|n〉. (25)

S+ and S are the anti-squeezing and squeezing operators, respectively, and ρ̂ corresponds
to the density matrix of the state in the Fock state basis. The quantum non-Gaussian character
witness value is defined as W (a, s) − WG(a) in the following sections.

Equivalently, a classical boundary is defined as the maximum value of

Wcl(a) = ap0 + p1 (26)
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over a, where

p0 = e−n, (27)

p1 = ne−n, (28)

and n ∈ [0, ∞] is the mean photon number.
Therefore, it is easy to identify the quantum non-Gaussian or non-classical characteristic

of a state via its density matrix.

4. Quantitative analysis on impact of experimental imperfections on Schrödinger kitten
state generation

4.1. Estimation of pure input state level and input state impurity

Generally, squeezing value is referred to as the noise variance of a squeezed state, which is
related to the degree of squeezing ξ in (1) by

Vsqz = cosh (2ξ) − sinh (2ξ) (29)

for a squeezed state with a squeezing angle of zero degree. Here, we define the squeezing level
as the base 10 logarithm of squeezing (i.e. the noise variance in dB).

The variance of a pure squeezed state, V0, and the impurity, r1, are experimentally
determined by the measured squeezing, Vsqz, anti-squeezing, Va-sqz, and the corresponding
homodyne detector efficiency, ηHD [13],

V0 =
1 − Vsqz

Va-sqz − 1
, (30)

r1 =
ηHD(2 − Vsqz − Va-sqz) − (1 − Vsqz)(1 − Va-sqz)

(2 − Vsqz − V a-sqz)ηHD
. (31)

A typical squeezed vacuum state after the ‘magic’ reflector in a Schrödinger kitten state
generation experiment, as shown in figure 1, can be obtained with r2 = 0.08, squeezing of
Vsqz = 0.661 (−1.8 dB), anti-squeezing of Va-sqz = 1.995 (+3 dB) and a homodyne detection
efficiency of ηHD = 68%. According to (30) and (31), the corresponding pure squeezing and
impurity are V0 = 0.341 (−4.67 dB) and rtotal = 0.2438 (rtotal is the total impurity caused by
r1 and r2), respectively. By taking r2 into account, we actually have r1 = 0.1771.

4.2. Quantum non-Gaussian character witness for an impure squeezed state and a Schrödinger
kitten state

Based on the model developed in section 2, a one-photon-subtracted impure squeezed vacuum
state (V0 = −4.67 dB and impurity of r1 = 0.1771 ) prepared with r2 = 0.08, a NPNRD with
Pdc = 1 × 10−4 and ηAPD = 5% was constructed.

The photon number distribution and Wigner function of the impure squeezed vacuum state
and the projected state are shown in figures 2 and 3. We can see that both states possess positive
Wigner functions at the origin. However, the projected state is clearly a non-Gaussian state.
Figure 4 shows the impure squeezed vacuum state with anti-squeezing operation. We observed
that the impure squeezed vacuum state is a non-classical but Gaussian state, as expected.
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(a) (b)

Figure 2. (a) Photon number distribution and (b) Wigner function, W (0, 0) =

0.2949, of an impure squeezed vacuum state with V0 = −4.67 dB and r1 =

0.1771.

(a) (b)

Figure 3. (a) Photon number distribution and (b) Wigner function, W (0, 0) =

0.0309, of a projected state prepared with a NPNRD and V0 = −4.67 dB, r1 =

0.1771, r2 = 0.08, Pdc = 1 × 10−4, ηAPD = 5%, ηHD = 100% and mode purity
= 1.

As indicated in figure 5(a), the one-photon projected Schrödinger kitten state
(corresponding to s = 0) is located beyond the classical state boundary but is within the
quantum Gaussian state boundary. Apparently, this indicates that the state is non-classical and
Gaussian. However, after the anti-squeezing operation, the kitten state crosses the quantum
Gaussian state boundary, which implies the quantum non-Gaussian characteristic of the kitten
state (i.e. it cannot be prepared by merely mixing Gaussian states). Moreover, the quantum
non-Gaussian character witness implies that quantum non-Gaussian states possess strong non-
classicality. Therefore, we confirm that the quantum non-Gaussian character witness proposed
in [18] demonstrates a powerful ability to identify non-classical and non-Gaussian quantum
states.

New Journal of Physics 15 (2013) 023042 (http://www.njp.org/)

http://www.njp.org/


11

0.945 0.95 0.955 0.96 0.965

0.034

0.035

0.036

0.037

p
0

p 1

 s = 0.57

 s = 0.18

Figure 4. (p0, p1) trajectory of an impure squeezed vacuum state with anti-
squeezing operation when anti-squeezing parameter s varies from 0.18 to
0.57 (black dot-dash line with circle). The dot-dashed green and solid pink
lines represent the classical boundary and the quantum Gaussian boundary,
respectively. The dashed blue line overlaps with the solid pink line and
corresponds to the physical limit, p0 + p1 = 1.
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Figure 5. Characteristic identification of the projected state. (a) (p0, p1)
trajectory of the projected state with anti-squeezing operation when anti-
squeezing parameter s varies from 0 to 1 (dot-dashed black line). The dot-
dashed green and solid pink lines represent the classical and quantum Gaussian
boundaries. The dashed blue line corresponds to the physical limit, p0 + p1 = 1.
(b) The optimal witness W (aopt, s) − WG(aopt).

4.3. Physical mechanism underpinning each experimental imperfection

The physical mechanisms underpinning experimental imperfections are summarized in table 1,
from which we can categorize the underlying impacts as: (i) stochastic mixture of an m-photon-
subtracted state with an M-photon-subtracted squeezed vacuum state, where M > m, (ii) photon
number redistribution of an ideal Schrödinger kitten state, and (iii) statistical mixture of the
projected state with unprojected states.
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Table 1. Physical mechanism underpinning experimental imperfections.

Impacts Experimental imperfections Physical mechanism

(1) APD inefficiency, ηAPD Statistically mixed m-photon-subtracted
Non-photon-number-resolving ability squeezed vacuum state with M-photon-
Squeezing level, V0 (M > m) subtracted state (i.e. m click
Reflectivity, r2, events actually result from m + 1, m + 2

. . . -photon subtraction)
(2) Input state impurity, r1 N (N > 0) photon in an ideal kitten

Homodyne detection inefficiency, ηHD state is redistributed to N − 1, N − 2,
N − 3, . . . , 0

(3) APD dark count, Pdc Statistically mixed projected state with
Mode impurity, s ′ unprojected state (i.e. m click events

may actual originate from m − 1, m − 2
. . . -photon subtraction)
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Figure 6. Photon number distribution of Schrödinger kitten states prepared with
(a) an inefficient APD, IMPNRD ηAPD = 0.5, and (b) a non-photon-number-
resolving APD, NPNRD ηAPD = 1. In both cases, other parameters are: V0 =

−4.67 dB, r1 = 0, r2 = 0.08, Pdc = 0 and mode purity = 1.

To illustrate the above statements, figure 6 shows the photon number distributions for states
prepared with (a) an IMPNRD with ηAPD = 50% and Pdc = 0, and (b) a perfect NPNRD with
ηAPD = 100% and Pdc = 0, where all other related parameters are set to be the same. The photon
number distributions are quite similar, which implies that the advantage of photon number
resolution dramatically reduces when the detection efficiency is low.

As another example, figure 7 gives the photon number distributions for Schrödinger kitten
states prepared with (a) an input squeezed vacuum state with an impurity of 0.1771 and 100%
homodyne detection efficiency, and (b) an pure input squeezed vacuum state but 80% homodyne
detection efficiency, where other related parameters are the same. The similarity in photon
number distributions indicates the equivalent quantitative effect of the input state impurity
and homodyne detection inefficiency on the projected states. Furthermore, figures 8(a) and (b)
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Figure 7. Photon number distributions of Schrödinger kitten states with
(a) an impure input state, r1 = 0.1771, ηHD = 1, and (b) inefficient homodyne
detection, r1 = 0, ηHD = 0.8. In both cases, other parameters are: V0 =

−4.67 dB, r2 = 0.08, Pdc = 0, ηAPD = 1 and mode purity = 1.
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Figure 8. Photon number distributions of Schrödinger kitten states prepared
with (a) an APD with dark counts, Pdc = 0.005, mode purity = 1, and (b) mode
impurity, Pdc = 0, mode purity = 0.85. In both cases, other parameters are:
V0 = −4.67 dB, r1 = 0.1771, r2 = 0.08, ηAPD = 1 and ηHD = 1.

verifies that a high dark count probability of an APD and mode impurity demonstrate equivalent
impact on kitten states.

4.4. Dependence of the quantum non-Gaussian character witness and Wigner function at
origin, W(0, 0), on experimental imperfections

Although superconducting transition edge sensors (TESs) with photon-number-resolving ability
are available [13, 14], commercially available APDs are still widely used as photon-number
detectors in Schrödinger kitten state generation experiments since cryogenic environments
are required for TESs. Typical dark count probabilities and detection efficiencies of
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Table 2. Comparison of Si-APDs and InGaAs-APDs performance.

Detector type Dark count probability (Pdc) Quantum efficiency (ηAPD) (%)

Si-APD (SPCM-AQR-12) 5 × 10−6 45
Si-APD (SPCM-AQR-13) 2.5 × 10−6 45
Si-APD (SPCM-AQR-14) 1 × 10−6 45
Si-APD (SPCM-AQR-15) 5 × 10−7 45
Si-APD (SPCM-AQR-16) 2.5 × 10−7 45

InGaAs-APD (id200) 1 × 10−4 10
InGaAs-APD (id220) 1 × 10−5 10
(under different settings) 2.5 × 10−5 15

5 × 10−5 20

Table 3. Typical experiment parameters used in the simulation.

Parameter Typical value

Squeezing level, V0 −4.67 dB
Input state impurity, r1 0.1771
Reflectivity, r2 0.08
Mode purity, s ′ 0.8
Homodyne detection efficiency, ηHD 85%

commercially available Si-APDs (for 860 nm from Perkin Elmer Ltd) and InGaAs-APDs (for
telecommunication wavelengths from ID Quantique Ltd) are listed in table 2. Si-APDs perform
better than InGaAs-APDS due to their lower dark count probabilities and higher detection
efficiencies. A group of typical values for other related parameters are shown in table 3. We will
focus on discussing the impact of experimental imperfections on the quantum non-Gaussian
character witness value and Wigner function of a one-photon-subtracted vacuum state prepared
with a Si-APD (SPCM-AQR-12) and an InGaAs-APD (id200).

4.4.1. Effects of squeezing level, r2, and ηAPD. Figure 9 shows the variation of the quantum
non-Gaussian character witness value and W (0, 0) for a Schrödinger kitten state with the
squeezed vacuum state level, V0 in dB, prepared with (i) a perfect PNRD, (ii) a perfect NPNRD,
(iii) an imperfect PNRD (IMPNRD) and (iv) an imperfect NPNRD (IMNPNRD). The other
parameters used in these simulations to generate figure 9 are listed in table 3. Figure 9(a)
shows that a negative Wigner function cannot be observed for a Schrödinger kitten state at
telecommunication wavelengths prepared with an imperfect photon-number detector and the
given experimental parameters. However, it is easy to obtain a quantum non-Gaussian state
once the squeezing level (i.e. the minimum noise variance) exceeds −0.8 dB. In contrast, when
the squeezing level is as small as −0.4 dB, it is possible to obtain a Schrödinger kitten state with
a negative Wigner function when prepared with a Si-APD, as shown in figure 9(b).

In addition, it can be seen that there is an optimal value for the squeezing level of the input
state to obtain maximal character witness value and minimal W (0, 0). This is because when the
squeezing level is lower than this optimal value, as shown in figure 9(a), not enough photons are
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Figure 9. Quantum non-Gaussian character witness and W (0, 0) versus input
state squeezing level, V0, for (a) an InGaAs-APD and (b) a Si-APD. Dashed
lines and solid lines represent W (a, s) − WG(a) on the left vertical axis and
W (0, 0) on the right vertical axis, respectively. Red: PNRD; green: NPNRD;
pink: IMPNRD; blue: IMNPNRD. Pink and blue lines overlapped in (a). PNRD
is a perfect photon-number-resolving detector and NPNRD is a perfect non-
photon-number-resolving detector. IMPNRD is an imperfect photon-number-
resolving detector and IMNPNRD is an imperfect non-photon-number-resolving
detector.

subtracted. Consequently, the dark counts will dominate the ‘real’ click events. For large levels
of squeezing (e.g. −6 dB), the probability of subtracting more than one photon is dramatically
increased. As a result, the one-photon subtracted squeezed vacuum state is contaminated by two
or three-photon subtracted states. Therefore, the optimization of the input squeezing level is
critical in the experiment design.

Furthermore, a perfect PNRD demonstrates a significant advantage over a perfect NPNRD
for both the Si-APD and InGaAs-APD cases. However, such an advantage of the PNRD
disappears in the case of the InGaAs-APD when imperfections, such as dark count and detection
inefficiency, are taken into account.

As both the dark count probability and detection efficiency of the InGaAs-APD are inferior
to those of the Si-APD, we investigated the impacts of squeezing level for InGaAs-APDs with
different detection efficiencies and dark count probabilities (see figure 10). Figure 10(a) implies
that the advantage of an IMPNRD becomes distinguishable at higher squeezing levels when the
APD detection efficiency is enhanced to 45%, while very little difference is observed between
an IMPNRD and an IMNPNRD in figure 10(b), despite the dark count probability being reduced
to the same level as the Si-APD (Pdc = 5 × 10−6). This reveals that the low detection efficiency
of InGaAs-APDs substantially diminishes the advantage of an IMPNRD over an IMNPNRD.

More importantly, reducing the dark count probability from 1 × 10−4 to 5 × 10−6 results
in a significant decrease of W (0, 0), which indicates that a lower dark count probability is
critical to obtain negative Wigner function in Schrödinger kitten state generation. Comparing
figures 10(a) and (b), we can see that W (0, 0) obtained from a TES with Pdc = 1 × 10−4 and
ηTES = 65% is similar to that from an InGaAs-APD with Pdc = 5 × 10−6 and ηAPD = 10%.
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Figure 10. Squeezing level, V0, impact under (a) different detection efficiencies
(10, 45 and 65%) with Pdc = 1 × 10−4 and (b) dark count probabilities (1 × 10−4,
5 × 10−5 and 5 × 10−6) with ηAPD = 10%. Dashed and solid lines represent
W (a, s) − WG(a) on the left vertical axis and W (0, 0) on the right vertical axis,
respectively. Light blue: IMPNRD with (a) ηAPD = 65% and (b) Pdc = 5 × 10−6;
black: IMNPNRD with (a)ηAPD = 65% and (b) Pdc = 5 × 10−6; green: IMPNRD
with (a) ηAPD = 45% and (b) Pdc = 5 × 10−5; red: IMNPNRD with (a) ηAPD =

45% and (b) Pdc = 5 × 10−5; pink: IMPNRD with (a) ηAPD = 10% and (b)
Pdc = 1 × 10−4; blue: IMNPNRD with (a) ηAPD = 10% and (b) Pdc = 1 × 10−4.

This confirms the experimental result in [14], and implies that a low dark count probability
is more influential than a higher detection efficiency or photon-number-resolving ability in one-
photon-subtracted squeezed state generation experiments at telecommunication wavelengths.
Therefore, for an InGaAs-APD with adjustable detection efficiency and dark count probability,
such as the detector id220, the setting with lowest dark count probability is preferable despite
the smaller detection efficiency.

As discussed in table 1, figure 11 shows that the reflectivity, r2, of the ‘magic’ reflector
has a similar impact to the input state squeezing level, V0, due to the same physical mechanism.
The reflectivity, r2, must be optimized to obtain the maximum quantum non-Gaussian character
witness value and minimum W (0, 0). The optimal value of r2 for a Schrödinger kitten state
prepared with a Si-APD (r2opt = 0.01) is notably smaller than that prepared with an InGaAs-
APD (r2opt = 0.09). Under the circumstance of a Si-APD, the smaller r2 results in a larger
character witness value and a deeper W (0, 0). However, if r2 is too small, then it is easy to
induce false clicks since the number of real APD counts, which are proportional to r2, will
be lower than the amount of dark counts. Therefore, it is necessary to compromise a small
r2 that is still higher enough to ensure the count rate is larger than the dark count rate. This
has been validated by the results reported in most kitten state generation experiments using
Si-APDs [10–13].

The effects of the APDs quantum efficiencies are shown in figures 12(a) and (b). As
expected, the quantum efficiency has a similar impact on the quantum non-Gaussian character
witness value and W (0, 0) to squeezing level and r2. It is noted that an IMPNRD does not
demonstrate superiority to IMNPNRD until the detection efficiency increases to a specific
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Figure 11. Quantum non-Gaussian character witness and W (0, 0) versus r2 for
(a) an InGaAs-APD and (b) a Si-APD. Dashed lines and solid lines represent
W (a, s) − WG(a) on the left vertical axis and W (0, 0) on the right vertical axis,
respectively. Red: PNRD; green: NPNRD; pink: IMPNRD; blue: IMNPNRD.
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Figure 12. Quantum non-Gaussian character witness and W (0, 0) versus APD
efficiency for (a) an InGaAs-APD and (b) a Si-APD. To obtain negative-valued
Wigner function, for the InGaAs-APD and the Si-APD, ηAPD is required to be
higher than 28 and 2.5%, respectively. Dashed lines and solid lines represent
W (a, s) − WG(a) on the left vertical axis and W (0, 0) on the right vertical axis,
respectively. Red: PNRD; green: NPNRD; pink: IMPNRD; blue: IMNPNRD.

value (for instance for the InGaAs-APD and Si-APD, ηAPD = 7.5 and 4%, respectively), which
strengthens the argument that APD inefficiency and non-photon-number resolving ability give
equivalent effects. Furthermore, when the detection efficiency is too low, the performance of
an NPNRD is superior to an IMPNRD. This trend is due to the IMPNRD suffering from both
inefficient detection and dark counts. However, when the detection efficiency is increased (for
the InGaAs-APD and Si-APD, ηAPD = 70 and 50%, respectively), the impact from dark counts
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Figure 13. Quantum non-Gaussian character witness and W (0, 0) versus input
state impurity r1 for (a) an InGaAs-APD and (b) a Si-APD. To obtain negative-
valued Wigner functions for the InGaAs-APD and the Si-APD, r1 is required
to be less than 0.15 and 0.20, respectively. The corresponding requirements to
obtain quantum non-Gaussian states are r1 < 0.38 and r1 < 0.47, for the InGaAs-
APD and the Si-APD, respectively. Dashed lines and solid lines represent
W (a, s) − WG(a) on the left vertical axis and W (0, 0) on the right vertical axis,
respectively. Red: PNRD; green: NPNRD; pink: IMPNRD; blue: IMNPNRD.
Pink and blue lines overlapped in (a).

dominates in the IMPNRD. As a result, the performance of IMPNRD is gradually superior to
that of the NPNRD, and approaches the performance of a perfect PNRD.

4.4.2. Input state impurity, r1, and homodyne detection efficiency, ηHD. As shown in figures 13
and 14, the same physical mechanism underlying the input state impurity and homodyne
detection inefficiency in Schrödinger kitten state generation results in similar quantitative
impact on the quantum non-Gaussian character witness and W (0, 0). The superior performance
of the Si-APD to the InGaAs-APD culminates in lower requirements on the purity of the input
state and homodyne detection efficiency at ∼860 nm kitten generation experiments compared
to such state generation at ∼1550 nm.

4.4.3. Dark count probability of a photon-number detector, Pdc, and mode impurity. Both dark
count probability and mode impurity cause ‘false’ clicks (i.e. click event is recorded even if no
photon is actually subtracted). As shown in figure 15, to obtain W (0, 0) < 0, the dark count
probability of an InGaAs-APD is required to be less than 2 × 10−5, which is one order of
magnitude lower than that of the Si-APD (Pdc < 2 × 10−4) due to the lower detection efficiency
of the InGaAs-APD. However, the dark count probabilities of most commercially available
photon-number detectors for 1550 nm are far larger than that for 860 nm, as shown in table 3.
This gives a sound reason as to why it is difficult to obtain negativity in the Wigner function for
Schrödinger kitten states at telecommunication wavelengths.

The change seen in the character witness and W (0, 0) for varying mode purity is shown
in figure 16. The PNRD is superior to the NPNRD when the mode purity is high, but the
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Figure 14. Quantum non-Gaussian character witness and W (0, 0) versus
homodyne detection efficiency for (a) an InGaAs-APD and (b) a Si-APD. To
obtain negative-valued Wigner functions for the InGaAs-APD and the Si-APD,
ηHD is required to be higher than 0.88 and 0.83, respectively. The corresponding
requirements to obtain quantum non-Gaussian states are ηHD > 0.61 and ηHD >

0.53 for the InGaAs-APD and the Si-APD, respectively. Dashed lines and solid
lines represent W (a, s) − WG(a) on the left vertical axis and W (0, 0) on the right
vertical axis, respectively. Red: PNRD; green: NPNRD; pink: IMPNRD; blue:
IMNPNRD. Pink and blue lines overlapped in (a).
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Figure 15. Quantum non-Gaussian character witness and W (0, 0) versus dark
count for (a) an InGaAs-APD and (b) a Si-APD. To obtain quantum non-
Gaussian states, Pdc is required to be less than 6 × 10−4 and 3 × 10−3, for
the InGaAs-APD and the Si-APD, respectively. Dashed lines and solid lines
represent W (a, s) − WG(a) on the left vertical axis and W (0, 0) on the right
vertical axis, respectively. Red: PNRD; green: NPNRD; pink: IMPNRD; blue:
IMNPNRD. Pink and blue lines overlapped in (a).
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Figure 16. Quantum non-Gaussian character witness and W (0, 0) versus modal
purity for (a) an InGaAs-APD and (b) a Si-APD. To obtain negative-valued
Wigner functions for the InGaAs-APD and the Si-APD, mode purity is required
to be higher than 0.83 and 0.78, respectively. The corresponding requirements
for mode purity to obtain quantum non-Gaussian states are higher than 0.65 and
0.61, for the InGaAs-APD and the Si-APD, respectively. Dashed lines and solid
lines represent W (a, s) − WG(a) on the left vertical axis and W (0, 0) on the right
vertical axis, respectively. Red: PNRD; green: NPNRD; pink: IMPNRD; blue:
IMNPNRD. Pink and blue lines overlapped in (a). Pink, blue and green lines are
quite close in (b).

advantage of PNRD gradually declines when the mode purity is too low to successfully project
the Schrödinger kitten state.

5. Conclusions

We quantitatively analysed the impact of a full set of experimental imperfections on Schrödinger
kitten state generation in terms of the quantum non-Gaussian character witness and Wigner
function. According to the comparison between Schrödinger kitten states prepared with an
InGaAs-APD and a Si-APD, the inferiority of telecommunication-wavelength photon-number
detectors justifies the higher requirements on the optical experimental parameters to obtain
negativity in the Wigner function. Furthermore, the lower detection efficiency of commercially
available photon-number detectors dramatically degrades the superiority of the PNRD for one-
photon projected Schrödinger kitten state generation at telecommunication wavelengths. The
dark count probability of InGaAs-APDs is required to be on the order of 10−5 to obtain
negative values at W (0, 0). This discussion on the effects of various experimental parameters
guides the analysis of kitten state generation experiments for particular wavelengths. It is
clear that Schrödinger kitten state generation at telecommunication wavelengths presents
numerous challenges but we can overcome these obstacles with thoughtful planning and careful
experimental design.
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