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We present a model for the theoretical description of the dynamics of a system of spinor cavity polaritons in real
space and time, accounting for all relevant types of the interactions and effective magnetic fields. We apply our gen-
eral formalism for the consideration of the polarization dynamics of the coherently driven, one-dimensional polari-
ton channel. We investigate the effect of the temperature and the longitudinal-transverse splitting on the spin (po-
larization) multistability and hysteresis arising from the polarization-dependent polariton-polariton interaction.
We show that the effect of the phase of the driving laser pump is as important as its strength, and demonstrate that
the multistability behavior can survive up to high temperatures in the presence of longitudinal-transverse splitting.
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I. INTRODUCTION

Cavity polaritons are composite particles, arising from
strong coupling between the photonic mode of a planar
semiconductor microcavity and the exciton transition in a
quantum well (QW), embedded in the cavity at the point
where the electric field of the confined electromagnetic state
reaches its maximum. Due to their hybrid half-light–half-
matter nature, cavity polaritons demonstrate a set of peculiar
properties which make them different from other quasiparticles
in solid-state systems. An extremely low effective mass of the
cavity polaritons (about 10−4–10−5 of the free electron mass)
together with strong polariton-polariton interactions make the
polaritonic system an ideal candidate for the observation of
the variety of quantum collective phenomena at surprisingly
high temperatures. Achievement of polariton Bose-Einstein
condensation was first reported at T = 20 K (Ref. 1) and
later on even at room temperature.2 Subsequently, polariton
superfluidity,3 the Josephson effect,4 and the formation of
topological excitations5 were experimentally observed. Other
theoretically predicted effects such as polariton self-trapping6

and polariton-mediated superconductivity7 still wait for their
experimental confirmation.

Besides fundamental interest, quantum microcavities in
the strong-coupling regime can be used for optoelectronic
applications.8 For more than a decade, the only object of
the study in this context was the polariton laser,9 a novel
type of the coherent emitter which explores the possibility
of the polariton BEC. In recent years, however, the emphasis
was to shift to other types of the devices based on the
transport properties of cavity polaritons in real space. It
was noticed that the peculiar spin structure of polaritons
opens a way for the creation of optical analogs of spintronic
components (so-called spinoptronic devices).10 With respect
to optics, spinoptronics has the advantage of being able to use
particle-particle interactions occurring in nanostructures and
resulting in strong nonlinearities. With respect to spintronics,
it has the advantage of strongly reducing the dramatic impact
of carrier spin relaxation or decoherence, which has severely
limited the achievement or the functionality of any working
semiconductor-based spintronic devices.

In this context, the analysis of one-dimensional (1D) po-
lariton transport is of particular importance,11 as 1D polariton
channels are the fundamental building blocks of such future
spinoptronic devices as polariton neurons12 and polariton
integrated circuits.13 It should be noted that the current state of
growth technology offers a large variety of methods of the lat-
eral confinement of cavity polaritons,14 and polariton quantum
wires (1D polariton channels) can be routinely produced.

Currently, the theoretical study of transport of spinor cavity
polaritons in real space is based on the assumption of full
coherence of the polaritonic system. Polariton-polariton inter-
actions are either neglected15–17 or treated within frameworks
of spinor Gross-Pitaevskii equations (GPe).18 The noncoherent
processes coming from the interaction of the polaritonic
system with a phonon bath in most cases are not accounted
for or treated within simple phenomenological models lacking
microscopic justification.19–21 On the other hand, it is clear
that polariton-phonon interaction is of crucial importance,
as it provides a thermalization mechanism in a polaritonic
ensemble22,23 and can affect such experimentally observable
quantities as first- and second-order coherencies.24,25 Note in
this context that there are also other effects which influence the
coherence functions, for instance particle-number fluctuations
together with the interparticle interactions.26

It should be noted that for a spatially homogeneous polari-
ton system, polariton-phonon interactions can be accounted for
using a system of the semiclassical Boltzmann equations.27–30

This method, however, has several serious drawbacks. First, it
is based on the assumption that the system is fully incoherent,
and thus a variety of intriguing nonlinear phenomena such
as bistability and multistability cannot be described. Second,
it provides the information about occupation numbers in the
reciprocal space only, and thus cannot be used for a description
of the dynamics of the spatially inhomogeneous system.
This makes this formalism inappropriate for the modeling of
spinoptronic devices based on polariton transport in real space.

In the present paper, we present formalism suitable for
the description of the dynamics of an inhomogeneous spinor
polariton system in real space and time, accounting for all
relevant types of processes. Namely, we take into account
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Ö. BOZAT, I. G. SAVENKO, AND I. A. SHELYKH PHYSICAL REVIEW B 86, 035413 (2012)

polariton-polariton and polariton-phonon interactions and
an effective longitudinal-transverse (TE-TM) magnetic field
acting on polariton spin. Our consideration is based on the
Lindblad approach for density matrix dynamics and represents
a generalization of our previous work where the spinless case
was considered.31,32 We use our results for modeling the spin
dynamics of the polaritons in 1D channels, investigating the
role played by decoherence at different temperatures.

II. FORMALISM

We describe the state of the system (polaritons plus
phonons) by its density matrix χ , for which we apply the
Born approximation factorizing it into the phonon part, which
is supposed to be time independent and corresponds to the
thermal distribution of acoustic phonons χph = exp{−Hph

kBT
}

and the polariton part χpol whose time dependence should be
determined, χ = χph ⊗ χpol. Physically, the application of the
Born approximation means that polariton-phonon interaction
is relatively weak and no hybrid polariton-phonon modes can
be formed. Our aim is to find dynamic equations for the time
evolution of the single-particle polariton density matrix in real
space and time,

ρσ,σ ′ (r,r′,t) = Tr{ψ̂†
σ (r,t)ψ̂σ ′(r′,t)χ}

= 〈ψ̂†
σ (r,t)ψ̂σ ′(r′,t)〉, (1)

where ψ̂†
σ (r,t),ψ̂σ ′(r,t) are operators of the spinor polariton

field, the subscripts σ,σ ′ = ±1 denote the z projection of the
spin of the cavity polaritons and correspond to right-and left-
circular polarized states, and the trace is performed by all the
degrees of freedom of the system. The particularly interesting
quantities are matrix elements with r = r′, which give the
density and polarization of the polariton field in real space and
time,

n(r,t) =
∑

σ=±1

ρσ,σ (r,r,t), (2)

Sz(r,t) = 1

2
[ρ+1,+1(r,r,t) − ρ−1,−1(r,r,t)], (3)

Sx(r,t) + isy(r,t) = ρ+1,−1(r,r,t). (4)

The pseusospin vector S = (Sx,Sy,Sz) describes the polariza-
tion of the cavity polaritons. Orientation of the pseudospin
along z-axis corresponds to the circular polarization, while the
in-plane components Sx,Sy correspond to the linear polarized
components.

The off-diagonal matrix elements with r �= r′ also have
physical meaning and describe spatial coherence in the system.

To obtain expressions for the temporal dynamics of the
components of a single-particle density matrix, it is convenient
to go to the reciprocal space, making a Fourier transform of
the single particle density matrix,

ρσ,σ ′ (k,k′,t) = (2π )d/Ld

∫
ei(kr−k′r′)ρσ,σ ′ (r,r′,t)drdr′

= Tr{a+
σ,kaσ ′,k′χ} ≡ 〈a+

σ,kaσ ′,k′ 〉, (5)

where d is the dimensionality of the system (d = 2 for noncon-
fined polaritons, d = 1 for the polariton channel), L is its linear
size, and a+

σk, aσk are the creation and annihilation operators
of the polaritons, respectively, with circular polarization σ

and momentum k. Note that we have chosen the prefactor in a
Fourier transform in such a way that the values of ρ(k,k′,t) are
dimensionless, and diagonal matrix elements give occupation
numbers of the states in discretized reciprocal space. Knowing
the density matrix in reciprocal space, we can find the
density matrix in real space by applying the inverse Fourier
transform.

The total Hamiltonian of the system can be represented as
a sum of two parts,

H = H1 + H2, (6)

where the first term H1 describes the “coherent” part of
the evolution, corresponding to free polariton propagation,
polariton-polariton interactions, and the effect of TE-TM
splitting, and the second termH2 corresponds to the dissipative
interaction with acoustic phonons. The two terms affect the
polariton density matrix in a qualitatively different way.

A. Polariton-polariton interactions

The part of the evolution corresponding to H1 is given by
the following expression:

H1 =
∑
kσ

Eka
+
kσ ak,σ +

∑
k,σ

�(k)a+
k,σ ak,−σ

+U1

∑
k1,k2,p,σ

a+
k1,σ

a+
k2,σ

ak1+p,σ ak2−p,σ

+U2

∑
k1,k2,p,σ

a+
k1,σ

a+
k2,−σ ak1+p,σ ak2−p,−σ , (7)

where Ek gives the dispersion of the polaritons, �(k) is
the TE-TM splitting corresponding to the in-plane effective
magnetic field leading to the rotation of the pseudospin of
cavity polaritons, U1 is the matrix element of the interaction
between polaritons of the same circular polarization, and U2

is the matrix element of the interaction between polaritons of
opposite circular polarizations. In the current paper, we neglect
for simplicity the p dependence of the polariton-polariton
interaction constant coming from Hopfield coefficients. As
well, we will suppose �(k) = const, which corresponds well
to the situation of the polariton channel (but not for a 2D
polariton system).

The effect of H1 on the evolution of the density matrix is
described by the Liouville-von Neumann equation,

ih̄(∂tχ )(1) = [H1; χ ], (8)

which after the use of the mean-field approximation leads to
the following dynamic equations for the elements of the single-
particle density matrix in the reciprocal space (the derivation
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is completely analogical to those presented in Ref. 31):

−ih̄{∂tρσ,σ ′(k,k′)}(1) = (Ek − Ek′)ρσ,σ ′(k,k′) + �[ρ−σ,σ ′ (k,k′) − ρσ,−σ ′ (k,k′)]

+U1

∑
k1,p

[ρσ,σ (k1,k1 − p)ρσ,σ ′ (k − p,k′), − ρσ ′,σ ′(k1,k1 − p)ρσ,σ ′(k,k′ + p)]

+U2

∑
k1,p

[ρ−σ,−σ (k1,k1 − p)ρσ,σ ′ (k − p,k′) − ρ−σ ′,−σ ′ (k1,k1 − p)ρσ,σ ′ (k,k′ + p)]. (9)

B. Scattering with acoustic phonons

Polariton-phonon scattering corresponds to the interaction
of the quantum polariton system with the classical phonon
reservoir. It is of a dissipative nature, and thus the straight-
forward application of the Liouville-von Neumann equation
is impossible. One should rather use the approach based on
the Lindblad formalism, which is standard in quantum optics
and results in the master equation for the full density matrix
of the system.33 For the convenience of the reader, we give the
main steps of the derivation of the dissipative part of dynamic
equations for a spinor polariton system, omitting, however, all
of the technical details, which can be found elsewhere.31

The Hamiltonian of the interaction of polaritons with
acoustic phonons in the Dirac picture can be represented as

H2(t) = H−(t) + H+(t)

=
∑
σ,k,q

D(q)ei(Ek+q−Ek)t a+
σ,k+qaσ,k(bqe

−iωqt + b+
−qe

iωqt ),

(10)

where aσk are operators for spinor polaritons, bq are operators
for spinless phonons, Ek and ωq are dispersion relations for
polaritons and acoustic phonons, respectively, and D(q) is the
polariton-phonon coupling constant. In the last equality, we
separated the terms H+ where a phonon is created, containing
the operators b+, from the terms H− in which it is destroyed,
containing operators b.

Now, one can consider a hypothetical situation when
polariton-polariton interactions are absent, and the redistribu-
tion of the polaritons in reciprocal space is due to the scattering
with acoustic phonons only. One can rewrite the Liouville-von
Neumann equation in an integro-differential form and apply
the so-called Markovian approximation, corresponding to the
situation of fast phase memory loss (see Ref. 33 for the details
and discussion of the limits of validity of the approximation),

(∂tχ )(2) = − 1

h̄2

∫ t

−∞
dt ′[H2(t); [H2(t ′); χ (t)]]

= δ�E[2(H+χH− + H−χH+)

− (H+H− + H−H+)χ − χ (H+H− + H−H+)],

(11)

where the coefficient δ�E denotes energy conservation and
has dimensionality of inverse energy, and in the calculation is
taken to be equal to the broadening of the polariton state.34 For
the time evolution of the mean value of any arbitrary operator
〈Â〉 = Tr(χÂ) due to scattering with phonons, one thus has
(the derivation of this formula is represented in Ref. 31)

{∂t 〈Â〉}(2) = δ�E(〈[H−; [Â;H+]]〉 + 〈[H+; [Â;H−]]〉).
(12)

Putting Â = a+
σ,kaσ ′,k′ in this equation, we get the contri-

butions to the dynamic equations for the elements of the
single-particle density matrix coming from polariton-phonon
interaction:

{∂tnk,σ }(2) =
∑

q,Ek<Ek+q

2W (q)

{
(nk,σ + 1)nk+q,σ

(
nph

q + 1
) − nk,σ (nk+q,σ + 1)nph

q

+ 1

2
[ρσ,−σ (k,k)ρ−σ,σ (k + q,k + q) + ρ−σ,σ (k,k)ρσ,−σ (k + q,k + q)]

}

+
∑

q,Ek>Ek+q

2W (q)

{
(nk,σ + 1)nk+q,σ n

ph
−q − nk,σ (nk+q,σ + 1)

(
n

ph
−q + 1

)

− 1

2
[ρσ,−σ (k,k)ρ−σ,σ (k + q,k + q) + ρ−σ,σ (k,k)ρσ,−σ (k + q,k + q)]

}
, (13)

{∂tρσ,−σ (k,k)}(2)

=
∑

q,Ek<Ek+q

2W (q)

{
[ρσ,−σ (k,k)

[
1

2
(nk+q,σ + nk+q,σ ′ ) − nph

q

]
+ ρσ,−σ (k + q,k + q)

[
1

2
(nk,σ + nk,σ ′) + nph

q + 1

]}

−
∑

q,Ek>Ek+q

2W (q)

{
ρσ,−σ (k,k)

[
1

2
(nk+q,σ + nk+q,σ ′ ) + n

ph
−q + 1

]
+ ρσ,−σ (k + q,k + q)

[
1

2
(nk,σ + nk,σ ′) − n

ph
−q

]}
, (14)

{∂tρσ,σ (k,k′)}(2) =
∑

q,Ek<Ek+q

W (q)
[
ρσ,σ (k,k′)

(
nk+q,σ − nph

q

) + ρ−σ,σ (k,k′)ρσ,−σ (k + q,k + q)
]

−
∑

q,Ek>Ek+q

W (q)
[
ρσ,σ (k,k′)

(
nk+q,σ + nph

q + 1
) + ρ−σ,σ (k,k′)ρσ,−σ (k + q,k + q)

]
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+
∑

q,Ek′<Ek′+q

W (q)
[
ρσ,σ (k,k′)

(
nk′+q,σ − nph

q

) + ρσ,−σ (k,k′)ρ−σ,σ (k′ + q,k′ + q)
]

−
∑

q,Ek′>Ek′+q

W (q)
[
ρσ,σ (k,k′)

(
nk′+q,σ + nph

q + 1
) + ρσ,−σ (k,k′)ρ−σ,σ (k′ + q,k′ + q)

]
, (15)

{∂tρσ,−σ (k,k′)}(2) =
∑

q,Ek<Ek+q

W (q)
[
ρσ,−σ (k,k′)

(
nk+q,σ − nph

q

) + ρ−σ,−σ (k,k′)ρσ,−σ (k + q,k + q)
]

−
∑

q,Ek>Ek+q

W (q)
[
ρσ,−σ (k,k′)

(
nk+q,σ + nph

q + 1
) + ρ−σ,−σ (k,k′)ρσ,−σ (k + q,k + q)

]
+

∑
q,Ek′<Ek′+q

W (q)
[
ρσ,−σ (k,k′)

(
nk′+q,σ ′ − nph

q

) + ρσ,σ (k,k′)ρσ,−σ (k′ + q,k′ + q)
]

−
∑

q,Ek′>Ek′+q

W (q)
[
ρσ,−σ (k,k′)

(
nk′+q,σ ′ + nph

q + 1
) + ρσ,σ (k,k′)ρσ,−σ (k′ + q,k′ + q)

]
, (16)

where nk,σ = ρσ,σ (k,k), ρ+1;−1(k) = sx(k) + isy(k), and
W (q) denote spin-independent scattering rates with acoustic
phonons (see Ref. 31 for the details). The first two equations
corresponding to k = k′ are nothing but the spinor Boltzmann
equations for polariton-phonon scattering describing the redis-
tribution of the polaritons in the reciprocal space, which were
obtained earlier using other techniques.35 The equations for
off-diagonal matrix elements with k �= k′ describe their decay,
which physically corresponds to the decay of the coherence in
the system coming from polariton-phonon interactions. This
process strongly depends on the temperature of the system and
leads to the transition from coherent to dissipative dynamics, as
demonstrated in Ref. 31. In the regime of coherent pump, it is
responsible for the disappearance of polarization multistability
with the increase of temperature, as is shown below.

C. Pumping terms

In this paper, we concentrate on the case when a system is
pumped by an external coherent laser beam. The corresponding

Hamiltonian can be introduced as

Hcp =
∑
k,σ

pk,σ (t)a+
k,σ + H.c. (17)

Here, pk is the Fourier transform of the pumping amplitude in
real space,

pσ (x,t) = Pσ (x)eikpxe−iωpt , (18)

where Pσ (x) is the pumping spot profile in real space, kp

is an in-plane pumping vector resulting from the inclination
of the laser beam with respect to the vertical, and ωp is the
pumping frequency of the single-mode laser. Time evolution
of the arbitrary element of density matrix is given by32

{∂tρσ,σ ′ (k,k′)}(cp) = i

h̄
[p∗

k,σ (t)〈ak′,σ ′ 〉 − pk′,σ ′(t)〈ak,σ 〉∗],

(19)

where the time evolution of the mean values of the annihilation
operator reads

∂t 〈ak,σ 〉 = − i

h̄
pk,σ (t) − i

h̄
Ek〈ak,σ 〉 − i

h̄
�k〈ak,−σ 〉 − i

h̄

∑
k2,p

[U1ρσ,σ (k2,k2 − p) + U2ρ−σ,−σ (k2,k2 − p)]〈ak+p,σ 〉

+
∑

q,Ek<Ek+q

W (q)
[(

nk+q,σ − nph
q

)〈ak,σ 〉 + ρ−σ,σ (k + q,k + q)〈ak,−σ 〉]
−

∑
q,Ek>Ek+q

W (q)
[(

nk+q,σ + nph
q + 1

)〈ak,σ 〉 + ρ−σ,σ (k + q,k + q)〈ak,−σ 〉]. (20)

D. Dynamics of the polarization

The dynamics of the circular polarization degree ℘c of the
light emission from the ground k = 0 state can be defined as

℘c = n+
k=0 − n−

k=0

n+
k=0 + n−

k=0

, (21)

where n+
k=0(t) and n−

k=0(t) stand for the populations of
polaritons with pseudospin ±1 correspondingly in the ground
state of the dispersion.

One should mention the effect of longitudinal-transverse
splitting � on the polarization degree dynamics, since it
couples the σ+ and σ− modes together. Its role becomes
more evident if one switches to the pseudospin formalism,
which is described in Sec. I. From the formal point of view,
TE-TM splitting is equivalent to the effective magnetic field
in the + x direction, � = ex� (along the quantum wire). At
the same time, the polariton-polariton interaction gives rise
to another effective magnetic field oriented in the z direction
(structure growth axes), �p−p ∝ ez(U1 − U2)(n+ − n−) (see
Ref. 36). Therefore, the total effective magnetic field
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represents superposition �tot = �p−p + �. Accordingly, it is
possible to rewrite the kinetic equations as coupled equations
for occupation number nσ and in-plane pseudospin S⊥.41

Considering only the effect of effective magnetic fields (as-
suming an infinite lifetime and the absence of interaction with
phonons), coupled equations for the pseudospin precession are
given as

∂tn
+
k=0 ∝ ez · (S⊥ × �), (22)

∂tS⊥ ∝ (S⊥ × �p−p) + 1
2 (n+

k=0 − n−
k=0)�. (23)

This corresponds to the precession of the pseudospin along the
time-dependent magnetic field, which leads to its nontrivial
dynamics.

III. RESULTS AND DISCUSSION

We consider a microcavity based on the AlGaAs family of
alloys and use the following parameters. The Rabi splitting was
taken equal to 15 meV, polariton effective mass of 3 × 10−4 of
the free electron mass, and detuning between the pure photonic
and excitonic modes of 3 meV. The polaritonic quantum wire
is 50 μm long and 2 μm wide. Further, we use the typical
polariton lifetime in a medium Q factor microcavity, τ = 2 ps.
The polariton-polariton and polariton-phonon scattering rates
have been taken independent of the wave vector for simplicity.
The matrix element of the polariton-polariton interaction was
estimated using the expression U ≈ 3Eba

2
B/A, where Eb is the

exciton binding energy, aB is its Bohr radius, and A is the area
of the wire, which gives U ≈ 20 neV. The polariton-phonon
scattering rate W = 108 s−1. The pump laser is detuned above
the energy of the lower polariton branch by δ = 1 meV. We
consider the case of a spatially homogeneous cw pump of
different polarizations.

The bistable (for spinless condensate) and multistable (if
one accounts for the spin) behavior of a polariton system
in 1D and 2D quantum systems has already been investi-
gated theoretically in a number of works (see, for instance,
Ref. 37) and was reported experimentally.38–40 Most of the
theoretical approaches are based on the solution of the GPe.
Unfortunately, this technique does not allow one to account for
the dissipation dynamics of polaritons due to interaction with
the crystal lattice (phonon-mediated processes). The density
matrix approach, which is being developed in the current paper,
does. In the limiting case of zero temperature, we immediately
reproduce the results obtained by the GPe, as expected.

The multistability (with multihysteresis) characteristic is
shown in Fig. 2 for different temperatures in the range 1–100 K,
in the absence of TE-TM splitting. In this case, since there is
no mechanism of the transition between the σ+ and σ− modes,
this effect can be understood in terms of the independent
bistable dynamics of the σ+ and σ− modes. Accordingly,
in the inset, we present the population hysteresis curve of
spinless polaritons to clarify the forthcoming discussion. Let
us begin with the inset. In the certain range of pumps, the
polariton population can take two different values depending
on the history of the pumping process. If we slowly increase
the intensity of the pump, at some threshold value P

(→)
th the

population of the ground state jumps up abruptly due to the
resonance of the blue shifted polariton energy with the energy

FIG. 1. (Color online) Sketch of the system showing the position
of the polariton channel with respect to the Poincaré sphere (also
known as the Bloch sphere and pseudospin sphere). The latter serves
to illustrate different possible polarizations of the light. If the vector of
the pseudospin lies in the xy plane, then the light is linearly polarized,
and if it is parallel to the z axes, then it is circularly polarized. Other
orientations correspond to the general case of elliptical polarization.
The red arrow shows the direction of the effective magnetic field
created by the longitudinal-transverse splitting �.

of the laser mode. The system keeps staying at this high-
populated state with further increase of the pump intensity. In
the backward direction, when we decrease the intensity of the
pump, the bistable transition to the low-populated state appears
at the lower pump intensity (P (←)

th < P
(→)
th ) and a hysteresis

curve appears.
Accounting for spin, the polariton-polariton interaction

becomes polarization dependent, which leads to multistability
of the polariton circular polarization (see Ref. 37 for a detailed
discussion of the situation at T = 0). This effect is illustrated
in the main plot of Fig. 2 for different temperatures, where the
pump intensity is fixed and its circular polarization degree ℘p

is being changed. Let us explain this phenomenon with the help
of the above discussion for the spinless case. Keeping the total
pump intensity, let us change its circular polarization from σ−
(φ = π , and ℘p = −1) to σ+ (φ = 0, and ℘p = 1); see Fig. 1.
Initially, there exists only σ− polaritons in the ground state,
thus ℘c = −1. As ℘p is increased, the σ+ component starts
to become more populated, and at a certain threshold value
of ℘p, the first bistable jump up in ℘c occurs that implies the
abrupt increase of the σ+ component. A further increase of
℘p leads to the second jump up of the polarization degree ℘c

due to the bistability jump down of the σ− component from
a high-population state to a low-population state. Finally, the
system reaches the state with only the σ+ component and
℘c = 1. In the backward direction (decrease pump polarization
degree from + 1 to −1), the first jump down is due to the
abrupt increase of the σ− component, while the second jump
down is explained by the abrupt decrease of the σ+ component
occupancy.
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FIG. 2. (Color online) Dependence of the circular polarization
degree of the driven polariton mode on the circular polarization degree
of the driving pump in the absence of TE-TM splitting for different
temperatures. Hysteresis loops, the signatures of the multistability
behavior, shrink with the increase of temperature (T = 0, 20, 60 K)
and finally disappear at T ≈ 100 K. Inset: dependence of polariton
population vs pumping intensity for a single-component system
demonstrating the phenomenon of bistability (T = 0 K).

With increasing temperature, the multistability loops start
to shrink and become totally destroyed at about T ≈ 100 K.
It occurs due to the dissipation processes coming from the
interaction with acoustic phonons. At higher temperature,
the spin-independent polariton-phonon interaction makes the
dependence ℘c(℘p) quasilinear, as should be expected; indeed,
in the case when coherent nonlinearities play no role and there
is no transition between circular polarized components, the
polarization degree of the system should coincide with those
of the pump.

Now let us introduce the TE-TM splitting to see its
effect on polarization multistability. The corresponding term
removes the isotropy in the xy plane since it acts as an
effective magnetic field in the + x direction. Consequently,
the population of each component n±

k becomes dependent
not only on circular polarization of the pump, by also on
the in-plane components of its pseudospin, as can be seen
from Eq. (22). In Fig. 3, the dependence of the internal
circular polarization degree of the system ℘c is plotted
as a function of the circular polarization degree of the
pump ℘p for three different in-plane angles θ between the
in-plane pseudospin of the pump and the direction along
the wire: axis Ox (see Fig. 1). Azimuthal angle θ comes
in the pumping Hamiltonian as the relative phase factor
between the pumping amplitudes, i.e., p+ = eiθp−. It is
observed that the relative phase drastically modifies the profile
of the ℘c(℘p) plot. First, we note that a finite y component of
the pump pseudospin (θ �= 0,π ) destroys the symmetry of the
multistability curve with respect to the change of the sign of
circular polarization of the pump (see dotted green line). Also,

comparing the results for θ = 0 ( + x direction) and θ = π

(−x direction) cases, we see two quite different polarization
behaviors. This difference can be understood from the first
term of the kinetic equation (23) for S⊥, where the two cases
(θ = 0 and θ = π ) give contributions with opposite signs.
Therefore, the internal circular polarization degree becomes
highly sensitive to the choice of meridian on the surface of
the Poincaré sphere along which the circular polarization of
the laser is changed between σ+ and σ−. It should be noted
that for a circularly polarized pump, the effect of rotation
of the pseudospin due to TE-TM splitting is invisible: for the
used value � = 0.08 meV and circular polarized pump, the
effect of macroscopic self-trapping plays a major role6,42–44

and the rotation of pseudospin is blocked. For reduced values
of circular polarization, the self-trapping regime is lost and the
effects of TE-TM splitting become visible.

Let us, finally, analyze the combined effect of the TE-
TM splitting and scattering on phonons (in the rest of the
calculations, the in-plane component of the pump pseudospin
is taken along the + x direction, i.e., θ = 0). As was shown
before in Fig. 2, in the absence of TE-TM splitting, due to
the dissipative nature of polariton-phonon interactions the
hysteresis behavior is washed out at 100 K. On the other
hand, if � �= 0, as in Fig. 4, then the bistable behavior can be
recovered and bistability phenomena can survive up to higher
temperatures as compare to the case � = 0. However, instead
of the two-stepped hysteresis loop shown in Fig. 3, we observe
only one-stepped behavior. This result suggests the transition
from two-independent modes dynamics (the two modes are
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θ=π

FIG. 3. (Color online) Internal vs external circular polarization
degree for different xy-plane projections of the pseudospin of the
pump (different azimuthal angles θ ) for � = 0.08 meV, and T = 0 K.
Due to the finite value of the TE-TM coupling, the equivalency
between the x and y linear polarizations is broken. Therefore, the
choice of meridian line of the Poincaré sphere along which the
pump laser evolves from the σ− to σ+ state becomes crucial for
the polarization dynamics of the polariton system.
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FIG. 4. (Color online) Circular polarization degree of the driven
mode vs the circular polarization degree of pump for different values
of the longitudinal-transverse splitting � for T = 100 K. Thus, TE-
TM splitting revives the bistability behavior even at high temperature
values. At strong TE-TM splittings, i.e., � = 1.5 meV, the circular
polarizability diminishes due to strong mixing of the σ± modes, and
the hysteresis loop disappears.

the mode with σ+ and the mode with σ− polarizations) to a
single collective mode dynamics. In fact, at some critical value
of the TE-TM splitting (around 0.1 meV in our parameter
regime), the transition from a high-population state to a
low-population state of the one mode is always accompanied
by the simultaneous transition from a low-population state to
a high-population state of the other mode, and crossover from
the multistable behavior to the bistable occurs.

If one increases the value of the TE-TM splitting field
even further, polaritons would prefer to stay in a quasilinearly
polarized state due to strong mixing of the σ± modes, even for
pumping by the fully circularly polarized laser. This situation
occurs at � = 1.5 meV in Fig. 4, where polaritons become
highly linearly polarized even at the values of ℘p = ±1 due
to the high value of the effective magnetic field in the + x

direction. The last term in Eq. (23) is responsible for this
behavior. The particles align their pseudospin parallel to the
strong effective magnetic field to minimize the total energy in
the system. Meanwhile, the hysteresis behavior vanishes, and
the difference between the backward and forward swappings
disappears.

IV. CONCLUSIONS

In conclusion, we developed a formalism for the description
of the dissipative dynamics of an inhomogeneous spinor
polariton system in real space and time, accounting for
polariton-polariton interactions, polariton-phonon scattering,
and effect of the TE-TM effective magnetic field. We applied
our formalism to a one-dimensional polariton condensate
at different temperatures to investigate the dynamics of the
circular polarization of the system when it is driven by
the external homogeneous laser pump. We showed that the
polarization of the condensate is highly sensitive, not only to
the history of the strength of the pump, but also to the phase of
the elliptical polarization degree of this pump. In the presence
of a TE-TM field, we observe the survival of this phenomena
up to very high temperatures.
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P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann,
R. Butte, E. Feltin, J.-F. Carlin, and N. Grandjean, Phys. Rev. Lett.
98, 126405 (2007).

3A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. del Valle, M. D.
Martin, A. Lemaitre, J. Bloch, D. N. Krizhanovskii, M. S. Skolnick,
C. Tejedor, and L. Vina, Nature (London) 457, 291 (2009).

4K. G. Lagoudakis, B. Pietka, M. Wouters, R. Andre, and
B. Deveaud-Pledran, Phys. Rev. Lett. 105, 120403 (2010).

5K. G. Lagoudakis, T. Ostatnicky, A. V. Kavokin, Y. G. Rubo,
R. Andre, and B. Deveaud-Pledran, Science 13, 974 (2009).

6I. A. Shelykh, D. D. Solnyshkov, G. Pavlovic, and G. Malpuech,
Phys. Rev. B 78, 041302 (2008).

7F. P. Laussy, A. V. Kavokin, and I. A. Shelykh, Phys. Rev. Lett.
104, 106402 (2010).

8For a recent review on polariton devices, see T. C. H. Liew, I. A.
Shelykh, and G. Malpuech, Physica E 43, 1543 (2011).

9A. Imamoglu and J. R. Ram, Phys. Lett. A 214, 193 (1996).
10I. A. Shelykh, K. V. Kavokin, A. V. Kavokin, G. Malpuech,

P. Bigenwald, H. Deng, G. Weihs, and Y. Yamamoto, Phys. Rev. B
70, 035320 (2004).

11E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto,
A. Lemaitre, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart,
G. Malpuech, and J. Bloch, Nature Phys. 6, 860 (2010).

12T. C. H. Liew, A. V. Kavokin, and I. A. Shelykh, Phys. Rev. Lett.
101, 016402 (2008).

13T. C. H. Liew, A. V. Kavokin, T. Ostatnicky, M. Kaliteevski, I. A.
Shelykh, and R. A. Abram, Phys. Rev. B 82, 033302 (2010).

14A. T. Hammack, M. Griswold, L. V. Butov, L. E. Smallwood,
A. L. Ivanov, and A. C. Gossard, Phys. Rev. Lett. 96, 227402 (2006);
R. B. Balili, D. W. Snoke, L. Pfeiffer, and K. West, Appl. Phys. Lett.
88, 031110 (2006); O. El Daif, A. Baas, T. Guillet, J.-P. Brantut,
R. Idrissi Kaitouni, J. L. Staehli1, F. Morier-Genoud, and
B. Deveaud, ibid. 88, 061105 (2006); R. I. Kaitouni, O. El

035413-7

http://dx.doi.org/10.1038/nature05131
http://dx.doi.org/10.1103/PhysRevLett.98.126405
http://dx.doi.org/10.1103/PhysRevLett.98.126405
http://dx.doi.org/10.1038/nature07640
http://dx.doi.org/10.1103/PhysRevLett.105.120403
http://dx.doi.org/10.1126/science.1177980
http://dx.doi.org/10.1103/PhysRevB.78.041302
http://dx.doi.org/10.1103/PhysRevLett.104.106402
http://dx.doi.org/10.1103/PhysRevLett.104.106402
http://dx.doi.org/10.1016/j.physe.2011.04.003
http://dx.doi.org/10.1016/0375-9601(96)00175-2
http://dx.doi.org/10.1103/PhysRevB.70.035320
http://dx.doi.org/10.1103/PhysRevB.70.035320
http://dx.doi.org/10.1038/nphys1750
http://dx.doi.org/10.1103/PhysRevLett.101.016402
http://dx.doi.org/10.1103/PhysRevLett.101.016402
http://dx.doi.org/10.1103/PhysRevB.82.033302
http://dx.doi.org/10.1103/PhysRevLett.96.227402
http://dx.doi.org/10.1063/1.2164431
http://dx.doi.org/10.1063/1.2164431
http://dx.doi.org/10.1063/1.2172409
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