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Abstract: Conventional X-ray micro-computed tomography (μCT)
is unable to meet the need for real-time, high-resolution, time-resolved
imaging of multi-phase fluid flow. High signal-to-noise-ratio (SNR) data
acquisition is too slow and results in motion artefacts in the images, while
fast acquisition is too noisy and results in poor image contrast. We present
a Bayesian framework for time-resolved tomography that uses priors to
drastically reduce the required amount of experiment data. This enables
high-quality time-resolved imaging through a data acquisition protocol
that is both rapid and high SNR. Here we show that the framework: (i)
encompasses our previous, algorithms for imaging two-phase flow as
limiting cases; (ii) produces more accurate results from imperfect (i.e.
real) data, where it can be compared to our previous work; and (iii) is
generalisable to previously intractable systems, such as three-phase flow.
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1. Introduction

Multi-phase fluid flow in complex media is an important problem in fluid mechanics, as well as
oil recovery (oil/air displacement and trapping by brine) [1], agriculture (fluid transport in the
soil surrounding plant roots) [2], carbon sequestration, and materials science (salt deposition
and crystallisation in limestone) [3]. Unfortunately, testing numerical models of multi-phase
flow is extremely difficult due to the lack of easily obtainable experimental data. Although X-
ray micro-computed tomography (μCT) has increasingly been used to conduct time-resolved
(i.e. 3D + time) studies of dynamic, time-evolving samples [4–11], standard μCT techniques for
non-destructive 3D study of static samples do not generalise to the dynamic case, and “native”
dynamic techniques are restricted to simple, or very specific physical systems.

At a typical μCT facility, a source of penetrating X-rays illuminates a sample of interest.
The sample attenuates the X-rays, and the intensity of the transmitted X-rays is recorded by a
downstream 2D position-sensitive detector. The sample is rotated through a variety of viewing
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positions, and a sequence of radiographs is collected. These radiographs are then reconstructed
into a tomogram: a 3D map of the sample’s linear X-ray attenuation coefficient. Standard recon-
struction methods include filtered backprojection (FBP), simultaneous iterative reconstruction
technique (SIRT), and maximum likelihood (MLTR) methods [12–14]. At a lab-based μCT
facility, acquiring the radiographs will take several hours. Synchrotron facilities can acquire
data much more rapidly, but time at these facilities is correspondingly more valuable. The time
required to collect a full set of radiographs places a lower bound on the time-resolution of static
CT imaging techniques: if the sample changes during acquisition, then inconsistencies between
the radiographs will cause motion blurring in the reconstructed tomogram.

Methods for dynamic μCT reduce the time required to collect a set of radiographs by up to an
order of magnitude, using a priori information about the sample to replace the need for meas-
ured data [4–8,10]. In the medical context, dynamic processes are often assumed to be cyclical
(e.g. breathing, heartbeat, etc.) [10], so radiographs can be collected across multiple identical
cycles using sophisticated gating algorithms. Methods based on temporal non-local means fil-
tering assume a degree of self-similarity is present throughout the 4D process [7]. Similarly, 4D
Bayesian Model-Based Iterative Reconstruction (MBIR) methods typically assume a degree of
local self-similarity [15]. Neither of these assumptions are applicable to the non-cyclic multi-
phase flow systems we wish to study. In particular, we avoid explicit assumptions concerning
local self-similarity, and structure in the reconstructed volume, as they may bias calculation of
inter-facial curvature in multi-phase flow. 4D angiographic techniques such as HYPR and its
successors decompose the reconstructed volume into spatially distinct static and dynamic re-
gions, and assume that changes will only display limited overlap in the radiographs data [5, 6].
Although we cannot assume limited overlap in the radiographs, the framework presented in
this paper uses the same core idea: we conceptually separate the sample into a static equilib-
rium component, and a dynamic component that is restricted by the physics underlying the
time-evolution of the sample.

We first present a Bayesian framework for finding the most probable solution to the dy-
namic tomography reconstruction problem, subject to the measured data and a priori physical
constraints. This maximum a posteriori estimate is expressed such that each conditional proba-
bility distribution captures a separate piece of the underlying physics. Our goal is to develop a
modular framework, into which we can explicitly build different a priori physical constraints on
a case-by-case basis. This “plug-and-play” nature of Bayesian tomographic reconstruction has
been demonstrated in the static case [16]. We use this Bayesian framework to derive a dynamic
tomography reconstruction algorithm, and: (i) demonstrate that it encompasses our previous
algorithms for imaging two-phase flow (see Myers et. al. [4,17]) as limiting cases, placing that
work into a broader mathematical context; (ii) quantitatively and qualitatively compare its per-
formance to our previous algorithms for imaging two-phase flow; and (iii) show that unlike our
previous efforts, this algorithm has potential for imaging three-phase flow.

2. Framework for dynamic tomography

In this section we present a general framework for the time-resolved μCT imaging of complex,
non-periodic, constrained processes, from highly under-sampled data. This framework forms
the basis of the reconstruction algorithms derived and tested in later sections.

We characterise a time-evolving sample using its linear X-ray attenuation coefficient, which
is the sum of a static (equilibrium) component μs(x) and a dynamic (time-evolving) compo-
nent μ(x, t), parameterised by 3D Cartesian coordinates x and time t [4, 17]. Solving the time-
resolved μCT reconstruction problem thus involves estimating μ(x, t) at a set of discrete times
t ∈ Tμ , producing data that will resemble a 3D movie. We build our framework around finding
the maximum a posteriori (MAP) estimate μ̂(x, t ∈ Tμ), defined as the most probable solution
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to the reconstruction problem, subject to measured data and any a priori constraints. The re-
mainder of this section will discuss how the MAP estimate may be formulated in terms of the
measured data and several latent variables. The usefulness of the latent variables flows from
practical constraints on acquiring and processing time-resolved μCT data.

2.1. Measured data

Following the experimental procedure laid out by Myers et. al. [4,17–19], the sample is placed
in a standard μCT imaging system. To isolate the static/equilibrium component μs(x), a con-
ventional 3D μCT image is collected either: before the process of interest begins (e.g. before
switching on a syringe pump), or after the process is complete and the sample has reached equi-
librium. To study the dynamic evolution of the sample we collect 2D radiographs at a sequence
of discrete times t ∈ Ti and viewing positions θ . These radiographs are pre-processed to remove
the signal due to the equilibrium component of the sample, as well as mis-alignments, source
drift, clear and dark field signals, etc. [20–22].

Our measured data thus consists of: (i) the static linear attenuation coefficient μs(x), esti-
mated from a standard CT scan of the object in its equilibrium state; and (ii) the time-sequence
of intensity images I(r,θ , t ∈ Ti) containing only signal due to the dynamic component of the
sample, parameterised by the 2D Cartesian detector coordinates r. The physics underlying the
time-evolution of the sample may constrain μ(x, t) directly (e.g. imaging an incompressible
fluid), or via its interactions with the static component (e.g. fluid flow through an impermeable
scaffold) [19]. Thus, the maximum a posteriori estimate may be written as [17]:

μ̂(x, t ∈ Tμ) = argmax
μ(x,t∈Tμ )

P[μ(x, t ∈ Tμ)|I(r,θ , t ∈ Ti),μs(x)]. (1)

In later equations, functional dependencies are sometimes omitted for the sake of clarity.

2.2. Latent variables

As part of taking an expectation-maximisation (EM) approach to finding the MAP estimate
[Eq. (1)], we introduce two latent variables. We select these variables so that we can be more
explicit about our a priori assumptions, and because they correspond to quantities of interest.

Eq. (1) requires us to relate a radiograph measured at time t0 ∈ Ti, to the reconstructed volume
at some different time t1 ∈ Tμ . The first latent variable quantifies our confidence that we can
predict a given radiograph from a 3D frame in our reconstruction μ(x, t1). The rate at which
radiographs can be collected (and thus Ti) is largely dictated by the capabilities of our cam-
era (frame rate, etc.), X-ray source (available flux), rotation stage (rotation speed), and sample
(maximum allowable flux/dose). In contrast, computational constraints (e.g. RAM, processing
time) limit the number of frames in our 4D reconstruction (and thus Tμ ). This suggests a dispar-
ity between radiograph collection times (Ti) and reconstruction frame times (Tμ ), so we require
a confidence measure τ(t0 ∈ Ti, t1 ∈ Tμ), such that P[τ(t0 ∈ Ti, t1 ∈ Tμ)|I,μ ] quantifies our confi-
dence that a radiograph at time t0 can be estimated from a volume at time t1 [17]. This measure
is independent of μs.

Depending on how it is constructed, τ may encode implicit assumptions regarding temporal
self-similarity of the volume. This can be illustrated by considering two extreme cases. For
example, if we construct τ(t0 ∈ Ti, t1 ∈ Tμ) to be independent of t1, then we have assumed
the time-evolution of the sample is not encoded in the measured data. This will lead to a high
degree of self-similarity in the reconstructed volume. On the opposite extreme, there are many
ways to construct τ such that each projection relates to only one 3D frame in the reconstruction
(i.e. for a given radiograph time in Ti, P(τ) is non-zero for at most one element of Tμ ). In this
case, τ leads to no implicit assumptions regarding temporal self-similarity, as each volume is
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reconstructed from an entirely distinct set of radiographs. In constructing τ we are thus able
to codify any a priori information about how we believe the sample changes between adjacent
reconstruction frames (e.g. Haines-jump dominated flow vs. smooth flow) [17]. We see below
[Eq. (2)] that if P(τ) is chosen to be independent of μ , then these probabilities play a role
analogous to temporal interpolation weights in our framework.

The second latent variable encodes information of interest concerning sample composition.
Because X-ray attenuation coefficient is rarely a quantity of interest in-and-of itself, the first
step in analysis of attenuation-contrast CT images is often segmentation: the automated or
manual classification of each voxel in the image, according to the materials it contains. Recent
work by (for example) Batenburg et al. indicates that segmentation is best done as part of the
reconstruction process [23]. This motivates the inclusion of a classification map m(x, t ∈ Tμ) ∈
D, where materials are chosen from some dictionary D. Proper construction of the dictionary
D allows us to incorporate a priori information regarding the composition of the sample (e.g.
imaging water-air flow in a quartz scaffold). Our choice of P(m|μs,μ) corresponds to a choice
of segmentation method.

2.3. MAP-EM

We incorporate the latent variables m and τ (discussed above) into Eq. (1) using an expectation-
maximisation algorithm

f (n)(μ |μ(n), I,μs) = ∑
τ

∑
m

P(τ,m|μ(n), I,μs) ln[P(τ,m, I,μs|μ)],

μ(n+1) = argmax
μ

[
f (n)(μ |μ(n), I,μs)+ ln[P(μ)]

]
,

and employ Bayes theorem to find the following iterative framework [17]:

μ(n+1) = argmax
μ

∑
τ

P(τ|I,μ(n)) ln[P(I|τ,μ)] (2)

+ ∑
τ

P(τ|I,μ(n)) ln[P(τ|μ)]

+ ∑
m

P(m|μs,μ(n)) ln[P(m|μs,μ)]

+ ln[P(μs|μ)]+ ln[P(μ)],

which will converge as n → ∞ to the maximum a posteriori estimate μ̂(x, t ∈ Tμ). Eq. (2) serves
to define μ(n) in terms of μ; if one takes an iterative approach to solving Eq. (2) then μ will be
varied in the inner loop, and converge to μ(n) which will be varied in the outer EM loop [see,
e.g. the psudocode in Eq. (5)]. This formulation has been chosen because each term encodes a
specific element of the physics underlying the sample and imaging system.

The first term on the right hand side of Eq. (2) is a data-consistency term, ensuring that the
solution is consistent with: (i) the time-sequence of measured radiographs; (ii) our a priori
information P(τ|I,μ(n)) about how the sample relates to radiographs taken between adjacent
reconstruction frames (see above); and (iii) a physical model P(I|τ,μ) of the CT imaging sys-
tem that includes noise, and potentially more complex behaviours such as partial coherence and
refraction. As discussed above, the second term vanishes if P(τ) is chosen to be independent of
μ . The third term in Eq. (2) incorporates a segmentation model, and the fourth incorporates any
a priori compositional information that allows the static component to constrain the dynamic
component of the sample. Finally, the fifth term represents a priori information un-related to
the latent variables (e.g. a smoothness or sparsity constraint), which can be used to regularise
the reconstruction problem.
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3. Reconstruction algorithm for multi-phase flow

The MAP-EM framework allows us to build more physically accurate models of the sample
and imaging system, and avoid physically-unrealistic “absolute” constraints such as the strict
binary thresholding used in Myers et. al. [4]. In order to establish the value of the MAP-EM
framework we examine the case of micro-scale multi-phase flow in porous materials, where
results can be compared against both our previous algorithms, and ground-truth reconstructions.
We consider a typical fine-focus, lab-based X-ray micro-CT setup. Assuming that the effects of
partial coherence and refraction are negligible, and that noise profile is dominated by quantum
noise at the detector, the system is characterised by the conditional probability distribution [24]:

P[I(r,θ , t0 ∈ Ti)|τ(t0, t1 ∈ Tμ),μ(x, t ∈ Tμ)] ∝
{Is(r,θ)exp[−(Pθ μ)(r, t1)]}Is(r,θ)I(r,θ ,t0)

[Is(r,θ)I(r,θ , t0)]!
× exp{−Is(r,θ)exp[−(Pθ μ)(r, t1)]},

where Pθ is the X-ray projection operator at viewing position θ , and Is is the signal due to the
static component of the sample

Is(r,θ) ∝ exp[−(Pθ μs)(r)].

This noise model (and associated probability distribution) will give rise to an MLTR-based
algorithm.

Fluid flow in micro-porous materials is known to mostly consist of Haines jumps [25]. These
are rapid, taking only microseconds, and typically involve a cascade through multiple connected
pores [26–29]. As a Haines jump can significantly alter the fluid distribution in the sample, we
choose a confidence measure that decays rapidly when a large Haines jump occurs [17]:

P[τ(t0 ∈ Ti, t1 ∈ Tμ)|I,μ(n)] = Γ(t0, t1),
1−Γ(t0, t1) ∝ |t0 − t1|, if t0 and t1 are not separated by a large Haines jump,

Γ(t0, t1) = 0, otherwise.

In this case, we have defined a “large” Haines jump as one that causes ∂t ||I(r,θ , t ∈ Ti)||L1 to
deviate more than two standard deviations outside the mean [17].

Our materials dictionary consists of several mobile incompressible fluids, void, and a static
impermeable rock scaffold. We describe μ and μs using a Gaussian mixture model. Using σs

and σ to denote the standard deviation of Gaussian distributions in μs and μ respectively, we
find:

P[m|μs,μ(n)] ∝ exp

[
− (μs −μrock)

2

2σs
2 − μ(n)2

2σ2

]
, if m = rock,

∝ exp

[
− μs

2

2σs
2 − (μ(n)−μm)

2

2σ2

]
, otherwise. (3)

This conditional probability is the materials classification (i.e. segmentation) model required
by the third term in Eq. 2. Although we assume the attenuation of the fluids (μm) and scaffold
(μrock) can be calculated a priori, an additional expectation-maximisation loop can be used to
estimate quantities.

The fourth term in Eq. 2 allows the static component of the sample to restrict the dynamic
component. As the rock scaffold is the only non-mobile, non-permeable phase in the sample,
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the static component of the sample only restricts the dynamic component where the static at-
tenuation value is consistent with rock:

lnP(μs|μ) ∝ − μ2

2σ2 exp

[
− (μs −μrock)

2

2σs
2

]
.

Finally, the sparsity constraint may be enforced by setting the regularisation prior equal to
the Laplace density function with parameter a:

P[μ(x, t ∈ Tμ)] ∝ exp

[
−|μ(x, t ∈ Tμ)|

a

]
. (4)

Employing a nested gradient ascent loop (iteration superscript l) to calculate μ(n+1), we
arrive at the following reconstruction algorithm:

1. From the dynamic radiographs I(r,θ , t0 ∈ Ti), locate large Haines jumps to determine the
interpolation coefficients Γ(t0, t1).

2. Iteratively solve Eq. (2) using a gradient ascent loop (iteration l) nested within an expec-
tation maximisation loop (iteration n):

(a) A gradient descent step (with tunable step sizes α j, and backprojection operator B)
to fit the measured data and compositional priors

μ(n:l+0.5)(x, t1 ∈ Tμ) = μ(n:l)(x, t1) (5)

− α1 ∑
t0∈Ti

Γ(t0, t1)B

⎧
⎨
⎩Is(r,θ)[I(r,θ , t0)− ∑

t ′1∈Tμ

Γ(t0, t ′1)e
(−Pθ μ(n:l))(r,t ′1)

⎫
⎬
⎭

− α2
μ
σ2 exp

[
− (μs −μrock)

2

2σs
2 − μ(n)2

2σ2

]
−α3

μ
σ2 exp

[
− (μs −μrock)

2

2σs
2

]
.

− α2 ∑
m�=rock

μ −μm

σ2 exp

[
− μs

2

2σs
2 − (μ(n)−μm)

2

2σ2

]
.

(b) A compressed sensing step to satisfy our a priori sparsity constraint, using the soft-
thresholding operator T

μ(n:l+1)(x, t1 ∈ Tμ) = [T μ(n:l+0.5)](x, t1).

(c) If the gradient descent loop has converged, update the outer loop

μ(n+1:l=0)(x, t1 ∈ Tμ) = μ(n:l→∞)(x, t1 ∈ Tμ)

As discussed in the introduction, we have three key objectives for this algorithm: (i) it should
place our previous algorithms within a larger context; (ii) it should improve reconstruction
performance with imperfect (i.e. real) data; and (iii) it should generalise to more complex,
previously-intractable physical systems. In the remaining sections of this paper we will address
each of these in turn.
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4. Placing previous theoretical results in context

In this section we will discuss how our previous algorithms for time-resolved tomography
of two-phase flow in porous materials [4, 17], arise as limiting cases of this algorithm. The
empirically-derived SIRT-based algorithm of Myers et. al. [4] can be obtained as a limiting
case of Eq. (2) if one assumes: (i) an approximately monochromatic, attenuation-contrast cone-
beam CT imaging system where the linearised signal is dominated by Gaussian noise; (ii) a
sample characterised by smooth change between evenly spaced reconstruction frames; (iii) a
materials dictionary consisting of a mobile incompressible fluid, void, and a known static im-
permeable rock scaffold; (iv) a materials classification/segmentation scheme that leads to strict
binary thresholding; and (v) a regularising sparsity constraint on the reconstruction. Assump-
tions (iii), (iv) and (v) are explicit, whilst (ii) is implicit in the use of linear interpolation along
the time axis [4].

Assumption (i) describes the following linearised CT imaging system

P[I(r,θ , t0 ∈ Ti)|τ(t0, t1 ∈ Tμ),μ(x, t ∈ Tμ)] ∝ exp

{
− [ln I(r,θ , t0)− (Pθ μ)(r, t1)]2

2σ2

}
, (6)

where σ is the standard distribution of the noise. This leads to a SIRT-based algorithm, in the
same sense that the assumption of Poisson noise at the detector led to an MLTR-based algorithm
in the previous section. If the frames in the reconstruction are evenly spaced along the time axis
with separation Δ, then assumption (ii) is consistent with the confidence measure

P[τ(t0 ∈ Ti, t1 ∈ Tμ)|I,μ(n)] ∝ max(0,Δ−|t1 − t0|). (7)

Under assumptions (iii) and (iv), denoting the known support of the rock scaffold as Ω, we have

ln[P(μs|μ)] + ∑
m

P[m|μs,μ(n)] ln[P(m|μs,μ)]

∝ −μ(x, t ∈ Tμ)
2, if x ∈ Ω or μ(x, t ∈ Tμ)< ε,

∝ −
{∫

Ω μ(x, t ∈ Tμ)dxdt∫
Ω dxdt

−μ(x, t ∈ Tμ)

}2

, otherwise. (8)

This will draw the solution μ to zero within the scaffold support Ω, and where the present guess
at the solution is below some threshold ε chosen to separate fluid and void. This prior is similar
to the “Discrete Reconstruction” prior of Venkatakrishnan et. al. [16], with the contribution
of neighbouring voxels tuned to zero. Again using the Laplace density function [Eq. (4)] to
enforce a sparsity constraint, substituting Eq. (6) through (8) into our MAP-EM framework in
Eq. (2) and taking a gradient ascent approach to evaluating μ(n+1), we can derive Eqs. 10 and
11 of Myers et. al. [4], which constitute a SIRT-based two-phase-flow reconstruction algorithm.

In order to derive the 2-phase flow reconstruction algorithm from Myers et. al. [17], we make
assumptions (i), (iii) and (v), and define the interpolation weights Γ(t0, t1) as per the previous
section. Assumption (iii) restricts us to a single fluid phase, and requires a known rock scaffold.
If a binary segmentation of the rock scaffold is used as μs, then this corresponds to taking the
limit σs � μrock in equation 3.

5. Reconstruction of 2-phase flow

To allow verification and comparison of the MAP-EM algorithm [Eq. (5)] against prior work,
we return to the ground-truth two-phase-flow data set described in Myers et. al. [19]. In this
experiment the objective was to obtain data in the “slow-flow” limit, allowing enough data to
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Fig. 1. 3D renderings of five sequential volume frames (proceeding top-to-bottom). Each
frame is calculated as a difference image between the initial and current reconstructed
states of the sample [i.e. μ(x, t)]: in a drainage experiment this difference is primarily due
to air infiltrating the pore space. The middle column shows the results of the reference FBP
reconstruction (Visualization 1). The left column shows the reconstruction produced by our
empirical SIRT-based algorithm [4]. The right column shows reconstructions performed
using Eq. (5) (Visualization 2).
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be collected so that conventional reconstruction algorithms (i.e. FBP) could be used to calcu-
late a “ground-truth” reference reconstruction. The measured data could then be sub-sampled
(e.g. keeping only every 10th radiograph) to simulate a more rapid experiment. A 5mm di-
ameter Bentheimer quartz plug was saturated with 1M potassium iodide. and then drained as
slowly as possible: 0.025μL/min for 15 hours. The imaging setup was designed to maximise
signal-to-noise ratio at the cost of field-of-view and spatial resolution, with a cone-angle of 52
degrees, detector resolution of 5122 pixels, and a minimally filtered polychromatic beam. After
geometric magnification, the voxel size was 12.8μm. We acquired 133,920 radiographs during
drainage, with angular separation 0.5 degrees and exposure time of 0.4s.

Firstly, we calculated a “ground truth” reference reconstruction using conventional FBP. We
then simulated a more rapid flow experiment by sub-sampling the data along the time axis,
keeping only every tenth radiograph. This under-sampled data set was used to reconstruct the
infiltration of air into the sample during drainage with: our prior empirical SIRT-based algo-
rithm [4]; our prior statistical SIRT-based algorithm [17]; and the MAP-EM, MLTR-like algo-
rithm shown in Eq. (5).

The majority of drainage occurs over 30 revolutions, corresponding to 30 frames in the re-
construction. Volume renderings of the air distribution in the sample are presented and com-
pared in Fig. 1. The exterior ring present in these renderings is due to fluid surrounding the
sample that has drained almost immediately. The additional external ring in the FBP recon-
struction is due to a sub-pixel shift in the sample container; this is removed in the dynamic
tomography reconstructions by the regularisation term. Horizontal slices through these volume
renderings are presented in Fig. 2. Qualitative inspection shows that the MAP-EM algorithm
displays improved performance compared to the empirical SIRT-based algorithm: (i) in small
regions where our assumptions concerning the object are violated, such as partially-filled pores
(see, e.g. upper right of 2D slices in Fig. 2); (ii) for small features where signal is very low,
and a more physically realistic reconstruction model is important (see, e.g. features towards the
bottom of the 2D slices in Fig. 2); and (iii) where a Haines jump has occurred whilst the object
is revolving (see, e.g. the features towards the bottom of the 3D renderings in Fig. 2, which are
reconstructed differently be each method).

Qualitative inspection of individual slices does not reveal substantial differences in perfor-
mance between the algorithm presented in this paper, and our prior statistical SIRT-based al-
gorithm [17]. Accordingly, we perform quantitative error analysis on our dynamic tomography
reconstructions from under-sampled data, taking the FBP reference reconstruction as a ground
truth. We note that the FBP reconstruction forms an imperfect baseline: it exhibits noise, “cup-
ping” artefacts due to beam-hardening, and motion artefacts where Haines jumps have occurred
during drainage. By quantifying these imperfections in the FBP reference reconstruction, we
can establish a measure of acceptable error in our dynamic tomography reconstructions.

To quantify the errors in the FBP reference reconstruction we segment out the static rock
scaffold from the initial static scan μs, and assess how well this unchanging feature has been
reconstructed by FBP. We calculate the error (in the L2 norm) in the FBP reconstruction of
the rock scaffold, using the initial static scan of the sample as a motion-artefact-free baseline.
Normalising this error by the number of voxels in the rock scaffold, we obtain an estimate of
noise and motion artefacts in the reference FBP reconstruction. This error measurement does
not account for beam hardening, as it is equally present in the FBP and static reconstructions.
We use this estimate of experimental error to define arbitrary units for the L2 error-per-voxel
in our reconstructions: the rock scaffold in the FBP reconstruction has an error of 1.0 a.u., so
anything below this may be regarded as being within the limits of experimental error.

The empirically-derived SIRT-based dynamic tomography algorithm [4] produces a recon-
struction with an error of 1.77 a.u.; the statistical SIRT-based algorithm [17] produces better
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Fig. 2. Reconstructed 2D (right) and 3D (left) slices through a Bentheimer sandstone during
drainage, calculated as a difference image between the initial and current reconstructed
states of the sample [i.e. μ(x, t)]. 2D slices are a 480×400 pixels (6.7×5.6mm), taken
normal to the rotation axis. Middle row: a reference reconstruction from full data, using
FBP. In the upper right is a pore which displays partial volume effects. This violates our
assumption that the rock is present at only a single grey level. Top row: reconstruction
from every 10th viewing angle, using an empirical SIRT-based 2-phase flow algorithm [4].
Bottom row: reconstruction from every 10th viewing angle, using MLTR-like algorithm
[Eq. (5)]. Note successful reconstruction of partial volume effects.
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Fig. 3. Left: a 292×292 pixel slice through the synthetic 420-pixel diameter, 4-material
object, taken normal to the rotation axis when the time-evolution was roughly 50% com-
plete. The immobile rock phase is in dark grey, and the three mobile fluid phases are black,
light grey and white respectively. Right: a time-resolved reconstruction from simulated
data, using 72 radiographs per time-step. The majority of thin-film structures are correctly
reconstructed.

results with an error of 1.24 a.u., though still slightly less accurate than the FBP algorithm.
Of the three dynamic tomography algorithms, only the MLTR-like algorithm presented in this
paper [Eq. (5)] produces a reconstruction within experimental error (0.81 a.u.) of the under-
sampled data.

6. Synthetic 4-material data

The algorithm presented in Eq. (5) is, in theory, applicable to multi-phase flow. This adaptability
was not present in our previous approaches to dynamic tomography, which did not generalise
beyond two-phase fluid flow in porous materials [4]. In order to test this algorithm we simulated
CT imaging of a sample containing three mobile phases.

We use a material dictionary consisting of an impermeable scaffold and three mobile fluids.
As discussed in the introduction, it is quite difficult to construct physically-realistic simulations
of three-phase fluid flow. Having segmented a pore-space distribution from a tomogram of sand-
stone, a physically un-realistic time-evolving distribution of fluids was created by using several
different region-growing transforms to slowly fill the pore space and overlaying the results (see
Fig. 3 and Fig. 4, left). Imaging was simulated using a geometry identical to that described in
section 5: a 5122 detector, with cone-angle 52 degrees. We simulated 1512 radiographs with an
angular separation of 5 degrees.

Figures 3 and 4 show the reconstruction from synthetic data. As in section 5, we used 72 ra-
diographs per volume time-frame. The time-evolving sample contained several film-like struc-
tures. Thin films are of particular interest in multi-phase flow, so it is encouraging to see that the
majority of these structures were successfully reconstructed. We repeated our quantitative error
analysis from the previous section, generating an FBP reconstruction from 720 noiseless radio-
graphs per volume time-frame. This reference dataset was compared to the original numerical
phantom, and the error-per-pixel in the L2 norm was again used to calibrate an “arbitrary unit”
of error. The reconstruction from under-sampled data generated by MLTR-like algorithm in Eq.
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Fig. 4. 3D renderings showing the time-evolution of the slice shown in figure 3. Time
evolution occurs along the vertical axis, proceeding from bottom to top. The two non-air
fluid phases are rendered in brown and red respectively. Left: the numerical phantom used
to generate the data. Right: a time-resolved reconstruction from simulated data, using 72
radiographs per time-step.

(2) had an error of approximately 1.3 a.u., though we are wary of directly comparing these ar-
bitrary units to those used in the previous section. This is due to the lack of detector noise in the
reference reconstruction, and the fact that in this case we have access to the original numerical
phantom and are thus able to exactly calculate motion artefacts in the FBP reconstruction. The
un-realistic nature of the synthetic fluid distribution implies that future work should focus on
the collection of real, experimental 3-phase flow data.

7. Conclusion

We have presented a modular framework for time-resolved tomography of complex, highly con-
strained samples, using maximum a posteriori estimation. This framework has demonstrated
both theoretical and practical value: its flexibility allows us to place previous results in a wider
mathematical context, and quantitatively improves reconstruction performance when real sam-
ples display inevitable, small deviations from our assumptions. Finally, we have demonstrated
the potential for applying this framework to the imaging of three-phase flow in porous materi-
als, by applying it to synthetic data.
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