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ABSTRACT
We investigate how the imprint of Faraday rotation on radio spectra can be used to determine
the geometry of radio sources and the strength and structure of the surrounding magnetic
fields. We model spectra of Stokes Q and U for frequencies between 200 MHz and 10 GHz
for Faraday screens with large-scale or small-scale magnetic fields external to the source.
These sources can be uniform or 2D Gaussians on the sky with transverse linear gradients
in rotation measure (RM), or cylinders or spheroids with an azimuthal magnetic field. At
high frequencies, the spectra of all these models can be approximated by the spectrum of
a Gaussian source; this is independent of whether the magnetic field is large scale or small
scale. A sinc spectrum in polarized flux density is not a unique signature of a volume where
synchrotron emission and Faraday rotation are mixed. A turbulent Faraday screen with a
large field coherence length produces a spectrum which is similar to the spectrum of a partial
coverage model. At low and intermediate frequencies, such a Faraday screen produces a
significantly higher polarized signal than Burn’s depolarization model, as shown by a random
walk model of the polarization vectors. We calculate RM spectra for four frequency windows.
Sources are strongly depolarized at low frequencies, but RMs can be determined accurately if
the sensitivity of the observations is sufficient. Finally, we show that RM spectra can be used
to differentiate between turbulent foreground models and partial coverage models.

Key words: magnetic fields – polarization – galaxies: ISM – galaxies: jets – galaxies:
magnetic fields.

1 IN T RO D U C T I O N

Most active galactic nuclei (AGN) are so distant that we can only
study their structure using very long baseline interferometry. How-
ever, the magnetic field in the medium surrounding AGN leaves an
imprint on the polarized flux density spectra, allowing us to study
AGN using polarization measurements. In a magnetized plasma,
the refractive index for the left-handed and right-handed circular
polarization modes is slightly different, which leads to a net ro-
tation of the linear polarization vector between frequencies, also
known as Faraday rotation. The amount of Faraday rotation of a
polarized wave which is detected at a wavelength λ is equal to
χobs − χ0 = RMλ2, where χobs and χ0 indicate the position angle
of the polarized electromagnetic wave that is detected and the posi-
tion angle of the wave when it is emitted, respectively. The rotation
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measure (RM) is equal to

RM = 0.81
∫ observer

source
neB‖dl rad m−2 , (1)

where ne is the local electron density in units of cm−3, B‖ the
line-of-sight component of the magnetic field in units of μG, and
the path length is measured in parsec. If ne, B‖, or the path length
changes inside or across the source then equation (1) applies to each
individual region where these quantities are the same. In that case
the net observed polarization vector is a linear combination of the
polarization vectors which are emitted by volumes with the same
RM, and the net RM of the source ≡ dχobs/dλ2, which can depend
on frequency.

Depending on the geometry of the magnetic field, its strength,
coherence length, and the electron density distribution along the line
of sight, different parts of the background source will have different
RMs. These regions with different RMs leave an imprint on the
polarized flux density and position angle spectrum of the source,
which can be decomposed into emission at different RMs using the
technique of RM synthesis (Brentjens & de Bruyn 2005). In this
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paper, we investigate how polarization measurements can be used to
study the properties of synchrotron-emitting and Faraday-rotating
media in unresolved sources. These sources can be distant AGN or
structures in nearby galaxies which are below the resolution limit of
a telescope. We develop and analyse polarized flux density and po-
sition angle spectra as a function of frequency, and RM spectra, for
different geometries of the sources themselves and of the magnetic
fields in their surroundings. Analytical models of structured mag-
netic fields (either large scale or small scale) have been presented
previously by, e.g. Burn (1966), Sazonov (1973), Jones & Odell
(1977), Cioffi & Jones (1980), Laing (1981), Bicknell, Cameron
& Gingold (1990), Tribble (1991), and Sokoloff et al. (1998). At
the time, polarimeters on radio telescopes only provided data for
very narrow frequency windows. To study the structure of mag-
netic fields in AGN, one would typically analyse data at a number
of frequencies, as was done for example by Rossetti et al. (2008),
Mantovani et al. (2009), and more recently by Farnes, Gaensler &
Carretti (2014a) and Farnes et al. (2014b). Modern radio interfer-
ometers like the Jansky Very Large Array (VLA) and the Australia
Telescope Compact Array (ATCA) that are equipped with broad-
band polarimeters can be turned into powerful tools for studying
the complex structure of AGN and their associated magnetic fields.
Farnsworth, Rudnick & Brown (2011) and and O’Sullivan et al.
(2012) studied compact radio sources using broad-band data and
the technique of RM synthesis. Building on the work by Burn
(1966) and Tribble (1991), Arshakian & Beck (2011), and Bernet,
Miniati & Lilly (2012) have modelled polarized flux density spectra
for media that contain large-scale and small-scale magnetic fields.
Very recently, Horellou & Fletcher (2014) presented analytical mod-
els of helical magnetic fields and calculated polarized flux density
spectra from these. Shneider et al. (2014) developed analytical mod-
els of depolarization by media with large-scale or turbulent mag-
netic fields and used these to interpret their observations of the
grand-design spiral galaxy M51.

In our paper, we consider radio sources which are compact com-
pared to the size of the telescope beam, so that beam attenuation
is not important. Faraday rotation occurs in front of the source,
and can be due to either large-scale or turbulent magnetic fields.
The large-scale magnetic fields that we consider produce a trans-
verse linear gradient in RM across a uniformly emitting source or
a source with a Gaussian flux density profile, or they wrap around
one of the axes of the source. We consider turbulent magnetic fields
that can be characterized by a single coherence length. We develop
semi-analytical models for these different source types, which we
use to calculate polarized flux density and position angle spectra as
a function of frequency, and RM spectra. Then we analyse which
features in the frequency spectra or RM spectra can be used to iden-
tify the geometry of the emitting region and the properties of the
Faraday-rotating screen in front of this region. In our models, we
will consider RMs of up to at least 1000 rad m−2 to reflect the range
in RMs that have been found in AGN cores, see e.g. Zavala & Taylor
(2003, 2004), O’Sullivan, Gabuzda & Gurvits (2011), and Hovatta
et al. (2012). Compared to previous studies, we consider a wider
range of models and develop new models, present model spectra
for a wider frequency range, include depolarization across the finite
frequency channels, and analyse these spectra using RM synthesis.
The wide frequency range that we consider will be accessible with
the Square Kilometre Array (SKA) which is expected to produce
its first results around 2020.

In Section 2, we describe the models that we developed that in-
clude large-scale or turbulent (small-scale) magnetic fields, and we
present polarized flux density spectra for these source geometries.

In Section 3, we calculate RM spectra from the Stokes Q and U
frequency spectra that we modelled for four observing windows.
In the appendix, we describe in detail how we modelled emitting
cylinders and emitting ellipsoids with a wrapped-around Faraday-
rotating layer, and we derive probability density functions (pdfs) of
RM for turbulent Faraday screens.

2 M O D E L D E S C R I P T I O N S A N D F R E QU E N C Y
SPECTRA

When we integrate through the synchrotron-emitting medium to
calculate the polarized flux density profile of the source we make
the following assumptions:

(i) the monochromatic volume emissivity εν and the shape of the
emission spectrum are the same throughout the source,

(ii) the emission is synchrotron-thin; synchrotron self-absorption
is not important,

(iii) the intrinsic position angle of the polarized emission is con-
stant throughout the source,

(iv) wavelength-independent depolarization is constant through-
out the source, and

(v) the bulk velocity of the synchrotron-emitting plasma is much
smaller than the speed of light.

The polarization properties of jets with relativistic bulk velocities
have been modelled by, e.g. Blandford & Königl (1979), Beckert
& Falcke (2002), Pariev, Istomin & Beresnyak (2003), Lyutikov,
Pariev & Gabuzda (2005), Zakamska, Begelman & Blandford
(2008), Broderick & McKinney (2010), Clausen-Brown, Lyutikov
& Kharb (2011), and Porth et al. (2011). These authors have demon-
strated that relativistic jets with helical magnetic fields inside the
source region show complex polarization behaviour, for example,
the electric vector position angle can change direction by 90 deg
between the axis and the edge of the jet (‘spine-sheath’ structures:
see e.g. Attridge, Roberts & Wardle 1999; Pushkarev et al. 2005),
and the polarized flux density does not have to be symmetric along
a cross-cut perpendicular to the axis of the jet. In our paper, we limit
ourselves to sources (which could be jets) with non-relativistic bulk
velocities to reduce the complexity of the models, thereby simpli-
fying our analysis. In all our models the Faraday-rotating gas is
non-relativistic; for Faraday rotation in a relativistic gas, we refer
the reader to the paper by Broderick & Loeb (2009).

We will use the ‘intrinsic polarization fraction’ p0 to refer to the
polarization fraction that is measured by a hypothetical observer
between the source of the emission and the Faraday-rotating fore-
ground screen, while we ourselves measure the polarized emission
only after it has passed through the foreground screen. This intrinsic
polarization fraction includes wavelength-independent depolariza-
tion effects that are not caused by Faraday rotation. Dividing the
surface-integrated monochromatic polarization vector by p0 times
the Stokes I spectrum removes spectral index effects. We choose
the orientation of the Stokes Q, U coordinate system such that the
source emits only in Stokes Q (before the emission passes through
the Faraday-rotating foreground medium).

The observed monochromatic polarization vector at frequency ν

is given by

Pobs (ν) ≡
∫

source
Pem (x, y, z) e2iRM(x,y,z)(c/ν)2

dxdydz (2)

=
∫ ∞

−∞
Pem (RM) e2iRM(c/ν)2

dRM , (3)
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where Pem (x, y, z) indicates the polarization vector that is emitted
at position (x, y, z) within the source, Pem (RM) indicates the po-
larization vector that is emitted at a single RM, and ‘c’ the speed
of light. Throughout this paper, we will use a Cartesian coordinate
system x, y, z where x points towards the observer, and y and z lie
in the plane of the sky such that z points along the major axis of
the source and y along the minor axis. The major axis of the source
can be inclined by an angle θ with respect to the plane of the sky;
in that case y and z point along the projection of the minor and the
major axis of the source on the sky, respectively.

We will use analytical expressions or numerical modelling to
determine Pobs (ν). Then we calculate the net polarization vector of
each frequency channel by integrating over the response function
of that channel. For channel j

Pobs

(
νj

) ≡
∫ ∞

−∞
wj (ν) Pobs (ν) dν . (4)

The response function of channel j, wj(ν), expresses how sensitive
the observations are to each frequency in the observing band. The
integral of wj(ν) out to ± infinity is equal to one. We will simulate
frequency channels with a top-hat response in frequency, which is
equal to 1/δν inside the channel and zero outside it, where δν = ν j + 1

− ν j is the channel width. We will refer to the channel-averaged
polarization vectors as Pobs (ν; δν). The polarized flux density that
the background source emits is independent of the structure of the
Faraday screen, therefore∫ ∞

−∞
|Pem (RM)| dRM = constant . (5)

In our simulations, the background source emits 1000 units of po-
larized flux density. The physical interpretation of equation (5) is
that structure in the Faraday screen redistributes polarized flux den-
sity over different RMs. As a result sources that emit over a wider
range of RMs have a lower peak polarized flux density in the RM
spectrum.

2.1 A foreground medium with a large-scale magnetic field

In this section, we simulate transverse linear RM gradients in front
of a source that emits uniformly across its surface (Section 2.1.1) or
has a Gaussian emission profile (Section 2.1.2). Such RM gradients
can occur when the source of the emission is embedded in a large
ionized halo. If the source is small compared to the radius of the
halo then any inclined jet will show a transverse linear RM gradient
across its surface because of the increase in path length through the
halo. Next we model sources where the geometry of the Faraday-
rotating foreground and the geometry of the emitting region are
closely connected. In Section 2.1.3, we consider a magnetic field
that wraps around a cylinder which emits polarized radio waves; the
magnetic field inside the emitting cylinder points along the major
axis of the cylinder. In Section 2.1.4, we generalize the shape of the
emitter to an ellipsoid that can have any axis ratio and any orienta-
tion with respect to the line of sight. Azimuthal magnetic fields have
been observed in the radio jets of 3C273 (Asada et al. 2002), M87
(Algaba, Asada & Nakamura 2013), and in other radio jets (e.g.
Reichstein & Gabuzda 2012; Gabuzda, Cantwell & Cawthorne
2014), even though in those cases the synchrotron-emitting plasma
moves down the jet at relativistic speeds, while for the cylinders and
ellipsoids that we model we consider plasmas with non-relativistic
bulk velocities. The expressions we derive are valid for a single
source; if a source consists of multiple components then the re-

sulting RM spectrum is simply the vector sum of the complex RM
spectra of the individual components.

To avoid unnecessary calculations, when we use numerical in-
tegration we increase the (fractional) numerical accuracy of the
integral at the highest frequencies, where the integrated polarized
flux densities are highest. This guarantees that the integrated flux
densities at all frequencies are accurate down to at least 10−5 flux
density units, and that we do not spend too much time numerically
integrating at the lowest frequencies. We start our simulation always
at the highest frequency, where depolarization is minimal, and for
this frequency we set the fractional numerical accuracy ε = 10−10.
Then we move to lower frequencies, and we let ε for channel j
increase as

εj+1 = 10−floor[log10(abs(Pobs,j )/0.01)+5] , (6)

up to 10−5. When numerically integrating non-monotonic functions,
we checked that the numerical integral was calculated with a suffi-
ciently small (accurate) ε. In Section 2.1.4, we will use a different
method to fix the numerical accuracy with which polarization vec-
tors are calculated for each of the frequency channels. The accuracy
of our numerical method is sufficient to calculate RM spectra in
Section 3 down to at least 0.01 flux density units (−50 dB).

2.1.1 Uniform source with a transverse linear RM gradient

The net monochromatic polarization vector Pobs (ν) for a uniform
source of emission inside which RM increases or decreases lin-
early with physical depth has been calculated analytically by Burn
(1966):

Pobs (ν) = (p0 × I ) sinc
(
	RM (c/ν)2

)
e2iRMc(c/ν)2

, (7)

where 	RM = RMmax − RMmin is the range in RM over which
the source emits, and RMc = 0.5RMmin + 0.5RMmax is the mean
RM of the emission. We define sinc(x) ≡ sin(x)/x. Such a source in
which emission and Faraday rotation are mixed has become known
as a ‘Burn slab’. Equation (7) also describes the spectrum of a
uniformly emitting source which has a linear RM gradient in front
of it (e.g. Sokoloff et al. 1998 and Zavala & Taylor 2004). Fig. 1
shows the absolute value of the simulated polarized flux density
Pobs (ν; δν), scaled with the assumed polarized fraction times the
flux density spectrum in Stokes I, of uniform sources that lie behind
linear gradients in RM. We integrated Pobs (ν) across frequency
channels using Romberg’s method.

Equation (7) expresses how the emission at different RMs leads
to depolarization (the sinc term), while the polarization vectors at
different frequencies show Faraday rotation with a net RM equal
to the mean RM of the emission. If RMc = 0 rad m−2, then the
observed polarization vectors do not show net Faraday rotation, and
all polarized emission will be in Stokes Q, Stokes U will be 0.

The condition that |Pem (RM)| is the same for all RM is much
more general than one might think at first. There are no constraints
on the geometry of the source, nor on the inclination of the source
with respect to the plane of the sky. The source can even consist
of multiple components. The RMs across the source do not have to
increase or decrease monotonically, and the RM gradient can have
any orientation with respect to the major axis of the background
source. For example, a cylindrical source with a linear RM gradient
along its major axis is described by equation (7). Even the spectrum
of a source with an azimuthal magnetic field can be approximated
by equation (7) if the emission profile along the RM gradient of
the source is approximately constant. Unfortunately, because all
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Figure 1. Broad-band polarized flux density spectra between 200 MHz and
10 GHz, scaled with the intrinsic polarization fraction times the Stokes I
spectrum, for Gaussian background sources that illuminate a linear gradient
in RM. The source emits 1000 flux density units. The RM differences across
the FWHM of the major axis of the Gaussian are 10, 250, and 1000 rad m−2

(red to blue). The grey lines in the background show spectra for uniform
sources from Section 2.1.1 with a half-width equal to three times the standard
deviation of each of the simulated Gaussian sources. These uniform sources
emit over RM ranges of 13, 318, and 1274 rad m−2. The spectrum of a
Gaussian source and the matching spectrum of a uniform source intersect at
approximately 300 flux density units.

these geometries have the same frequency and RM spectra, it is
not possible to determine the source geometry without additional
information.

2.1.2 Gaussian source with a transverse linear RM gradient

Leahy, Pooley & Jagers (1986), Johnson, Leahy & Garrington
(1995), and Sokoloff et al. (1998) calculated monochromatic po-
larization vectors for a uniformly emitting source with a linear
gradient in RM in front of it, which is observed with a Gaussian
beam. We note that by re-ordering the factors inside the integrals
that these authors solved the same solution is found for a source
with a 2D Gaussian profile that lies behind a Faraday screen with
a transverse linear gradient in RM. The Gaussian source measures
σ y × σ z standard deviations along its minor and major axis, respec-
tively, and the RM gradient is described by the function RM(y, z).
The observed polarization vector at a single frequency is then given
by equation 40 in Sokoloff et al. (1998):

Pobs(ν) = (p0 × I )

2πσyσz

∫ ∞

−∞

∫ ∞

−∞
e− 1

2 [((y−y0)/σy )2+((z−z0)/σz)2]

e2iRM(y,z)(c/ν)2
dydz

= (p0 × I )e− 2	RM2(c/ν)4 + 2iRMc(c/ν)2
, (8)

where

	RM2 =
(

∂RM

∂y
σy

)2

+
(

∂RM

∂z
σz

)2

is the total change in RM across the Gaussian source, and ‘RMc’ is
the RM at the centre of the Gaussian source on the sky, at coordinates
(y0, z0). 	RM2 can be expressed in terms of the RM difference
across the full width at half-maximum (FWHM) of the major and
minor axes of the source by using σ = FWHM/

√
8ln2.

We numerically integrate equation (8) over the widths of the in-
dividual frequency channels using Romberg integration. Because

|Pobs (ν)| decreases monotonically with decreasing ν, and because
the channel width δν is constant, |Pobs (ν; δν)| decreases monoton-
ically with decreasing ν. Starting at the highest observing frequen-
cies, we stopped integrating equation (8) at the frequency where
|Pobs (ν; δν)| / (p0 × I ) was < 10−5, which is below the limit we
consider in Section 3 for calculating RM spectra.

Fig. 1 shows frequency spectra of Gaussian sources with trans-
verse linear RM gradients between 10 and 1000 rad m−2 FWHM−1.
Gaussian emitters with even a small RM difference across the source
(�125 rad m−2 FWHM−1) are almost completely depolarized at fre-
quencies below 1 GHz. This is not the result of depolarization across
the frequency channels, which we checked by simulating observa-
tions with frequency channels of 0.1 MHz. When the RM gradient
is small, the polarized flux density spectrum shows a sharp drop
over a narrow frequency range. For such sources, it is vital to match
the frequency window of the observations to the RM gradient one is
looking for. If the observing frequency is too low the source will be
severely depolarized and therefore difficult to detect. On the other
hand, if the observing frequency is too high the source will not show
any depolarization, and will be indistinguishable from other sources
with small RM gradients which also do not show depolarization.

If a source has a Gaussian profile along its minor axis and a
uniform profile along its major axis, and illuminates a linear RM
gradient, then the orientation of the RM gradient determines if the
spectrum we observe follows the sinc profile from Section 2.1.1
(RM gradient along the major axis), that of a Gaussian source (RM
gradient along the minor axis), or a combination of the two. If a
source consists of uniform and Gaussian components that from our
perspective all lie behind the same linear gradient in RM then the
frequency and RM spectra are a combination of the spectra which
we modelled in Section 2.1.1 and this section. At high frequen-
cies, the uniform source depolarizes at roughly the same rate as a
Gaussian source of the same extent, i.e. the long axis of the uni-
form source has a half-length equal to approximately three times
the standard deviation of the Gaussian source. The grey lines in the
background of Fig. 1 show the spectra of uniform sources with the
same extent as the Gaussian sources that we modelled; the lines for
each matching pair of spectra intersect at about 300 flux density
units. At high frequencies, the difference between the spectra of the
two source types becomes more pronounced when the RM gradient
across the Gaussian and uniform source becomes steeper, while at
low frequencies the re-brightening of spectra is a tell-tale sign for
uniform sources, which is not found in Gaussian sources. If the
uniform source is larger than the matching Gaussian source it will
be more depolarized than the Gaussian source, and vice versa.

2.1.3 Cylindrical source with an azimuthal magnetic field

For this geometry, Faraday rotation occurs in a boundary layer
between an inner, emitting cylinder of radius R and an outer, coaxial,
cylinder of radius R′. The cylinders can have any inclination with
respect to the plane of the sky. In Appendix A, we explain in detail
how we model frequency spectra for this source type; there we also
show that the frequency spectra that we model are independent of
the inclination angle. This implies that the inclination angle of the
cylinder cannot be derived from the frequency or RM spectrum of a
source. For this simple geometry, the only input parameters are the
maximum RM of the source, RMmax, which is found at the edges of
the emitting cylinder, and the intrinsic polarized flux density that is
emitted by the source, which we normalize to 1000 units of polarized
flux density. Our model of the cylinder also acts as a test case for the
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Figure 2. Frequency spectra for a cylinder of polarized emission with an
azimuthal magnetic field which wraps around the major axis of the cylinder.
The solid lines indicate cylinders with RMmax of 25, 500, and 1500 rad
m−2 (red to blue) and a Faraday-rotating layer with a thickness equal to
10 per cent the radius of the emitting cylinder; the dashed lines show results
for the same RMmax but a Faraday-rotating layer with only 1 per cent the
radius of the emitting cylinder. The grey spectra in the background are
for Gaussian sources with a transverse linear RM gradient of 7, 145, and
436 rad m−2 FWHM−1 across its major axis.

more complex model of an emitting ellipsoid that we will discuss in
Section 2.1.4. We found that a few of the 9800 frequency channels
that we simulated do not decrease monotonically in polarized flux
density with decreasing frequency; this could be the result of our
numerical integration scheme. Because the difference in polarized
flux density is at most 0.2 units of polarized flux density, and often
at least one order of magnitude smaller, and because only very few
frequency channels are affected, the RM spectra that we calculate
from our simulation are accurate down to at least 0.01 units of
polarized flux density.

Fig. 2 shows polarized flux density spectra for different values
of RMmax, if Faraday rotation occurs in a boundary layer with a
thickness equal to 1 or 10 per cent of the radius of the emitting
cylinder. Increasing the thickness of the boundary layer leads to
more depolarization, which has the effect of spreading out the curves
that correspond to different RMmax in Fig. 2. This makes it easier to
tell the curves for the different RMmax apart, and it makes it easier
to determine RMmax more accurately from observations that cover
a wide frequency range. Fig. 2 also shows that spectra of a cylinder
with a thick Faraday-rotating layer and a small RMmax can be very
similar to spectra of a cylinder with a thin boundary layer and a
large RMmax, which is illustrated by the blue dashed curve which
overlaps with the green solid curve. This will make it difficult to tell
the thickness of the boundary layer from the observed frequency
spectrum.

In Fig. 2, we also compare the frequency spectra for a cylinder
with a thick Faraday-rotating layer with frequency spectra for a
Gaussian source with a transverse linear RM gradient across its
major axis, which we modelled in Section 2.1.2. We chose the
values for the RM gradients in front of the Gaussian source such that
frequency spectra of the cylinder and the Gaussian source intersect
at 500 polarized flux density units. The comparison between the
coloured and grey-scale frequency spectra shows that it could be
possible to tell the two source types apart by accurately measuring
the difference in curvature of the frequency spectra, which becomes
easier if the amount of Faraday rotation across the Gaussian source
or across the minor axis of the cylinder is large.

Figure 3. Stokes Q profiles (in arbitrary flux density units) at 1.4 GHz when
the surface of a spheroid with axis ratio 1:1:2 and a thick Faraday screen is
projected on the sky. Different rows indicate different inclination angles θ of
the major axis of the spheroid, while different columns show configurations
with RMmax of 20, 200, and 1000 rad m−2, respectively.

2.1.4 Ellipsoidal source with an azimuthal magnetic field

In this model, Faraday rotation occurs between an inner and outer
ellipsoid, where the magnetic field in the Faraday-rotating layer
wraps around the major axis (z axis) of the inner ellipsoid. These
ellipsoids have a common coordinate system that we introduced at
the beginning of this section, but their extents can be chosen inde-
pendently. In Appendix B, we describe in detail how we modelled
this source type. The ellipsoid is described by many parameters; we
reduce the dimensionality of the parameter space by considering the
case of a spheroid, which has a circular cross-section of radius R
perpendicular to the major axis z. The spheroid can be described by
specifying the axis ratio C/R between the length of polar (z) axis C
and its radius at the equator R, the inclination θ of the spheroid with
respect to the plane of the sky, the thickness of the Faraday-rotating
layer, and RMmax. Fig. 3 shows the pattern of Stokes Q across the
surface of a spheroid which has different inclinations with respect
to the plane of the sky and different RMmax.

Fig. 4 shows frequency spectra for spheroids with different axis
ratios, inclination angles, RMmax, and thicknesses of the layer of
Faraday-rotating layer. The numerical accuracy of these spectra
is � 10 units of polarized flux density; in Appendix B we explain
how we derived this value. If the source lies in the plane of the
sky the different axis ratios that we tested produce the same fre-
quency spectrum to within a few units of polarized flux density
at 500 MHz; therefore we only show one of the three panels for
this inclination angle. Similar to what we noticed for the cylindri-
cal source, increasing the thickness of the Faraday-rotating layer
spreads out the frequency spectra. Changing the inclination of the
spheroid clearly has a larger impact on the spectra shown in Fig. 4
than changing the axis ratio of the spheroid. Therefore it is easier
to determine the inclination of the spheroid than its axis ratio. If
the source is inclined with respect to the plane of the sky frequency
spectra can show re-brightening at low frequencies, with secondary
maxima which reach the same height as the secondary maxima of
the uniform source discussed in Section 2.1.1. As we concluded in
Section 2.1.1, this occurs when the emitted polarized flux density is
the same for all RM at which the source emits. Needle-like sources
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Figure 4. Frequency spectra for different axis ratios of the spheroid (columns), inclination angles θ (rows), and RMmax of 25, 500, and 2500 rad m−2 (red to
blue). One in every 25 channels is shown. The axes of the outer spheroid are scaled versions of the axes of the inner spheroid, where the scale factor is either
110 per cent, producing a thick layer of Faraday-rotating material (solid lines) or only 101 per cent, producing a thin layer (dashed lines). The axis ratios of
each column are indicated above the top panel in each column. The three panels for a spheroid which lies in the plane of the sky (θ= 0◦) are almost identical;
we show only one of the panels (see the text for details). The grey lines in the background show frequency spectra for a Gaussian source with a transverse linear
RM gradient, which we modelled in Section 2.1.2. The RM gradients in front of these Gaussian sources were chosen such that the spectrum of a spheroid and
the spectrum of the matching Gaussian source intersect at 500 flux density units.

with large C/R axis ratios do not show a strong amplitude difference
between the secondary and higher-order maxima and minima.

At high frequencies, the spectrum of a spheroid can be approxi-
mated by the spectrum of a Gaussian source which we modelled in
Section 2.1.2. Accurate measurements at low and intermediate fre-
quencies can detect the secondary and higher-order maxima which
are present in the spectrum of an inclined spheroid but not in the
spectrum of a Gaussian source; such measurements might even dis-
tinguish between an inclined spheroid and a uniform source with a
transverse linear RM gradient (Section 2.1.1).

The spheroids that we modelled do not show a change in position
angle with frequency beyond the numerical accuracy of the models.
Therefore, the net RM of the spheroids is zero, which we also found
for the models with large-scale magnetic fields which we considered
previously.

2.2 A turbulent foreground medium

Finally, we consider depolarization due to a turbulent magnetic
field in front of a uniformly emitting source. We investigate how

the coherence length and magnetic field strength affect the polarized
flux density spectrum as a function of frequency.

Depolarization by a turbulent foreground has been investigated
by a number of authors. Burn (1966) considered a foreground screen
with RMs that are drawn from a Gaussian distribution with variance
σ 2

RM. All cells in this model have the same volume equal to the
cube of the coherence length of the magnetic field. Tribble (1991)
expanded this analysis to include structure in RM on a spectrum of
scales. Murgia et al. (2004) modelled the polarization properties of
galaxy clusters in 3D using a power law to describe structure in the
magnetic field, and showed that the RM dispersion as a function
of impact parameter, σ RM(R⊥), can be approximated well by a
model with a single characteristic length scale of the magnetic field.1

Fanti et al. (2004) investigated how in Compact Steep Spectrum
sources the RM dispersion follows the King profile σRM (R⊥) ∝(
1 + R2

⊥/R2
c

)(1−6β)/4
(King 1962; also known as a β profile), where

1 This length scale is equal to
∫ ∞

0 w‖(R)dR/w‖(0), where w‖(R) is the
spherically-averaged autocorrelation function of the magnetic field compo-
nent along the line of sight.
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Rc is the core radius of the galaxy under investigation. Rossetti
et al. (2008) proposed a model where the turbulent foreground only
covers a fraction of the emitter in the background. In their model,
the observer sees a combination of the Burn depolarization model
and a contribution by the background source that is not covered
by the turbulent foreground. The RMs in their model are drawn
from a Gaussian distribution, and there are at most two Faraday-
rotating screens with turbulent layers. Hovatta et al. (2012) modelled
depolarization by a turbulent Faraday screen with a Gaussian pdf of
RM in front of a radio jet. They concluded that the depolarization
of isolated jet components in their sample of AGN can be explained
by a small number of sightlines passing through such a Faraday
screen.

We model a circular source with a diameter of 25 pc that emits
1000 units of polarized flux density uniformly across its surface.
The results we derive apply also to sources which are not circular, as
long as the surface area of those sources is the same as the surface
area of the circular source we consider. The coherence length of
the magnetic field is allowed to vary continuously; therefore the
number of turbulent cells does not have to be an integer. The intrinsic
polarization angle of the emission is set to zero degrees throughout
the emitter. We model a Faraday-rotating screen in front of this
source that consists of one layer of turbulent cells (Section 2.2.1)
or multiple layers of cells (Section 2.2.2). The electron density
ne is constant throughout the screen, and equal to 10 cm−3. We
investigate magnetic field strengths Bturb of 1, 5, 10, 25, and 50 μG,
while the direction of the magnetic field is drawn independently
between turbulent cells. One can choose a different value for the
electron density or magnetic field strength; as long as the product
of the electron density times the magnetic field strength is the same
as in our simulation one will find the same frequency spectra and
RM spectra.

2.2.1 A single layer of cells

For a single layer of turbulent cells, the observed monochromatic
polarization vector is equal to

Pobs (ν) =
Nl.o.s.∑
j=1

(∫
j

Pem (y, z) dydz

)
e2iRMj(c/ν)2

. (9)

‘l.o.s.’ is shorthand for ‘line of sight’, there are Nl.o.s. sightlines, and
the coordinate axes y and z point along the minor, respectively, the
major axis of the emission region. Because the source that we model
emits uniformly across its surface, the integral in equation (9) can
be replaced by P/(p0 × I) = 1000 flux density units divided by the
number of lines of sight through the Faraday screen. This simplifies
equation (9) to

Pobs (ν) = P/ (p0 × I )

Nl.o.s.

Nl.o.s.∑
j=1

e2iRMj(c/ν)2
. (10)

In Appendix C, we show that if the magnetic field direction is
drawn randomly, such that every point on the unit sphere has equal
probability of being drawn, then pdf(RM) is uniform between ± the
largest possible RM of the screen, RMmax. In our simulation, the
maximum RM of a single turbulent cell is given by

RMmax = 0.81Bturbne

√
π (25/2 pc)2 /Nl.o.s. . (11)

To simulate a Faraday screen with a single layer of turbulent
cells, we calculate the monochromatic polarized flux density (equa-
tion 10) by drawing one RM per sightline from a pdf(RM) that is

uniform between ± RMmax. We repeat this process 2000 times to
build up an ensemble of Monte Carlo realizations. The frequency
channels that we simulate are wide enough that position angles can
change by more than π radians across a single channel. To accu-
rately calculate the net polarization vector of discrete channels, we
calculate for each channel how much the position angle changes
due to the turbulent cell with the largest (absolute) RM. We evalu-
ate equation (10) at forty regularly-spaced frequency intervals for
each 2π revolution in position angle, and we apply the trapezium
rule to each of these intervals to calculate the net polarization vector
across each channel.

Fig. 5 shows polarized flux density spectra for a turbulent mono-
layer with 10 cells across the surface of the emitter (i.e. a field
coherence length of 7 pc) in the panel on the left, and 324 cells
(a coherence length of 1 pc) in the panel on the right. The grey-
tones indicate the most compact confidence intervals that contain
50, 75, and 95 per cent of the Monte Carlo realizations (coloured
with dark grey, white, and light grey, respectively). As the grey
dashed line in each panel indicates, depolarization across a single
channel becomes important only at frequencies below ∼ 1 GHz.

The panel on the left in Fig. 5 shows that if only a few sightlines
pass through the turbulent foreground then one will measure a sig-
nificant polarized flux density even at low frequencies. The scatter
in the measured polarized flux densities is considerable: 50 per cent
of the realizations lie further than ∼ 75 flux density units from the
median value. If many sightlines pass through the turbulent fore-
ground then the resulting frequency spectrum looks similar to that
of a uniform source with a transverse linear gradient in RM (Sec-
tion 2.1.1) if both sources emit over the same range in RM (panel
on the right of Fig. 5). This happens because both source types have
the same pdf(RM), which is sampled discretely by the turbulent
foreground and continuously by the linear RM gradient. Increas-
ing RMmax leads to strong depolarization even at high frequencies.
If both the field strength and the number of sightlines through the
Faraday screen are increased, in such a way that RMmax is kept fixed
at 100 rad m−2, then pdf(RM) is sampled more continuously, and
the sinc-like spectrum in the panel on the right of Fig. 5 becomes
smoother.

The solid red line in both panels of Fig. 5 indicates the prediction
for a Gaussian pdf(RM), as modelled by Burn (1966), for which
we calculated the standard deviation analytically from the uniform
pdf(RM) that we simulated. At high frequencies, the resemblance
between the spectra produced by the Burn model and by the turbu-
lent monolayer that we simulated is remarkable. However, at low
and intermediate frequencies our model predicts a much higher
polarized flux density than the Burn model.

To calculate the monochromatic polarized flux density, the Burn
model assumes a continuously sampled pdf(RM), which requires
a very large number of sightlines through the turbulent Faraday
screen. The polarization vectors from these sightlines align at the
highest frequencies that we simulated, and we detect all 1000 units
of polarized flux density which the source emits. At lower frequen-
cies Faraday rotation becomes important, the different polarization
vectors become misaligned because of their different RMs, and
this leads to depolarization. Because the Burn model assumes that
the number of sightlines through the turbulent screen is very high,
depolarization is complete. However, in our model of the turbu-
lent screen there are far fewer sightlines than the Burn model as-
sumes. All turbulent cells produce polarization vectors of the same
length because we assumed that the source emits uniformly across
its surface, and because depolarization by a large RM across in-
dividual frequency channels only becomes important at very low
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Figure 5. The equivalent of Fig. 1 for a single layer of 10 turbulent cells (left-hand panel) with RMs between ± 569 rad m−2, and a single layer with 324
turbulent cells (right-hand panel), with RMs between ± 100 rad m−2. The greytones indicate the different confidence intervals, which contain 95 per cent (dark
grey), 75 per cent (white), and 50 per cent (black) of the simulated ensemble. These RMs are drawn from a uniform pdf for RM, and we repeated this process
2000 times to calculate the confidence intervals. The amplitude of the turbulent magnetic field is 10 µG, the free electron density 10 cm−3, and only one in
25 of the 1-MHz channels is shown. The grey dashed line indicates how a single frequency channel is depolarized by the largest possible RM in the Faraday
screen, RMmax. The red line shows the prediction for the length of the monochromatic polarization vector by the depolarization model by Burn (1966) who
assumed a Gaussian pdf(RM). We calculated the standard deviation of the Gaussian analytically from the pdf(RM) of the monolayer. The red dashed line
indicates the rms monochromatic polarized flux density level that is expected for a two-dimensional random walk model.

frequencies, as indicated by the dashed lines in Fig. 5. If these po-
larization vectors would furthermore have random orientations then
their behaviour can be described as a two-dimensional random walk.
The root-mean-square (rms) length of the net (summed) polarization
vector is equal to the length of the individual polarization vectors,
|Pem| /(p0 × I )/Nl.o.s., times

√
Nl.o.s., which describes the rms dis-

tance from the origin in a two-dimensional random walk using unit
vectors. We indicated this rms length of the net monochromatic
polarization vector with a red dashed line in Fig. 5. It is clear that
at low and intermediate frequencies, a random walk model with
a small number of sightlines produces a much larger (rms) polar-
ized flux density than the Burn model. The red dashed line lies at
the high-end of the black confidence interval in all panels. This,
combined with the fact that the simulated spectrum shows structure
while the spectrum for a random walk model does not, indicates
that the random walk model should only be used for obtaining a
rough estimate of the expected polarized flux density level at low
and intermediate frequencies.

2.2.2 Multiple layers of cells

While the RM distribution of a single layer of turbulent cells can be
modelled easily using a Monte Carlo simulation, drawing RMs for
each of the cells individually becomes increasingly more computa-
tionally expensive if a Faraday screen consists of multiple layers.
Instead, in Appendix C, we determine pdf(RM) analytically for up
to 20 layers of turbulent cells, and we draw Nl.o.s. RMs from this
pdf, one RM for each sightline. We draw RMs from the appropri-
ate pdf(RM) using the technique of rejection sampling, which is
described in section 7 in Press et al. (1992). The monochromatic
polarization vector Pobs (ν) can then be calculated from equation
(10), using the RMs we draw from pdf(RM) as RMj. We use the
same method as for the monolayer to integrate over the finite width
of the frequency channels. We assume that different layers are not
shifted with respect to each other, so that cells in different layers lie
on top of each other.

Fig. 6 shows frequency spectra for Faraday screens with eight
layers of turbulent cells. Spectra for turbulent screens consisting

Figure 6. The equivalent of Fig. 5 for a turbulent Faraday screen which consists of eight layers of cells. In the panel on the left Bturb = 25 µG divided by 8
(the number of layers), which produces RMs between ± 1422 rad m−2. In the panel on the right, each layer in the Faraday screen contains 2022 cells; in this
case each cell has a magnetic field strength of 25 µG.
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of one, two, four, and eight layers of turbulent cells behave in a
similar way: there is a gradual drop-off at the highest frequencies,
followed by a flattening at the lowest frequencies. Spectra of screens
that consist of one or two layers of turbulent cells show secondary
and higher-order maxima (Fig. 5); such features are absent from
turbulent screen which consist of at least four layers of cells. At
high frequencies, the spectrum of a Faraday screen which consists
of many layers of turbulent cells closely resembles the spectrum
of a screen with a Gaussian pdf(RM), shown as a red solid line in
Figs 5 and 6. This similarity of the spectra is particularly striking
if the number of sightlines through the Faraday screen is large, as
illustrated by the panel on the right of Fig. 6. Surprisingly, pdf(RM)
which are clearly not Gaussian (Appendix C) can produce frequency
spectra which are similar to the spectrum of a Gaussian pdf(RM).

The shape of pdf(RM) is not important to describe a random
walk process; what matters is that the direction of each polarization
vector is drawn independently from the same parent distribution as
the other vectors. Therefore we can apply the random walk model
that we introduced in Section 2.2.1 also to turbulent Faraday screens
which consist of more than one layer of cells. The red dashed line
in Fig. 6 indicates the rms length of the net monochromatic po-
larization vector. As we found for the monolayer, if the number
of sightlines through the Faraday screen is small our random walk
model predicts a higher polarized flux density at low and intermedi-
ate frequencies than the Burn depolarization model. The predicted
polarized flux density lies at the high-end of the black confidence in-
terval, and should be used as a rough estimate of the actual polarized
flux density.

The spectra of many types of astrophysical sources can be de-
scribed at low and intermediate frequencies by the random walk
model we propose. Models where a background source is only par-
tially covered by a thick layer of Faraday-rotating turbulent cells
have been used in the past to explain the depolarization behaviour
of compact AGN (e.g. Rossetti et al. 2008) and of sources with
Mg II absorbers in the foreground (Bernet et al. 2012) at low radio
frequencies. The amplitude of the monochromatic polarized flux
density in these models is given by

|Pobs (ν)| / (p0 × I ) = fc exp
(−2 σ 2

RM (c/ν)4
) + (1 − fc) , (12)

where fc indicates the fraction of the polarized flux density which
passes through a Faraday screen with a Gaussian pdf(RM); this
Gaussian pdf(RM) has a standard deviation σ RM. For a uniformly
emitting source fc is equal to the surface area of the background
source that is covered by this Faraday-rotating screen. Also Burn
(1966) considered the possibility that there are only a few Faraday-
rotating ‘clouds’ along the line of sight towards the background
source, so that the background source is only partially covered by
the Faraday screen. Partial coverage models predict a slow drop-
off when going from high to intermediate frequencies, which lev-
els off towards even lower frequencies; our Monte Carlo model
shows a similar behaviour in Figs 5 and 6. The polarized flux den-
sity of the plateau in the spectrum of a partial coverage model
can be predicted also by a 2D random walk model of the polar-
ization vectors. However, partial coverage models do not predict
the sharp drop-off in polarized flux density that can be seen in
our models at very low frequencies, which is the result of de-
polarization across individual frequency channels. Observations
at these frequencies can distinguish between a partial coverage
model and the Monte Carlo model we proposed. In Section 3.2.2,
we show that RM spectra can also be used to tell these models
apart.

2.3 Comparison between models with large-scale and
turbulent magnetic fields

In Section 2.1, we showed that the spectra of all the models with
large-scale magnetic fields which we considered can be approxi-
mated at high frequencies by the spectrum of a Gaussian source
with a transverse linear gradient in RM. Spectra of sources with tur-
bulent Faraday screens can be approximated at high frequencies by
the spectrum of a turbulent screen with a Gaussian pdf(RM) which
is pierced by many sightlines (Section 2.2). In fact, such a turbulent
Faraday screen produces the same spectrum as the Gaussian source
from Section 2.1. The Gaussian pdf(RM) of this turbulent Faraday
screen is sampled continuously, therefore

Pobs (ν) =
∫ ∞

−∞
(p0 × I ) pdf (RM) e2iRM(c/ν)2

dRM

= p0 × I√
2πσ

∫ ∞

−∞
e− 1

2 (RM/σ )2
e2iRM(c/ν)2

dRM

= (p0 × I ) e−2σ 2(c/ν)4
, (13)

as shown by Burn (1966, equation 21 in his paper). Equation (13)
depends on frequency in the same way as equation (8), modulo a
term in the latter equation which expresses Faraday rotation of the
emission.

Determining from observations at high frequencies whether a
source has a large-scale or turbulent magnetic field is therefore not
straightforward. One can tell the different models apart by accu-
rately measuring the shape of the spectrum at high frequencies, and
by including measurements at intermediate and low frequencies if
available. One advantage of the similarity of spectra at high frequen-
cies is that the model of a Gaussian source can be used to calculate
the approximate shape of the spectrum of a more complex source
very quickly.

3 ROTATI ON MEASURE SPECTRA

In this section, we simulate RM spectra for four frequency bands:
350–900, 950–1760, 1300–3100, and 5000–7000 MHz, to under-
stand what can be learned about sources that emit over different RM
ranges. The first two bands are proposed for SKA1-mid (Dewdney
et al. 2013), the third band is available with the ATCA, while the
fourth band is available with a number of radio telescopes. Each
time we will use 1 MHz frequency channels that have uniform re-
sponse functions. For each of these frequency windows, we provide
FWHM values of the RM spread function (RMSF) in Table 1.

Because of the low frequencies and relatively wide frequency
channels that we simulate we have to check whether we can use
the formalism by Brentjens & de Bruyn (2005) to calculate RM

Table 1. FWHM of the
RMSF for each of the fre-
quency windows for which we
calculate RM spectra. These
FWHM values were calcu-
lated using equation 61 in
Brentjens & de Bruyn (2005).

Frequency band FWHM
(MHz) (rad m−2)

350–900 6
950–1760 54
1300–3100 87
5000–7000 2158
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Figure 7. RM spectra for a uniform source with a transverse linear RM gradient from Section 2.1.1, which emits over an RM range of 10, 100, 1000, and
2500 rad m−2 (red to blue). The frequency window used in the computation of RM spectra is indicated in the corner of each panel. The vertical dotted lines
indicate the FWHM of the RMSF as a crude way for estimating when the RM spectrum is resolved. The black spectrum shows the level of instrumental
polarization if the source has an intrinsic polarization of 5 per cent and the polarization purity of the instrument is −30 dB of Stokes I. The step size in the RM
spectra is equal to 10 samples per FWHM of the RMSF for the three lowest frequency windows, and 20 samples per FWHM for the window at the highest
observing frequencies.

spectra, or the new formalism that we proposed in an accompa-
nying paper (Schnitzeler & Lee 2015; we will refer to this paper
as ‘SL15’). In SL15, we show that the discrete Fourier transform
between wavelength squared and RM that is commonly used to cal-
culate RM spectra is only approximately correct for most data sets.
Exact RM spectra can be calculated only if the channel response
function of the data is included in this calculation. The complex
exponential exp

(−2i RM′λ2
c

)
, where ‘RM′’ is the trial RM and

λ2
c = (

λ2
1 + λ2

2

)
/2 is the average wavelength squared of the chan-

nel, is exact if frequency channels have a top-hat response function
in wavelength squared. In SL15, we derive how RM spectra can
be calculated for frequency channels with any type of channel re-
sponse function, and we provide expressions for calculating RM
spectra if the channel response function has a top-hat shape in fre-
quency. Many geometries that we simulate emit over a range in
RM that is much wider than the FWHM of the RMSF; to add the
contributions by emission at (very) different RMs the wings of the
RMSF have to be calculated exactly, which requires the formalism
that we developed in SL15. Therefore we will use in all cases the
formalism from SL15, in particular equation (9) from that paper and
the normalized version of equation (12), to calculate RM spectra
from the frequency spectra that we simulated.

3.1 Instrumental polarization

Sources that are severely depolarized require long integration
times to be detected. In addition, polarization leakage from the

instrument restricts which polarized sources can be detected even
if the observing time is sufficient. We model the contribution of
instrumental polarization to the RM spectrum as an RMSF centred
on RM = 0 rad m−2 with a peak amplitude of −30 dB times the
total intensity signal. We will assume that the source has an intrinsic
polarization percentage p0 = 5 per cent, which produces an instru-
mental polarization response with a height of 20 flux density units.
The SKA baseline design specifies a polarization purity of −30 dB
across the FWHM of the primary beam (Dewdney et al. 2013).
This performance is better than the instrumental polarization level
of either the Dominion Radio Astrophysical Observatory synthesis
telescope and the VLA prior to its upgrade to the JVLA (Condon
et al. 1998; Taylor et al. 2007).

3.2 Synthetic RM spectra

3.2.1 Geometries with large-scale magnetic fields

In Figs 7 and 8, we show RM spectra that we calculated for the uni-
form source (Section 2.1.1) and the Gaussian source (Section 2.1.2)
for four frequency windows. As we discussed in the previous sec-
tion, the frequency spectra of the sources that we modelled can be
approximated by the spectrum of a Gaussian source, and at low and
intermediate frequencies sometimes by the spectrum of a uniform
source. We show the FWHM of the RMSF as a rough indication for
when the RM spectrum of a source becomes resolved.
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Tomography of unresolved radio sources 3589

Figure 8. RM spectra for Gaussian sources with RM gradients of 10, 50, 125, and 250 rad m−2 FWHM−1 (red to blue), shown in an equivalent way to Fig. 7.
We show a smaller range in RM along the x axis because the Gaussian sources that we modelled emit over a smaller range in RM than the uniform sources
from Fig. 7.

Comparing these two models has the additional advantage that
we can investigate how RM synthesis handles the sharp edges of the
RM spectrum of the uniform source, while the RM spectrum of the
Gaussian source has smooth edges. As SL15 showed, for moderate
RMs RM synthesis can be approximated well by the discrete Fourier
transform that was proposed by Brentjens & de Bruyn (2005). The
rectangular window function then acts as a high-pass filter in this
Fourier transform, and structure on large RM scales will be missing
from the reconstructed RM spectrum of the uniform source, similar
to the ‘missing short spacings’ problem in radio interferometry.
Because the Gaussian source that we modelled has a smooth RM
spectrum its reconstructed RM spectrum suffers much less from
this effect. In the lowest frequency window, the uniform source and
the RMSF become ragged far from 0 rad m−2, the mean RM of the
models. This is the result of the discrete frequency sampling and
the frequency channel response functions that we simulated.

Observations in the lowest frequency band provide the most accu-
rate RM measurements, which makes it possible to correctly identify
sources that emit over RM ranges that are only slightly different.
Fig. 7 illustrates this for example for the two sources that emit over
a range in RM out to ±10 rad m−2 and ±100 rad m−2, which are
difficult to tell apart from observations in the 1300–3100 MHz win-
dow, but can be identified correctly from observations in the two
windows at lower frequencies. If sources that emit over a wider
range in RM have a lower peak polarized flux density (equation 5),
then our simulations show that at low frequencies only sources
that emit over a small range in RM can be detected above the
instrumental polarization level. Uniform sources that emit over a
wide range in RM might show up only as two peaks above the

instrumental polarization threshold. This effect is less severe
at higher frequencies; therefore we recommend including high-
frequency data (�1 GHz) to search for sources which emit over a
range in RM that is larger than several tens of rad m−2. The 5–7 GHz
band is suitable for identifying sources which emit over RM ranges
of more than several hundred rad m−2. The key role of this frequency
band is to determine the amount of wavelength-independent depo-
larization, because Faraday rotation is much less severe at high
frequencies.

3.2.2 Geometries with turbulent magnetic fields

We investigate how RM spectra can help us understand the proper-
ties of the turbulent magnetic field that we simulated in Section 2.2
(its strength, coherence length, and the number of layers with turbu-
lent cells) in three ways: first, using the peak flux density in the RM
spectrum, secondly, the shape of the RM spectrum, and thirdly, the
difference between the RM spectra of partial coverage models and
our random walk models. Previously, Bernet et al. (2012) investi-
gated how RM synthesis can be used to investigate the properties
of turbulent Faraday screens for a small number of turbulent cells
and a Gaussian pdf(RM). We consider models where the number
of sightlines through the turbulent foreground varies over a much
wider range, and we consider different pdfs.

First, we investigate how the peak normalized flux density in the
RM spectrum depends on the coherence length and strength of the
magnetic field. Equation (9) expresses how polarized emission from
the background source is divided into Nl.o.s. polarization vectors,
one vector for each line of sight through the turbulent foreground
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Figure 9. Peak polarized flux density in the RM spectrum versus the largest possible RM for a single turbulent cell for the geometry described in Section 2.2,
for different frequency windows. In each panel, the different colours and plot symbols indicate different values for the magnetic field strength: 1, 5, 10, 25,
and 50 µG. The vertical dotted line indicates the half-width at half-maximum of the RMSF from Table 1. When following a curve that connects points with
the same colour and plot symbol the coherence length of the magnetic field decreases when going from right to left and the number of sightlines through the
Faraday screen increases. We ran 2000 Monte Carlo simulations to determine the distribution of peak flux densities in the RM spectrum. The plot symbol
indicates the median value of this distribution, and the error bars enclose the most compact 95 per cent confidence interval.

medium. These polarization vectors all have the same length, equal
to P/Nl.o.s., but different RMs. The frequency and RM spectra com-
bine the behaviour of each of these polarization vectors; the RM
spectrum consists of Nl.o.s. peaks spread over a range in RM be-
tween Nlayers × RMmax, where Nlayers indicates the number of layers
of cells in the turbulent foreground screen, and RMmax is defined by
equation (11).

In Figs 9 and 10, we show the peak polarized flux density in the
RM spectrum for a number of magnetic field strengths, values of
RMmax, and two different thicknesses of the Faraday-rotating screen.
The background source is identical to the source that we simulated
in Section 2.2: it has a diameter of 25 pc and illuminates the Faraday
screen uniformly. The electron density in the foreground screen is
10 cm−3 and the magnetic field strength is 1, 5, 10, 25, or 50 μG. We
considered a Faraday screen that consists of eight layers because its
pdf(RM) is very close to Gaussian (Appendix C). The four panels
in these figures correspond to the four frequency windows that we
used in Section 3.2.2. For curves of a given colour or given symbols,
the only variable is the coherence length of the magnetic field in
the Faraday screen: the coherence length decreases when going
from right to left in these panel as the number of sightlines Nl.o.s.

increases. The smallest number of sightlines that we considered is
two since one sightline produces no depolarization. For magnetic

fields of 25 and 50 μG two sightlines produce very large RMmax,
therefore, instead of starting with two sightlines we started with that
number of sightlines which produces RMmax = 2500 rad m−2. We
stop increasing the number of sightlines either when the simulation
reached RMmax = 10 rad m−2 or when the number of sightlines
becomes larger than 5000.

To understand the behaviour of the points shown in Figs 9 and 10
consider a single Bturb and let Nl.o.s. vary. When Nl.o.s. is small,
RMmax (∝ 1/

√
Nl.o.s.) is large, and since there are not many cells,

the polarized flux density that is associated with each peak in the
RM spectrum (=1000/Nl.o.s.) is large. The mean separation between
two peaks in the RM spectrum is equal to

〈	RM〉 = 2RMmax

Nl.o.s.
∝ BturbNlayers

N
3/2
l.o.s.

. (14)

When Nl.o.s. increases the length of the polarization vector associated
with each sightline decreases, and the peaks move closer together
in the RM spectrum because the RM range over which they are
distributed (|RM| ≤ RMmax) decreases. It becomes more likely that
some of the peaks in the RM spectrum overlap, starting with a
partial overlap of the RMSFs. This explains why the peak polarized
flux density in the RM spectrum does not decrease monotonically
when Nl.o.s. is increased. Increasing Nl.o.s. even further moves the
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Figure 10. The equivalent of Fig. 9 when there are eight layers of turbulent cells. Note that the maximum RM of a single line of sight through the Faraday
screen is eight times the maximum RM per cell which we plot along the x axis of the panels.

peaks closer together, and as a result of overlapping RMSFs the
peak flux density in the RM spectrum will rise again. The intrinsic
position angles of the emitted radio waves, χ0, are the same in our
simulation, therefore the polarization vectors of the individual peaks
will align almost perfectly once RMmax becomes much smaller than
the FWHM of the RMSF, which leads to very high peak polarized
flux densities in the RM spectra.

From comparing the four panels in Figs 9 and 10, and matching
panels in both figures, we draw the following conclusions.

(i) If Nl.o.s. is small (the field coherence length is large compared
to the size of the background source) and the peaks in the RM
spectrum do not overlap then models with different Bturb and Nlayers

produce the same peak polarized flux density in the RM spectrum,
albeit at different RMmax. When Nl.o.s. is small the RM spectrum is
not sampled well, therefore it is difficult to determine either RMmax

or the shape of pdf(RM) and from that Nlayers.
(ii) Increasing Bturb whilst keeping Nlayers fixed increases the

RMmax where the peak polarized flux density in Figs 9 and 10 is at
its lowest. The minimum in these figures depends on the mean sepa-
ration between the peaks in the RM spectrum relative to the FWHM
of the RMSF. To keep the mean separation between peaks in the
RM spectrum (equation 14) fixed when Bturb is increased, Nl.o.s. only
has to increase by a small amount. Since RMmax ∝ Bturb/

√
Nl.o.s.

increasing Bturb increases the RMmax of the minimum in Figs 9
and 10.

(iii) If Nl.o.s. is large, models with different Bturb produce the same
peak flux density in the RM spectrum at the same RMmax. It is then
impossible to determine Bturb from the measured peak polarized flux

density even if RMmax is known. However, if Nl.o.s. is large pdf(RM)
is sampled well, and it might be possible to determine both RMmax

and Nlayers from the shape of pdf(RM).
(iv) Sources with a small field coherence length (such that Nl.o.s.

is large) could be invisible in low-frequency windows and only ap-
pear in high-frequency windows. This is because the peak polarized
flux density in the RM spectrum can be higher in high-frequency ob-
serving windows than in low-frequency windows. In low-frequency
windows, if Nl.o.s. is large the peaks in the RM spectrum have a small
amplitude, and the peaks in the RM spectrum do not overlap. At
higher frequencies the RMSFs are wider, and the peaks start to over-
lap in the RM spectrum. Because we use the same intrinsic position
angle χ0 for all polarization vectors, this overlap can increase the
peak polarized flux density in the RM spectrum. This observation
could lead to a trade-off between being able to detect a source (high
peak polarized flux density in the RM spectrum caused by overlap-
ping RMSFs) versus being able to accurately measure the RMs of
the individual peaks in the RM spectrum (which requires narrow
RMSFs).

(v) If the RM spectrum is barely resolved and Nl.o.s. is small, as
is the case for the 5–7 GHz window for Bturb = 1 μG, the peak
polarized flux densities show complex behaviour.

Secondly, if pdf(RM) is sampled sufficiently finely it should
be possible to determine RMmax and the number of layers in the
Faraday screen from the shape of the RM spectrum. We estimate
the number of sightlines that is required to do this using a Monte
Carlo simulation, drawing a number of sightlines from pdf(RM)
for a Faraday screen that consists of one, two, or eight layers of
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Figure 11. Variances calculated for a Faraday screen with various numbers
of sightlines passing through them, for Faraday screens consisting of 1, 2,
and 8 layers of turbulent cells. The maximum RM for a single turbulent cell
is equal to 50 rad m−2 divided by the number of layers, which keeps the
maximum total RM through the screen fixed and independent of the number
of layers. Diamonds indicate the median variance, error bars indicate the
most compact 95 per cent confidence interval, and the horizontal dotted lines
indicate the variance that we calculated analytically for each of the Faraday
screens.

turbulent cells, and repeating this process 2000 times. The pdf(RM)
of a Faraday screen which consists of eight layers of cells is almost
identical to a Gaussian pdf(RM). Fig. 11 shows the median variance,
the 95 per cent confidence interval of the variances, and the analyt-
ically calculated variance for these three different Faraday screens.
The range in RM that is spanned by pdf(RM) is the same for the
three Faraday screens, only the shape of the distribution is different.
As can be expected, if the number of sightlines is small pdf(RM)
is not well sampled, and the scatter in the variances for the differ-
ent Faraday screens is large: it is impossible to identify screens of
different thickness based on the shape of their RM spectrum. Once
there are at least several tens of sightlines it becomes possible to
identify the shape of pdf(RM) and from that the number of layers
in the Faraday screen. In our simulation, we did not include the
finite width of the RMSF. Because of this finite width, the peaks in
the RM spectrum from the individual sightlines will overlap, which
complicates finding the shape of pdf(RM) of the Faraday screen.

Thirdly, and finally, we consider how RM spectra of turbulent
foregrounds that we modelled in Section 2.2.2 differ from RM
spectra of partial coverage models. In a partial coverage model, the
Faraday-rotating screen consists of a contribution by a Gaussian
pdf(RM) and a contribution by the background source that does
not undergo Faraday rotation (equation 12). The latter contribu-
tion shows up in the RM spectrum as a peak at RM = 0 rad m−2,
which combines with the Gaussian pdf(RM) from sightlines that
pass through the Faraday screen. The relative heights of the Gaus-
sian pdf(RM) and the single peak that is produced by sightlines
that do not pass through the Faraday screen depends on the fraction
of sightlines which pass through the Faraday screen. For a source
that emits uniformly across its surface, this fraction is equal to the
fraction of the surface of the source that is covered by the Faraday
screen. Because instrumental leakage can show up as a strong signal
at RM = 0 rad m−2, telescope leakages should be calibrated well to
distinguish between the peak in polarized flux density at RM = 0
rad m−2 that is produced by the partial coverage model and the same
peak that is produced by polarization leakage in the telescope.

4 SU M M A RY

We have modelled sources with large-scale and turbulent magnetic
fields, and predicted frequency spectra for these sources between
200 MHz and 10 GHz, where we included the finite width of the
frequency channels in our analysis. In these models Faraday rotation
takes place in front of the source of the emission. We considered
uniform and Gaussian sources on the sky with linear transverse RM
gradients, and cylinders and spheroids with azimuthal magnetic
fields. The cylinders and spheroids can be inclined with respect to
the plane of the sky, and for the spheroids we considered different
axis ratios ranging from 1:1:0.25 (oblate), 1:1:1 (sphere), to 1:1:4
(prolate). These source types with large-scale magnetic fields do
not show net Faraday rotation: this is because integrating over the
surface of the source combines sightlines with the same polarized
flux density but RMs of opposite sign. As a result any net RM of
the source must be produced in the foreground, further away from
the source. We derived the pdfs of RM for turbulent screens with
between one and 20 layers of turbulent cells. A single layer of
cells has a uniform pdf(RM), while a Gaussian pdf(RM) is a good
approximation for a Faraday screen that consists of more than about
four layers of turbulent cells. We show how increasing the thickness
of the Faraday-rotating layer changes pdf(RM) and the properties
of the polarized flux density spectra as a function of frequency and
RM.

At high frequencies, all the source types which we considered
show a similar drop-off in polarized flux density with decreasing
frequency. Some source types show secondary maxima in their
polarized flux density spectra at low and intermediate frequencies,
which helps with their identification.

The model by Burn (1966) is often used to explain depolariza-
tion in turbulent foregrounds. It requires that many sightlines pass
through the Faraday screen, which means that the field coherence
length is small compared to the extent of the background source.
This large number of sightlines in Burn’s model also produces
complete depolarization at low and intermediate frequencies. Par-
tial coverage models were developed to explain why some sources
are not completely depolarized at these frequencies. We show that a
Monte Carlo model of a small number of sightlines passing through
a turbulent Faraday screen predicts a drop-off at high frequencies
similar to the Burn depolarization model, and a plateau in polarized
flux density at low and intermediate frequencies. The polarized flux
density of this plateau can be calculated from a random walk of
the polarization vectors. Spectra that are produced by the Monte
Carlo model are very similar in shape to spectra produced by partial
coverage models; therefore, Monte Carlo models can be considered
as an alternative to partial coverage models.

We calculate RM spectra for four frequency windows: 350–900
and 950–1760 MHz, and 1.3–3.1 and 5.0–7.0 GHz. At low frequen-
cies, sources are strongly depolarized and might not be detected
above the instrumental polarization level. However, with sufficient
sensitivity RMs can be determined accurately. Similar to the miss-
ing short-spacing problem in interferometry, if only low-frequency
data are used the reconstructed RM spectrum of the uniform source
shows a local minimum at its centre. Such sources can show up in
RM spectra as two peaks above the instrumental polarization level.

Each sightline through a turbulent Faraday screen produces a sin-
gle peak in the RM spectrum; the reconstructed RM spectrum is a
superposition of these peaks convolved with the RMSF. We anal-
yse the peak height and shape of the RM spectra when we change
the strength and coherence length of the turbulent magnetic field
and the number of layers with turbulent cells. Decreasing the field
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coherence length increases the number of sightlines and therefore
the number of peaks in the RM spectrum. At the same time the
polarized flux of the background source is distributed over more
peaks, and the range in RM over which the peaks are distributed
is reduced. The combined effect of this is that the peak amplitude
in the RM spectrum first decreases when the field coherence length
is decreased, then increases when the individual peaks in the RM
spectrum (convolved with the RMSF) overlap. When more then
several tens of sightlines pass through a thin, turbulent foreground
screen the shape of pdf(RM) can be determined reasonably accu-
rately, and with this information the number of layers of turbulent
cells can be derived. Finally, in a partial coverage model the part of
a source that is not covered by a turbulent screen produces a peak in
the RM spectrum at 0 rad m−2. Random walk models do not show
such a peak; therefore RM spectra can tell which of the two models
applies.

The modelling framework we provide can be extended to any
frequency coverage, frequency range, and channel width of the
observations, and can be used to explore more complex source
types and combinations of source types.
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APPENDI X A : FREQU ENCY SPECTRA O F A
C Y L I N D E R W I T H A N A Z I M U T H A L
MAGNETI C FI ELD

In this appendix, we model the frequency spectrum of an emitting
cylinder with a magnetic field that wraps around the circular cross-
section of the cylinder. Faraday rotation occurs in a boundary layer
between the inner, emitting cylinder and a coaxial outer cylinder.
The magnetic field inside the emitting cylinder Bem has a constant
strength, and points along the major axis of that cylinder. The inner
cylinder has a radius R, while the outer cylinder has a radius R′.
We define a Cartesian coordinate system (x, y, z) where x points
towards the observer, y lies along the projection of the short axis of
the cylinder on the sky, and z along the projection of the long axis.
We will use θ for the angle between the plane of the sky and the
major axis of the emitting cylinder. The observed monochromatic
net polarization vector is given by equation (2). The E vector of
the emitted polarization vector Pem lies along the y axis of the
coordinate system that we chose. We define the intrinsic position
angle χ0 to be equal to zero degrees if Pem points in the direction
of ŷ.

Because in our model the synchrotron-emitting and Faraday-
rotating layers are not mixed, we can solve equation (2) by first
calculating the emitted polarized flux density along each line of
sight, then calculating the amount of Faraday rotation of this emis-
sion. To simplify our analysis, we will not consider sightlines that
pass through the polar caps of the cylinder.

The monochromatic volume emissivity for synchrotron radiation,
εν , depends on the strength of the magnetic field inside the cylinder
and the inclination of the cylinder relative to the sky θ as εν =
K |Bem cos θ |α+1 ν−α (e.g. Rybicki & Lightman 1979). ‘K’ depends
on the mass and charge of the synchrotron emitting particles and
on the spectral index of the synchrotron emission α (Sν ∝ ν−α). The
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flux density of a single line of sight is found by integrating the
volume emissivity along the line of sight:

Pem (y, z) =
∫

εν (x, y, z)
√

1 − (y/R)2/ |cos θ | dx ,

where the factor
√

1 − (y/R)2 corrects for the angle between the
line of sight and the near surface of the cylinder, and 1/|cos θ |
corrects for the inclination of the cylinder with respect to the plane
of the sky.

In our model, the frequency dependence of the emissivity ν−α

is absorbed into the product of the Stokes I spectrum and the
wavelength-independent polarization fraction p0; by requiring that
the source emits 1000 units of polarized flux density independent
of θ the entire factor K |Bem cos θ |α+1 / |cos θ | is fixed. Therefore
the volume emissivity is constant throughout the emitting cylinder,
and the polarized flux density of a single line of sight depends only
on the geometry of the emitting cylinder with respect to the line of
sight:

Pem (y, z)

p0I
∝ 1 −

( y

R

)2
.

The amount of Faraday rotation of a single sightline can be calcu-
lated by integrating the product of the magnetic field strength along
the line of sight and the local free electron density in the boundary
layer between the inner and outer cylinder:

RM (y, z) =
∫ √

(R′)2−y2

√
R2−y2

0.81ne|B| y√
x2 + y2

dx

= 0.81ne|B|y ln

(
R′ +

√
(R′)2 − y2

R +
√

R2 − y2

)
, (A1)

where the boundary layer has an electron density ne and is threaded
by a magnetic field of amplitude |B|. If the source is inclined
relative to the plane of the sky then the path length through the
Faraday screen increases as 1/|cos θ |, which exactly cancels the
projection of the magnetic field along the line of sight in the Faraday-
rotating layer ( ∝ |cos θ |). Therefore RM(y, z) does not depend on
the inclination of the source relative to the sky.

The maximum RM, RMmax, is found at y = R, and equation (A1)
can be expressed in terms of RMmax and the geometry of the system
as

RM (y, z)

RMmax
= y

R

ln

(
R′+

√
(R′)2−y2

R+
√

R2−y2

)

ln

(
R′
R

+
√(

R′
R

)2 − 1

) . (A2)

If R′ is only slightly larger than R equation (A2) gives almost iden-
tical results as when we replace the line-of-sight component of
the magnetic field, which varies in amplitude along the line of
sight, with the value halfway through the Faraday-rotating bound-
ary layer:

RM (y, z)

RMmax
= y

R

(√
(R′)2 − y2 −

√
R2 − y2

)
(√

(R′)2 − R2
) . (A3)

In Fig. A1, we show the observed values of Stokes Q for
RMmax = 1000 rad m−2 as a function of y for frequencies of 1.0 and
3.0 GHz. Our definition for χ0 = 0◦ results in the emitted polariza-
tion vector Pem showing up only in Stokes Q, Stokes U is zero. The
cylinder that we simulated does not show any net Faraday rotation:
the symmetry of the system is such that points on opposite sides

Figure A1. The behaviour of Stokes Q (with arbitrary units) with posi-
tion along the minor axis of the cylinder, for RMmax = 1000 rad m−2

and frequencies of 3.0 GHz (dark grey) and 1.0 GHz (light grey). The
Faraday-rotating boundary layer has a thickness 1/10th of the radius of the
synchrotron-emitting cylinder. This profile does not depend on θ because of
the normalization we used.

of the major axis of the cylinder (at ±y) emit the same polarized
flux density and are Faraday rotated in opposite directions, which
cancels Faraday rotation for the source as a whole. Therefore all net
polarization vectors for the source as a whole will show up only in
Stokes Q, independent of the observing frequency.

To calculate the monochromatic polarization vector for the source
as a whole, we integrated over the minor axis y of the cylinder us-
ing Romberg’s method. To integrate across the finite width of the
individual frequency channels, and to correctly include changes in
the orientation of the monochromatic net polarization vector within
each frequency channel, we divide each channel into subintervals
that are narrow enough so that we can calculate the net polarization
of each subinterval using the trapezium rule. We use forty subin-
tervals for each 2π revolution of the position angles that is induced
by the largest RM of the geometry that we modelled, RMmax. By
combining the net polarization vectors of the subintervals, we cal-
culate the net polarization vector of a single frequency channel as
a whole. We only include a frequency channel in our analysis if the
length of the polarization vector of the first subinterval is more than
10 times the numerical accuracy ε defined by equation (6); oth-
erwise we stopped calculating the frequency spectrum altogether.
The first subinterval lies at the low-frequency-end of each frequency
channel.

APPENDI X B: FREQU ENCY SPECTRA O F A N
ELLI PSOI D W I TH A N A ZI MUTHAL
MAGNETI C FI ELD

In this appendix, we model the frequency spectrum of a synchrotron-
emitting ellipsoid. This geometry consists of two nested ellipsoids
with a shared coordinate system, shown in Fig. B1. The bound-
ary of the inner, synchrotron-emitting ellipsoid is described by
(x′/A)2 + (y′/B)2 + (z′/C)2 = 1, and the magnetic field inside the
emitting ellipsoid points along the z′ axis. Faraday rotation occurs
in a layer between the inner ellipsoid and an outer ellipsoid whose
surface is given by (x′/AB)2 + (y′/BB)2 + (z′/CB)2 = 1. The mag-
netic field in the Faraday-rotating layer wraps around the major
axis (z′ axis) of the inner ellipsoid and is parallel to the surface of
the inner ellipsoid. The thickness of the Faraday-rotating boundary
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Figure B1. Geometry relating the coordinate system of the ellipsoid with
surface S and magnetic field B to the line of sight ‘los’ towards the observer
‘obs’.The orthonormal vectors xp and yp lie in the plane of the sky.

layer varies because the Faraday-rotating layer is nested between
two ellipsoids; by comparison, in our model of the emitting cylinder
(Appendix A) the thickness of the Faraday-rotating boundary layer
was the same everywhere.

In the (x′, y′, z′) coordinate system of the ellipsoid the line of sight
towards the observer, indicated by the unit vector nlos, is specified
by the angles φ and ψ , where

nlos = {cos ψ, sin ψ cos φ, sin ψ sin φ} ,

We choose the two mutually perpendicular unit vectors xp and yp

in the plane of the sky as the coordinate basis, where

xp = {− sin ψ, cos φ cos ψ, sin φ cos ψ, } ,

yp = {0, − sin φ, cos φ} .

In the main text we will use φ = 90◦. In that case ψ = θ , the
inclination of the major axis of the ellipsoid with respect to the
plane of the sky.

To calculate the monochromatic net polarization vector P (ν),
which is integrated over the surface of the source, we divide the
surface of the source into a very fine grid of sightlines and calculate
the polarization vector of each of these sightlines numerically. Sim-
ilar to the polarized emission from the cylinder that we considered
in Appendix A, we assume that both the inclination angle of the
magnetic field and the volume emissivity εν are uniform inside the
emitting ellipsoid. The inclination angle of the magnetic field can
then be absorbed into the normalization of the monochromatic net
polarization vector, and the emitted polarized flux density is simply
proportional to the length of the line of sight through the emitting
ellipsoid. We calculate the polarized flux density of each sightline
analytically; the proportionality constant is fixed by our requirement
that the source emits 1000 units of polarized flux density.

To calculate the amount of Faraday rotation of each sightline,
we integrate equation (1) numerically through the Faraday-rotating
boundary layer using the trapezium rule, with 40 sampling points
per sightline. Then we calculate the monochromatic net polarization
vector P (ν) by adding the polarization vectors for a square grid of
1200×1200 sightlines across the surface of the source projected
on to the sky. For a few of our models, we varied the number
of sampling points through the Faraday rotating layer (20 or 40
points) or the density of the grid of sightlines across the surface of
the source (800×800 or 1200×1200 sightlines). By comparing the
results from these models, we found that the fractional accuracy in

the length of the polarization vector is better than 1 per cent of the
emitted 1000 units of polarized flux density. Close to the major axis
of the source, where most of the polarized flux is generated, each
2π wrap of the position angles across the surface of the source is
sampled with at least two sightlines.

To integrate P (ν) across the finite width of the frequency chan-
nels, we calculate P (ν) at forty points for each 2π wrap in position
angle that is induced by the sightline with the largest RM, and we
integrate across each frequency channel using the trapezium rule.

A P P E N D I X C : T H E P D F O F R M O F A
T U R BU L E N T FO R E G RO U N D M E D I U M

If there is only one layer of turbulent cells in front of the emission
region, then the RMs from this layer follow a uniform distribution.
This can be shown as follows. We will use ‘pdf’ as shorthand for
the pdf, and i indicates the angle between the line of sight and the
magnetic field. The observed RM = RMmaxcos i, where RMmax is
defined in equation (11). Because probability mass is conserved,

pdf(RM) = pdf (i)

|dRM/di| = 1/2 |sin i|
RMmax |sin i| = 1

2RMmax
,

therefore pdf(RM) is uniform between ± RMmax. pdf(i) is equal to
the fraction of the surface on the unit sphere between i and i + di.

For two layers of turbulent cells the pdf for measuring
RM1, 2 = RM1 + RM2, pdf(RM1, 2), can be found as the convo-
lution pdf(RM)�pdf(RM),

pdf
(
RM1,2

) =
∫ ∞

−∞
pdf

(
RM1,2 − RM

)
pdf (RM) dRM , (C1)

which is triangular. For three layers, pdf(RM1, 2, 3)
= {pdf(RM)�pdf(RM)}�pdf(RM) = pdf(RM1, 2)�pdf(RM).
This way pdf(RM1, . . . , N) can be calculated for any number N of
layers with turbulent cells.

Fig. C1 shows pdfs for between one and 20 layers of turbu-
lent, Faraday-rotating cells and their matching normal distributions,
while Fig. C2 shows the difference in probability density between
the normal distributions and the pdf(RM). The standard deviation
σ of each normal distribution follows from the variance of pdf that

Figure C1. pdfs for 1, 2, 4, 6, 10, and 20 layers of turbulent cells (grey lines)
and the normal distributions found by calculating the standard deviation of
the pdfs (dashed lines; see the text for details).
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Figure C2. Difference in probability density between scaled normal distri-
butions from Fig. C1 and the pdf(RM), for different numbers of layers with
turbulent Faraday-rotating cells.

we calculated analytically. The maximum difference between the
normal distribution and pdf(RM) decreases from 0.0380 for two
layers of Faraday-rotating cells to 0.0071 for six layers, 0.0033 for
10 layers, and 0.0012 for 20 layers of cells (these are the values for
the pdfs themselves, not for pdf/max(pdf) that we show in Fig. C1).

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 450, 3579–3596 (2015)

 at T
he A

ustralian N
ational U

niversity on July 18, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/

