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ABSTRACT
We present a proof-of-concept of a novel and fully Bayesian methodology designed to detect
haloes of different masses in cosmological observations subject to noise and systematic uncer-
tainties. Our methodology combines the previously published Bayesian large-scale structure
inference algorithm, HAmiltonian Density Estimation and Sampling algorithm (HADES), and
a Bayesian chain rule (the Blackwell–Rao estimator), which we use to connect the inferred
density field to the properties of dark matter haloes. To demonstrate the capability of our
approach, we construct a realistic galaxy mock catalogue emulating the wide-area 6-degree
Field Galaxy Survey, which has a median redshift of approximately 0.05. Application of HADES

to the catalogue provides us with accurately inferred three-dimensional density fields and cor-
responding quantification of uncertainties inherent to any cosmological observation. We then
use a cosmological simulation to relate the amplitude of the density field to the probability of
detecting a halo with mass above a specified threshold. With this information, we can sum over
the HADES density field realisations to construct maps of detection probabilities and demon-
strate the validity of this approach within our mock scenario. We find that the probability of
successful detection of haloes in the mock catalogue increases as a function of the signal to
noise of the local galaxy observations. Our proposed methodology can easily be extended to
account for more complex scientific questions and is a promising novel tool to analyse the
cosmic large-scale structure in observations.

Key words: methods: numerical – methods: statistical – galaxies: haloes – galaxies: clusters:
general – dark matter – large-scale structure of Universe.

1 IN T RO D U C T I O N

The dual role of galaxy clusters, both as cosmological probes and
as unique sites for studying extreme environments of galaxy for-
mation, make them essential targets for next generation cosmo-
logical galaxy surveys (e.g. see Borgani & Guzzo 2001; Borgani
et al. 2001; Rosati, Borgani & Norman 2002; Voit 2005; Allen,
Evrard & Mantz 2011 and Kravtsov & Borgani 2012). Ongoing
and next generation cosmological surveys, including, for example,
the Dark Energy Survey (The Dark Energy Survey Collaboration
2005), the Large Synoptic Survey Telescope (Ivezic et al. 2008), the
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Euclid mission (Laureijs et al. 2011), the Javalambre-Physics of the
Accelerated Universe Astrophysical Survey (J-PAS; Benitez et al.
2014) and the eROSITA mission (Merloni et al. 2012), are expected
to observe many thousands of galaxy clusters out to redshifts beyond
z ∼ 1.

As such there is great demand for cluster-finding algorithms
that remain robust, reliable and efficient out to high redshift and
for catalogues of varying degrees of incompleteness. Many dif-
ferent methods exist for detecting galaxy clusters in optical/near-
infrared selected surveys, as well as other approaches based on
measurements of X-ray emission (e.g. Ebeling et al. 2000; Rosati
et al. 2002; Böhringer et al. 2004), weak gravitational lensing
(e.g. Tyson, Valdes & Wenk 1990; Bartelmann & Schneider 2001;
Leonard, Lanusse & Starck 2014) or the Sunyaev–Zeldovich effect
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(e.g. Sunyaev & Zeldovich 1972; Carlstrom, Holder & Reese 2002;
Ascaso & Moles 2007).

For cluster detection in optical or near-infrared data sets, several
techniques have been developed, which can be classified broadly
into three groups according to the galaxy information that they pri-
marily rely on. First are those approaches based primarily upon
the spatial extent of the cluster galaxies, such as the counts-in-cells
technique (e.g. Couch et al. 1991; Lidman & Peterson 1996), Per-
colation algorithms (e.g. Huchra & Geller 1982; Dalton et al. 1997;
Ramella et al. 2002; Eke et al. 2004; Robotham et al. 2011) and
the Voronoi–Delauney method (e.g. Ramella et al. 2001; Kim et al.
2002; Marinoni et al. 2002), which identify clusters as density en-
hancements over the mean background. The chief strength of these
algorithms is their simplicity, namely their lack of assumptions re-
garding cluster shapes and their ability to work with single-band
selections. Their sensitivity to line-of-sight positions, however, typ-
ically limits their use to spectroscopic surveys, though there have
been some attempts to apply such algorithms to photometric data
sets (e.g. Botzler et al. 2004; Farrens et al. 2011; Jian et al. 2014).

Second are the detection techniques that instead identify cluster
candidates through the presence of a red sequence; the population of
red, elliptical galaxies in clusters, typically thought to have had their
star formation quenched by feedback processes. Assuming that the
cluster galaxy population is dominated by early-type galaxies and
that this population follows a tight colour–magnitude relation with
little intrinsic scatter, then, when imaged in two photometric bands
bracketing the 4000 Å break, the cluster red sequence galaxies will
be the brightest, reddest objects (Stanford, Eisenhardt & Dickinson
1998; Gladders & Yee 2000). By dividing the colour-space into
slices (according to a red sequence model) and assigning a weight
to each galaxy based upon the likelihood that the galaxy belongs to
particular slice, one can construct a surface density map for each
slice, with the peaks in the density corresponding to the cluster can-
didates. Examples include the Cluster Red Sequence method (Glad-
ders & Yee 2000; López-Cruz, Barkhouse & Yee 2004; Gladders &
Yee 2005), the Cut-and-Enhance algorithm (Goto et al. 2002), the
MaxBCG algorithm (Hansen et al. 2005; Koester et al. 2007), the C4
algorithm (Miller et al. 2005), the ORCA algorithm (Murphy, Geach
& Bower 2012) and the redMaPPer algorithm (Rykoff et al. 2014).
These algorithms are popular choices for use with photometric data
sets, though there is the obvious concern that such algorithms are
biased towards those clusters with an established red sequence.

Finally, are the techniques that model characteristics of clusters,
such as the spatial or luminosity distribution of galaxies in clusters,
and test how well the galaxies in a particular region of the sky match
this model. For example, the matched filter technique (Postman
et al. 1996), models the distribution of galaxies within a cluster as a
sum of the background density and a parametrized function of the
cluster galaxy luminosity function and the projected radial profile
of the cluster. One can then determine a likelihood for the model
parameters as a function of redshift and luminosity. Maximizing the
likelihoods can therefore provide estimates for the redshift and the
total luminosity of a cluster. Several extensions to the matched filter
have been proposed, including the adaptive matched filter (Kepner
et al. 1999), the hybrid matched filter (Kim et al. 2002) and the
three-dimensional matched filter (Milkeraitis et al. 2010). Recently,
Ascaso, Wittman & Benı́tez (2012) implemented a variation of
the matched filter technique in a Bayesian framework in order to
assign to each galaxy a Bayesian probability that there is a cluster
centred on that galaxy. By additionally introducing an optional
prior for the presence of a cluster red sequence, they were able to
demonstrate the recovery of clusters with a red sequence without

the need for colour–magnitude modelling. Matched filter methods
are typically powerful techniques capable of recovering clusters in
deep, photometric redshift surveys with high completeness and little
contamination. However, their reliance on models for the luminosity
and radial profiles of clusters suggests that their results could be
model dependent and biased towards clusters displaying similar
characteristics.

In this work, we describe a novel and fully Bayesian approach
to detect haloes with masses above specific thresholds as peaks
in the smooth matter density field inferred from observations. To
achieve this goal we capitalize on, first, the previously developed
HADES (Jasche & Kitaura 2010; Jasche & Wandelt 2012) large-scale
structure inference framework, which is designed to infer, from
observations, the smooth three-dimensional matter density field of
the cosmic large-scale structure, and, secondly, the Blackwell–Rao
estimator, which we use to relate the inferred density amplitudes to
the properties of dark matter (DM) haloes. Our framework exploits
information from the entirety of a galaxy survey and makes no
assumptions regarding the spatial extent of clusters, the functional
form of their radial profiles or the presence of a red sequence, which
can be affected by cosmic variance. Instead our method relies upon
the more fundamental assumption of our understanding of the matter
power spectrum, which can in turn be sampled self-consistently
as part of the Bayesian framework (see e.g. Jasche et al. 2010a;
Jasche & Wandelt 2013b; Jasche & Lavaux 2015). To examine the
success of our methodology, we make use of a realistic mock galaxy
catalogue for which halo memberships of the galaxies are known.

The layout of the paper is as follows. In Section 2, we present
the Bayesian inference framework HADES and describe our process
for generating a realistic mock catalogue for the 6-degree Field
Galaxy Survey (6dFGS). The inference of the three-dimensional
density field for this data set is described in Section 3, followed
by a discussion of inference results. In Section 4, we describe our
approach to detect haloes of different masses in observations via a
Blackwell–Rao methodology. Subsequently, we apply this approach
to the inference results obtained by the application of HADES to the
6dFGS mock catalogue and estimate its performance to recover
haloes in a realistic, data driven scenario. Finally, we summarize
and draw conclusions in Section 5. All magnitudes are in the Vega
system. Details of the cosmological model that we adopt are given
in Section 2.2.1.

2 M E T H O D O L O G Y

In this section, we first give a brief overview of the Bayesian in-
ference algorithm, HADES, that we employ and then introduce the
N-body simulation and the semi-analytical galaxy formation model,
GALFORM, that we use to construct our mock galaxy catalogue.

2.1 The HADES algorithm

In this work, we use the HAmiltonian Density Estimation and Sam-
pling algorithm (HADES; Jasche & Kitaura 2010; Jasche et al. 2010b;
Jasche & Wandelt 2012); a full scale Bayesian inference framework
designed to analyse modern galaxy large-scale structure surveys on
both linear and non-linear cosmic scales, whilst simultaneously
providing the corresponding uncertainty quantification.

The three-dimensional large-scale structure of the cosmic web of-
fers a wealth of valuable information for testing our current picture
of cosmological structure and galaxy formation. However, connect-
ing observations to theoretical predictions is not trivial. Observa-
tions of the large-scale structure are typically subject to a variety of
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systematic and statistical uncertainties, such as survey geometries,
selection effects, galaxy biases, the noise of the galaxy distribu-
tion and cosmic variance. All these effects have to be carefully
accounted for to ensure that we do not draw erroneous conclusions
on the final inferred quantities. Additional complexity for the infer-
ence of the three-dimensional density field arises from the fact that
in this work we seek to analyse the large-scale structure on scales
of ∼4 h−1 Mpc, in the mildly non-linear and non-linear regimes.
At these scales, the non-linearly evolved density field no longer
obeys simple Gaussian statistics as gravitational interactions intro-
duce mode coupling and phase correlations. Unfortunately there is
no tractable solution, in the form of a fully multivariate probabil-
ity distribution, for the non-linear three-dimensional density field.
There exist, however, phenomenological approximations, such as
the lognormal distribution.

The lognormal distribution can be justified via theoretical argu-
ments, as shown by Coles & Jones (1991), and has been demon-
strated to fit, with reasonable accuracy, the one-point distributions
obtained from numerical large-scale structure simulations (Kayo,
Taruya & Suto 2001). Using the lognormal distribution together
with a suitable choice for the cosmic power spectrum to account
for one- and two-point statistics of the density field is thus a logical
choice for a prior distribution used in Bayesian inferences of the
non-linear matter distribution. From an information theory perspec-
tive such a lognormal prior is well justified, since it is a maximum
entropy prior on a logarithmic scale. This means that amongst all
possible probability distributions with the same mean and covari-
ance matrix on a logarithmic scale, the lognormal distribution is the
distribution that contains the least information. As such the lognor-
mal distribution represents the least informative prior for a positive
three-dimensional density field, once the mean and covariance ma-
trix are specified (Jasche & Kitaura 2010; Jasche et al. 2010b).

To find a suitable likelihood distribution, we note that the galaxy
distribution is conditionally dependent on the underlying three-
dimensional matter density field. In particular, in the most naive
picture of galaxy formation, galaxies are predominantly found in
regions of higher density than in regions of lower density. The local
noise structure of the galaxy distribution is therefore dependent on
the underlying matter density field. This feature of signal-dependent
noise is missed in traditional approaches based on Gaussian approx-
imations such as Wiener filtering (Fisher, Scharf & Lahav 1994;
Zaroubi et al. 1995; Erdoǧdu et al. 2004; Kitaura et al. 2009; Jasche
et al. 2010a). Assuming galaxies to be discrete particles, their dis-
tribution can be described as a specific realisation drawn from an
inhomogeneous Poisson process, which captures the essential fea-
tures of such a signal dependent noise (see e.g. Layzer 1956; Peebles
1980; Martı́nez & Saar 2002).

Consequently, analyses of the three-dimensional density field in
the non-linear regime requires the solving of a large-scale Bayesian
inverse problem with a lognormal Poisson distribution. To explore
this highly non-Gaussian and non-linear problem, the HADES algo-
rithm relies on a Hybrid Monte Carlo (HMC) scheme, which, instead
of the random walk behaviour displayed by traditional Metropolis–
Hastings algorithms, follows a persistent motion similar to particle
trajectories in classical mechanics problems (see Jasche & Kitaura
2010 for a detailed discussion of the necessary equations of mo-
tion and their numerical implementation). Being a fully Bayesian
method, the HADES algorithm does not only provide a single esti-
mate of the density field but rather a full numerical representation of
the large-scale structure posterior conditional on the observations,
including a detailed treatment of all systematic and stochastic un-
certainties. The output products from HADES are therefore a set of

realisations of the three-dimensional density field in a voxel grid, as
well as a measurement of the corresponding matter power spectrum.
In this fashion, the algorithm permits determination of any desired
statistical summary such as the mean, mode and variance and simul-
taneously provides a straightforward means to non-linearly propa-
gate non-Gaussian uncertainties on any inferred quantity (Jasche &
Kitaura 2010; Jasche et al. 2010b).

Recently, the HADES algorithm has been extended to account for
photometric redshift uncertainties by using a block sampling proce-
dure (Jasche & Wandelt 2012). This update means that HADES is able
to account for the corresponding redshift uncertainties of millions
of galaxies observed by photometric surveys, whilst simultaneously
inferring an accurate representation of the three-dimensional den-
sity field from such data sets. For a more detailed overview of the
Bayesian inference framework implemented in HADES, the interested
reader is referred to previous publications: Jasche & Kitaura (2010);
Jasche et al. (2010b) and Jasche & Wandelt (2012).

2.2 Generating a mock catalogue

In order to demonstrate the capability of our approach to identify
haloes of galaxies, we apply HADES and our halo detection method-
ology to a synthetic mock galaxy catalogue in which halo mem-
berships are known. This will allow us to quantify how well our
approach can recover the original structures.

To this end, we construct a mock catalogue to emulate the 6dFGS
(Jones et al. 2004), which was carried out between 2004 and 2009
using the 6-degree Field automated fibre positioner and spectro-
graph system (6dF; Parker, Watson & Miziarski 1998; Watson et al.
2000) on the UK Schmidt Telescope at the Australian Astronom-
ical Observatory (AAO).1 The 6dFGS is a near-infrared selected
galaxy survey covering the whole of the Southern sky, approxi-
mately 17 000◦, down to a galactic latitude of |b| > 10◦. As of the
final data release (DR3; Jones et al. 2009), the 6dFGS yielded a cat-
alogue of approximately 125 000 extragalactic redshifts complete
to (K, H, J, rF, bJ) = (12.65, 12.95, 13.75, 15.60, 16.75). Here, we
construct a mock catalogue to emulate the K band selected sub-
sample of the 6dFGS, which with approximately 93 000 redshifts
constitutes the majority of the survey.

We choose to emulate the 6dFGS for several reasons. First, the
6dFGS has a large sky coverage, with a close to uniform complete-
ness across the majority of the survey area. Secondly, the shallow
depth of the 6dFGS means that there is little structure evolution
throughout the domain of the survey. As such, we are able to, in
the first instance, demonstrate our halo detection methodology on a
density field that is evolving very little with redshift. This means that
we can approximate the matter density field throughout the mock
catalogue using the z = 0 snapshot of the MS-W7 Simulation (Guo
et al. 2013). This allows us to provide a simple proof-of-concept
of the approach. Future application of the methodology to deeper
surveys, such as the Sloan Digital Sky Survey (SDSS; York et al.
2000), can then be achieved by incorporating a more sophisticated
approach to model the redshift-dependence of the matter density
field. Thirdly, we plan in future work to apply our approach to
the real 6dFGS, which contains a rich variety of well-studied local
structures, ranging from small groups, to large superclusters such
as the Shapley supercluster.

1 Formally the Anglo Australian Observatory.
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2.2.1 Galaxy formation model

To construct a 6dFGS mock catalogue, we follow a construction
method similar to that of Merson et al. (2013), which involves first
populating the DM halo merger trees of a cosmological N-body
simulation with galaxies using a semi-analytical model.

The cosmological simulation that we use is the MS-W7 Simula-
tion (Guo et al. 2013), which is a version of the Millennium Sim-
ulation (Springel et al. 2005) constructed using a cold dark matter
(CDM) cosmology consistent with the 7-yr results of the Wilkinson
Microwave Anisotropy Probe (WMAP7; Komatsu et al. 2011). The
cosmological parameters are: a baryon matter density �b = 0.0455,
a total matter density �m = �b + �CDM = 0.272, a dark energy
density �� = 0.728, a Hubble constant H0 = 100 h km s−1 Mpc−1

where h = 0.704, a primordial scalar spectral index ns = 0.967 and
a fluctuation amplitude σ 8 = 0.810.

The hierarchical growth of CDM structure is followed at 62 fixed
epoch snapshots, spaced approximately logarithmically in expan-
sion factor between redshift z = 127 and the present day, in a cubic
volume of size 500 h−1 Mpc on a side. For each snapshot, groups of
DM particles are first identified through the application of a friends-
of-friends algorithm (Davis et al. 1985). The substructure-finder
SUBFIND (Springel et al. 2001) is then applied to break these groups
down into identifiable, self-bound subhaloes. Independent haloes
are determined by establishing a subhalo hierarchy and identifying
those subhaloes that are not bound by any more massive subhaloes.
By tracking subhalo descendants between the subsequent output
snapshots, a halo merger tree can be constructed. Further details
regarding construction of the halo merger trees can be found in
Merson et al. (2013) and Jiang et al. (2014). The MS-W7 simula-
tion uses 21603 particles to represent the matter distribution, with
the requirement that a halo consists of at least 20 particles for it to
be resolved. This corresponds to a halo mass resolution of Mhalo,lim

� 1.87 × 1010 h−1 M�, significantly smaller than expected for the
Milky Way’s DM halo (within our chosen semi-analytical galaxy
formation model, haloes of this mass typically host galaxies with
MK − 5log10(h) ∼ −11.7).

We model the star formation and merger history of galaxies using
the GALFORM semi-analytical model of galaxy formation (Cole et al.
2000). Here, we adopt the recent version presented by Gonzalez-
Perez et al. (2014). The GALFORM model populates DM haloes with
galaxies using a set of coupled differential equations to determine
how, over a given time-step, the ‘subgrid’ physics regulates the size
of the various baryonic components of galaxies. The physical pro-
cesses modelled by GALFORM include: (i) the collapse and merging
of DM haloes, (ii) the shock-heating and radiative cooling of gas
inside DM haloes, leading to the formation of galactic discs (iii)
quiescent star formation in galactic discs, (iv) feedback as a result
of supernovae, active galactic nuclei and photoionization of the in-
tergalactic medium, (v) chemical enrichment of stars and gas, (vi)
dynamical friction driven mergers of galaxies within DM haloes,
capable of forming spheroids and triggering starburst events, and
(vii) disc instabilities, which can also trigger starburst events. As
detailed in Merson et al. (2013), how galaxies are placed into the
DM haloes depends on their status as central or satellite galaxies.
Central galaxies are placed at the centre of the most massive subhalo
of their host halo. Following halo merger events, satellite galaxies
are placed at the centre of mass of what was the most massive sub-
halo of their original host halo when they were still a central galaxy.
If this subhalo can no longer be identified, the galaxy is placed on
what was the most bound DM particle of that subhalo. The GALFORM

model is able to make predictions for numerous galaxy properties,

including luminosities over a substantial wavelength range extend-
ing from the far-UV through to the submillimetre.

2.2.2 Catalogue construction

To construct the 6dFGS mock catalogue, we first run the GALFORM

model on the z = 0 snapshot of the MS-W7 simulation. An observer
is then placed in the box at (Xo, Yo, Zo) = (0, 0, 500) h−1 Mpc and
all galaxy positions are translated so that the observer is at the ori-
gin. To generate a cosmological volume comparable to that of the
6dFGS, we stack a further three replications of the z = 0 box such
that we have a cuboid spanning, relative to the observer, [−500,
500] h−1 Mpc in the X and Y directions and [−500, 0] h−1 Mpc
in the Z direction. Note that, given the cosmology of the simula-
tion, a comoving distance of 500 h−1 Mpc corresponds to a redshift
z ∼ 0.17.

We next apply the selections to mimic the 6dFGS. First, we use
the Cartesian positions of each galaxy to compute a sky position
and redshift for that galaxy. The cosmological redshift of the galaxy
is calculated from the comoving distance to the galaxy from the
observer, rcom, defined by

rcom(z) =
∫ z

0

c dz′

H0

√
�m (1 + z′)3 + ��

, (1)

where c is the speed of light. For the purposes of our HADES analysis,
we place an initial cut so that all galaxies with cosmological redshift
z > 0.16 are discarded. Note that this redshift is well beyond the
median redshift of the 6dFGS, zmed ∼ 0.05. We calculate an observed
redshift, zobs, of each galaxy using

zobs = (1 + z)
(

1 + vr

c

)
− 1, (2)

where vr is the radial component of the peculiar velocity vector,
v, of the galaxy (i.e. vr = v · r̂ , where r̂ is the normalized line-of-
sight position vector of the galaxy). Note that we do not incorporate
any spectroscopic redshift uncertainties in the mock catalogue. To
mimic the solid angle footprint of the 6dFGS, we reject any galaxies
with declination δ > 0◦ as well as those galaxies with a galactic
latitude |b| < 10◦.

The next step is to apply the K-band flux selection limit of the
6dFGS, K < 12.65, to reject those galaxies that are too faint to
have been observed. The GALFORM model provides the absolute K-
band magnitude, MK − 5log10(h), of each galaxy. We calculate the
apparent K-band magnitude, K, of each galaxy using,

K = MK − 5 log10(h) + 5 log10

(
dL (z)

10pc

)

− 2.5 log10 (1 + z) + k(z), (3)

where dL is the luminosity distance to the galaxy and k(z) is an
applied K-band k-correction, which we obtain by interpolating the
tabulated k-corrections from Poggianti (1997). In Fig. 1, we show
the K-band luminosity function for the mock catalogue, which we
compare with the 6dFGS K-band luminosity function estimated by
Jones et al. (2006). Note that Jones et al. (2006) corrected their
estimate of the 6dFGS luminosity function for incompleteness. Our
mock catalogue gives a galaxy number density that is in excellent
agreement with that of the 6dFGS, particularly around the charac-
teristic magnitude, M∗

K − 5 log10(h) = −23.83.
At this stage, the mock catalogue that we have represents an

idealized copy of the 6dFGS, such that the catalogue is complete
down to the flux limit and complete over the extent of the 6dFGS
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Figure 1. K-band luminosity function at z = 0 for the idealized mock
catalogue (solid black line). Also plotted for comparison are the 6dFGS
K-band luminosity function estimate from Jones et al. (2006), as well as
K-band luminosity function estimates from Kochanek et al. (2001), Cole
et al. (2000) and Driver et al. (2012). The dotted line shows the Schechter
(1976) functional fit to the 6dFGS luminosity function using the parameters
from Jones et al. (2006).

DR3 footprint on the sky. The final step is to degrade the complete-
ness of our idealized mock catalogue such that we model the effect
of systematics that are introduced into observational data sets as
a result of survey strategy. For spectroscopic surveys such as the
6dFGS, incompleteness is introduced as a result of observational

limitations, such as fibre collisions and effects of poor observing
conditions, which prevent one from obtaining a redshift measure-
ment for each target. Collisions of the 6dF fibres, for example,
prevent simultaneous observation of galaxies with a proximity less
than approximately 5.71 arcmin on the sky (Campbell, Saunders
& Colless 2004), though this can be mitigated somewhat by repeat
observations. Such systematics can therefore lead to the observed
galaxy counts in any particular DM halo being incomplete, which
reduces the signal to noise (S/N) of that halo. Therefore, it is im-
portant to ensure that we are applying our methodology to a mock
data set that is representative of observational data sets and their
inherent systematics.

Jones et al. (2006) model the total completeness, T (θ , m), for
each galaxy in the 6dFGS using the separable function T (θ , m) =
S(θ )C(m), where C(m) is the completeness as a function of mag-
nitude, m, and S(θ) is a constant scaling the completeness of the
field in which a galaxy was observed to the completeness, R(θ),
on that part of the sky. To remove incomplete regions from their
final data set, Jones et al. (2006) selected those galaxies for which
T (θ, m) � 0.6. In order to fully emulate the 6dFGS, we would need
to mimic the observational design of the survey, including optimally
tiling the mock catalogue with a set of 6-degree fields and modelling
effects such as fibre collision. However, given that the purpose of
our mock catalogue is to help provide a simple demonstration of
the ability of the our halo detection methodology and that to do this
the mock catalogue does not need to be a perfect emulation, we
choose to adopt a simpler, more straightforward implementation.
We therefore degrade the mock catalogue using a HEALPIX (Górski
et al. 2005) realisation of the sky completeness mask of the DR3
data set, as shown in Fig. 2, where the colour-bar indicates the value
for the sky completeness R(θ ), at the sky position, θ , of each HEALPIX

pixel. To degrade the mock catalogue, we simply use random num-
ber generation to accept or reject galaxies based upon the value of

Figure 2. Redshift completeness as a function of sky position, R(θ ), for the 6dFGS DR3 (in HEALPIX format).
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Figure 3. Redshift distributions for the idealized mock catalogue (dark
blue shaded histogram) and the completeness degraded mock catalogue
(light blue shaded histogram). Shown for comparison is the distribution
for the 6dFGS DR3 K-band selected sample (black line). The dotted line
indicates the median redshift for the 6dFGS DR3 galaxies, whilst the dashed
line shows the median redshift for the degraded mock catalogue.

R(θ ) for the pixel to which the galaxy is assigned. By degrading the
catalogue in this way, we ensure that the sky completeness mask in
Fig. 2 is a good description for the completeness of the mock sky.
Following this procedure, we are left with a mock catalogue that
provides a reasonable approximation for a K-band selected 6dFGS-
like galaxy survey. Note that our approach does not introduce any
magnitude incompleteness, i.e. C(m) = 1, and instead would lead
to T (θ , m) = T (θ ) = R(θ ).

After degrading the mock catalogue, we are left with approxi-
mately 70 000 galaxies with a median redshift of approximately
0.05, which is consistent with the median redshift of the 6dFGS
DR3. The redshift distributions of both the idealized and the de-
graded mock catalogue are shown in Fig. 3. For comparison, the
redshift distribution of the K-band selected 6dFGS DR3 data set,
which constitutes about 75 000 galaxies, is also shown.

3 IN F E R E N C E O F T H E C O S M I C
L A R G E - S C A L E ST RU C T U R E

In this section, we describe the set-up and inference results of ap-
plying the HADES algorithm to our 6dFGS mock catalogue.

3.1 Application of the HADES algorithm

As stated previously, in this work we rely on the Bayesian infer-
ence algorithm HADES to recover the three-dimensional large-scale
structure from the mock observations. In particular, we follow a
procedure similar to that described in Jasche & Kitaura (2010) and
Jasche & Wandelt (2013a).

As inputs, HADES requires only the galaxy positions, the sky com-
pleteness mask (in HEALPIX format) and an estimate of the radial
selection function of the mock catalogue. We calculate the radial
selection function of the mock catalogue by computing the volume-
weighted redshift distribution, dN(z)/dV(z), which we show in
Fig. 4. Remarkably this function is very well described by a power

Figure 4. The volume-weighted redshift distribution for the 6dFGS mock
catalogue (open circles). The solid line shows the power fit to this distri-
bution, which is provided to HADES as the estimate for the radial selection
function of the mock catalogue. The inset panel shows the base-10 logarithm
of the distribution. Stated in the plot are the values for the parameters, m
and c, for the power-law fit.

law, which is also shown. This power-law relation, re-normalized
to the interval [0,1], is the selection function provided to HADES.
HADES uses a convolution of the sky completeness mask and the
radial selection function to construct a three-dimensional response
operator, R(x), which describes the completeness of the observa-
tions as a function of position, x. For details on the data model and
the implementation of the HADES algorithm, we refer the interested
reader to Jasche & Kitaura (2010), Jasche et al. (2010b) and Jasche
& Wandelt (2012).

We infer the large-scale structure within a rectangular Cartesian
domain of size length 981 h−1 Mpc × 955 h−1 Mpc × 511 h−1 Mpc.
This inference domain was chosen to optimally account for the
geometry of the 6dFGS mock catalogue. The inference domain
was subdivided into 256 × 256 × 128 cells, allowing a grid resolu-
tion of ∼3.6 h−1 Mpc. We note that the total number of inference
parameters, which correspond to the density amplitudes in each
of the grid cells, is ∼106. This large number of parameters can
be efficiently sampled by the HADES algorithm via a Hamiltonian
Monte Carlo sampling framework. To explore the corresponding
high-dimensional parameter space we run four chains in parallel,
each generating a total of 10 000 data constrained realisations of
the three-dimensional density field. Being a numerical representa-
tion of the full posterior distribution, this ensemble of density fields
contains all of the information that could be extracted from observa-
tions and provides accurate quantification of uncertainties inherent
to any cosmological observation.

3.2 Burn-in and statistical efficiency

As with any Markov Chain Monte Carlo technique, there will be
correlations between subsequent density field realisations generated
by the Markov chain. For this reason, the sampler requires a certain
amount of sampling steps to decorrelate from the chosen initial
conditions. This phase of a Markov sampler is referred to as the
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Figure 5. The matter power spectrum as recovered by HADES. The left-hand panel shows the ensemble mean power spectrum, obtained by averaging over
20 000 samples, with the shaded regions indicating the size of the standard deviation in each bin of wavenumber. The right-hand panel shows the evolution of
the power spectrum with sample number for one HADES chain. The solid line for each estimate is coloured according to the number of the sample it was taken
from. In each panel, the dashed line corresponds to the input power spectrum that HADES was provided with.

burn-in period. After this finite initial phase, the Markov sampler
generates density field realisations drawn from the correct target
posterior distribution.

A simple monitor of burn-in is to follow the evolution of param-
eters with sample number (e.g. Eriksen et al. 2004; Jasche et al.
2010a). The right-hand panel of Fig. 5 shows the evolution of the
recovered posterior matter power spectrum with sample number for
the 10 000 samples in one of the four Markov chains. We can see
that the chain has converged after approximately 2000 samples and
starts exploring the parameters within the range of uncertainty. As
a conservative measure, we discard the first 5000 samples in each
chain to ensure that each chain has passed the initial burn-in phase.
This leaves us with 5000 realisations of the density field for each
chain, giving a total of 20 000 samples.

The left-hand panel of Fig. 5 shows the ensemble mean and
variance on the power spectrum, obtained by averaging over the
20 000 converged samples. At small k, the power spectrum is biased
high relative to the input power spectrum, likely due to the effect
of galaxy bias. In its current form, HADES assumes a constant linear
bias. We assume an arbitrary bias value of 1.2, which, given the
value of σ 8 used in the MS-W7 cosmology, is within 2σ of the bias
estimates of Beutler et al. (2012). Another possible source of the
excess power could be the appearance of repeated structures in the
mock catalogue, arising due to our method of building the mock
catalogue by replicating the simulation box.

3.3 Inferred density fields

We now examine the density field as inferred by HADES. In Fig. 6,
we show slices, of approximately 4 h−1 Mpc thickness, through the
HADES density field. The different columns correspond to a slice
through each of the Cartesian axes. In the X and Y axes the slices
are approximately at the origin, whilst the slice along the Z-axis
corresponds approximately to Z ∼ −3 h−1 Mpc (this corresponds
to the slice along the Z-axis that is closest to the observer and
whose volume is entirely spanned by the mock galaxy data). The
top row shows slices through a single realisation of the recovered
density field, whilst the middle row shows the same slices through

the ensemble mean density field, 〈δ〉, averaged over 20 000 samples.
In the bottom row, we show the ensemble variance of the recovered
density field, σ (δ), again taken over 20 000 samples. From Fig. 6, we
can see that for many regions in the inferred large-scale structure the
ensemble variance is comparable to the ensemble mean, as expected
for a Poisson process.

Comparing these results we can see that whilst the density field
from individual samples appears very Gaussian, the ensemble mean
density field is strikingly non-Gaussian, with the non-linear features
of the cosmic web becoming clearly visible above the noise. High
S/N structures, such as galaxy clusters and voids, are easily iden-
tifiable out to distances of approximately 200 h−1 Mpc from the
observer, which for our cosmological model corresponds to a red-
shift of z ∼ 0.07.

Note, however, that the masked regions, which are not con-
strained by observations and regions dominated by noise tend to-
wards the mean density with 〈δ〉 = 0. This behaviour is expected
in regions without data constraints, where we expect to recover the
cosmic mean density on average. One such example is the region of
the mock survey masked by the Galactic plane, which is not visi-
ble in individual realisations but becomes apparent in the ensemble
properties. In each individual sample, HADES is able to infer the large-
scale structure in these regions, however the lack of constraints for
these regions leads to a low S/N ratio for the inference in these
regions so that over the ensemble 20 000 realisations, the inferred
density field averages out to the mean density.

3.4 Recovery of structures

Having seen that HADES is able to provide a realistic realisation for the
cosmic web, we now consider the recovery of individual structures.
We stress that the density field inferred by HADES corresponds to
the continuous matter density field and that HADES does not provide
any information for individual, discrete structures or for the halo
density field. It does, however, provide insight into which individual
structures, in particular clusters, could be identified as peaks in the
inferred ensemble mean density field.
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Halo detection via Bayesian inference 1347

Figure 6. Slices showing the HADES density field in the three Cartesian axes. The resolution of the HADES reconstruction is approximately 4 h−1 Mpc. The
left-hand column shows a slice at X ∼ 0 h−1 Mpc, the middle column shows a slice at Y ∼ 0 h−1 Mpc and the right hand at Z ∼ −3 h−1 Mpc. The top row
shows a single realisation of the HADES density field. The middle row shows the ensemble average of the density field, obtained by averaging over 20 000
realisations. The bottom row shows the ensemble variance, again obtained by averaging over 20 000 realisations.

In Fig. 7, we compare an example density field realisation from
HADES, as well as the ensemble density field, with the true density
field for the mock catalogue, which corresponds to the density field
from the z = 0 snapshot of the MS-W7 simulation. We estimate
the MS-W7 density field by replicating the MS-W7 box such that
we can count the number of DM particles in each of the voxels
in the HADES volume. Note that for the MS-W7 density field and
the example HADES realisation, we only show the density field for
voxels where the response operator, R, is non-zero (i.e. for voxels
where the completeness of the observations is non-zero). Hence
very distant regions, as well as regions behind the Galactic plane,
are masked out. In addition, we also show in Fig. 7 the S/N ratio
for the observations, which we estimate as the square root of the
galaxy counts in each HADES voxel.

A visual comparison of the MS-W7 density field with the HADES

density fields, either the example realisation or the ensemble mean,
shows that HADES is recovering the large-scale structure of the MS-
W7 density field quite well, particularly for structures within twice
the median redshift of the mock galaxies (as indicated by the outer

of the two concentric circles). Individual structures in the MS-W7
density field can be identified in the HADES density fields. For ex-
ample, the structure located near the observer at (X, Y) ∼ (−50,
−20) h−1 Mpc, which is clearly visible in the galaxy counts, can
be readily identified in both the HADES example realisation and the
ensemble mean density field. Other structures further away from
the observer, such as the filamentary structures at (X, Y) ∼ (−160,
−140) h−1 Mpc or (X, Y) ∼ (200, −40) h−1 Mpc, are not easily
visible in the galaxy counts but are recovered by HADES, albeit
at poorer resolution. At distances around twice the median red-
shift, or beyond, only a few individual clusters can be resolved,
thanks to the counts of bright cluster galaxies. It is indeed no-
ticeable that the fine filamentary structure in the MS-W7 density
field is less well resolved by HADES compared to galaxy clusters,
which constitute the nodes of the cosmic web. This, for example,
could well be due to the fact that HADES is having to infer the
density field using galaxies in redshift–space, which will lead to in-
dividual structures being smeared out by redshift–space distortion
effects.
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Figure 7. Zoomed slices through the HADES volume at Z ∼ −3 h−1 Mpc showing the MS-W7 density field in the original mock catalogue (top left), the S/N
ratio of the mock observations (corresponding to the square root of the counts, top right), an example HADES realisation of the matter density field (bottom left)
and the ensemble mean density field from HADES (bottom right). Note that in the left-hand panels, the density field is only shown for voxels where the response
operator, R, is non-zero (i.e. where the completeness of the observations is non-zero). The dotted concentric circles correspond approximately to the median
redshift and twice the median redshift of the mock galaxies.

We note that for our analysis with HADES, we have neglected
the impact of uncertainties on the spectroscopic galaxy redshifts,
which are not modelled in our mock catalogue. If we examine
the redshift uncertainties, δz, of galaxies in the K-band selected
subsample of the 6dFGS DR3, we find that the median fractional
uncertainty is δz/z = 0.003+0.004

−0.001 (uncertainties on the median value
correspond to the difference between the median and the 10th and
90th percentiles). Assuming our given cosmology, we can convert
this to a fractional uncertainty on the comoving distance, r, of the
galaxies, δr/r, where we take δr = [r(z + δz) − r(z − δz)]/2.
This yields a typical fractional uncertainty of δr/r = 0.003+0.005

−0.001.
For a galaxy at the median redshift of our mock survey, zmed ∼
0.05, this corresponds to a typical uncertainty on the comoving
distance of ∼0.45 h−1 Mpc, which we note is much smaller than
our grid resolution of ∼3.6 h−1 Mpc and so should have negligible
impact on our results. If we apply our methodology to a catalogue
of photometric redshifts, however, the impact from photometric
redshift uncertainties would need to be considered.

To quantify our ability to recover of individual structures with
HADES, we examine the correlation between the MS-W7 density field

and the density field of the HADES realisations. To do this, we measure
the Pearson correlation coefficient, which varies between ±1 and
provides a measure of the linear correlation between two quantities,
with +1 indicating a perfect positive correlation, −1 indicating
a perfect negative correlation and 0 indicating no correlation. We
can therefore use the Pearson correlation coefficient to search for
correlation between the true and inferred density fields. As such,
we estimate the correlation between the MS-W7 density field and
each of the individual 20 000 HADES realisations, i.e. giving us
20 000 estimates for the correlation. However, in each case instead
of obtaining a single value for coefficient over the entire set of
voxels, we split the voxels into density bins according to the density
amplitude that voxel has in the HADES ensemble mean density field.
When measuring the coefficients, we only consider voxels in the
HADES volume where the response operator, R, is non-zero (as in the
left-hand panels of Fig. 7).

In Fig. 8, we show the correlation coefficient as a function of
the ensemble mean density from HADES. The filled circles show the
mean correlation coefficient in each bin and the error bars indicate
one standard deviation. As can be seen, the correlation coefficient
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Figure 8. Pearson rank correlation coefficient indicating the mean strength
of the correlation between the density field of the MS-W7 simulation and
each of 20 000 HADES density field realisations. The correlation coefficient
is shown as a function of density contrast from the ensemble mean of
the HADES recovered density fields. The points show the mean coefficient
for each density bin and the error bars show one standard deviation. The
filled symbols show the correlation obtained when considering only voxels
for which the response operator, R, is greater than a threshold value: 0.0
(red circles), 0.005 (green squares) and 0.05 (blue triangles). The empty
symbols show the correlation obtained when the density fields are first
smoothed on scales of ∼18 h−1 Mpc (the resolution in the non-smoothed
case is ∼3.6 h−1 Mpc).

increases to larger positive values in the lowest and highest density
bins, indicating that HADES is correctly identifying the most over-
dense and underdense voxels in the HADES grid, which correspond to
the regions of highest S/N. The correlation is higher for the lowest
density bins, which correspond to voids, than for the highest density
bins, which correspond to clusters. This is likely due to voids having
a larger volume filling factor than clusters and so being more easily
identified in lower resolution reconstructions. In addition, due to
their larger volume, the positions of the void centres will be less
affected by redshift–space distortions than to the positions of clus-
ters. As a consequence, large-scale structure inference algorithms
have previously been used to identify and examine the properties
of cosmic voids (e.g. Leclercq et al. 2015; Lavaux & Jasche 2016).
Towards the mean density, 〈δ〉 ∼ 0, the correlation weakens signif-
icantly. This is understandable given that this density contrast will
be associated with the regions of lowest S/N, such as the haloes
of small galaxy groups or even individual galaxies, where HADES is
unable to make a decisive statement.

We show the correlation for two additional thresholds in the re-
sponse operator: R > 0.005 and R > 0.05. These increasing limits
of R essentially limit us to smaller and smaller volumes about the
observer: R > 0.005 limits us to a spherical volume within approxi-
mately twice the median redshift and R > 0.05 limits us to a spherical
volume within approximately the median redshift (excluding, in all
instances, the region behind the Galactic plane). Considering the
highest density bins, the correlation decreases as the limit in R is
increased. Also, the uncertainty on the correlation also increases as

we are restricted to a smaller volume. These results are consistent
with the increasing impact of small-scale redshift–space distortions,
which are more prominent closer to the observer and would shift
the apparent positions of clusters in the HADES reconstructions, thus
leading to a reduction in the correlation. Furthermore, we would
expect the uncertainty to increase as we consider smaller volumes
with a lower number statistics of clusters.

As a final demonstration, we also examine the impact on the
correlation of smoothing the HADES and MS-W7 density fields. In
Fig. 8, the empty points show the correlation coefficients obtained
when the HADES and MS-W7 density fields are first smoothed using
a three-dimensional Gaussian kernel,2 adopting a 5 × 5 × 5 pixel
window function. Given the pixel resolution, this window function
has a scale of approximately 18 h−1 Mpc. As such, this smoothing
will remove all small-scale resolution but will allow us to consider
whether the HADES and MS-W7 density fields correlate on large
scales. We see in Fig. 8 that smoothing the density fields in this
way leads to an increase in the correlation in the majority of the
highest density bins for each of the R limits considered. Thus, we
can conclude that the HADES density fields correlate well with density
field from the MS-W7 on both small scales (∼4 h−1 Mpc) and large
scales (∼18 h−1 Mpc). This result strongly supports the use of HADES

density field realisations for identification of galaxy clusters (and
voids) in galaxy survey data sets.

4 BAY E S I A N H A L O D E T E C T I O N

Having determined that HADES is able to successfully identify the
highest S/N peaks in the density field, we now present a Bayesian
prescription that will allow us to extract information on the halo
population from the inference results. In other words, given a set
of observations, d, we wish to extract information on some specific
quantity, α.

4.1 Translating density to halo mass

In Bayesian parlance, we are interested in analysing the posterior
distribution P(α|d) and letting the data decide on the value of α. In
our approach, we can formulate the posterior distribution P(α|d) as
a marginalization over all density fields, at fixed redshift, as inferred
within the HADES framework:

P(α|d) =
∫

dδP(δ, α|d)

=
∫

dδP(δ|d)P(α|δ, d)

=
∫

dδP(δ|d)P(α|δ)

= 1

Nsamp

∑
i

P(α|δi), (4)

where we assume conditional independence P(α|δ, d) = P(α|δ)
once the true density field is given, and the posterior distribution
P(δ|d) = 1/Nsamp

∑
i δD(δ − δi) is provided as an ensemble of data

constrained density realisations via the HADES algorithm. The chain-
rule approach described in equation (4) is frequently referred to
as a Blackwell–Rao estimator. A similar approach has been imple-
mented by Leclercq et al. (2015) to identify voids in the SDSS.

2 We adopt the Gaussian filter from the PYTHON Scipy library, scipy.org.
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Figure 9. The upper-left panel shows the joint probability distribution P(Mhalo, δ) for the z = 0 snapshot of the MS-W7 simulation, where Mhalo is the mass
of the most massive halo in any particular voxel. The lower-left panel shows the corresponding conditional probability distribution P(Mhalo|δ), also for the
z = 0 snapshot of the MS-W7 simulation. This distribution shows the probability that, given the value for the density field, δ, in a voxel, the most massive
halo in that voxel has a mass Mhalo. The right-hand panel shows the probability P(Mhalo > Mth.|δ) that the most massive halo in a voxel has a mass greater
than a threshold value, Mth. Probability distributions are shown for four threshold masses: 1012.0 h−1 M� (black solid line), 1012.5 h−1 M� (blue dashed line),
1013.0 h−1 M� (green dot–dashed line) and 1014.0 h−1 M� (red dotted line).

As demonstrated above, a full Bayesian quantification of un-
known quantities α from the observations now reduces to providing
the conditional probability distribution P(α|δ), which can be sim-
ply determined from numerical simulations of structure formation.
Generally this approach can handle arbitrarily complex problems,
requiring only a determination of the corresponding P(α|δ), which
can be achieved via analytic or numerical means. For the sake of
this work, we will exemplify this approach to answer the question
of how to find haloes above a given mass in a galaxy survey such
as the 6dFGS. Specifically, the question we wish to address is, for
a voxel with a given density, δ, what is the probability that the most
massive DM halo found in that voxel has a mass, Mhalo, that is
larger than a particular mass threshold, Mth.. Given the approach of
the Blackwell–Rao estimator, as described above, this task reduces
to determining P(Mhalo > Mth.|δ), which describes the probability
of finding the most massive halo of mass Mhalo given a value of the
density field δ.

The first stage in determining P(Mhalo > Mth.|δ) is to consider
a method for translating between density, δ, and halo mass, Mhalo.
This can be achieved by tabulating the conditional probability,

P(Mhalo|δ) = P(Mhalo, δ)

P(δ)
, (5)

from the snapshot of an N-body simulation. In practice, the joint
probability, P(Mhalo, δ), can be calculated by simply building a
two-dimensional histogram between δ and Mhalo, where Mhalo is
the mass of the most massive halo in the voxel. The joint proba-
bility distribution is shown in the upper-left panel of Fig. 9. Here,
we estimate the conditional distribution P(Mhalo|δ) using again the
z = 0 snapshot of the MS-W7. We estimate the density field for the
simulation by binning the DM particles into a grid of 1393 voxels.
Given the size of the simulation box, 500 h−1 Mpc on a side, this
gives a resolution of ∼3.6 h−1 Mpc, approximately identical to the

resolution used in our HADES inference analysis. Note that we do not
use the density field calculated according to the HADES volume as
we do not want to bias the conditional probability by introducing
repeated structures. The conditional probability distribution, shown
in the lower-left panel of Fig. 9, is the conditional probability that
the most massive halo in a 3.6 h−1 Mpc voxel with a given density,
δ, will have a mass of Mhalo. The distribution shows a clear, mono-
tonic relation that we can use to translate between the density of
a voxel and the mass of the most massive halo within that volume
element. In reality, the distribution P(Mhalo|δ) will have an addi-
tional redshift dependence, which could be modelled by computing
P(Mhalo|δ) for each snapshot of the simulation and interpolating
between the distributions. However, given that the 6dFGS is a very
shallow survey, with median redshift zmed ∼ 0.05, for the purposes
of demonstrating our methodology we can simply approximate the
matter density field through the 6dFGS mock using the z = 0 snap-
shot. We have examined the distribution P(Mhalo > Mth.|δ) from
the MS-W7 snapshots for redshifts up to z ∼ 0.2 (the approximate
radial extent of the 6dFGS mock) and find negligible evolution of
the distribution away from the z = 0 distribution.

From P(Mhalo|δ), we can make an estimate for P(Mhalo > Mth|δ)
by marginalizing over all halo masses above the threshold halo
mass, Mth. The right-hand panel of Fig. 9 shows estimates for
P(Mhalo > Mth.|δ), at z ∼ 0, for four different mass thresholds: Mth.

= 1012.0, 1012.5, 1013.0 and 1014.0 h−1 M�. For each mass threshold,
the detection probability for a halo undergoes quite a sharp tran-
sition as a function of density. Furthermore, the transition of the
probability from zero to one occurs at higher densities for larger
mass thresholds. We note that the detection probability drops back
down to zero at log10(δ + 1) ∼ 2.5 due to the limited volume of
the MS-W7 simulation. However, for a larger volume simulation,
above log10(δ + 1) ∼ 2.5 the detection probability would remain
constant at unity.
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Halo detection via Bayesian inference 1351

Figure 10. Slices through the HADES volume at Z ∼ −3 h−1 M� showing the detection probability for four different mass thresholds: 1012.0 h−1 M� (top
left), 1012.5 h−1 M� (top right), 1013.0 h−1 M� (bottom left) and 1014.0 h−1 M� (bottom right). Open circles show the positions of the voxels for which the
most massive halo has a mass above the corresponding threshold.

4.2 Detection probability maps

Using this result, we are therefore able to build maps of the detec-
tion probability for haloes above specific threshold masses given
some galaxy observation, d. These maps are built by using the
Blackwell–Rao approach, as described in equation (4), and simply
marginalizing over all data constrained realisations of the density
field obtained via the HADES, using the distributions in the right-hand
panel of Fig. 9 to assign a weight to each voxel. In Fig. 10, we show
maps for the halo detection probabilities for the four different mass
thresholds: log10(Mth./ h−1 M�) = {12.0, 12.5, 13.0, 14.0}. Given
the mock catalogue and knowledge of the underlying haloes, we can
determine the mass of the most massive halo in each HADES voxel
(note that this information is stored when we build the mock cata-
logue, before any geometrical, photometric or completeness limits
are applied). On top of the detection maps, we indicate with blue
circles those voxels whose most massive halo is above the spec-

ified threshold. We stress, however, that these detection maps are
not only reconstructions of the halo distribution, but instead, for
any position x̄, quantify our belief that there exists a halo above a
given mass threshold located at that point. This provides a natural
quantification of detection uncertainties in the survey.

For the three lowest mass thresholds, it can be seen that the detec-
tion probability for haloes of respective masses is fairly high close
to the observer where the survey generally exhibits high S/N ratios.
As can be seen, many haloes are correctly identified by the relative
peaks in the detection probability. With increasing distance from
the observer, the detection of respective halo populations becomes
increasingly uncertain. This is because, due to flux limitations of
the survey, we only observe the brighter objects that are typically
hosted by more massive haloes at larger distances. Dim objects
corresponding to less massive haloes have a vanishing probability
of being detected by the flux-limited survey. As can be seen in
Fig. 10, the respective panels correctly reflect this behaviour.
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Figure 11. Distribution of detection probabilities for voxels whose most massive halo has a mass above 1012.0 h−1 M� (top left), 1012.5 h−1 M� (top right),
1013.0 h−1 M� (bottom left) and 1014.0 h−1 M� (bottom right). The different shaded histograms show the impact of placing an additional cut in S/N ratio and
considering only those voxels above a specified threshold: S/N > {0, 1, 2, 3}.

For the Mth. = 1014 h−1 M� mass threshold, however, we see,
on first inspection, very few detection peaks, with several haloes
appearing not to have a corresponding peak in the detection prob-
ability map. We see that, given our observational data set, several
of these misdetections occur in noise-dominated regions, where we
have only a handful of galaxies. If, however, we were to artificially
boost the detection probabilities in the map, we would see that many
of the haloes do indeed correspond to relative peaks in the proba-
bility and that these peaks simply have a lower amplitude compared
to the peaks in the detection maps for the other mass thresholds.
This is due to our cosmological model and our prior belief of find-
ing haloes above a particular mass, which is encoded in the matter
power spectrum. The �CDM cosmological model predicts that in
a given volume, such as that of the MS-W7 simulation, we should
expect to find relatively few high-density peaks compared to low-
density peaks and so would expect to find fewer high-mass haloes
compared to lower mass haloes. Suppose therefore we were to bet
on finding a halo above 1014 h−1 M� at a particular position. Given
our cosmological model, for noise-dominated regions we would be
less confident and would not bet as highly on finding a halo above a
higher mass threshold. As such, given the observational data set, our
halo detection methodology assigns a non-zero detection probabil-
ity, but is conservative due to our physical expectation that we are
generally less likely to find an extreme event. In a similar fashion,
our methodology encodes the fact that we are more likely to detect

a lower mass halo and so assigns a higher detection probability for
lower mass thresholds.

There are several factors which could act to further smooth the
amplitude of the detection probability peaks. First, the fact that
we have fewer density high-density peaks leads to the P(Mhalo|δ)
conditional probability, shown in the lower-left panel of Fig. 9,
becoming noisier towards larger densities and halo masses. This
increases the width of P(Mhalo|δ), thus causing a particular density
amplitude to correspond to a range of halo masses. As a result, more
massive haloes could potentially be mistaken for lower mass objects.
Using a simulation with larger cosmological volume would help
prevent this. Secondly, our modelling of phenomena such as galaxy
bias could lead to a systematic offset between the density amplitudes
in the simulation and the density amplitudes recovered by HADES.
In this work, we have assumed a fixed bias of b = 1.2. The impact
of galaxy bias could in future work be examined by reproducing
the HADES inference analysis using a range of different bias values,
though the ability of HADES to infer luminosity-dependent galaxy
bias is also currently being tested. Finally, another important factor
is redshift–space effects. The HADES reconstructions correspond to
the redshift–space density field, whilst the calculated P(Mhalo|δ)
corresponds to the real-space density field of the N-body simulation.
Redshift–space effects, such as fingers-of-god effects, act to smooth
out real-space density peaks, especially density peaks. As such, this
could again lead to a high-mass halo being mistaken as a lower mass
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Figure 12. Change in detection probability as a function of S/N limit.
The filled symbols show the median detection probability for those voxels
that have an S/N above the corresponding limit and whose most massive
halo has a mass above 1012.0 h−1 M� (circles), 1012.5 h−1 M� (squares),
1013.0 h−1 M� (triangles) and 1014.0 h−1 M� (stars). The error bars show
the 10th and 90th percentiles.

halo. The impact of redshift–space distortions in HADES is still being
investigated (see Jasche & Wandelt 2012) and will be considered in
future work.

4.3 Recovery of individual clusters

To begin to quantify the success of the detection of haloes, we ex-
amine the distribution of probabilities for those voxels whose most
massive halo is above the different mass thresholds. We plot these
distributions, for each of the four mass thresholds, in Fig. 11. When
considering all such voxels with an S/N ratio greater than zero, we
see that, with the exception of the 1012 h−1 M� mass threshold,
every distribution peaks at low probabilities. This is because, as
discussed in the previous section, in noisier regions with lower S/N
we have less confidence of detecting higher mass haloes. We would

therefore expect such voxels to be poorly constrained by HADES,
leading to a reduced detection probability.

We show in Fig. 11, how the distribution of detection probabil-
ities changes as we restrict ourselves to voxels with higher S/N
ratios: S/N > 1, S/N > 2 and S/N > 3. As the S/N limit is in-
creased, the peak of the distribution shifts towards higher detection
probabilities. In Fig. 12, we plot the change in the median detection
probability as a function of S/N ratio. The increase in the median
probability with increasing S/N ratio reflects our confidence in de-
tecting a higher mass halo. For the highest mass threshold, Mth. =
1014 h−1 M�, we see a consistently low detection probability, as we
have discussed previously. Note however that this mass threshold
still displays a median probability that increases with increasing
S/N, reflecting our increasing confidence of detecting a halo with
mass above 1014 h−1 M� in highly constrained voxels.

As such, expressing the success of our detection methodology
becomes a function of S/N. We demonstrate this visually in Fig. 13,
where we zoom in on Mth. = 1012 h−1 M� probability map for
the region within the median redshift of the mock catalogue. In
the three consecutive panels, we overlay the positions of voxels
with an S/N above a particular limiting value and where the most
massive halo in that voxel is within a particular mass range. For
the S/N > 0 panel, we can see that there are several misdetections,
particularly for lower mass haloes. However, as we increase the
S/N ratio we can see that the number of misdetections decreases
and the positions of the haloes correlate well with large peaks in the
detection probability.

Finally, we stress that this analysis serves as a proof-of-concept,
where we have used a simple measurement task to demonstrate
the feasibility of our Bayesian halo detection approach, as outlined
above. However, the method only relies on the conditional dis-
tribution P(α|δ) of some quantity α given a density field δ (at a
redshift z), which can either be generated via analytic calculations
or extracted from simulations as described here. For this reason,
the proposed Bayesian detection methodology is a flexible and ver-
satile approach that can be arbitrarily increased in complexity to
test various quantities and features of the cosmic large-scale struc-
ture in cosmological data sets. The excellent agreement between
the peaks in our detection probability maps and the positions of
high S/N haloes indicates that this methodology could be used in
the construction of an accurate catalogue of probabilistic cluster

Figure 13. Three zoom in slices of the detection probability map for Mth = 1012 h−1 M�, showing the region within the median redshift of the mock catalogue
(as indicated by the dotted circle). The blue circles show the positions of the voxels with an S/N ratio above the specified threshold and whose most massive
halo is within the particular mass bin. The S/N ratio thresholds are: S/N > 0 (left-hand panel), S/N > 1 (middle panel) and S/N > 2 (right-hand panel).
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candidates, though a resolution finer than 3.6 h−1 Mpc would likely
be required.

5 SU M M A RY A N D C O N C L U S I O N S

We present a novel Bayesian methodology for inferring various
properties of the cosmic large-scale structure. Specifically, we fo-
cus on determining the detection probability of haloes with masses
above different thresholds in cosmological observations, which may
be subject to stochastic and systematic uncertainties. Our approach
relies on the previously developed HADES algorithm, designed to in-
fer the smooth matter density field of the cosmic large-scale struc-
ture in the non-linear regime, and the Blackwell–Rao estimator,
which we use to relate density field amplitudes to halo properties.
In this work, we present a proof-of-concept of our methodology by
applying it to a realistic galaxy mock catalogue for which the halo
positions and membership are already known.

We construct a realistic galaxy mock catalogue by populating the
haloes of a cosmological N-body simulation with galaxies from a
semi-analytical galaxy formation model. The mock catalogue emu-
lates the K-band selected catalogue of the 6dFGS final data release
(DR3). We apply the HADES algorithm to the mock catalogue in four
parallel Markov chains to generate a total of 20 000 realisations
of the matter density field through approximately 0.5 h−3 Gpc3 of
the volume of the mock catalogue, sampled at a resolution of ap-
proximately 3.6 h−1 Mpc. Examination of recovery of the matter
power spectrum suggests that the Markov chains converge within
approximately 2000 samples. As a conservative measure, however,
we remove the first 5000 samples from each chain to allow for
burn-in, which leaves us with a total of 20 000 independent HADES

realisations of the density field.
We present the ensemble mean and variance of the density field

recovered by HADES. Despite the Gaussian nature of each individual
sample, the ensemble mean density field is distinctly non-Gaussian,
with large-scale structures such as galaxy clusters and voids, which
constitute high S/N features, clearly identifiable out to twice the
median redshift of the mock survey. To quantify the success of the
recovery of structures by HADES, we consider the correlation between
the HADES density field and the MS-W7 density field, as estimated
within the HADES volume. Examining the Pearson correlation as a
function of HADES ensemble density, we find a high correlation in
the highest and lowest density bins. This result indicates that HADES

is successfully recovering high S/N regions, such as clusters and
voids.

Finally, we present a Bayesian prescription to address the prob-
lem of extracting information for the halo population from a set of
observations from a galaxy survey. Specifically, we use a Blackwell–
Rao estimator to address the question, given a value for the density
field, δ, over a volume element at redshift, z, what is the proba-
bility, P(Mhalo > Mth.|δ), that the most massive halo within that
volume has a mass, Mhalo, greater than some threshold value, Mth..
A cosmological simulation can be used to construct the conditional
probability P(Mhalo|δ) for the mass of the most massive halo in
a volume element. By marginalizing over all HADES realisations
and using the density amplitude to weight each voxel according to
P(Mhalo > Mth|δ), we can construct maps of the detection proba-
bility for haloes above selected threshold masses. For each mass
threshold considered, the relative peaks in the detection probabil-
ity correspond quite well to the positions of haloes with masses
above the threshold. However, for the highest mass threshold of
1014 h−1 M� the peaks in the detection probability have lower am-

plitude, which leads to an increasing number of apparent misdetec-
tions. This is due to our cosmological model, which predicts that we
should expect to find relatively few high-mass haloes compared to
lower mass haloes. As such, our methodology encodes this expec-
tation and reflects our reduced confidence of detecting very massive
haloes, especially in regions of low S/N. This means, for example,
that with increasing distance from the observer the probability of
detection of more massive halo populations becomes increasingly
uncertain. We find therefore that the success of the detection method
is a function of the S/N ratio. For the three lowest mass thresholds,
haloes in voxels with S/N > 1 are typically detected with a prob-
ability greater than 0.5, whilst haloes in voxels with S/N > 2 are
typically detected with a probability in excess of 0.8.

Our Bayesian description provides a statistically thorough ap-
proach to quantify the detection probability and corresponding un-
certainties for haloes above a given mass threshold. Following this
proof-of-concept, we plan to, in future work, apply HADES and our
halo detection prescription to the actual 6dFGS observational data.
Beyond this our methodology can be applied to mock catalogues
and actual observations of deeper spectroscopic surveys, in order
to demonstrate the ability of our methodology to detect haloes out
at higher redshifts. We stress however that our methodology is
versatile and can be applied to a wide variety of data sets, includ-
ing deep catalogues of galaxies with photometric redshifts (thanks
to the photometric redshift sampling that is possible with HADES).
Therefore, we aim in future work to additionally apply the method-
ology to photometric data sets. As such, the Bayesian methodology
that we have presented offers a promising approach for the analysis
of ongoing and future large-scale structure surveys.
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