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ABSTRACT
We present the results of hydrodynamic simulations of the interaction between a 10 Jupiter mass
planet and a red or asymptotic giant branch stars, both with a zero-age main sequence mass of
3.5 M�. Dynamic in-spiral time-scales are of the order of few years and a few decades for the
red and asymptotic giant branch stars, respectively. The planets will eventually be destroyed
at a separation from the core of the giants smaller than the resolution of our simulations, either
through evaporation or tidal disruption. As the planets in-spiral, the giant stars’ envelopes
are somewhat puffed up. Based on relatively long time-scales and even considering the fact
that further in-spiral should take place before the planets are destroyed, we predict that the
merger would be difficult to observe, with only a relatively small, slow brightening. Very little
mass is unbound in the process. These conclusions may change if the planet’s orbit enhances
the star’s main pulsation modes. Based on the angular momentum transfer, we also suspect
that this star–planet interaction may be unable to lead to large-scale outflows via the rotation-
mediated dynamo effect of Nordhaus and Blackman. Detectable pollution from the destroyed
planets would only result for the lightest, lowest metallicity stars. We furthermore find that in
both simulations the planets move through the outer stellar envelopes at Mach-3 to Mach-5,
reaching Mach-1 towards the end of the simulations. The gravitational drag force decreases
and the in-spiral slows down at the sonic transition, as predicted analytically.

Key words: hydrodynamics – methods: numerical – planet–star interactions – stars: AGB and
post-AGB.

1 IN T RO D U C T I O N

An increasing number of planets is being discovered at intermediate
distances from their host stars (Udry & Santos 2007). Villaver &
Livio (2009), Mustill & Villaver (2012) and Nordhaus & Spiegel
(2013) among others calculated that expanding giants, whether red
giant branch (RGB) stars or asymptotic giant branch (AGB) stars
could engulf planets orbiting 2–4 times the maximum radius at-
tained by the star. Such an interaction would likely result in the
destruction of the planet producing an observational signature as
well as long-lasting and observable evolutionary effects on stars.

Observational clues of star–planet interactions are in the form of
putative planets discovered around post-main-sequence stars, close
enough that an interaction must have taken place when the star was
in its giant phase in the recent past. Examples are the 1.25 MJ planet
(where MJ is the mass of Jupiter) orbiting 0.116 au from a horizontal
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branch star (Setiawan et al. 2010), two Earth-sized objects orbiting a
subdwarf B star at a separation of 0.0060 and 0.0076 au (Charpinet
et al. 2011), or three Earth-sized planets orbiting a subdwarf B
pulsator (Silvotti et al. 2014). These planets must have been engulfed
in the envelope of the giant star that became the subdwarf star today.
Charpinet et al. (2011) and Passy, Mac Low & De Marco (2012b)
showed how planets may have been much more massive initially
and lost much of their mass in the common envelope (CE) phase.
However, they could not determine how the core of the planets
survived the interaction instead of plunging into the core of the
giant.

A second type of planet around post-giant stars consists of one or
more planets detected at au-distance from post-CE binaries, rather
than single stars. Some of those findings have been debated because
the planets would not be in stable orbits (Horner et al. 2013) or
the data could be as easily explained with alternative, non-planet
scenarios. However, other data are more convincingly, though not
conclusively, explained by the presence of planetary systems (e.g.
NN Serpentis; Parsons et al. 2014). These planets, contrary to the

C© 2016 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society

 at T
he A

ustralian N
ational U

niversity on M
ay 25, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by The Australian National University

https://core.ac.uk/display/162635075?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jstaff@ufl.edu
http://mnras.oxfordjournals.org/


Hydrosimulations of planet–star interactions 833

planets at sub-au orbital separations from single post-giant stars, are
unlikely to have been involved in the CE that created today’s close
binary, but they must have been impacted by the ejection of the
giant’s envelope. It has been speculated that they may have formed
in the aftermath of the CE binary interaction (Beuermann et al.
2011), similarly to how the planets around pulsar PSR1257+12
(Wolszczan & Frail 1992) were formed after the supernova
explosion.

Theoretically Soker (1998) suggested that star–planet interac-
tions could generate blue horizontal branch stars by enhancing the
RGB mass-loss rate and decreasing the envelope mass of the red
giant star. Carlberg, Majewski & Arras (2009) calculated instead
the extent to which interactions (tidal interactions and/or merg-
ers) between giants and planets would spin-up giants. Nelemans &
Tauris (1998) found that companions with masses more than 20–
25 MJ could survive a CE with a 1 M� red giant and expel the
envelope. On the other hand, using the formalism from Nelemans
& Tauris (1998) and Villaver & Livio (2007) found that companions
less massive than 120 MJ = 0.11 M� would evaporate inside the
envelope of a 5 M� AGB star. Both these studies rely on the un-
certain and highly debated efficiency of the CE ejection formalism
(De Marco et al. 2011).

Nordhaus & Blackman (2006) investigated analytically 3 M�
RGB and AGB stars interacting with a low-mass companion (planet,
brown dwarf, or low-mass main-sequence star). They found that en-
velope ejection in the RGB case is unlikely, but possible for AGB
stars from low-mass main-sequence stars. While planets may have
too low a mass to eject the AGB star’s envelope, they found that
a planet may induce differential rotation mediated dynamo that
can eject material. Furthermore, the planet may tidally disrupt,
creating a disc inside the envelope that can lead to a disc-driven
outflow. Metzger, Giannios & Spiegel (2012) investigated merg-
ers between hot Jupiters and their host main-sequence stars and
predicted that prior to merger, as the planet penetrates the star’s
atmosphere, an extreme UV (EUV)/X-ray transient is produced in
the hot wake following the planet. The merger would also drive an
outflow and hydrogen recombination in the outflow would cause
an optical transient. They argued that the Galactic rate of mergers
between hot Jupiters and their host stars should be 0.1–1 yr−1 and
that should be similar to the rate observed for planets and giant
stars.

Despite past efforts, many questions still remain. What is the fate
of the planet in the CE interaction? Does it survive, or is it destroyed
by ablation or tidal disruption? Whatever the fate of the planet, will
the interaction lead to an alteration of the star and its subsequent
evolution, such as spin-up, mass-loss, or a change in the surface
abundances?

Presumably, once a planet is tidally brought closer to an expand-
ing giant star, the star would fill its Roche lobe and transfer mass
to the planet. Since the planet is much less massive than the star,
it is likely that the planet would be engulfed by the giant’s ex-
tended envelope and have a CE interaction (Ivanova et al. 2013).
CE interactions are thought to happen also between giants and stel-
lar mass companions (Paczynski 1976) and give rise to compact
evolved binaries. CE simulations using a variety of techniques (e.g.
Sandquist et al. 1998; Passy et al. 2012a; Ricker & Taam 2012; Nan-
dez, Ivanova & Lombardi 2015; Staff et al. 2016) have a range of
uncertainties and shortcomings (e.g. Nandez, Ivanova & Lombardi
2015), but can be used as starting points to determine the nature of
star–planet interactions. By running hydrodynamic simulations of
the CE interaction between a 10 MJ planet and an RGB or an AGB
star, we start addressing numerically aspects of the interaction such

as the time-scale of the interaction, the final separation or the extent
to which the stellar envelope is spun-up.

We also exploit the lightness of the planetary companion relative
to the stellar envelope to carry out a study of gravitational drag
experienced by a body in a CE simulation (Ricker & Taam 2008).
This is much more difficult when the companion is more massive
because the gas is stirred considerably and it is difficult to extract
some of the quantities needed to carry out the calculation.

We describe the numerical method that we use in Section 2.
Then in Section 3, we present our results including an appraisal of
how numerical considerations impact our conclusions. In Section 4,
we assess the drag forces acting on the planet and we exploit the
relative composure of the envelope gas to compare these forces to
their analytically derived equivalent. We finally discuss our results
in Section 5.

2 M E T H O D

We used a modified version of the grid-based hydrodynamics code
ENZO (O’Shea et al. 2004; Passy et al. 2012a; Bryan et al. 2014) to run
the hydrodynamics simulations. The calculations were performed
on a 2563 grid in the adiabatic approximation with outflow boundary
conditions. In addition, we also performed the same simulations on
a grid with 5123 resolution, to test if the resolution affects the results.

The structure of the giant stars were calculated using the stellar
evolution code Modules for Experiments in Stellar Astrophysics
(MESA; Paxton et al. 2011, 2013). We used two stellar structures,
evolved from the same 3.5 M�, zero-age main sequence, solar
metallicity model. The first stellar structure was that of the model
283 million years after joining the zero-age main sequence. At this
time the star had reached the RGB, having lost 0.01 M�. It had
a radius of 55 R� (approximately the maximum radius that this
type of star reaches on the RGB), a luminosity of 680 L�, and an
effective temperature of 3960 K.

The second stellar structure was taken 330 million years after
the zero-age main sequence. At this time the star had reached the
thermally pulsating AGB, had a mass of 3.05 M� a radius of
470 R�, a luminosity of 1.4 × 104 L� and an effective temperature
of 2920 K (the structure was taken between two thermal pulses).
This is the same stellar structure used for the simulations of Staff
et al. (2016). Stars more massive than ∼2 M� grow a lot larger on
the AGB than on the RGB, providing for an opportunity for planets
that had not interacted on the RGB to do so during the AGB. This
is the reason why we chose to use a star more massive than 2 M�.
Stars less massive than approximately 2 M� have similar maximum
RGB and AGB radii and this means that they have most of their
interactions on the RGB. For the more luminous low-mass (M <

2 M�) RGB stars, which can attain radii close to 200 R�, the nature
of the star–planet interaction will be intermediate between the RGB
and AGB cases considered here.

We mapped the 1D MESA model into the ENZO computational
domain. MESA models have much higher resolution compared to
the linear resolution of the 3D Cartesian ENZO grid that we use.
The size of the simulation box used for the simulation with the
smaller RGB star was 3 × 1013 cm (2 au), such that each cell in
2563 cell domain had a size of 1.2 × 1011 cm (1.7 R�). In the
simulation with the larger AGB star, the simulation box was 2.2
× 1014 cm (15 au), and each cell in 2563 resolution had a size of
8.6 × 1011 cm (12 R�). The cell size was half these values for
the 5123 resolution simulation. The cores of the giant stars, where
much mass is concentrated, as well as the planet companion cannot
be resolved. Instead, they are approximated by point masses, with a
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smoothed gravitational potential as discussed in Passy et al. (2012a)
and by Staff et al. (2016). We used a smoothing length of 3 cells,
instead of 1.5, which, as was discussed in Staff et al. (2016), results
in better energy conservation.

MESA takes microphysics into account, while we use an ideal gas
equation of state with an adiabatic pressure–density relation (γ =
5/3) in ENZO. Because of this and the addition of a point mass with a
smoothed gravitational potential, the star is not in perfect hydrostatic
equilibrium in ENZO. Following the method described by Passy et al.
(2012a), we force the starting model to hydrostatic equilibrium
by dampening the velocities by a factor of 3 for each time step
after mapping the stellar structures into the computational domain.
We then check the stability by running the simulations without
damping the velocities for 4 dynamical times (the dynamical times
are 0.07 and 1.8 yr for the RGB and AGB stars, respectively). The
simulation volume not occupied by stellar gas is filled with a hot
medium, which has a density four orders of magnitude lower than
the giant star’s least dense point and a high temperature so as to
balance the pressure at the surface of the giant star. Despite this,
the outer layers of the star tend to diffuse out somewhat (see Staff
et al. 2016). The 3D star constructed in this way tends to be slightly
larger than it was initially. For both models, the post-stabilization
radius was ≈5 per cent larger (2.5 and 23 R� larger for the RGB
and AGB models, respectively, at a density one order of magnitude
less than the initial lowest density in the star).

Once the giant star is stabilized, we insert a planet with a mass of
10 MJ at 1.1 times the radius of the MESA model (Rstar), in a circular
orbit. In both simulations this initial configuration results in the
giant stars massively overflowing their Roche lobe radii. This is the
case with many CE simulations (e.g. Sandquist et al. 1998; Passy

et al. 2012a) and may have some effect on the CE outcome (Iaconi
et al. in preparation). However, in the case of planetary companions,
it is likely that the effect of starting close to the surface is minimal:
companions as far as 2–3 stellar radii are likely to be captured
(Villaver & Livio 2009; Mustill & Villaver 2012), but the angular
momentum of the orbit transferred to the primary would confer to
it only a relatively minor surface velocity of 1.1–1.3 km s−1 for the
AGB star and 3.2–3.9 km s−1 for the RGB star (this range was found
assuming that all the orbital angular momentum of the planet at a
distance of 2–3 stellar radii is transferred to the envelope of the
giant, and that this envelope rotates rigidly), not too different from
our non-rotating initial models.

3 R ESULTS: THE I N-SPI RAL

With our starting conditions (a0 = 1.1 Rstar = 61 R� = 0.28 au,
and an orbital period of 26 d for the RGB star and a0 = 1.1 Rstar

= 520 R� = 2.4 au and an initial period of 1.9 yr for the AGB
star), the planet is rapidly engulfed by stellar envelope gas. We
show the evolution of the density for the RGB star in Fig. 1 and
for the AGB star in Fig. 2. As the planet in-spirals, the giant star’s
envelope expands. This puffed-up envelope has typical densities
of ∼10−10 g cm−3 in the RGB simulation and ∼10−12 g cm−3 in
the AGB simulation. As the stellar envelope is puffed-up due to
the interaction, the photosphere is likely to be located near the
edge of this expanding gas. Due to the high-temperature ambient
medium, this low-density puffed-up gas may be artificially heated.
Therefore we cannot accurately determine the temperature of the
photosphere, nor how fast it would cool off radiatively and therefore
recede. Especially in the RGB simulation, where the interaction is

Figure 1. Density slices taken through the middle of the grid on the perpendicular (upper panels) and orbital (lower panels) planes, at four different times, for
the low-resolution simulation with the RGB star. The leftmost column shows the initial setup. The core of the RGB star and the planet are indicated by green
dots.
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Hydrosimulations of planet–star interactions 835

Figure 2. Density slices taken through the middle of the grid on the perpendicular (upper panel) and orbital (lower panel) planes, at four different times, for
the low-resolution simulation with an AGB star and a planet. The leftmost column of panels is the initial setup in the three different cuts, then at t = 27.5, 55
and 82 yr. The core of the RGB star and the planet are indicated with green dots.

reasonably quick, it seems likely that a significant increase in the
photospheric radius could be achieved.

Some low-density gas is lost from the domain, �0.01 M� in both
simulations. Of the mass lost from the simulation box, �10 per cent
(≈10−3 M� ≈ 1 MJ) is unbound in the RGB simulation, and
�30 per cent (≈3 × 10−3 M� ≈ 3 MJ) is unbound in the AGB
simulation (see Fig. 3). We note that initially, a larger amount of
the ambient medium is unbound in the AGB simulation compared
with the RGB simulation, which in part explains why the AGB sim-
ulation unbinds more mass. Pre-empting our discussion on energy
conservation in Section 3.1, we note that there is considerable un-
certainty on the mass unbinding. The change in the planet’s orbital
energy as it spirals through the RGB star layers, that can lead to
unbinding of envelope, is ∼3 × 1045 erg, an order of magnitude
smaller than the artificial growth in the total energy in the box for
that simulation. This artificial growth in energy may therefore be
the main driver for the meagre mass unbinding observed, making
our estimate for the RGB case an upper limit.

Shown in Fig. 4 are a series of quantities, which we describe
and compare in detail below, for both low and high resolution,
RGB and the AGB simulations. In the top panel, we show the
separation between the planet and the core of the giant star as a
function of time, then we show the planet’s Mach number (Mp)
as it moves through the stellar envelope; third is its velocity with
respect to the Keplerian value (vKep), then its velocity with respect to
the grid, followed by the envelope density surrounding the planet,
and, finally, the gravitational drag force acting on the planet in
the low-resolution simulation (sixth panel) and the high-resolution
simulation (seventh or bottom panel). The last two panel rows will

be exhaustively discussed in Section 4. The sound speed used to
compute the Mach number is just the sound speed in the cell in
which the particle is located. Likewise, the density and velocity of
the gas surrounding the particle are the values of the cell where the
particle is located.

The overall behaviour of the separation is a gradual decrease over
2–3 yr in the RGB simulation, and over approximately 60–80 yr in
the AGB simulation (faster for the higher resolution simulations),
after which we cannot follow the evolution because the separation
approaches 0.05 and 0.4 au for the RGB and AGB simulations,
respectively, which is close to two smoothing lengths (one smooth-
ing length in the lower resolution simulations is 3.5 × 1011 cm =
0.023 au for the RGB star and 2.6 × 1012 cm = 0.17 au for the AGB
star), at which point the smoothing of the potential may begin to
impact the results (see also Section 3.1).

The oscillatory behaviour seen in the separation plot for the low-
resolution RGB star in Fig. 4 has a period of ≈25 d (similar to
the planet’s initial orbital period) and is due to the development of
an eccentricity, typically observed during the fast in-spiral phase
of CE simulations and ascribed to the non-symmetric distribution
of gas (see e.g. Passy et al. 2012a). Between ∼100 and ∼300 d in
the RGB simulation, the orbital separation and the planet’s velocity
remain approximately constant. Following this, the planet speeds up
as the separation decays. In the higher resolution RGB simulation,
the snapshots from the hydrodynamics simulation were produced
less frequently, with a frequency of 0.1 yr (which is larger than
the oscillatory period), and this oscillatory behaviour is therefore
partly hidden in Fig. 4. In the AGB simulation, the separation also
remains approximately constant for the first ∼30 yr and the orbit
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Figure 3. The unbound mass in the computational domain as a function of
time for the RGB star (upper panel), and the AGB star (lower panel) orbited
by a 10 MJ planet (in both cases the figures are from the low-resolution
simulations).

develops a lower eccentricity than for the RGB case. After this,
the separation decays, and between 50 and 60 yr there is a rapid
decrease in the separation. Although we observe a period of faster
in-spiral between 700 and 800 d in the RGB simulation, this is not
as prominent as in past CE simulations or in the CE between the
planet and the AGB star. It is however similar to the behaviour of a
0.01 M� companion plunging into the 0.88 M�, 85 R� RGB star
(De Marco et al. 2012).

During the interaction the outer layers of the puffed-up envelope
gain rotation. At densities lower than the initial photospheric density
(ρ < 8 × 10−9 g cm−3 for the RGB star and ρ < 1 × 10−9 g cm−3 for
the AGB star), rotational velocities of �20 km s−1 are found in the
RGB simulation, and �5 km s−1 are found in the AGB simulation
(see Fig. 5). But since the planet has a low angular momentum
due to its low mass, the planet is unable to noticeably spin-up the
higher density, more massive, layers of the giant stars. At higher
densities than the photospheric density of the initial model the star
is therefore not rotating.

The velocity of this puffed-up envelope is, however, small com-
pared to the planet’s velocity around the giant star, and the planet’s
orbital velocity with respect to the grid is therefore similar to the
velocity relative to the surrounding gas in both simulations. The
planet’s velocity early in the simulation is seen to oscillate between
100 and 120 km s−1 in the RGB case, while in the AGB simula-
tion the orbital velocity of the planet varies less around a value of
≈35 km s−1. During the fast in-spiral, at approximately 600 d in the
RGB simulation, the velocity continues to oscillate and increases up
to ≈130 km s−1, while in the AGB simulation the velocity is seen to

oscillate more towards the end of the simulation, reaching a maxi-
mum of ≈50 km s−1. As the planet in-spirals, its velocity is found
to remain approximately Keplerian throughout both simulations.

Once the planet becomes submerged in the stellar envelope, the
Mach number jumps to 4 or 5 in both simulations (see Fig. 4).
During the rapid in-spiral phase, the Mach number decreases as the
sound speed grows deeper inside the giant stars. At the end of both
simulations, the planet’s velocity is approximately the same as the
sound speed. In Section 4, we will discuss the drag force in relation
to the Mach number of the particles.

3.1 Numerical considerations

To test whether the resolution affects our results, we have performed
both simulations with a higher resolution of 5123 cells. The results
are qualitatively similar. The main differences are that the orbital
separation tends to a lower value in the higher resolution simulation,
and that the in-spiral is faster (see Fig. 4). In both cases, following the
slow-down in orbital decay, the in-spiral continues at a slower pace
until we stop the simulation. We also found that about half as much
mass becomes unbound in the higher resolution simulation (≈5 ×
10−4 M� versus ≈9 × 10−4 M� for the lower resolution RGB
simulation), despite the fact that at higher resolution more orbital
energy is delivered as the higher resolution allows us to follow
the in-spiral further. The star remains somewhat more compact in
the higher resolution simulation, which is evident in the steeper
increase in Vp as the planet approaches the core, particularly in the
RGB simulation. The accretion radius of the planet is not resolved
in any of our simulations. We discuss the implications in Section 4.

Our simulations conserve energy reasonably well. We find that
the total energy on the grid in the RGB simulation increases by ≈3
× 1046 erg over the course of the simulation (see Fig. 6). This is
≈3 per cent of the initial gravitational potential energy of the gas on
the grid, which was ≈1 × 1048 erg. It is ∼10 times the change in the
planet’s potential energy, and ∼100 times the change in the planet’s
kinetic energy. However, over the same time, 8.8 × 10−3 M� are
lost from the grid. If all this lost mass carried the thermal energy
of the initial low-density ambient medium, this mass-loss from the
domain would remove 6.6 × 1046 erg from the grid.1 We therefore
estimate that the total energy has increased by up to 9.6 × 1046 erg,
corresponding to 10 per cent of the initial potential energy of the
star. We compare the energy gained due to non-conservation to the
potential energy of the star2 instead of the total energy in the box.
The latter quantity is meaningless, because the total energy in the
box can be made arbitrarily high and close to zero by the addition
of an arbitrary quantity of hot ‘vacuum’.

We also emphasize that 10 per cent is an upper limit to the non-
conservation, because most of the mass lost from the grid has a lower
thermal energy than the initial hot ambient medium. We find that
much of the gas leaving the simulation box has a specific thermal
energy of ∼1013 erg g−1. Assuming that this is representative for all
the gas leaving the box, we can determine a lower limit to the energy
non-conservation. Then ≈2 × 1044 erg would be lost from the box
(i.e. a factor of �100 less than the above estimate), and hence the
energy non-conservation over the course of the simulation would
be approximately 3 per cent. In assuming that the gas that leaves

1 The kinetic energy and the gravitational potential energy of the low-density
ambient medium are negligible compared to the thermal energy.
2 The total energy of the star is almost identical to its potential energy,
because kinetic and internal components are not very large.
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Hydrosimulations of planet–star interactions 837

Figure 4. Results from the RGB simulation (left-hand column) and AGB simulation (right-hand column). Black curves are results from the low-resolution
simulations. Green curves are from the high-resolution simulations. Upper panel: separation between the core and the planet as a function of time. The blue
dashed line represents two smoothing lengths in the higher resolution simulation, while the brown dashed line represents two smoothing lengths in the lower
resolution simulation. Second panel: the Mach number of the planet as a function of time. The dashed blue line indicates Mp = 1.Third panel: the planet’s
velocity relative to the Keplerian velocity. The dashed blue line indicates vp/vKep = 1. Fourth panel: the planet’s velocity relative to the grid. Fifth panel:
the density of the stellar envelope around the planet. Sixth panel: the drag force calculated in the low-resolution simulations (black curve), compared with
the gravitational drag force calculated from the analytical expression including pressure effects (equation 2; dashed red curve), and excluding pressure effects
(solid red curve), as well as the hydrodynamic drag force (blue curve) calculated from the analytical expression (equation 1). Seventh (bottom) panel: the same
as the sixth panel, but for the high-resolution simulations.
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Figure 5. The velocity of the gas in the equatorial plane at the end of the
low-resolution simulations. Top panel: RGB star, bottom panel: AGB star.

The plotted velocity is
√

v2
x + v2

y , with the arrows showing the direction.

The pink circle indicates the size of the giant star prior to the interaction. It
is only the puffed-up, low-density matter at larger radii that gains significant
rotational velocity, while the high-density interior of the stars have very low
rotational velocity.

the box removes 2 × 1044 erg we omitted accounting for its kinetic
and potential energies. However, kinetic energy and gravitational
potential energy of the stellar envelope material lost from the grid
have opposite signs and are of the same order of magnitude as the
thermal energy. Hence, it will not significantly change our estimate.
Therefore, the energy non-conservation in the RGB simulation is
between 3 and 10 per cent, likely closer to 3 per cent. The conser-
vation is slightly better in the higher resolution simulation, but still
has a lower limit of roughly 3 per cent.

In the AGB simulation, we find that the total energy decreases
by 3 × 1045 erg over 60 yr. However, the total potential energy
in the AGB simulation is ≈8 × 1046 erg, approximately a factor
of 10 less than in the RGB simulation, since the AGB star is less
tightly bound. The specific thermal energy of the ambient medium
is similar to that in the RGB simulation, and therefore the level
of non-conservation is even more sensitive to how much thermal
energy is carried away by the lost mass. We find that ∼1 × 1031 g

Figure 6. Top panel: energy components on the grid in the lower resolution
RGB simulation as a function of time (cyan curve: thermal energy, blue
curve: kinetic energy, black curve: total energy and green curve: gravitational
potential energy). Bottom panel: the energy components shifted so that the
curves start at 0, to illustrate the differences over time.

was lost from the grid over the course of the simulation. If all of this
mass had a specific thermal energy of ∼1013 erg g−1, we find that
the total energy should have dropped ∼1 × 1044 erg, which is small
compared to the actual drop of 3 × 1045 erg. This way, we find that
the energy is conserved to within 4 per cent in the AGB simulation.
This is, however, an estimate for the energy conservation based on
a lower estimate for the energy lost from the grid associated with
mass-loss. It is likely that the lost mass has taken out a larger amount
of thermal energy, which would make the conservation better, unless
the lost mass has removed more than ∼6 × 1045 erg (corresponding
to a specific thermal energy of more than ∼6 × 1014 erg g−1). We
therefore expect the energy to be conserved to within a few per cent
also in this simulation.

4 D R AG FO R C E S

The torque acting on the planet dictates the rate of in-spiral. Deter-
mining whether simulations represent the drag forces with sufficient
accuracy is an important step when determining whether results of
simulations are reliable. Below we consider both gravitational and
hydrodynamic drag components and compare what should be going
on in nature, expressed by analytical approximations, with what is
going on inside the simulation, calculated from the quantities that
are output from the code.
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4.1 Gravitational versus hydrodynamic drag

In nature, a planet in a CE phase with its host star would expe-
rience a drag force composed of gravitational and hydrodynamic
components. The hydrodynamic drag force is due to the ram pres-
sure on the planet from the surrounding gas, and this force can be
estimated:

Fhydro,drag ∼ ρv2
p πR2

p, (1)

where vp is the planet’s relative velocity with respect to the sur-
rounding gas, Rp is the radius of the planet, and ρ is the density of
the envelope gas surrounding the planet.

The gravitational drag is instead due to gravitational forces be-
tween the gas flowing past the planet and the planet itself. Although
there is no accurate expression for the gravitational drag in the pres-
ence of a density gradient (MacLeod & Ramirez-Ruiz 2015), an
approximate expression can be found in Iben & Livio (1993) and
Passy et al. (2012a):

Fgrav,drag ∼ ζρv2
p πR2

A, (2)

where ζ is a numerical factor that depends on the Mach number
(it is larger than 2 for supersonic motion and less than unity for
subsonic motion Shima, Matsuda & Sawada 1985), and RA is the
accretion radius given by (Iben & Livio 1993):

RA = 2 GMp

v2
p + c2

s

, (3)

for subsonic and sonic speeds, when pressure effects are included
(Bondi 1952). This tends to

RA = 2GMp

v2
p

, (4)

for high Mach numbers (Hoyle & Lyttleton 1939). In equation (3),
cs is the sound speed. For simplicity we assume ζ = 1 always, which
means that we will underestimate the gravitational drag force in the
supersonic regime, and overestimate it in the subsonic one.

Our simulations do not reproduce the hydrodynamical drag, be-
cause the planet is approximated by a point particle and has no
surface. Some hydrodynamic drag may be felt by the planet in the
simulations due to the fact that some gas gathers in the potential
well of the planet moving with it and in so doing it collides with
surrounding gas. However, because of the relatively low mass of
the planet, this effect is small in the simulations.

Ricker & Taam (2008) predicted that the hydrodynamic drag
should be much weaker than the gravitational drag in CE simulations
with stellar mass companions. However, planets have much lower
mass and a correspondingly weaker gravitational drag. As we show
in Fig. 4, towards the end of the RGB simulation the hydrodynamic
drag should be comparable to or even dominate the gravitational
drag including pressure effects (which is the relevant gravitational
drag force at that time). At this point the simulations misrepresent
the force on the planet, and we stop them. This does not happen in
the AGB simulations, where the hydrodynamic drag should always
be negligible compared to the gravitational drag force.

4.2 A comparison between numerical and analytical
expressions of the gravitational drag

In order to compare the analytical estimates of the gravitational drag
(equations 2– 4) with the actual gravitational drag experienced by
the planet in the simulations, we need to device a way to extract
this information from the simulation outputs. We calculate the dif-
ference in the planet’s energy (kinetic plus gravitational potential

energies) between two successive snapshots from the simulation.
This difference is due to the gravitational drag force, which does
work (W) on the planet. This force is approximately antiparallel
with the planet’s motion, and its magnitude is therefore given by

Fdrag,code = W/s, (5)

where s is the distance travelled by the planet between two snap-
shots. We estimate s by taking the velocity of the planet at the first
snapshot and multiplying it by the time between the snapshots. The
resulting drag force is plotted alongside the other relevant quantities
in Fig. 7.

This estimate is approximate but reasonably accurate. We
checked that this estimate of the force is similar to what would
result from determining the orbit-averaged radial position of the
planet at each time step, thereby determining the force by calculat-
ing the second differential of that radial distance and multiplying
by the planet’s mass. Another method is to read the total accelera-
tion on the planet from the code output. This method is more noisy
because the total value of the acceleration includes the dominating
centripetal value, which needs to be subtracted from the total.

The values of the orbital energy of the planet and of its veloc-
ity vary between one output frame and the next (see Fig. 7). The
planet’s total energy decreases but occasionally it grows slightly
between two snapshots, which results in a drag force that is instan-
taneously negative. In addition, the planet’s velocity can vary by
up to 25 per cent between snapshots for the AGB simulation (see
Fig. 7, where we plotted the planet’s velocity with respect to the sur-
rounding gas, in contrast to in Fig. 4, where we plotted the planet’s
velocity relative to the grid).

To eliminate the oscillations we fitted the total energy, as well
as the planet’s velocity and use the fitted curves to determine the
value of the gravitational drag force. The force curve has an upturn
at the end of the curve, which is an edge effect inherited by the fit
to the planet’s velocity (middle panel in Fig. 7). In this figure, we
only show values for the lower resolution simulations. More details
about the fits are provided in the appendix.

The gravitational drag force values for both the lower and higher
resolution simulations calculated with the method we have ex-
plained above, are also shown in the bottom two panels of Fig. 4
(black curve), where they are compared to the hydrodynamic drag
force (blue curve) from equation (1), and to the analytically derived
gravitational drag force (supersonic case: solid red curve, or includ-
ing pressure effects: dashed red curve). We plot the gravitational
drag force both including and excluding pressure effects, because
the planet is supersonic until ∼800 d in the lower resolution RGB
simulation and ∼55 yr in the lower resolution AGB simulation (see
the second panel in Fig. 4).

Both the expressions in equations (1) and (2), depend on the
density surrounding the planet and the velocity of the planet with
respect to the surrounding gas. These are plotted in the fourth and
fifth rows of Fig. 4. Initially, the planet starts just outside the star
at 1.1 Rstar, and the density surrounding it is the low ambient back-
ground density. However, as the giant star expands, the planet finds
itself embedded in higher density material. The few oscillations
seen in the density surrounding the planet at ∼200 d in the RGB
simulation and ∼20 yr in the AGB simulation are due to the planet
acquiring a slight eccentricity, or because the star in our simu-
lations is not entirely spherical at this point in time, and so the
planet may encounter different densities even if it is in a circu-
lar orbit. As the planet in-spirals through the star’s envelope, the
density gradually increases, to reach a maximum at the end of the
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840 J. E. Staff et al.

Figure 7. Results from the low-resolution RGB simulation (left-hand column) and AGB simulation (right-hand column). The green curves are the raw data,
showing top panel: the absolute value of the planet’s total energy, middle panel: the planet’s velocity relative to the surrounding gas (in contrast to the velocity
relative to the grid shown in Fig. 4). The black curve is a fit to the total energy (top panel) and the velocity (middle panel), and using these fits we have
calculated the drag force (bottom panel). This drag force is also shown in Fig. 4.

simulation of ≈10−4 g cm−3 after ∼1000 d, in the RGB simulation,
and ≈10−6 g cm−3 after ∼80 yr, in the AGB simulation.

The gravitational drag force calculated from the simulations fol-
lows closely the pace of the in-spiral from which it is calculated. It
increases during the fast in-spiral phase, between 600 and 800 d to
∼1–2 × 1031 dyne in the RGB simulation, and between 30 and 50 yr
to ∼1–2 × 1029 dyne in the AGB simulation. This leads to an accel-
eration of the planet due to the drag of approximately −1 cm s−2 in
the RGB case, and −0.01 cm s−2 in the AGB case. The difference
in drag force in the RGB and the AGB simulations is primarily due

to the different densities encountered by the planet. The peak force
in the higher resolution simulations is approximately a factor of
2 larger than in the lower resolution simulations (see Fig. 4).

Looking at the drag forces in the last panel of Fig. 4 – for the
high-resolution simulations, we see that the computationally de-
rived force is 2–3 times larger than the analytically calculated su-
personic gravitational drag force for both RGB (at around 600 d)
and AGB (between 40 and 50 yr) simulations, due either to the
use of ζ = 1 in equation (4), or to an actual effect of the density
gradient exerting an added component to the force (MacLeod &
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Ramirez-Ruiz 2015). Following this increase, the drag force then
decreases becoming the same as the expression for the gravitational
drag including pressure effects at 820 d and 65 yr for the RGB
and AGB simulations, respectively. The force values peak when the
planet’s Mach numbers are slightly larger than unity in both sim-
ulations. We interpret this by looking at equation (2) and noticing
that in the supersonic regime, RA, and the gravitational drag force,
can be seen to increase with decreasing velocity (smaller Mach
numbers). However, when the force transitions to the sonic case, ζ

is smaller, and hence the force decreases. Although a quantitative
comparison cannot be carried out, this behaviour is that predicted
by Ostriker (1999): the force is largest at, or slightly above the sonic
point and drops dramatically just below Mach-1. In these simula-
tions, we conclude this is what causes the sudden decrease in drag
force that makes the in-spiral slow down (see Fig. 4).

We finally note that the particle representing the core of the giant
also experiences a drag force. However, this particle moves very
slowly, much slower than the local sound speed. As the particle is
very massive, it affects its surroundings significantly, for instance by
attracting mass. It may therefore be difficult to accurately determine
the relative velocity between the particle and its surroundings. We
have not made any attempts to calculate the force acting on it.

4.3 The dependence of simulated gravitational drag
on resolution

Presumably the difference between lower and higher resolution
simulations has something to do with the strength of the interaction
which takes place in the vicinity of the planet. It is likely that the
strength of the interaction is not well represented, for example, when
RA is not well resolved. In our higher resolution simulations RA is a
factor of 3–8 smaller than the cell size, while in the lower resolution
simulations it is a factor of 5–15 smaller than the cell size (the
range is due to the fact that RA varies, while the cell size is fixed). In
principle, a convergence test carried out over multiple resolutions
with a range of smoothing lengths could identify a problem, but
due to the computational expense of these simulations, only limited
resolution tests are carried out. When limited tests are carried out
several effects can counter each other and confuse the issue of
whether the gravitational drag is well represented.

We have performed several test simulations of a point mass mov-
ing through a constant density medium in order to eliminate the
density gradient, which can complicate matters, and to reduce the
computational expense of the tests. In these test simulations we have
varied the density, thermal energy (and hence the sound speed), and
the particle’s velocity. In this way, we have been varying RA so
as to make it larger or smaller than the cell size. We found that
when RA is underresolved, the drag force acting on the particle in
the simulation tends to be overestimated compared to the analytical
expression.

Contrary to this expectation, we find that the peak drag force is
a factor of ≈2 higher in the high-resolution simulations than in the
low-resolution simulations. It is possible that this may be due to
the density structure of the 1D MESA model in the 3D grid being
more compact and have higher density in the higher resolution
(Fig. 4, fifth panel from the top), compared to the lower resolution
simulations. The more compact and dense giant star in the higher
resolution simulation means that not only the peak drag force, but
the drag force acting on the planet in general is larger than at lower
resolution. This may make up for the possible force underestimation
due to not resolving RA.

5 D I SCUSSI ON

5.1 The intensity, time-scale and frequency of planet merger
transients

We start by examining the interaction time-scales. We find that
the planet in-spirals relatively fast (few years for RGB stars and
∼100 yr for the AGB case), although this is slow compared to CE
interactions with more massive companions (e.g. De Marco et al.
2012; Passy et al. 2012a; Ricker & Taam 2012). The hydrodynamic
drag was not modelled, but we found that it could play a role at
the end of the RGB interaction and this could shorten the in-spiral
time-scale somewhat. Pre-empting our discussion in Section 5.2,
the planet will be eventually destroyed on a time-scale that is likely
of the same order of magnitude as the one characterizing the initial
in-spiral.

During the time of the in-spiral, the photosphere expands and the
star likely brightens. Using the values of the density at the photo-
sphere from the MESA models (≈9 × 10−9 and 1.6 × 10−9 g cm−3 for
the RGB and AGB stars, respectively), we find that the interaction
with the planet has caused the RGB star to expand by ≈40 per cent
over 3 yr, and the AGB star to expand by ≈20 per cent over 80 yr.
If the temperature of the photosphere remains constant, this would
indicate a modest increase in luminosity by a factor of 2 for the RGB
star, and ≈40 per cent for the AGB star. The temperature however,
may decreases somewhat, as is demonstrated by Mira stars that
can double their radius and halve their effective temperature over
pulsation cycles of a few ×100 d (e.g. o Cet; Ireland, Scholz &
Wood 2008, 2011). Additional cooling of the photosphere may be
expected in the case of the AGB star. If we accounted for a decreas-
ing temperature linearly inverse to the increase in radius then the
luminosity would actually drop. It is possible, on the other hand,
that the photosphere would be farther out than we have consid-
ered because of the low-density material that readily expands out.
Unfortunately we cannot integrate the optical depth of the material
because its temperature is affected by the artificially large ‘vacuum’
temperature used in ENZO, making these tenuous outer layers more
optically thick than they should be.

The average thermal time-scales of the stars are 7600 and 30 yr
for the RGB and AGB stars, respectively. The RGB simulation ends
at ≈4 R�, and this is likely an upper limit. It is entirely possible
that with a higher resolution, the ‘destruction depth’ of ∼1 R�
(Section 5.2) would be reached within similar time-scales. For the
AGB star this is less likely. However its thermal time-scale is much
shorter and of the order of the in-spiral time-scale. It is therefore
possible that the AGB star would contract on the same time-scales
as it is expanding because of the injected orbital energy. If this
happened, it is likely that the in-spiral would continue. We posit
therefore that both interactions would result in the planet destruction
within a time-scale that is of the same order of magnitude of the
in-spiral time-scale.

Assuming that there are 1010 stars in the Galaxy that are able to
evolve off the main sequence over the age of the Universe, and that
they have an average lifetime of 10 billion years, then we would have
107 RGB and 106 AGB stars at any given time in the Galaxy (using
RGB and AGB lifetimes of 10 and 1 million years, respectively – see
Moe & De Marco 2006 for references to this back of the envelope
calculation). Given the planet-swallowing time-scales determined
in this work, this would mean that one RGB star in a million would
be undergoing an interaction with a companion if all RGB star went
through one such interaction in their lives. For the AGB, it would
be one star in 10 000 if they too went through one such interaction
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in their lives. This would mean that 10 RGB stars and 100 AGB
stars in the Galaxy would be going through such interaction at any
one time. These predictions are similar to what could be surmised
by the considerations of Metzger et al. (2012) who discuss that the
rate of planet–main-sequence star merger should be similar to the
rate of planet–giant star merger, both approximately a few per year.

Given the long brightening and dimming time-scales (relatively
to any survey time-scale) and the relatively small variation ampli-
tude predicted, these phenomena may not be observable, unless
a more powerful outburst could be triggered (Soker 1991; Bear,
Kashi & Soker 2011). This would be quite different from the case
of a planet–main-sequence star merger discussed by Metzger et al.
(2012). Alternatively, as discussed in Nordhaus & Blackman (2006),
if the planet is tidally disrupted, it can form a disc deep inside the
star which can lead to a disc-driven outflow.

Very little mass is unbound from the system. Energy loss due
to non-conservation may have decreased the mass-loss rate from
the AGB star somewhat, but this could not be said of the RGB
star for which the total energy slightly increased due to lack of
perfect conservation. Additionally, non-simulated effects that could
increase the mass-loss rate may be the interference, particularly for
the case of the AGB star, of the orbital period with the fundamental
pulsation period of the star. If little or no mass is ejected from the
system due to the interaction, it is likely that the stars will settle
back into an equilibrium stage after radiating their excess energies
over their thermal time-scales of 7600 and 30 yr, for the RGB and
AGB stars, respectively.

The interaction caused the puffed-up, low density, outer layers
of the star to rotate, with velocities >20 km s−1 in the RGB star
and >5 km s−1 in the AGB star (the extra angular momentum trans-
ported by a planet captured tidally would only change these values
slightly). At higher densities, we found no significant rotation. This
could indicate that the differential rotation mediated dynamo ef-
fect suggested in Nordhaus & Blackman (2006) will not lead to
large-scale outflows. We expect that as the interaction ends and
the star settles back into its original configuration, and the angular
momentum is redistributed in the star, the surface rotation would
slow down. Hence, an apparently relatively fast spinning giant star
for a brief period could be an indication of a recent CE interaction
between the star and a giant planet.

Carlberg et al. (2009) investigated the ability of planet accretion to
spin-up stars, and found that in some cases RGB stars could become
rapid rotators due to merger with a companion planet although they
found that fast rotation was more likely to be achieved if the planet
was captured by a subgiant, as stronger mass-loss from giants can
remove angular momentum from the envelope preventing the rapid
rotation. If this happened, the giant would be slowly rotating or not
rotating at all. Based on our simulations, we suggest that the CE
event is still capable of causing a rapid rotation in the outer puffed-
up envelope, as the CE interaction is fast and mass-loss therefore
cannot remove angular momentum sufficiently fast to prevent the
spin-up.

5.2 Destroying planets and polluting giant stars

We assume that at some point the planet will be destroyed in the
envelope of the giant star. During the in-spiral there are competing
processes that try to disrupt the planet. These act on different time-
scales and vary with depth. The planet can be (i) disrupted by shear
between its outer layers and the stellar ambient density, (ii) it can he
ablated by heating and (iii) it can be tidally disrupted. We find that
the planet is stable against Kelvin–Helmholtz and Rayleigh–Taylor

instabilities caused by shear (discussed in Passy et al. 2012b) for the
conditions prevailing during our simulations. We find that a 10 MJ

planet will be ablated by heating when the separation between the
planet and the core of the giant star is ∼1 R� (Soker 1998). This
is also the distance from the stellar core at which the planet will
overflow its Roche lobe. This is a much smaller separation than the
values of 10 and 85 R� reached at the end of our RGB and AGB
simulations, respectively. Therefore we presume that this event has
not yet taken place, but will in time (a time possibly commensurate
with the time for the early in-spiral).

Next we ask whether massive planets such as those we have
simulated, once destroyed at ∼1 R� can alter the giant composition
in an observable way. The masses and compositions of the cores of
massive exoplanets are poorly known (especially for hot Jupiters;
for a recent review, see Spiegel, Fortney & Sotin 2014). We assume
that a 10 MJ planet consists mainly of an atmosphere of hydrogen
and helium in solar proportions, and of a core with an iron mass
of mFe = 10 M⊕ = 3 × 10−5 M� (Guillot 1999). The base of the
convective region in our MESA RGB model is at ≈0.4 R�, while for
the AGB star it is at ≈0.2 R�; both are deeper than the location at
which we predicted the planet to be destroyed. The disrupted planet
mass will therefore quickly be mixed into the giant stars’ envelopes
due to convection.

In Table 1, we list the RGB and AGB star masses, envelope
masses and hydrogen masses for a hydrogen mass fraction of
70 per cent. For a solar metallicity (εFe = 7.47 for the Sun or mFe/mH

≈ 0.0017; Scott et al. 2015), we therefore see that the added iron
from the planet increases the envelope metallicity too little to be
observed.

If we assumed that the iron mass fraction has to grow by at least
a factor of 1.5 to be discerned from the base metallicity of the star,
then the base metallicity of the star should be [Fe/H] < −1.7 in the
AGB case. A giant with a mass of ∼1 M� and an envelope mass
of 0.5 M� would enable us to detect the pollution more readily at
higher, but still sub-solar metallicities ([Fe/H] < −1.3).

Since there appears to be a correlation between a planet’s metal
fraction (i.e. core mass in a gas giant) and the metallicity of the host
star (Guillot et al. 2006), it may be that such low-metallicity stars
cannot harbour metal-rich planets. On the other hand, there may
also be considerable variability in the metal content of planets. For
instance, the planet HD 149026b is thought to contain 60-93 M⊕
of heavy elements (Fortney et al. 2006), much more than we have
considered above. However, even such large core mass would not be
able to noticeably alter the observed metallicity of a solar metallicity
star.

Another possibility for getting metal enrichment in AGB stars
was discussed by Soker (1992), who studied CE interactions be-
tween AGB stars and brown dwarfs, and suggested that for sepa-
rations between 3–10 R�, the brown dwarf would excite gravity
waves that could lead to a spin-up of the inner envelope. This could
also lead to mixing near the core, causing extra dredge-up of core

Table 1. Increase in the mass fraction of iron assuming that the destroyed
planet has a core made of iron with a mass of 10 M⊕.

RGB star AGB star

Mass (M�) 3.5 3.0
Envelope mass (M�) 3.0 2.5
Hydrogen mass (M�) 2.1 1.75
Enrichment@[Fe/H]� (per cent) 0.8 1
Enrichment@[Fe/H]= −1.7 (per cent) 43 50
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material into the envelope. Hence, if this process happened near
the last stages of mass-loss, the wind of the AGB star would be
enriched in heavier elements. However, this star would be a much
more evolved AGB star than the one we have considered in this
work, and this mechanism requires that the companion enters the
CE only at the very late stages of AGB evolution.

6 SU M M A RY

We have simulated the CE interaction between a 10 MJ planet and a
3.5 M� RGB star or a 3.05 M� AGB star using the grid code ENZO

with a uniform, cubic grid with a maximum resolution of 512 cells
on a side. These simulations have several limitations, but can give
order-of-magnitude quantitative information.

The limited resolution in our simulation affects the final separa-
tion of our simulations, and some of the results from late times in
our simulations may not be accurate. Another effect of the resolu-
tion is that the accretion radius is not resolved, which can lead to an
overestimate of the force. However, in lower resolution simulations
the star diffuses out more leading to lower densities which can cause
an underestimate of the force, somewhat counteracting the overes-
timate from not resolving the accretion radius. Future simulations
using an adaptive mesh refinement simulation code, or possibly a
smoothed particle hydrodynamics code may be able to overcome
some of these limitations. We nevertheless found that:

(i) Plunge-in times of the order of years to decades are seen
in our simulations for the RGB and AGB cases, respectively. The
plunge-in times of low-mass companions such as planets in the
envelopes of giants are relatively longer than for more massive,
stellar companions, with the longer times being witnessed for the
more evolved, lower density primaries.

(ii) We concluded that the planets should not be disrupted during
the simulated phase. We cannot tell with precision how much longer
the planets will take to reach a depth where disruption takes place.

(iii) Destroyed planets will pollute the envelopes of giant stars,
but the effect is likely to be witnessed only in the lowest mass
giants with the lowest metallicity, if these stars can have planets
with suitably massive metal cores.

(iv) Only a very small amount of the primary star’s envelope mass
is unbound by the planet in our simulation. It is possible that if the
planet interacts with the star’s pulsation this may trigger further
unbinding, or, if the planet is tidally disrupted it can form a disc
inside the giant star from which a disc-driven outflow can form.

(v) The expanding giant’s luminosity may increase by a modest
factor over a relatively short time-scale of the early in-spiral (though
still long compared to survey time-scales). This effect would likely
be relatively rare and difficult to observe.

(vi) In line with other studies, we find that the penetration of
the planets into the giants will stimulate faster rotation. However
as this rotation is limited to the outer layers, it is not clear in what
time-scales the angular momentum will re-distribute into the entire
envelope and what the final rotation rate of the giants will be.

(vii) Analytically, it is predicted that the gravitational drag force
would peak at the sonic point and greatly diminish for subsonic
regimes. In our simulations the slowing down of the in-spiral takes
place at such a transition. The overall force experienced by the
planets in our simulations is larger than calculated analytically and is
larger for higher resolution. This may simply be due to us assuming
ζ = 1 in equation (2). It is also possible that the presence of a
density gradient may enhance the intensity of the gravitational drag.

We leave further comparisons between numerical and analytical
gravitational drag to future work.
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APPENDIX A : FITTING RESULTS

For both of the simulations, we fit the planet’s velocity and the
planet’s total energy, to get smooth curves. We have not attempted
to estimate the χ2 of the fits. Instead, we have shown in Fig. 7 the
data and the fitted curves from the low-resolution simulations, and
limit ourself to stating that qualitatively the fits look reasonable. In
this appendix, we show the details of the fits and the results for the
two low-resolution simulations.

A1 RGB case

We fit the planet’s velocity with a fifth-order polynomial (ax5 + bx4

+ cx3 + dx2 + ex + f) over the entire data-range from 0 to 980 d.
The result of the fit is: a = 9.850 28 × 10−8, b = −0.000 237, c =
0.188 86, d = −56.0575, e = 7229.48 and f = 1.041 92 × 107. The
planet’s negative total energy was fitted with two different curves.
To ensure a reasonably continuous fit with a reasonably continuous
first derivative, we fit the curves over a larger range than we plot
them. From 0 to 560 d, we use a third-order polynomial (f1(x) =

a1x3 + b1x2 + c1x + d1) where we found the coefficients to be
a1 = 1.932 53 × 1036, b1 = 3.2207 × 1038, c1 = 2.288 98 × 1039

and d1 = 1.070 75 × 1045. This was used to plot the curve from 0 to
510 d. Then from 400 to 980 d, we used a sixth-order polynomial
(f2(x) = a2x6 + b2x5 + c2x4 + d2x3 + e2x2 + f2x + g2), where we
found the coefficients to be a2 = 4.216 65 × 1030, b2 = −1.733 93 ×
1034, c2 = 2.898 79 × 1037, d2 = −2.519 62 × 1040, e2 = 1.201 86
× 1043, f2 = −2.985 64 × 1045 and g2 = 3.033 51 × 1047. This was
plot from 510 to 980 d.

A2 AGB case

We fit the planet’s velocity to a fifth-order polynomial (ax5 + bx4

+ cx3 + dx2 + ex + f) over the entire data-range from 0 to 77.5 yr.
The result of the fit is: a = 0.008 323 47, b = −1.525 15, c =
96.5916, d = −2287.46, e = 22 336.7, and f = 3.350 88 × 106,
with 150 deg of freedom. The planet’s negative total energy we fit
with three different curves. To ensure a reasonably continuous fit
with a reasonably continuous first derivative, we fit the curves over
a larger range than we plot them. From 0 to 35 yr, we fit a first-order
polynomial (f1(x) = ax + b) and results in a = 5.286 12 × 1041

and b = 1.055 81 × 1044. This we used to plot from 0 to 27 yr.
From 5 to 70 yr, we fit a sixth-order polynomial (f2(x) = ax6 + bx5

+ cx4 + dx3 + ex2 + fx + g) which results in a = −1.223 17 ×
1035, b = 2.120 89 × 1037, c = −1.303 96 × 1039, d = 3.642 03 ×
1040, e = −4.515 27 × 1041, f = 2.242 52 × 1042 and g = 1.073 88
× 1044, which was plotted from 27 to 55.5 yr. Finally, from 45 to
77.5 yr, we fit an eighth-order polynomial (f3(x) = ax8 + bx7 + cx6

+ dx5 + ex4 + fx3 + gx2 + hx + i), which was fitted from 45 to
77.5 yr and results in: a = 3.457 42 × 1031, b = −8.186 03 × 1033,
c = 7.092 31 × 1031, d = −2.719 83 × 1037, e = 4.273 98 × 1038,
f = 5.972 99 × 1022, g = 1.122 44 × 1021, h = 2.261 62 × 1019,
i = 1.243 44 × 1016. This was plotted from 55.5 to 77.5 yr.
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