
MNRAS 453, 3082–3099 (2015) doi:10.1093/mnras/stv1843

What is a GMC? Are observers and simulators discussing the same
star-forming clouds?

Hsi-An Pan,1‹ Yusuke Fujimoto,1‹ Elizabeth J. Tasker,1‹ Erik Rosolowsky,2

Dario Colombo,2 Samantha M. Benincasa3 and James Wadsley3

1Department of Physics, Faculty of Science, Hokkaido University, Kita 10 Nishi 8 Kita-ku, Sapporo 060-0810, Japan
2Department of Physics, 4-181 CCIS, University of Alberta, Edmonton, AB T6G 2E1, Canada
3Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada

Accepted 2015 August 6. Received 2015 July 29; in original form 2015 July 8

ABSTRACT
As both simulations and observations reach the resolution of the star-forming molecular
clouds, it becomes important to clarify if these two techniques are discussing the same objects
in galaxies. We compare clouds formed in a high-resolution galaxy simulation identified as
continuous structures within a contour, in the simulator’s position–position–position (PPP)
coordinate space and the observer’s position–position–velocity space (PPV). Results indicate
that the properties of the cloud populations are similar in both methods and up to 70 per cent of
clouds have a single counterpart in the opposite data structure. Comparing individual clouds
in a one-to-one match reveals a scatter in properties mostly within a factor of 2. However,
the small variations in mass, radius and velocity dispersion produce significant differences in
derived quantities such as the virial parameter. This makes it difficult to determine if a structure
is truly gravitationally bound. The three cloud types originally found in the simulation in
Fujimoto et al. are identified in both data sets, with around 80 per cent of the clouds retaining
their type between identification methods. We also compared our results when using a peak
decomposition method to identify clouds in both PPP and PPV space. The number of clouds
increased with this technique, but the overall cloud properties remained similar. However,
the more crowded environment lowered the ability to match clouds between techniques to
40 per cent. The three cloud types also became harder to separate, especially in the PPV data
set. The method used for cloud identification therefore plays a critical role in determining
cloud properties, but both PPP and PPV can potentially identify the same structures.

Key words: methods: numerical – techniques: image processing – ISM: clouds – ISM: struc-
ture – galaxies: ISM.

1 IN T RO D U C T I O N

The physical properties of molecular clouds – the birthplace of
stars – are of vital importance, since they reveal clues as to why
stars are formed in certain regions, how many stars can form, how
star formation proceeds and how it affects the next cycle of stellar
production (e.g. Larson 1981; Beuther et al. 2002; Lada & Lada
2003; Alves, Lombardi & Lada 2007; André et al. 2010; Battisti
& Heyer 2014). Therefore, the method we use to determine these
cloud properties is a critical choice.

Traditionally, the best quality data of molecular clouds has come
from our own Galaxy, where the small distances involved allow
Galactic molecular clouds with sizes down to ≥ 10 pc to be resolved
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even with single dish telescopes. These observations have offered
the chance to study molecular clouds in some detail, with previous
studies revealing our Galactic molecular cloud population has a
mass, size and velocity dispersion of 104–6 M�, 5–70 pc, and 2–
10 km s−1, respectively (e.g. Solomon et al. 1987; Heyer et al.
2009; Roman-Duval et al. 2010). Despite the quality of this data, it
provides information only on one type of galaxy, and the Milky Way
is relatively quiescent. Studies of external galaxies are therefore
required before we can reveal the whole picture of the relation
between molecular clouds and star formation.

Of course, the drawback of extragalactic studies is the large dis-
tances that limit the resolution. However, observations of molecular
clouds in these galaxies are now approaching the quality of that in
the Milky Way, thanks to instruments and techniques such as the
long-baseline interferometry employed with The Atacama Large
Millimeter/submillimeter Array (ALMA). ALMA is designed to
detect spectral lines such as carbon monoxide (CO) – which traces
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molecular clouds – in a normal galaxy like the Milky Way at a
redshift z = 3 in less than 24 h. This rate means that the time re-
quired to map molecular clouds in a nearby galaxy will shrink to
only a few hours. With the highest expected angular resolution of
low-transition CO lines being about 0.04 arcsec, a galaxy ∼16 Mpc
away in the Virgo cluster can be mapped with a physical resolution
of ∼4 pc. The highest velocity resolution of low-transition CO lines
at 0.01 km s−1, so assuming the molecular clouds in nearby galaxies
have comparable properties to those in the Milky Way, these resolu-
tions should be sufficient to resolve these populations. Note that this
assumption seems to be valid based on the current surveys of extra-
galactic clouds such as PAWS (Hughes et al. 2013; Schinnerer et al.
2013; Colombo et al. 2014) and CANON (Donovan Meyer et al.
2013). These observations suggest that extragalactic and Galactic
molecular clouds share similar Larson’s scaling relation of cloud
properties.

With the spatial and velocity resolution of observations about
to resolve a wide population of molecular clouds, comparisons
between observations and simulations become a key tool in un-
derstanding the results. However, this can be challenging since the
two techniques are based on different data structures. Simulations
normally have data with three-dimensional position (x, y, z) and
velocity (vx, vy,vz) coordinates, from which they directly calculate
the physical properties of the molecular clouds such as mass, radius
and volume density. Meanwhile observations have to take their data
from the projected image on the sky. This provides only two spatial
dimensions (RA and Dec.) and typically a single velocity along the
line of sight. The resultant properties of the clouds are therefore
computed in three independent dimensions, rather than six.

An additional issue is the choice for the molecular cloud bound-
ary. Clouds are typically selected based on their density (in the
case of simulations) or intensity (from observations). Yet molecular
clouds are not isolated entities and therefore exactly where their
edges lie is not obvious. Simulators navigate this issue by selecting
a fixed threshold for the cloud edge, while observers consider the
ratio of the intensity to the rms noise.1 Even within a single tech-
nique, there is no consensus for what such thresholds should be.
The problem is magnified when the molecular region is extended.
Should a continuous contour mark a single cloud or should this be
divided into separate peaks?

A major reason for this degeneracy is the absence of a ‘correct’
answer. Molecular clouds are part of the interstellar medium (ISM);
a continuous blend of pressures and densities (e.g. Tasker & Bryan
2006). There is therefore no obvious edge to the clouds, which
are typically thought to be borderline gravitationally bound at best
(Heyer et al. 2009; Dobbs, Burkert & Pringle 2011). Likewise, it
is not clear which properties should be used to identify the cloud.
Simulators typically only use position, taking advantage of their
three spatial dimensions. Yet, this excludes the velocity information
which could identify two sections of an object moving together.
Conversely, observers are plagued by projection effects which can
result in well separated bodies being treated as a single object or
regions of the same cloud being artificially split due to the internal
motions of the cloud.

The combined result of different data structures and varying
choices for cloud identification means that conclusions are being

1 Rms noise is a thermal, unavoidable noise in observations. Level of rms
noise is controlled by the weather condition, sky brightness temperature,
and receiver temperatures.

drawn about the star formation conditions in galaxies from results
that are not considering the same objects.

Previous work has tried to assess the extent on this problem
on smaller scales, comparing star-forming regions found in syn-
thetic observations of a single simulated molecular cloud with those
identified using the full position data. Ostriker, Stone & Gammie
(2001) first noticed that the synthetic observed giant molecular
clouds (GMCs) in their 3D simulations include spatially uncon-
nected structures due to the projection effect. When examining
dense clumps found in two- and three-dimensional position data,
recently Ward et al. (2012) found that projection effects could over-
estimate the mass of the clumps within the cloud and falsely identify
more diffuse regions as clumps. The result was a shift by a factor
of 3 in the clump mass function (CMF), potentially explaining the
difference between the observed CMF and the lower stellar Initial
Mass Function (IMF; e.g. Alves et al. 2007). Ward et al. (2012) did
note that the addition of the velocity in their two-dimensional data
improved the match with the three-dimensional clump properties
compared to when the two-dimensional data was used alone.

Beaumont et al. (2013) further considered the differences in the
observed chemistry and gravity of the clump properties by matching
clumps in the synthetic observations and three-dimensional spatial
data if they originate from the same density structure. They con-
cluded that the scatter in the clump properties causes significant
uncertainty in the virial parameter (estimating gravitational bound-
ness) of a cloud such that it is difficult to connect this with star
formation.

In this paper, we present a comparison of the physical proper-
ties of the molecular clouds identified in three spatial co-ordinates
(position–position–position space or PPP) and those in two pro-
jected spatial co-ordinates and a single line-of-sight velocity coor-
dinate (position–position–velocity space or PPV) in the same sim-
ulated galaxy. The goal is to assess whether the same objects can be
identified in these two methods and if the properties are consistent.
This work is on a larger scale than the previously mentioned stud-
ies, comparing the properties of a global cloud populations which
extragalactic observations are starting to capture.

The simulated galaxy was modelled on the barred spiral (SABc)
galaxy, M83, using observational data from the 2MASS K-band
image (Jarrett et al. 2003) to estimate the stellar potential. The
simulation was run using the three-dimensional adaptive mesh re-
finement (AMR) hydrodynamics code, ENZO (Bryan et al. 2014) and
is presented in Fujimoto et al. (2014), along with a full description
of the run parameters. The gas radiatively cooled down to 300 K
(a limit designed to allow for the lack of small-scale pressure from
unresolved turbulence or magnetic fields) but no star formation or
feedback was included.

A projected face-on image of the gas density in the simulated
galaxy is shown in Fig. 1(a). The galaxy’s bar and two spiral arms
are visible, with the arms extending to a radius of ∼10 kpc and the
bar-end at 2.3 kpc. M83 is at a distance of 4.5 Mpc, corresponding to
a resolution of 1 arcsec ≈ 20 pc (Thim et al. 2003). In the simulation,
the smallest cell size is ∼1.5 pc.

In Fujimoto et al. (2014), the molecular clouds are identi-
fied in PPP space using two different methods. The main cloud
identification method uses a continuous contour at a density of
nthresh = 100 cm−3. Using this technique, they found GMCs
came in three different types: Type A clouds were the most com-
mon GMCs, dominating the cloud populations in all regions and
having properties that agreed with typical observations. Type B
clouds are massive giant molecular associations (GMAs) created
through multiple cloud interactions, and Type C clouds are unbound,
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Figure 1. Projection image of the simulated galaxy used in this work. (a) Projection image of the simulated galaxy at time of 240 Myr in unit of g cm2.
All cells are used to make the image. The galaxy was simulated by Fujimoto et al. (2014). (b) Projection image of the galaxy made with cells greater than
100 cm−3.

transient clouds, often found in tidal tails. The second method di-
vided clouds within this contour if there are two peaks separated
by at least 20 pc; a technique used in Tasker & Tan (2009) for
cloud identification. We compare these two methods with clouds
identified in a PPV synthetic observational data set of the same
galaxy (also known as a spectral line data cube). This data set
type is commonly used in millimetre to submillimetre observations,
which trace the gas in the ISM. The line-of-sight direction which
defines the velocity coordinate is along the z-axis of the galaxy,
observing the simulation face-on. The PPV data cube was created
with a spatial and velocity spacing of 2 pc (slightly larger than the
simulation cell size) and 1 km s−1 and included a Gaussian ther-
mal broadening with a width equal to the velocity dispersion of the
gas.

When identifying the clouds in the PPV data set, we assume
the galaxy is observed in 12CO (1–0). 12CO (1–0) is excited in
low-density molecular gas, making it is an ideal tracer of the en-
tire molecular cloud. It also has a critical eH Ixcitation density of
nHI ∼ 100 cm−3, allowing us to use a cloud identification threshold
of nH I,thresh = 100 cm−3, in keeping with the PPP schemes. For the
PPV cube, only cells with a density greater than the threshold value
were included in the data. Such a cut-off produces a projected image
shown in Fig. 1(b).

To assess how close our simulated clouds are to those observed
in the Galaxy, we plotted the PPV column density distribution and
overlaid the typical values found for the Galactic clouds in Fig. 2.
The grey histogram shows the PPV distribution, with the typical
column density marked by the black line. The Galactic star-forming
molecular clouds (colour lines include two Galactic surveys: yellow
and cyan lines (Solomon et al. 1987; Burton et al. 2013) and three
individual clouds: Orion (Berné, Marcelino & Cernicharo 2014),
Perseus (Goodman, Pineda & Schnee 2009) and Taurus (Goldsmith
et al. 2008) (red lines), all estimated by CO observations. The
median column density for our PPV data (log N(H2) = 21.7 cm−2)
is consistent to the typical values of the Galactic clouds, where
log N(H2) commonly ranges between 21.0 and 22.5 cm−2. This
suggests that our results should apply well to genuine observations.

Figure 2. Distribution of column density in the PPV spectral line data
cube of the simulated galaxy (Fig. 1b). Overlaid are the typical column
densities of the Galactic clouds. Median column density of our PPV gas is
log N(H2) = 21.7 cm−2 (black line). Typical column densities that Solomon
et al. (1987) and Burton et al. (2013) suggest from their Galactic surveys are
plotted with yellow and cyan solid lines at ∼21.9 and ∼21.7 cm−2, respec-
tively. Typical column density of the Orion molecular cloud is ∼22.3 cm−2

(red dashed line; Berné et al. 2014). Clouds Perseus and Taurus, have simi-
lar column density of ∼21.3 cm−2 (red dotted line; Goldsmith et al. 2008;
Goodman et al. 2009). All the Galactic values are measured with CO obser-
vations.

This paper is organized as follows. In Section 2, we introduce
four different cloud identification methods using PPV and PPP, and
present two of these as the main methods in this work. Section 3
presents the comparison of the global properties between PPV-
and PPP-clouds, as well as the one-to-one match cloud properties
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between two sets. Classification of molecular clouds based on their
physical properties is also shown in Section 3. In Section 4, we
show a brief results of the two minor cloud identification methods.
Summary of this work is given in Section 5.

2 C LOUD IDENTIFICATION IN PPP AND PPV

For both our data sets in PPP and PPV, we used two cloud identi-
fication methods. The first method identifies continuous structures
of gas above our chosen density or flux threshold, which we refer
to as islands. The second method can further segregate these bodies
into smaller objects such that each contains a single local maxima.
We refer to this as the decomposition method.

PPP clouds are identified in the original data from the simulation,
while clouds are found in PPV space by first creating a PPV data
cube from the simulation data and passing this in FITS format to
the CPROPS package (Rosolowsky & Leroy 2006). CPROPS expects the
data to be emission intensity, rather than the gas density followed
by simulations. To convert between the two, we use a CO-to-H2

conversation factor (Bolatto, Wolfire & Leroy 2013) to change the
physical unit (g cm−2) to observed 12CO (1–0) flux (Kelvin). Since
we do not consider chemistry (to compute the exact CO abundance)
nor radiative transfer and the excitation of molecular lines, this value
is for an ideal circumstance. This also means that the conversion
factor cancels when we derive the cloud mass, so its precise value
does not affect our results. Since the flux threshold in CPROPS is
determined by the ratio to the noise level (σ rms), the so-called signal-
to-noise ratio (S/N), a low random noise with level of ∼1 K is
added to the PPV cube. This sensitivity is sufficient to identify
the smallest identified Galactic molecular clouds at about 5 σ rms

level with our spatial (∼2 pc) and velocity resolution (∼1 km s−1).
These resolutions and sensitivity are higher than current ALMA
observations, but technically achievable using the full-operation of
ALMA and its long-baseline ability. While there is no doubt that
resolution and sensitivity play a strong role in determining GMC
properties, they are downstream of this work. Instead, we focus
on differences due to the techniques themselves in the absence of
external factors.

The cloud boundaries in the island method are defined slightly
differently in the two techniques. PPP works from the lowest den-
sity, drawing a contour at nH I,thresh = 100 cm−3 and defining all cells
within a closed section as the cloud. PPV via CPROPS begins by mask-
ing the emission with a high S/N, picking out the cloud locations
at densities much higher than the background. It then extends this
mask to the user defined lowest S/N, which outlines the observed
cloud boundary. CPROPS then assumes that the real cloud boundary
is larger than the observed cloud boundary, since the cloud outer
regions are being obscured by the background noise. It therefore
extrapolates from the observed boundary to a sensitivity of 0 K to
form the real cloud boundary.

In the decomposition method, the cloud boundaries are identified
in a similar manner between PPP and PPV. PPP-clouds are located
by searching for local maxima and the adjoining surrounding cells
that are above the threshold nH I,thresh � 100 cm−3, assigning these
to a single cloud. In the PPP data, maxima closer than 20 pc are
merged into a single object. PPV via the CPROPS decomposition
method initially uses the island method to find the continuous struc-
tures and then searches these for separate peaks. For computational
speed, the search for island peaks is performed within a cube with a
(user-defined) side of 22 pc × 22 pc × 7 km s−1. This size was se-
lected to be comparable to the average GMC diameter and velocity
dispersion in our simulation, ensuring that a single cloud would not

be accidentally divided by our numerical choice. If multiple peaks
are found within an island, CPROPS finds the lowest contour that sur-
rounds both peaks and then separates them with a contour twice the
rms noise above the shared boundary (the default value suggested
by Brunt, Kerton & Pomerleau 2003; Colombo et al. 2014). All pix-
els within the separated contours are assigned to the peaks. CPROPS

can potentially merge peaks within an island if their properties are
sufficiently similar, but the high sensitivity of our analysis meant
that this was not necessary (Colombo et al. 2014).

The physical properties of the clouds are then derived once the
cloud boundaries are set. These derivations are not identical be-
tween the two methods, since the assumed raw data (simulation or
observation) is measuring different quantities. We do not attempt to
correct for this, but adopt the original calculations that are used to
describe clouds in simulation and observational studies as part of
the comparison between the two methods.

In both methods and data structures, cloud mass (Mc, ppp and
Mc, ppv) are calculated by the sum of the cells or pixels in the clouds.
We note that a CO-to-H2 conversion factor is required for the PPV
data when moving between the observed flux and physical gas quan-
tity. A conversion factor of 2 × 1020 cm−2 (K km s−1)−1 is adopted
in this work, which is the default value of CPROPS. However, this
is used twice in the derivation of the cloud mass and cancels itself
out due to the lack to chemistry, radiative transfer and excitation
of molecular line in this work. We confirmed this by adopting a
conversation factor differing by a factor of 10 and recalculating
the mass to achieve the same result. The mass in both methods is
therefore the total mass of gas in cells within our clouds.

For the cloud radii and velocity dispersion properties, the PPP
and PPV calculations differ more significantly. The PPP data is cal-
culated from three spatial and three velocity dimensions. It therefore
measures the average radius (Rppp) of cloud from its three projected
axes, x − y, x − z, and y − z, and computes the mass-weighted
one-dimensional velocity dispersion from the average deviations
between the gas velocity and the cloud’s bulk velocity in x, y, and
z directions. In contrast to this, PPV must measure the properties
projected along a single direction. To do this, CPROPS first calculates
the geometric mean of the square root of the spatial mass(flux)-
weighted second centralized moment2 of the intensity distribution
along the major and minor axes of the projected cloud boundary.
Quantitatively, these are defined for each cloud as

σmajor =
√∑

i Ti(xi − x̄)2∑
i Ti

σminor =
√∑

i Ti(yi − ȳ)2∑
i Ti

x̄ =
∑

Tixi∑
Ti

ȳ =
∑

Tiyi∑
Ti

, (1)

where the σ major and σ minor are the rms size of the intensity dis-
tribution along the x and y axis, Ti is the observed flux of the ith
pixel within the cloud, xi and yi are the position in the two spa-
tial dimensions of the ith pixel and x̄ and ȳ are the flux-weighted

2 The second centralized moment is commonly called the variance and is
denoted as σ 2. The rms (standard deviation) σ is the square root of the
variance.
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mean positions of the cloud. The rms size of the cloud (σ r) is the
geometric mean of σ major and σ minor, σr = √

σmajorσminor.
The rms size is then converted into the effective radius (Rppv)

by assuming a mass-centred density profile of a spherical cloud.
This is to allow for the fact that the true cloud edge extends beyond
the identified boundary of the cloud. The relation is simplified to
Rppv = 1.91σ r, where the constant is an empirical correction de-
rived from the resolved Galactic GMCs in 12CO (1–0) observations
(Solomon et al. 1987). Note that unlike the PPP radii, the Rppv value
is weighted by the flux. In a similar fashion, the velocity disper-
sion (σ ppv) for the PPV clouds is the flux-weighted rms velocity
dispersion within the defined cloud boundary,

σppv =
√∑

i Ti(vi − v̄)2∑
i Ti

v̄ =
∑

Tivi∑
Ti

, (2)

where vi is the velocity of the ith pixel within the cloud, v̄ is the
flux-weighted mean velocity of the cloud.

For both the PPP and PPV methods, the mass surface density
(�ppp and �ppv), virial parameter (αppp and αppv) and virial mass
(Mvir, ppp and Mvir, ppv) are derived from the basic properties (cloud
mass, radius and velocity dispersion) in the standard way: � is de-
fined as the mass per unit area and is therefore simply calculated
from the cloud mass and radius. α measures the gravitational bind-
ing of a cloud, assume a spherical profile and no magnetic support
or pressure confinement. Specifically, α > 2 indicates that the cloud
is gravitationally unbound while α < 2 suggests a bound system.
It is defined from the mass, radius and velocity dispersion of the
cloud as α = 1040×R×σ 2

M
. The virial mass comes from this parameter,

Mvir = α × M.

3 R ESULTS

3.1 General comparisons

A visual comparison of the clouds found in the PPP and PPV data
sets for the island method is shown in Fig. 3. The panels each show
a different region of the galactic disc, with the projected gas density
overlaid with red circles for the PPV clouds and green plus signs
for the PPP clouds. The location of each symbol marks the cloud
centre of mass, but the symbol size is not proportional to the cloud
properties. Panel (a) shows the inner disc region, around 1.2 kpc
from the galactic centre and within the grand design bar shown in
Fig. 1(a). Due to the high number density of clouds in this region,
this image size is 1 × 1 kpc, whereas panels (b)–(d) show a region
of 2.4 × 2.4 kpc. These three panels step outwards from the disc,
with panel (b) showing a region at 5.7 kpc from the galactic centre,
panel (c) at 6.8 kpc from the centre and panel (d) at 7.7 kpc from
the centre and outside the spiral arms.

Notably, each PPP cloud typically has only one counterpart in
PPV, even in the most crowded panel in Fig. 3(a). However, this
is not universally true. Each panel of Fig. 3 displays examples of
where either the PPP or PPV method has identified multiple clouds
where the counter scheme finds a single object. A unique PPV cloud
may have multiple PPP counterparts that are physically close with
similar velocities, causing them to merge in the PPV projected data
space. Conversely, a PPP cloud may have multiple PPV counterparts
if the level of the noise defining the cloud edge in PPV is higher
(or within a factor of 2) than the gas density between peaks within
a single PPP cloud, causing the structure to split. For the gas to be

detected in both PPP and PPV, it must be higher than 100 cm−3

and ∼2 × 10−3 g cm−2 in projection. Occasionally, this causes a
PPP cloud to have no PPV counterpart at all, as shown in the top of
panel (a), where the small cloud diameter gave a projected density
below the noise limit. These splits may also lead to the centre-of-
mass of the clouds in a region not overlapping, producing an off-set
as seen in the lower-left corner of panel (c).

This agreement in cloud locations also extends to the cloud prop-
erties. Table 1 shows a comparison between the median properties
of the clouds found by the PPV and PPP island methods. The top
row shows the properties for the entire cloud population, while the
next three rows takes an separate look at the bar, spiral and disc
populations (see next section). In all areas, PPP finds slightly more
clouds than in the PPV case, although the numbers differ by less
than 10 per cent. This indicates that the effect of merging PPP
clouds due to projection effects is slightly more pronounced than
splitting PPP clouds due to noise. Both PPP and PPV clouds have
masses around 4 × 105 M� and radii around 15 pc. The cloud sur-
face density peaks at 525 M�pc−2, with velocity dispersion around
4–5 km s−1 and the clouds are found to be borderline gravitationally
bound.

3.2 Environmental dependence of cloud comparisons

We classified clouds based on whether their local environment was
in the bar, spiral or outer disc structure of the galaxy. Which region
a cloud belongs to is dictated by its physical location, as described
in Fujimoto et al. (2014). Spiral clouds are defined as those lo-
cated within the galactocentric radii of 2.5 < r < 7.0 kpc. The
bar cloud population live in a central rectangular section of size
5.0 kpc × 1.2 kpc at an angle of 135◦ degrees. The outer disc clouds
are those beyond 7.0 kpc.

The median cloud properties for each galactic environment are
shown in bottom three rows of Table 1. In both PPV and PPP, the
median mass of clouds in the bar (∼2 × 105 M�) is about two times
lower than those in the spiral and disc. This is due to a population of
low density clouds that form in the tails of tidal interactions between
clouds in this close-packed region (see Fujimoto et al. (2014) for
the full discussion). These small clouds are also less gravitationally
bound, raising the average value of α for this area, and have lower
velocity dispersions. In the spiral and disc regions, the median cloud
radii and velocity dispersion sit around 13–16 pc and 5–6 kms−1

for both sets of clouds. However, the PPV clouds tend to be smaller
than the PPP clouds by around 0.5–2.5 pc (∼3–20 per cent). There
is also a marked difference in the surface density, with PPV clouds
taking higher values, except in the bar region, where the median
PPV surface density is significantly lower than the PPP population.

These differences and similarities in the cloud properties can be
seen in more detail in the distribution plots in Fig. 4. Each of the
distributions for mass, radius, surface density, velocity dispersion,
virial parameter virial mass are divided into bar cloud populations
(red), spiral (green) and outer disc (blue), with the dashed line
marking the PPV data while the solid line shows the PPP.

The cloud mass distribution shown in Fig. 4(a) show a high
similarity between the two data sets for all three environments.
Indications of a bimodal population is seen by a dip in the bar cloud
profile, due to a population of very massive merger remnants above
107 M�. Since mergers are far more common in the high-density bar
area, the number of these massive clouds is much less in the spiral
arm and non-existent in the disc, producing a continuous distribution
in these environments (more details regarding the formation of the
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Figure 3. Examples of cloud distribution in four regions. Each image shows the projected gas density (without adding noise) in grey-scale for gas above the
cloud definition threshold of 100 cm−3. Overlaid are the cloud positions with red circles for the PPV clouds and green pluses for the PPP clouds. The size and
galactic location of the panels are: (a) 1.2 kpc × 1.2 kpc region ∼1.2 kpc from the galactic centre, (b) 2.4 kpc × 2.4 kpc region ∼5.7 kpc from the galactic
centre, (c) 2.4 kpc × 2.4 kpc region ∼6.8 kpc from the centre and (d) 2.4 kpc × 2.4 kpc region ∼7.7 kpc from the centre.

cloud populations can be found in Fujimoto et al. 2014). In the
lower interaction environment of the outer disc, the cloud mass
range has a narrower spread about the median value of 5 × 105 M�.
These features are produced equally well in both the PPV and PPP
data sets, showing such results are independent of the identification
technique.

The radii of the clouds also appears similar in the two data sets,
as shown in Fig. 4(b). The largest difference is seen in the bar
region, where the PPV profile finds more clouds at both small
(≤ 10 pc) and large (>60 pc) radii. The former of these is due to the
use of mass-weighting in the PPV calculation for the cloud radius,
compared to the non-weighted measure in the PPP calculation. It is

an effect most common in the bar, where the high fraction of long-
lived massive clouds are more centrally concentrated than their
smaller counterparts. At the other end of the scale, the crowded
cloud population in the bar combines PPP clouds in the projected
PPV data set, creating more extended structures. These differences
are less marked in the spiral and disc regions as the clouds are less
packed with fewer mergers.

In the median values of Table 1, the surface density had shown
the largest difference between the PPP and PPV populations. The
reason for this becomes clear in Fig. 4(c): while the profile values
strongly overlap, the shape has broad peaks which do not perfectly
align. These peaks are due to the presence of a bimodal split in
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Table 1. Median physical properties of GMCs.

PPV PPP

Number 971 1029
Mcl 3.7 × 105 3.6 × 105 (M�)
Radius 14.2 15.9 (pc)

Total �cl 525 525 (M� pc−2)
σ 4.2 5.0 (km s−1)
Mvir 2.4 × 105 3.9 × 105 (M�)
α 1.1 1.1

Number 69 77
Mcl 1.8 × 105 2.7 × 105 (M�)

Bar Radius 13.9 14.2 (pc)
�cl 329 615 (M� pc−2)
σ 3.6 4.6 (km s−1)
Mvir 2.0 × 105 3.3 × 105 (M�)
α 1.4 1.5

Number 471 515
Mcl 5.5 × 105 4.5 × 105 (M�)
Radius 14.7 16.3 (pc)

Spiral �cl 799 666 (M� pc−2)
σ 5.5 5.7 (km s−1)
Mvir 3.9 × 105 5.0 × 105 (M�)
α 1.2 1.2

Number 98 102
Mcl 5.3 × 105 5.4 × 105 (M�)
Radius 13.6 15.9 (pc)

Disc �cl 708 586 (M� pc−2)
σ 5.7 5.4 (km s−1)
Mvir 4.5 × 105 4.7 × 105 (M�)
α 0.9 1.0

the surface density which is more marked in the PPP data than
PPV. As described in Fujimoto et al. (2014), the bimodal surface
density cloud populations stem from the production of a transient
cloud population that form during tidal interactions. This gives
a split around 230 M� pc−2, above which sit the majority of the
cloud population and below which lie low density, unbound objects
formed in the filaments of tidal tails. The two populations are most
strongly visible in the bar, where the high number of interactions
produces the largest fraction of transient clouds. This is seen more
clearly in the scaling relations for GMCs first noted by Larson
(Larson 1981) and plotted in Figs 5(a)–(d). In the relation between
GMC mass and radius in Figs 5(a) and (b), two clear trends can
be seen, corresponding to the peaks in the surface density. How-
ever, the split is far sharper in the (left-hand) PPP data, due to a
smaller scatter in the cloud radii values. The previously discussed
projection and mass-weighting effects smooth the bimodality in the
surface density, leading to off-set peak values in Table 1, a more ex-
tended profile in Fig. 4(c) and a higher level of scatter in the Larson
relations.

The velocity dispersion for the clouds is shown in Fig. 4(d). In
both the PPP and PPV data sets, the highest velocity dispersion is
found in the bar, due to the high number of cloud–cloud encounters.
The Larson relation between velocity dispersion and cloud radius is
shown in Figs 5(c) and (d), with the PPP data plotted in the left-hand
panel. The dominant trend extends in both cases through about an
order of magnitude in σ and R, ranging from 10 < R < 100 pc
and 3 < σ < 80 kms−1. As with the mass–radius relation, the
scatter in the PPV radius makes the Fig. 5(d) considerably more
noisy. The two sequences from the transient cloud population are
visible in both data sets, with the minor sequence concentrated at

Figure 4. Normalized distribution of cloud properties in bar region (red), spiral region (green), and disc region (blue). PPV and PPP clouds are shown with
dashed and solid lines, respectively. Derivation of cloud properties are summarized in Table 1 for PPV-clouds and Table 1 for PPP-clouds. Panels present: (a)
molecular cloud mass, (b) radius, (c) surface density of mass, (d) velocity dispersion, (e) virial mass, and (f) virial parameter.
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Figure 5. Scaling relations of the cloud properties. Colour symbols denote clouds in different galactic environments: green crosses are spiral clouds, red
squares are bar clouds, and blue triangles show disc clouds. Panel (a) and (b) show the relation of cloud mass versus radius for PPP and PPV clouds, respectively.
Panel (c) and (d) present the results of velocity dispersion against radius for PPP and PPV clouds, respectively.

low-σ (σ < 5 km s−1), but the PPV-clouds span a wider range in
radius from ∼10–30 pc, compared to the 10–20 pc range of the
PPP clouds, in keeping with what is seen in the profile in Fig. 4(d).
At the low-velocity dispersion limit for the PPV clouds, an edge is
seen at ∼2 kms−1. This corresponds to two velocity channels; the
minimal channel width for which CPROPS will accept a continuous
structure as a cloud.

The virial mass in Fig. 4(e) show a close match between the
PPP and PPV data sets. However, it is worth noting that this value
depends on Mc, R, and σ and therefore combines all the dissimilar-
ity mentioned in this section for these preceeding properties. The
associated variable, α, in Fig. 4(f), shows a larger difference be-
tween the data sets, with the PPV clouds spread across a wider
range of values. The median point agrees in all environments,

sitting at approximately α ∼ 1, making the majority of clouds
borderline gravitationally bound. The extended range in the PPV
data is due to the combined scatter in the cloud properties, espe-
cially the radius and velocity dispersion distribution. In the least
crowded region of the outer disc, the difference between PPP and
PPV is dominated by the PPV mass-weighted radius that acts to
decrease α, while in the spiral and bar region, the PPP clouds
are additionally more often split and combined due to projection
effects.

3.3 Individual cloud comparisons

Moving on from comparing the distribution in cloud properties
between the two different techniques, we now directly compare
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Figure 6. Scheme of the match clouds. Clouds of PPV and PPP are match
if their centre-to-centre distance are smaller than either one or both cloud
radii. Grey and black circles denote clouds of two data set. Center of cloud
is marked with a cross. Panel (a)–(c) show the situations of match clouds
while panel (d)–(e) show non-match clouds. (a) Clouds from PPP and PPV
overlap at the centre. (b) Distance of two clouds is smaller than both radii.
(c) Distance of two clouds is smaller than one of radii. (d) Distance of
two clouds is larger than both radii. (e) There is no counterpart found in
the radius. (f) Multiple clouds share one counterpart (or one cloud found
multiple counterparts in its radius).

individual clouds that have been identified in both PPP and PPV
space. This explores not just if the overall population statistics are
equivalent in both methods, but if the properties of individual clouds
are also conserved. To do this, we first pair clouds found in both
data sets and then directly compare their properties.

3.3.1 Cloud matching method

Clouds are matched between the PPP and PPV data sets in an
intuitive manner based on their position within the galaxy disc and
their radii. However, this process is not entirely straight forward,
since there are many permutations which find clouds approximately
in the same location. Which of these are considered a match is shown
visually in Fig. 6, where the grey and black circles each represent
a cloud found in the two data sets. Note that since the PPP data set
uses a three-dimensional position in (x, y, z) while the PPV data has
only the two-dimensional (x, y) co-ordinates, we have to consider
the projected position and radius of the PPP clouds in the x − y
plane only.

The cases depicted by the top three panels are what are accepted
as matches. Fig. 6(a) is the most straight forward case, where two
clouds have a common centre of mass. Panels (b) and (c) stretch
this criterion to also accept the match if the centre-to-centre distance
between the two clouds is smaller than either both (panel b) or one
(panel c) of their radii. The lower row of three diagrams, Fig. 6(d)–
(f), show cases which do not qualify as a match. Panel (d) is where
there is a partial overlap between the two clouds, but their centre-to-
centre distance exceeds both their radii. In panel (e), the clouds are
relatively close, but have no overlap and in (f) there is a degeneracy
where two possible clouds could be matched to a single object in
the other data set.

This is intentionally a conservative set of criteria for matching
the clouds. The purpose is to compare the properties when the same
objects have been identified in both data sets. We therefore selected
a cloud subset with minimal ambiguity.

3.3.2 Results of the cloud matching

Despite the stringency of our method, 70 per cent of the clouds were
successfully matched to a single counterpart. Clouds that fell into
cases depicted by Fig. 6(d)–(f) consisted of 30 per cent of the cases.

This 70 per cent match holds for each of the three considered
environments. Within the cases that failed to find a matching cloud,
the bar region showed more instances of Fig. 6(f) with around
20 per cent finding multiple matches due to the projection effects
in the more crowded environment, compared to 17 per cent in the
spiral and disc.

The high match rate is aided by the thin galactic disc which
reduces the projection effect. The gas scaleheight of our simulated
galaxy is about 80–115 pc, which is similar to the initial value of
100 pc due to the lack stellar feedback to inject energy (Fujimoto
et al. 2014). None the less, recent observations of edge-on (barred-)
spiral galaxies show that the scaleheights of molecular gas traced
by 12CO (1–0) are indeed ≤200 pc and mainly ≤150 pc (Yim et al.
2014), so this effect benefits true observations as well.

In a non-flat disc environment, Ward et al. (2012) compared sim-
ulated and synthetically observed cores inside a GMC and reported
a slightly higher probability of 81 per cent that the PPV and PPP
clouds were drawn from the same distribution. This improvement
– despite the potentially more challenging geometry – is due to the
high density of the cores, which makes them more compact with
a single peak and low substructure. By contrast, GMCs are typi-
cally non-spherical, with multiple peaks and clad in irregular low-
density envelopes. The varied morphology and mass distribution of
the GMCs increases the scatter in the identified cloud boundary and
properties between the methods, lowering the match rate.

How well the properties of the matched clouds compare is shown
in Fig. 7. The PPV value is plotted against the PPP value for the
same six properties in Fig. 7 for the 70 per cent clouds that are
matched between the data sets. The clouds found in the bar region
are marked with red squares, those in the spiral are green crosses and
the outer disc clouds are shown as blue triangles. Across the plots are
diagonal long-dashed lines that denote a factor of 2 above and below
the solid perfectly matched 1:1 ratio line. In the legend of each plot,
the geometric mean (μg) and geometric standard deviation (σ g) of
the ratio between the PPV and PPP are provided for each galactic
environment. μg measures the overall match between the PPP and
PPV values, while σ g describes the scatter about μg.

In all properties, the average ratio between the PPP and PPV
values are around 1.0. This strongly implies that the simulation and
observational techniques for defining clouds do identify the same
objects and estimate similar properties. The tightest correlation be-
tween the PPP and PPV values are seen in the cloud mass, with
average ratios at μg ≈ 1.0 (Fig. 7a). Values of μg show that the PPP
clouds are generally more massive than PPV clouds by ∼10 per cent
due to the image of projection. This is considerably lower than the
uncertainty of the adopted CO-to-H2 conversion factor in real ob-
servations (see Bolatto et al. 2013) and thus is negligible. The small
number of outliers with a PPV mass smaller than the PPP value are
due to the PPP technique including the low-density cloud envelope
that is missed in the PPV data. In the reverse situation, the single
cloud that has a significantly higher PPV mass than PPP is due to two
separate PPP clouds being combined. Our 1:1 mass relation shows a
tighter correlation than that for the cloud cores in Ward et al. (2012),
even though the cores were found to have a higher probability of
locating a match in both data sets. This difference is due to the larger
projection effect for the small cores, compared to the GMCs. Un-
surprisingly, after the distributions in Fig. 7(a), the scatter is much
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Figure 7. Comparison of match cloud properties. Colour markers are the same as in Fig. 5. Panel (a)–(f) show the comparison between cloud mass, radius,
surface density of mass, velocity dispersion, virial mass and virial parameter, respectively. Solid line indicate 1 : 1. Dashed lines indicate a factor of 2 above and
below the solid line. Geometric mean (μg) and geometric standard deviation (σ g) of the ratio of PPV to PPP properties are provided for galactic environments
in each panel.

larger in the radius and velocity dispersion. As we have previously
seen, the majority of clouds have a smaller radii by ∼10 per cent
when selected in the PPV data set than in the PPP due to the mass-
weighting of the PPV radius (Fig. 7b). A number of the worst cases
for this – which lie a factor of 2 below the ratio of 1.0 – lie in
the bar region, which contains the highest fraction of large, merger
remnant clouds that tend to have high-density centres, giving this
region the highest range in values. The effect of the mass-weighted
radius would be reduced in real observation since GMCs form stars
when the density is sufficiently high and consume the dense gas. On
the other hand, the flat floor of velocity dispersion seen in Fig. 7(d)
due to the unresolved velocity dispersion of small PPV clouds will
be improved as well if the resolution of velocity is chosen to be
less than our 1 km s−1. Such a fine resolution is easily achieved for
ALMA.

The two trends in surface density are clearly seen in Fig. 7(c),
creating a void of clouds at 200 M� pc−2 in keeping with the
profile in Fig. 7(c). The match between the data sets is weakest for
the most dense clouds, since these have the most compact centres
and are therefore the most sensitive to the mass-weighted radius
calculation. This causes the trend in Fig. 7(c) to bend upwards as
we move towards the right of the plot; a feature emphasized in the
surface density since it uses the square of the radius. The minor
trend in the bottom left for the transient cloud population is match
well between PPP and PPV.

While the surface density has the poorest match at high val-
ues, the velocity dispersion, virial mass and virial parameter suffer
more at low values. This is due to the sensitivity of PPV to the

line-of-sight direction. While PPP averages over all three spatial
dimensions to get the velocity dispersion value, PPV can only use
data perpendicular to the disc plane. Clouds that are flattened in
this direction therefore hit the PPV resolution limit of two veloc-
ity elements, giving a dispersion of 2 km s−1. This creates the flat
line at the low-velocity dispersion end of Fig. 7(d) and affects both
the virial mass and virial parameter. At higher values, the match
between the PPP and PPV data sets improves, although the virial
parameter continues to show the most scatter. Notably, this makes
it difficult to tell if a cloud is gravitationally bound, since a spread
of a factor of 2 can turn a bound cloud into an unbound object.

The projection effect induced uncertainty in the virial parameter
is also suggested by Beaumont et al. (2013), who found a factor of
2 uncertainty in the virial parameter using their simulated and the
synthetic observed clumps. The clumps are considerably smaller
than our clouds, having masses and radii of <104 M� and 
10 pc.
Our results show that even when the cloud properties are averaged
on a larger scale at >10 pc, this uncertainty still exists. Therefore
interpretation based on the observed virial parameter must consider
this unignorable effect.

3.4 Cloud classification based on cloud properties

3.4.1 Properties of three types clouds

One of the most exciting results found by Fujimoto et al. (2014)
was the identification of three different cloud types in their PPP
data. These types consisted of the most common ‘Type A’ clouds,
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Figure 8. Examples of three-type clouds in galactic environments. Type A, B, and C clouds are shown with green crosses, blue triangles, and red squares,
respectively. (a) PPP-clouds at half of bar region. Scale of the figure is 1.2 kpc × 1.2 kpc. (b) PPV-clouds at the same bar region.

with properties that corresponded to the average values measured in
observations, the ‘Type B’ massive cloud associations that formed
during repeated mergers, and the transient ‘Type C’ that were born
in tidal tails and filaments. The ratio of these three types in a given
region depended on the rate of interactions, with the high collision
and close encounter rate in the bar resulting in a higher number
of Type B and C clouds. Whether this can be potentially detected
in observational results is of key importance, since it would al-
low a concrete handle on how important cloud interactions are in
governing cloud properties and ultimately, star formation.

The existence of these three populations is shown in the PPP
bimodal surface density distributions in Fig. 4(c) and more clearly
in the Larson relations plotted in Fig. 5(a). These plots show a
boundary between the Type A and C clouds at around 230 M� pc−2,
with a further split seen most clearly in the mass–radius relation
of the bar clouds in between the Type A and B populations. The
populations are identifiable in the PPV data but less strongly than
for the PPP clouds. The bimodal split is harder to see in the surface
density profiles for PPV clouds, although it is clearly there (albeit
with more scatter) in the mass–radius relation in Fig. 5(b), with
the same division between the two sequences at 230 M� pc−2.
Moreover, the three populations occur in all galactic environments
as seen in the one-to-one scatter plot of the cloud surface density in
Fig. 7(c).

Visual examples of these clouds can be seen in Fig. 8. The figure
shows the surface density in a 1 kpc × 1 kpc section of the bar
region. Green crosses mark the Type A clouds, while blue triangles
show the large Type B associations and red squares are the Type C
clouds. Focusing on the PPP left-hand panel, we can see the Type B
clouds are tidally distorted massive clouds while the Type C clouds
are siting primarily along the filaments of tidal tails that stretch
between the Type B associations. Type A clouds are more discrete
objects with a clear centre and less extended surrounding structure.
Largely, the same cloud types are detected in the PPV data in the
right-hand panel of Fig. 8. However, there are a few interesting
exceptions which will be discussed in Section 3.4.3.

To investigate how well the properties of each of these three
cloud types are represented in the PPV data, we re-group the clouds
in each environment via their position on the mass-radius relation,
using the same definition for the three types as Fujimoto et al.
(2014). Here, Type A clouds have a mass surface density greater

than 230 M� pc−2 and radius less than 30 pc, clouds along the
same sequence but with a radius above 30 pc form the Type B and
small clouds with a mass surface density less than 230 M� pc−2 are
the Type C clouds.

The results of this categorization are shown in the mass–radius
relations plotted in Figs 9(a) and (d). Even while the scatter in the
PPV radius measurement blurs the distinction between the upper
and lower sequence of clouds, the quantity of clouds in each region
appear similar. Most clouds lie in the Type A region, with a small
number of massive Type B and a slightly smaller parallel trend of
Type C. We note that due to the blur between the two sequences,
real observation will need high resolution and sensitivity to confi-
dentially resolve the lower sequence by detecting the clouds with
mass < 104.5M� and radius <10 pc. One interesting difference is
the existence of large Type C clouds with radii greater than 30 pc
in PPV. These will be explored in Section 3.4.3.

The three cloud types also occupy different regions of the Larson
scaling relation between velocity dispersion and radius in Figs 9(b)
and (e). The lower mass Type C clouds are small, low-mass objects
and therefore also have lower velocity dispersions than the other
two cloud types. This velocity dispersion is slightly lowered in PPV
due to the minimum value and line-of-sight dependence imposed
by CPROPS as described in the previous section. Type A clouds have
a larger scatter and reduced radius range from the mass-weighting
in PPV, and extend to higher velocity dispersions due to the merg-
ing of PPP clouds in the projected data set. The massive Type B
clouds typically have the highest velocity dispersions, although this
value follows a weaker trend in PPV. This is due to the tails of
material that typically surrounding the Type B clouds from regular
tidal interactions. Such tails consist of lower density material and
are therefore frequently ignored in the PPV data or only partially
selected. The tails do not contribute significantly to the mass of the
cloud, but give a significant boost to the velocity dispersion. The
velocity dispersion is further increased by PPP clouds merging in
the PPV data set, and the more complex cloud morphology leading
to greater scatter in the line-of-sight velocity estimates compared to
the three-dimensional value.

The difference in the Type C transient clouds can perhaps be most
clearly seen in the relation between the alpha virial parameter and
radius, plotted in 9(c) and (f). Forming in filament tails, these clouds
are low density and typically unbound, with alpha virial values
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Figure 9. Scaling relations of the cloud properties. Colour markers denote the cloud categories classified by cloud properties. The classification of clouds is
introduced by Fujimoto et al. (2014) with PPP clouds. (a) Classification of cloud types based on PPP clouds on mass – radius plane. Cloud with mass surface
density greater than 230 M� pc2 and radius less than 30 pc are Type A. Clouds sit on the same sequence but greater than 30 pc are Type B. Clouds with surface
density less than 230 M� pc2 are Type C. Boundaries of cloud types are indicated with thin solid lines. p.944: The fit to the clouds in our PPP is shown as
thick solid black line. Observed scaling relations of nearby galaxies (NGC 4736, NGC 4826, and NGC 6946) from Donovan Meyer et al. (2013) and the Milky
Way from Solomon et al. (1987) are shown as dashed and dotted lines, respectively. (b) The three-type PPP clouds on mass–radius plane. (c) Relation of virial
parameter versus radius of PPP clouds. Panel (d), (e), and (f) are the same as panel (a), (b), and (c), respectively, but for PPV clouds. The thick solid black
lines in panel (d) and (e) represent the fits to the PPV clouds.

between 1–10. The other two types of clouds are largely borderline
bound with α ∼ 1.0, although Type B clouds are less bound due to
their large size and high-velocity dispersion. As seen in Fig. 4(f),
the derivation of alpha from three other parameters increases the
scatter in the PPV data. Despite this, the basic position of the three
cloud types remains distinct and matches the PPP data. The main
difference is the extension of Type A and Type C clouds to lower
values of alpha. This is due to the smaller clouds hitting the lower
limit of the PPV measurement of the velocity dispersion, as shown
in Fig. 9(c).

3.4.2 Fraction of three types clouds in galactic environments

While not identical, the split of cloud types between the three dif-
ferent galactic regions is very similar in both PPP and PPV. Table 2
records the percentages of each cloud type in each region for the
two identification methods, which mostly differ by 30 per cent be-
tween PPP and PPV. The overall features of the divisions noted

Table 2. Percentage of each type of clouds in the
three environments. The clouds are identified with
the island methods.

Bar Spiral Disc

Type A PPP 49 64 83
PPV 43 61 76

Type B PPP 13 13 6
PPV 9 9 7

Type C PPP 38 23 11
PPV 48 30 17

by Fujimoto et al. (2014) are preserved in the PPV, with the most
common type of cloud being the Type A in all regions, with the
highest fraction of Type A clouds found in the quiescent disc region
(∼80 per cent) and lowest in the interaction-packed bar. The bar and
spiral regions have similar fractions of the massive Type B clouds but
the bar region has the largest percentage of the interaction-spawned
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Figure 10. Example of the large type C clouds of PPV in Section 3.4.3. The projection images of the clouds are shown in colour scale. Unit of the colour bar
is g cm−2. Red and green circles represent the average size of the cloud identified by PPV and PPP, respectively. Centre of masses are marked with a cross.
Panel (a) and (b) show the clouds which are classified as Type A in PPP but turn the Type C in PPV due to the large radii identified by PPV. Panel (c) shows the
example of typical Type A in both PPP and PPV.

Table 3. Comparison of the change of the cloud
types in percentage using the match clouds between
PPP and PPV. The first column denotes the cloud type
change from PPP to PPV.

Cloud type Bar Spiral Disc

No change 86 80 81
A → B 2 3 6
A → C 4 6 5
B → A 8 8 4
B → C 0 0 0
C → A 0 3 4
C → B 0 0 0

Type C, at 38 per cent compared to 23 per cent and just 11 per cent
in the spiral and disc, respectively.

3.4.3 Change of clouds types between PPV and PPP

The images of bar environment in Fig. 8 showed that while most
clouds are identified with the same type in PPP and PPV, this is not
universally true. The number of clouds that do switch type with se-
lection technique is listed in Table 3, where the clouds were matched
together using the method described in Section 3.3. The vast major-
ity (between 80 and 86 per cent) of clouds retain their category in
both data sets. The type change between the most massive clouds
Type B and the smallest clouds, Type C, is not seen in any galac-
tic environment, while changes between the other types of clouds
account for 3–8 per cent of the population in each region.

In the mass–radius relation that was used to define the cloud
types in Figs 9(a) and (d), the most significant difference between
the PPP and PPV populations was the existence of large Type C
clouds in the PPV data set; 15 clouds with a surface area below
230 M� pc−2 (defining them as Type C) but with radii above 30 pc.
Since Fujimoto et al. (2014) found Type C to be small, transient
clouds, such extended objects are very unlikely.

Further exploration reveals that 8 of the 15 large Type C clouds
are dense tidal filaments surrounding a massive Type B host cloud.
In the PPP data set, these filaments are associated with the larger
Type B, but in the PPV, they have been identified as a separate ob-
ject. This agrees with Fig. 9(a) which found PPV Type B clouds to

frequently have lower velocity dispersions than their PPP counter-
parts: the tidal tails were not included within the Type B boundary.
The elongated structure of these filaments results in a low surface
density. They are also not associated with any PPP cloud, since their
material is part of the host Type B in the PPP data set.

The remaining seven large Type C clouds consist of six PPP Type
A and one PPP Type C but with a radius below 30 pc. These are not
due to splitting, since all seven are isolated with a single counterpart
in both data structures. In all cases, the large Type C clouds have
radii far larger than a typical difference between the PPP and PPV
populations, giving a low surface density and dropping them into
the large Type C regime. These clouds all have common features
that include (1) a flattened structure with the x − y area larger than
the x − z or y − z area by a factor of 1.5, (2) an elongation with a
large ratio between the major and minor axis in the x − y plane and
(3) multiple dense peaks with comparable density close to the edge
of the cloud. This is shown visually in Fig. 10, where the red circles
marks the average radius calculated from the PPV cloud while the
green circles shows the average radius in the PPP data for three
different cloud cases. The first two panels show a PPP Type A cloud
identified as a PPV large Type C, with long density profiles and
multiple density peaks. The third panel, Fig. 10(c), shows a typical
Type A cloud found in both data sets. The first property of these
clouds reduces the PPV radii compared to PPP, since PPP considers
the average area over all planes, while PPV sees only the x − y
plane. However, this effect alone is not sufficient to alter the cloud
type, since switching the PPP radii definition to use only the x − y
plane does not create this cloud class. Rather, the second and third
properties identify extreme cases for the CPROPS cloud morphology
and profile assumptions. As described in Section 2, CPROPS measures
the mass-weighted rms radii of the cloud and then extends this
to an effective radius by assuming mass-centred spherical density
profile. This assumption is valid for the majority of clouds, since
they typically have a dominant peak close to their morphological
centre as in Fig. 10(c). However, if the cloud has dense peaks near
to its edge, these boosts in the density result in the initial mass-
weighted rms radius measurement being close to the true boundary.
The conversion to the effective radius then results in a radius value
almost twice as large as the true radius.

This effect is most noticeable when it creates a unique PPV
class of large Type C objects, which Table 3 indicates happens in
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4–6 per cent of cases. However, The table also reveals this effect
can change Type A clouds into Type B if the extended PPV radius
is above 30 pc, but the mass remains sufficiently high to keep the
surface density above 230 M� pc−2.

Clouds can change type by PPV calculating a smaller radius due
to the mass-weighting of the radius measurement. This can cause
a PPP Type B to change to a PPV Type A. This is more frequent in
the bar and spiral regions where the gas density is higher, creating
more concentrated cloud profiles.

If a PPP Type C cloud has a low-density tail that is only par-
tially detected by PPV, then the cloud may become a PPV Type
A as its radius is truncated and resultant surface density increases.
This generates the population of Type C to Type A clouds that are
seen predominantly in the lower density environment of the disc
and quiescent regions of the spiral, where Type C clouds may be
sufficiently undisturbed to hold together an extended structure.

4 OT H E R C L O U D ID E N T I F I C ATI O N
M E T H O D S

In addition to the island method for identifying clouds, the decom-
position method that constructs clouds surrounding peaks in the
density and intensity fields was introduced in Section 2. In this sec-
tion, we compare the PPP and PPV cloud populations found using
this second scheme with the island method choice.

The number of clouds found by the decomposition method in the
PPP and PPV data sets are comparable with one another. For the
PPP data, the decomposition method finds a total of 2832 clouds,
compared to 3081 clouds in the PPV data. Within each environment,
the numbers remain comparable, with PPP having 262 clouds in the
bar, 1521 clouds in the spiral and 224 clouds in the disc region
and PPV finding 365, 1590 and 213 for the same environments,
respectively.

The decomposition method tends to segment the larger clouds
found by the island method into small clouds with more uniform
properties. This can be instantly seen by the significantly larger
number of clouds found by the decomposition method compared
to the island method. It is also reflected in the cloud properties as
shown by the mass distribution for the decomposition method in
Fig. 11. Here, the cloud populations for the bar region are shown in
the top panel in red, the spiral region is the middle panel in green
and the outer disc is in blue in the bottom panel. As with Fig. 4, the
PPP data cloud population distribution is shown with a solid line,
while the PPV clouds are shown with a dashed line. The differences
between the three environments are reduced compared to the island
method, with many of the massive clouds with mass greater than 107

M� segmented to make smaller clouds in the bar and spiral region.
The fraction of small clouds remains similar to the island method,
although the PPV data set finds repeatedly more small clouds than
the PPP population due to the way islands are divided between
multiple peaks. As described in Section 2, the PPV decomposition
method separates peaks on the same contour island by drawing
a second contour that just encases both peaks and then separates
these with a third contour above this boundary. Emission that is
below this separating third contour is considered a ‘watershed’
and is discarded. In PPP, cells within an island contour containing
multiple peaks are simply split between the two separated clouds.
This loss of emission in PPV causes a higher number of small PPV
clouds to be formed compared to PPP.

This watershed for PPV leads to smaller median cloud prop-
erties within the PPV decomposition data set, but both PPP and
PPV have median properties that are slightly lower than for the

Figure 11. Normalized distribution of cloud mass of clouds identified with
decomposition methods. Bar, spiral, and disc clouds are displayed with red,
green, and blue lines, respectively. PPV clouds are shown with dashed lines
while PPP clouds are presented with solid lines.

island method by 1.1–2 times, due to cloud segmentation. Be-
tween environments, the newly uniformed clouds show little dif-
ference. The median cloud mass, radius and velocity dispersion are
∼105 M�, ∼11.1 pc and ∼3.6 km s−1, respectively, in PPV and
∼2.2 × 105 M�, ∼15.4 pc and ∼5.0 km s−1 in PPP for all three
environments. The virial parameter does show a difference with en-
vironment, although not with identification technique. For both the
PPP and PPV, the median virial parameter is ∼2 in the bar, ∼1.5 in
the spiral and ∼1 in the disc. As with the island method, the strong
interactions in the bar region increase the virial parameter as the
clouds become less bound.

Due to the larger number of smaller clouds, the fraction of clouds
that are successfully matched one-to-one between PPP and PPV sig-
nificantly decreases between the island method and decomposition
method. However, for the clouds that are matched, their proper-
ties continue to agree reasonably well. As with the island method,
the scheme for matching clouds between the two data sets is the
one described in Section 3.3. It results in a match of only around
40 per cent, compared to the 70 per cent match between PPP and
PPV clouds in the island method. The comparison between proper-
ties of the matched clouds is shown in Fig. 12 for the mass, radius
and velocity dispersion values. The ratio of the PPV to PPP value,
μg, of the mass radius and velocity dispersion ranged between 0.7
and 1.2, a slightly wider range than for the island method for the
same properties. The scatter is significantly higher than that for the
island method, with σ g ranging between 1.1 and 2.5. The solid,
dashed and dash–dotted lines on Fig. 12 mark out the deviation
between the 1:1 agreement by a factor of 1, 2 and 5, respectively.
The differences lie mostly within a factor of 2, but there are clouds
whose scatter extends up to 5. Around 80 per cent of these high
scatter clouds which lie above a factor of 2 from the 1:1 relation
are those that originated from the giant Type B clouds in the island
method, but were split in the decomposition method.

Due to the division of the larger clouds, the fraction of large Type
B clouds shrinks to almost zero in all three environments. The exact
fractions are shown in Table 4. In the quiescent disc region, both PPP
and PPV have the highest fraction of Type A clouds, with roughly
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Figure 12. Comparison of match cloud properties in bar (red squares), spiral (green crosses), and disc (blue triangles) regions. Clouds are identified with
decomposition method. Panel (a)–(c) show the comparison of cloud mass, radius, and velocity dispersion, respectively. Dashed and dash–dotted lines indicate
a factor of 2 and 5 above and below the solid 1 : 1 line, respectively. Geometric mean (μg) and geometric standard deviation (σ g) of PPV-to-PPP ratio of each
environments are shown in each panel.

Table 4. Percentage of cloud types in the three galac-
tic environments. Clouds are identified with the de-
composition methods.

Bar Spiral Disc

Type A PPP 54 57 65
PPV 42 53 67

Type B PPP 0 0 0
PPV 1 <1 0

Type C PPP 46 43 35
PPV 57 46 33

two-thirds of the disc’s cloud population coming under this type.
This cloud type also forms a substantial fraction of the population in
the bar and spiral regions, but slightly lower at around 50 per cent.
This distribution between the environments is consistent with the
island method results, which also showed the highest number of
Type A clouds in the disc. Also like the island method, the highest
fraction of Type C clouds are in the interactive bar region and the
lowest fractions are in the passive disc region, where the fractions
change from roughly a half to a third. The largest difference between
the island and decomposition methods are for the massive Type B
clouds. This is because 99 per cent of the Type B clouds are split
into multiple clouds, with as high as ∼85 per cent split into more
than two clouds, effectively removing the population in the decom-
position method. The clouds from this splitting typically result in a
Type A cloud for the main peak and multiple Type C clouds for the
extended low-density envelopes. This cloud splitting is responsible
for the large scatter of cloud properties when clouds are matched
between identification methods in Fig. 12.

The scaling relations for the decomposition method are shown
in Fig. 13. Top panels (a), (b) and (c) show the PPP cloud data
set for the two Larson relations and that of the virial parameter
with radius. The bottom three panels (d), (e) and (f) show the same
relationships for the PPV data. The symbols and colours for each
cloud type match those in Fig. 9. In general, the trends in the
PPP clouds are similar to that with the island cloud identification
method, but the range of values is reduced due to the splitting of
larger structures. The boundary between Type A and Type C clouds

in the mass–radius relationship in panel (a) is no longer seen as a
gap, although two different trends appear to be visible. It vanishes
entirely in the velocity – radius relation in panel (b). The Type C
clouds remain the most unbound objects in the simulation, with
virial parameters >10. The spread in the virial parameter value no
longer depends greatly on radius, due to the more uniform cloud
properties producing a much smaller spread in radius values. For
clouds with virial parameter less than 10, the Type C and Type A
clouds overlap more strongly than in the island method, again due
to the smaller range in cloud properties.

In the PPV clouds using the decomposition method, the three
relations are lost, with the radius, mass and velocity dispersion no
longer well correlated. In the mass–radius relation in panel (d), the
Type C clouds do show the same general trend at the PPP clouds
and island method, but with a much wider scatter. By contrast, the
Type A clouds suggest a reverse trend, where the mass anticorrelates
with radius. This huge scatter is due to the watershed effect. In the
cases were multiple peaks are within a massive island, all the peaks
can share a high-density envelope. This causes a large amount of
material to be discarded, often up to ∼50 per cent of the emission.3

The result is small contours centred around a high-density region,
producing the trend in the Type A clouds. This effect is most notable
in the splitting of the massive Type B clouds, which often contain
concentrated cores of material that become small objects. Extra
scatter is also created from the mass-weighting of CPROPS on the
radius, as discussed in previous sections. For the smaller Type C
clouds, the watershed effect simply increases radius scatter as clouds
are divided. Note that a significant number of Type C clouds are split
from the remains of the Type B island method clouds, producing
objects both larger and smaller than the original Type C clouds.

The splitting of islands into multiple peaks also reduces the ve-
locity dispersion of the clouds for PPV, as shown in panel (e). As
only the partial structure ends up attacked to a peak, the velocity
dispersion drops compared to the PPP case, where the extended
envelope is not neglected. With the scatter in the radius, the Type A

3 The total mass of clouds in the decomposition method is 8.2 × 108 M�
in PPV, and 1.8 × 109 M� in PPP. For comparison, the total mass of clouds
in the island method is 1.6 × 109 M� in PPV, and 1.8 × 109 M� in PPP.
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Figure 13. Scaling relations of the cloud properties using the decomposition methods. Colour markers denote the cloud categories classified by cloud
properties. The classification of clouds is introduced by Fujimoto et al. (2014) with PPP clouds. (a) Classification of cloud types based on PPP clouds on
mass–radius plane. Cloud with mass surface density greater than 230 M� pc2 and radius less than 30 pc are Type A. Clouds sit on the same sequence but
greater than 30 pc are Type B. Clouds with surface density less than 230 M� pc2 are Type C. Boundaries of cloud types are indicated with solid lines. (b) The
three-type PPP clouds on mass–radius plane. (c) Relation of virial parameter versus radius of PPP clouds. Panel (d), (e), and (f) are the same as panel (a), (b),
and (c), respectively, but for PPV clouds.

and Type C clouds strongly overlap and there is no visible trend
with velocity dispersion.

Where the virial parameter is plotted against radius in panel (f),
the Type A and Type C clouds do occupy different region. Type A
clouds have a virial parameter of α < 10 (mostly α < 1), while
the C remain the most unbound objects with α > 1. This difference
is actually more marked in the PPV data than the PPP, due to the
reduced radius and velocity dispersion of the Type A clouds which
lowers the virial parameter. Type C clouds occupy approximately
the same plot region in both PPV and PPP, but with a wider scatter
in the radius as seen before.

Exactly which method – island or decomposition – is more phys-
ical is up for debate. There is no reason why a cloud should contain
a single peak and indeed, star formation is unlikely to be centred in
only one location of a turbulent cloud. The use of the methods may
depend on the quality of the observational data and the purpose of
the study. For the extragalactic observations with typical resolution
of ≥20 pc, most studies adopt the decomposition method to select
objects. However, the resolution at these distances means it is hard
to discern internal cloud structure, producing clouds that are similar

in size to the island method in this work. On the other hand, inspite
of the higher resolutions (<20 pc), most of Galactic studies con-
tinue to adopt the decomposition method. This is due to the large
dynamic range in the distance to the clouds, varying the resolution
within a cloud’s boundary. Both these choices originate from the
lack of a clear definition for a GMC, leaving is ambiguous as to
whether it is resolved. Our study emphasises the importance of this
cloud definition and for high-resolution data, the island method is
the stronger choice for selecting similar objects in both simulation
and observation data types; a valuable asset in understanding the
evolution of star-forming clouds.

5 SU M M A RY

We are rapidly reaching the point where simulations and observa-
tions will achieve comparable resolution of molecular cloud popu-
lations in a wide variety of galaxies. This opens the door to truly
constrain the mechanisms for cloud formation – and thereby star
formation – in different galaxy environments. The importance of
this advance makes it imperative to examine carefully if the two
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techniques of observation and simulation are discussing the same
star-forming molecular clouds. After all, observational data is done
in two spatial co-ordinates and one velocity coordinate, while sim-
ulation data typically uses all three spatial dimensions, but ignores
the velocity components. A direct match is not possible.

In this paper, we compared the physical properties of GMCs
formed in a simulation of a barred spiral galaxy using simulation
and observational identification methods. The two methods selected
clouds from the data in PPP space typical for simulation and PPV
space used in observations. The PPV data cube was assumed to be
the product of 12CO (1–0) observations with optimal resolution and
sensitivity. The properties of the clouds found in both methods
were compared and the clouds themselves matched to assess
whether the two methods identified the same objects and if the prop-
erties were method dependent. This process was repeated twice;
once where the clouds were identified as continuous structures
within a contour (‘island method’) and once where each peak in
the density or emission was assigned to a separate cloud (‘decom-
position method’).

The main results for the general cloud properties when using the
island method are as follows.

(i) The total number of clouds identified was similar in the PPV
and PPP methods (971 versus 1029). This was also true when com-
paring cloud numbers in each galactic environment of bar, spiral
and disc.

(ii) The typical (median) cloud properties, such as their mass,
radius and velocity dispersion, differ by ≤20 per cent between PPV
and PPP.

(iii) The bimodal mass surface density distribution of PPP clouds
(peaks at ∼100 and ∼1000 M� pc−2) which had been found by
Fujimoto et al. (2014) is reproduced in the PPV clouds, with the
boundary between the two populations being roughly consistent.

We matched clouds one-to-one to compare any changes in an
individual cloud’s properties when a different method is used. This
process demonstrated the following for the island method.

(i) About 70 per cent of clouds have single counterpart in both
data sets. This match rate was consisted in all three galactic envi-
ronments.

(ii) The variation in properties between matched clouds typically
lies within a scatter of a factor of 2. The largest scatter is seen for
the derived properties, that depend on multiple cloud variables, such
as the surface density and the virial parameter. The differences in
these properties suggest care should be taken when interpreting their
physical meaning.

(iii) Smaller clouds (≤ 105 M�) have a larger scatter in their ve-
locity dispersion because the velocity spacing of our PPV (1 km s−1)
data cube is too large to resolve the velocity dispersion of these small
objects. This provides a guide of the velocity (instrumental spectral)
resolution needed for real observations.

In the analysis of this simulation presented in Fujimoto et al.
(2014) using the PPP cloud identification method, clouds were
found to fall into three different populations: the Type A clouds
which have cloud properties agreeing with typical observations and
account for the largest fraction of clouds in all galactic environ-
ments. The Type B massive associations that form through mergers
of small clouds and are therefore seen in high-interaction environ-
ments like the bar more commonly than the disc. Finally, the Type
C clouds that are transient, unbound objects, forming in filaments
and tidal tails, making them most common where the gravitation-

Figure 14. CASA simulated spectrum of the three types of GMCs found in
the M83 simulation as observed with ALMA cycle 3 capabilities. The input
model is the noise-free PPV cube. All of the clouds presented in this figure
are classified as the same category in PPP and PPV. The cloud type and mass
(in PPP) are presented in each panel. The simulation is performed with CASA

task simobserve and imaged with simanalyze. Only the 12-m array is
used in this simulation. The antenna configuration file of ‘alma.cycle3.3.cfg’
is used. Total observing time for the 12-m array is ∼2 h (∼5 h is required
if the ACA total power observations are included. This is certainly neces-
sary in real observations). The mapping area is 130 arcsec × 150 arcsec
(2.6 × 3.0 kpc). Spatial, velocity resolutions and sensitivity are 0.7 arcsec
(14 pc), 1 km s−1 and 0.012 Jy, respectively.

ally dominant Type B clouds are prevalent. When classifying PPV
clouds with the same definitions, the main results are

(i) The fraction of each cloud type differs by <10 per cent be-
tween PPV and PPP in all environments.

(ii) Among the ∼70 per cent of clouds that have a direct match in
both data sets, as high as ∼80 per cent are categorized as same type
in all environments. The remaining 10 per cent that differ change
type due to the different mass and/or radius between two data sets.

When we switched from identifying clouds as continuous islands
to the peak-based decomposition method, the number of clouds
found in both PPP and PPV increases significantly by ∼3 times.
The resulting cloud properties for the overall population remained
similar, but the one-to-one cloud match became significantly more
difficult in the crowded environment and the match rate dropped
to 40 per cent. The division of clouds such that they contain only a
single peak also made the cloud properties more uniform, largely
obscuring the three cloud types seen in the island method. This was
particularly true in the PPV data set, which had a large amount of
scatter in cloud properties. We conclude that the cloud identifica-
tion method therefore plays a critical role in determining the cloud
properties and therefore understanding the influence of galactic en-
vironment.

Finally, we emphasize that the resolution of our data means we are
only considering the ‘best possible’ situation. Our PPV data cube
has minimal noise and much higher resolution than typical observa-
tions. Based on a simple estimation for ALMA observations using
the simulation function of CASA, it is unlikely we can achieve such a
fine resolution and deep observation for the entirety of M83 within
a reasonable time for Cycle 3 (2015–2016) observations, although
a partial galaxy may be possible. As an example, Fig. 14 shows
the simulated spectrum for the three types of cloud derived from
a ∼2-hr ALMA Cycle 3 observations of M83 (including calibra-
tors) using CASA (the Common Astronomy Software Applications
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package; McMullin et al. 2007), assuming a 2.6 × 3.0 kpc observed
area in the bar and spiral regions. We have also ignored the in-
clination of the galaxy, chemical processes and radiation transfer
in the ISM. Such effects would alter the observed column density
of molecular clouds and also raise the difficulty in identifying the
clouds themselves.

For our main results using the island method, we conclude that
both PPP and PPV can potentially identify the same objects with
close properties. Therefore, the techniques themselves are able to
be compared well. The question then becomes one of fighting down
noise and achieving the necessary resolution to understand cloud
and star formation in galaxies.

The next step in this work is to evaluate the projection effect as
a function of different inclinations of galactic discs and physical
resolutions. This will provide a set of reference GMCs to help
observers to declare the intrinsic bias in the their observed GMC
properties.
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