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Wendelstein 7-X, a superconducting optimized stellarator built in Greifswald/Germany, started its
first plasmas with the last closed flux surface (LCFS) defined by 5 uncooled graphite limiters in
December 2015. At the end of the 10 weeks long experimental campaign (OP1.1) more than 20
independent diagnostic systems were in operation, allowing detailed studies of many interesting
plasma phenomena. For example, fast neutral gas manometers supported by video cameras (including
one fast-frame camera with frame rates of tens of kHz) as well as visible cameras with different
interference filters, with field of views covering all ten half-modules of the stellarator, discovered a
MARFE-like radiation zone on the inboard side of machine module 4. This structure is presumably
triggered by an inadvertent plasma-wall interaction in module 4 resulting in a high impurity influx
that terminates some discharges by radiation cooling. The main plasma parameters achieved in OP1.1
exceeded predicted values in discharges of a length reaching 6 s. Although OP1.1 is characterized by

Note: Invited paper, published as part of the Proceedings of the 21st Topical Conference on High-Temperature Plasma Diagnostics, Madison, Wisconsin, USA,
June 2016.
a)Author to whom correspondence should be addressed. Electronic mail: cak@ipp.mpg.de
b)Members of the W7-X Team are listed in Nucl. Fusion 53, 126001 (2013).
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short pulses, many of the diagnostics are already designed for quasi-steady state operation of 30 min
discharges heated at 10 MW of ECRH. An overview of diagnostic performance for OP1.1 is given,
including some highlights from the physics campaigns. [http://dx.doi.org/10.1063/1.4964376]

I. INTRODUCTION

Wendelstein 7-X (W7-X) – a new fusion experiment
of stellarator type – has been successfully commissioned in
2015. Its superconducting coil system provides continuous
magnetic field, a prerequisite for proving the steady state
capability of this optimized stellarator. The first experimental
campaign1 started in December 2015 and lasted for three
months, featuring ∼1000 plasma discharges. The main pur-
pose of this campaign was the integral commissioning of
the machine and diagnostics, which was reached very well.
The LCFS of the plasma was defined by 5 poloidal uncooled
graphite limiters at the inboard side of the plasma vessel,
shaped in a way to conform along its entire length to the edge
plasma for the standard iota configuration and to receive the
full convective heat load from the plasma. The initially set
maximum of 2 MJ (ECR) heating power per discharge has
been extended to 4 MJ in the course of OP1.1 because of
lower than expected convective heat loads to the limiters.
This was caused partially by a significant fraction of the
heating power being radiated away from the plasma edge
as consequence of strong wall outgassing. The observed
plasma parameters exceeded predicted values revealing, e.g.,
electron temperatures of up to 10 keV (predicted 4 keV),
ion temperatures up to 2 keV and electron densities up to
5 × 1019 m−3. At such high Te values of ∼10 keV the Thomson
scattering (TS) system got close to its detection limit (see
Section II B).

More than 20 diagnostic systems have been installed,2

commissioned and almost in all cases successfully operated
during OP1.1, allowing many physics investigations. This
paper gives an overview of the diagnostics with the exception
of the neutron counters,3 ECRH sniffer probes,4 a very
comprehensive set of magnetic probes,5 a Doppler and a
correlation reflectometer,6–8 a single line of sight (los) Zeff
measurement and an overview UV-VIS spectrometer which
are left out due to space constraints. Some details of the
design (the capability of long pulse plasma operation9,10 is
emphasized if available), the performance of the diagnostics
and example results from OP1.1 are presented. In addition the
Bayesian inference based Minerva framework used for data
analysis of several W7-X diagnostics is briefly discussed.

II. DIAGNOSTIC SET FOR THE FIRST OPERATION
PHASE OF W7-X

A. Measurement of magnetic flux surfaces

One of the optimization criteria at W7-X is related to the
existence of good closed and nested magnetic flux surfaces in a
wide configuration space. In stellarator like magnetic configu-
rations the verification of the existence and quality of magnetic
flux surfaces is possible for the vacuum case, i.e., without the

existence of a plasma. The diagnostic comprises two 5 m long
vacuum plug-ins with fluorescent swiveling rods in the plasma
vessel serving a probing electron beam whose trajectory is
optically detected inside the confinement area either due to
interaction with background gas in the plasma vessel or due
to fluorescence light emission by the electrons hitting the rod.
The manipulators can be retracted in the port behind water
cooled shutters to sustain steady state plasma discharges.

First flux surface measurements have been performed for
the standard OP1.1 magnetic configuration up to a magnetic
field of 2.5 T. The experiments confirmed the existence of
closed flux surfaces from the magnetic axis up to the limiter.
In addition expected intrinsic magnetic island chain at i =
n/m = 5/6 inside the confinement region has been detected.11

As modelled by finite element analysis the electromagnetic
forces are causing an elastic deformation of the non-planar
field coils depending on the field strength, thus influencing
the rotational transform and the radial position of that island
chain as well. That radial shift of the islands which is of the
order of a few cm has been detected in the experiments. In
further experiments (with i = n/m = 1/2 and at low magnetic
field of 0.3 T) the relative error of the B21 Fourier harmonic
component was estimated to <1 × 10−5.12

B. Diagnostics for plasma profiles

A multi-pulse Nd:YAG laser Thomson scattering system
is installed at W7-X as a powerful diagnostic for electron
temperature and density measurements13 (for measurement
of Te profiles with the XICS diagnostic see Section II D). In
OP1.1 a reduced set of 10 fiber bundles was installed to cover a
half profile of the plasma cross section, as shown in Fig. 1. The
optics is placed in a water cooled immersion tube designed for
long pulse operation with a vacuum window protected against
coating by a water cooled shutter. Interference filter based
polychromators with Si-avalanche diodes and fast digitizers (1
GS/s, 14 bit) are used for detection of the scattered light. The
TS system is optimized to measure electron temperatures in
the range of 20 eV–10 keV and electron densities in the range
of 2 × 1018–5 × 1020 m−3 (see Figs. 2 and 3 for comparison of
the measured plasma parameters to other diagnostics).

A single channel dispersion interferometer has been
installed for measurement of the line integrated density.15 It is
based on a 20 W CO2 laser and its second harmonic generated
in a AgGaSe2 frequency doubling crystal. Both beams pass
the plasma vessel twice being reflected by a corner cube
reflector which is located outside the vacuum vessel at an
opposite port. A separate reference path is not required. After
frequency doubling the residual 10.6 µm beam is frequency
doubled in a second AgGaSe2 crystal, the phase shift of the
5.3 µm signals being detected. Dispersion interferometers are
intrinsically insensitive to vibrations along the optical beam
path, only vibrations perpendicular to that path increase the
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FIG. 1. Main components of the Thomson scattering system.

FIG. 2. Time trace of the line integrated electron density measured with the
interferometer (blue line) and derived from the Thomson scattering profiles
(red dots), pulse 160308007. The last three points of the TS measurement
carry no information about the density due to too low electron temperature.

phase noise. The single channel dispersion interferometer
shares its sightline with the Nd:YAG laser of the Thomson
scattering system, therefore cross-calibration of both systems
can be performed easily. Fig. 2 shows a good agreement of the
line integrated density measured with the interferometer and
derived from the Thomson scattering profiles of the discharge
#160308007.

An Electron Cyclotron Emission diagnostic (ECE) has
been operated throughout OP1.1 as the main tool to study
electron heating by ECRH and subsequent electron heat
transport. It measures the 2nd harmonic X-mode emission
in the frequency band 126 GHz–162 GHz along a sightline
defined by Gaussian optics with a 32-channel heterodyne
radiometer located outside the torus hall.16 Microwave stray
radiation resulting from non absorbed ECRH power is cut
out of the spectrum by a 1 GHz wide waveguide Bragg
reflection notch filter with depth >40 dB showing extremely
steep edges and an insertion loss of only 3–5 dB outside this
frequency band.17 The radiometer is absolutely calibrated with
an overall uncertainty of ∼10%. Te profiles are derived from
the X2 emission spectra taking into account the finite optical
thickness via the ray-tracing code TRAVIS which implies a
fully-relativistic model of EC absorption and emission. First
comparison with Te profiles obtained from Thomson scattering
(see example in Fig. 3) and imaging X-ray spectroscopy yields
good agreement.

C. Diagnostics for plasma edge
and in-vessel components

The overview video diagnostic system is mounted in ten
tangential ports of W7-X giving a good toroidal coverage.18

A dedicated docking mechanism allows fast insertion of each
channel in its respective port from outside the machine. Water

FIG. 3. Te profiles from the Thomson scattering and the ECE (high field side
emission) diagnostic for pulse #160303005.

cooled front ends with a pin hole provide sufficient protection
from the heat load and coating in long pulse plasma operation.
Three different camera types are used. The standard system
for regular monitoring of mostly the plasma shape, size and
the radiation distribution is equipped with 7 EDICAM cameras
(∼400 frames/s @ 1.3 Mpixel). The EDICAM system features
FPGA-based real-time image processing and event detection,
to be utilized in the forthcoming campaigns of W7-X. 2 PCO
PixelFly cameras (12 frames/s @ 1.3 Mpixel) are used for
the vacuum magnetic flux surface measurements, and one
tangential channel is equipped with an image guide attached to
a fast framing camera (Photron SA5, 7 kframes/s @ 1 Mpixel).

The EDICAM system revealed toroidal or poloidal
asymmetries as well as the movement of the plasma as reaction
to currents applied in trim coils inducing 1/1 magnetic field
errors. Filamentary structures at the plasma edge have been
detected with the Photron camera, usually at later phases of the
discharges accompanied by strong edge radiation or in case
of intentional gas injection used for radiative edge cooling
experiments. These structures are aligned to the magnetic field
lines (Fig. 4), are extended toroidally in the whole observation
volume, having in some cases a lifetime of a few milliseconds
and revealing poloidal rotation.

The neutral gas density measurement in the range of
2 × 10−7 − 1 × 10−2 mbar with maximum sampling rate of
2 kHz was performed by five in-vessel pressure gauges of the
ASDEX type19 and one Penning gauge.20 The pressure gauges

FIG. 4. Short exposure (∼20 µs) background corrected tangential image
showing field line aligned structures. Calculated vacuum field lines are over
plotted in red.
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FIG. 5. Neutral gas pressure in four machine modules in a discharge termi-
nated by strong edge radiation.

were placed at front-ends of vacuum plug-ins at the midplane
outboard side in all five stellarator modules for investigations
of the toroidal symmetry. In Fig. 5 a strong asymmetry of the
neutral gas pressure is shown in a discharge terminated by too
high edge radiation. Only in module 4 the gas pressure rises
from the beginning of the discharge reaching a highly peaked
value and is in some cases accompanied by a MARFE-like
radiation on the inboard side of module 4 detected by the
video cameras.

Several cameras for observation of the limiters and the
walls have been installed, among them infrared cameras to
measure temperature distribution on the limiter surfaces. Three
types of cameras have been used: NIR cameras (measuring at
0.9 µm, installed in immersion tubes mentioned later in this
chapter), one MWIR camera (measuring at 3-5 µm, viewing
the limiter in module 3) and one LWIR camera (measuring at
10-14 µm, viewing the limiter in module 5). The data from
NIR cameras suffered from plasma emission near the limiter
surface. However MWIR and LWIR cameras delivered very
useful data. In Fig. 6(a) temperature distribution on the limiter
in module 5 measured with the LWIR camera is shown. The
topology of magnetic field lines is more complicated than in
tokamaks with its 3D structure of inter-woven flux tubes. This
is reflected in temperature distribution, which also shows 3D
characteristics.

The MWIR camera shared the same field of view at the
limiter in module 3 with a visible camera.21 The limiter was
seen with high temporal resolution (∼400 Hz in the IR and
∼100 Hz in the visible) and sub-mm spatial resolution on
five of its nine tiles. The filtered visible camera provided
absolutely calibrated measurements of carbon and hydrogen
light, and therefore inputs to particle balance calculations.22

The infrared camera was used to derive space and time
resolved power fluxes, as well as in a calorimeter mode to infer
total energy deposited on the limiter. From the thermographic

FIG. 6. (a) Infrared image of limiter in module 5 shows heterogeneous
temperature distribution due to 3D structure of the scrape-off layer; (b) heat
flux density profiles calculated at three tiles of limiter in module 3.

FIG. 7. (a): 465 nm CIII light showing a carbon bloom observed from a
hot spot defect on the limiter in module 3 (black lines indicate the limiter
edges). (b): Hα light at the limiter detected by the same camera (discharge
#160308032 at 120 ms).

measurements of limiter temperatures, heat flux density has
been derived with the help of the THEODOR code.23 For a
typical discharge of the first campaign with 3 MW of injected
power, there is about 1.5 MW/m2 heat flux near the watershed
(see Fig. 6(b)). These values are lower than expected due to
high fraction of radiated power during the operation which
allowed increasing the limit of heating energy from 2 MJ to
4 MJ per plasma pulse.

Fig. 7 shows two limiter images taken with the visible
camera in module 3. In Fig. 7(a) a carbon bloom emission
from a hot spot defect is shown, and in Fig. 7(b) measured
absolute Hα emission at the limiter providing particle fluxes is
depicted.

For the observation of the divertor region (in upcoming
operation phase) and the limiter in OP1.1 10 immersion tubes
with NIR and visible cameras are installed. Each tube is
equipped with a set of three cameras, two operating in the
visible spectral range with various interference filters (Hα,
CII, and CIII) and one NIR camera. The viewing angle of
86◦–136◦ allows the monitoring of a wide range of the plasma
vessel interior with a spatial resolution of 4 mm (at the optical
axis) up to 10 mm (at the far view) being sufficient for the
monitoring purposes. During the first operation phase OP1.1
the visible radiation patterns at the limiters were dominated
by hydrogen and carbon emission. In Fig. 8 CIII emission is
shown revealing the typical double-stripe structure (compare
to Hα emission in Fig. 7(b)).

The IR and visible cameras have been complemented
by an absolutely calibrated filterscope system24 to obtain
spectroscopic data of limiter and first wall recycling and
impurity sources with excellent temporal resolution of 10 µs.
A fiber view with a spot size encompassing the width
(16 cm) of the limiter in module 3 provides simultaneous
measurements of HeI, Hα, Hβ, and CII emission. Four

FIG. 8. CIII emission at limiter in module 5 (double-stripe structure at top
left) detected with a visible camera and an interference filter at 467±5 nm.
The bright spot at bottom right is due to NeI emission from neon injected by
the helium beam injection system for edge cooling experiments.
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FIG. 9. HeII emission detected by the filterscope viewing the limiter in
module 3. τp*He is derived from the indicated time decay of the emission
after a He puff at ∼200 ms.

other fiber views of the inboard and outboard wall detected
additional H, HeI, HeII, and C emission, as well as visible
bremsstrahlung at 523 nm. The HeII emission decay, shown
in Fig. 9, was used to determine the τp* (particle confinement
time including recycling effects) for helium from a series of
perturbative helium puffs that were designed to assess changes
in particle confinement. The resulting photon flux from both
the visible camera and filterscopes can then be compared to
an EMC3-EIRENE synthetic diagnostic25 output to infer both
the limiter and the wall particle flux and particle balance.

For the gas injection of the thermal helium beam two
water cooled vacuum plug-ins capable of steady state plasma
operation – one for the upper and one for the lower plasma
edge – have been operated during OP1.1. Both were equipped
with a valve box with five independent fast piezo valves26

positioned only few cm outside of the LCFS (Fig. 10). The
versatile gas injection system has been used for injection of
helium for measurement of local edge ne and Te profiles28

and effective particle confinement time τp*He,22 neon for
development of a collisional radiative model to extend the
parameter range and accuracy of the diagnostic helium
beam,28,29 argon for impurity transport studies as well as
nitrogen for radiative edge cooling. Perpendicular observation
of the gas emission at the upper plasma edge was done along
8 los, using quartz fibers and an imaging spectrometer with a
CCD camera.28

A multipurpose manipulator with a fast reciprocating
probe has been assembled at the outboard side near to the
equatorial plane. Two probe heads were available: a combined
probe measuring the edge plasma profiles or fluctuations (at
fixed probe position) as well as a sample station for plasma
exposure studies of different materials. The manipulator is able
to plunge as far as 350 mm into the plasma vessel and thereby
easily through the LCFS. The combined probe includes two

FIG. 10. Geometry of the helium beam diagnostic at the upper plasma
edge. Adjustment of the 8 los was supported by the shown EMCR-EIRENE
simulation of HeI emission at 706 nm.27 The LCFS is indicated by the dashed
red line.

FIG. 11. Cooling of the plasma edge detected with Langmuir probes at
different positions in the plasma vessel as reaction on N2 injection into the
edge plasma.

magnetic pick-up coil arrays, Langmuir probes in triple probe
configuration, and a Mach setup. This allows measuring at the
same time and location, the edge radial profiles of the magnetic
fields, the electron temperature and density, the electric fields
and the plasma flows.30 The limiter Langmuir probes comprise
two arrays with 20 probes each installed in two tiles of the
limiter in module 5. The probes provided different measures
at 2 ms time resolution at the limiter surface. They measured
either the floating potential and the ion saturation current or
have swept the voltage for measurement of ne and Te, detecting
values up to 1 × 1019 m−3 and 5-70 eV, respectively. Fig. 11
shows a result of plasma edge cooling by pulsed N2 puffs
through the helium beam injection system at the lower plasma
edge in module 3. There is a clear correlation of the injection
time and the Te values measured both by the manipulator
probe (at fixed position in this experiment) in module 4, and
by some probes at the limiter (measuring outside of the LCFS)
in module 5. The indicated time delay of ∼10 ms is at least
partially due to the opening time of the piezo valve.

D. Diagnostics for core impurities

The imaging spectrometer systems X-ray Imaging Crys-
tal Spectrometer (XICS)31–33 and High Resolution X-ray
Imaging Spectrometer (HR-XIS)34 perform complementary
measurements of the spectral emission of selected impurities
in different charge states, yielding radial profiles of ion and
electron temperature, plasma flow velocity, and impurity
densities with a time resolution of 5 ms. Both spectrometers
have been commissioned during OP1.1.

In those spectrometers, X-rays emitted from the plasma
are imaged via a spherical bent crystal onto a 2D detector.
Fig. 12(a) shows typical 2D intensity patterns of ArXVIII and
ArXVII emission after injection of trace amounts of argon
(nAr/ne ∼ 2 × 10−4) into the plasma. A spectral fit (green line
in Fig. 12(b)) of los integrated, measured spectra (blue line
in Fig. 12(b)) and a tomographic inversion yield profiles of
above mentioned plasma parameters as shown in Fig. 13.
Here, temperature and density profiles have been inferred
using an entire forward model of the XICS system within
the Minerva Bayesian analysis framework.14 First results of
the evolution of plasma flow velocity profiles35 and argon
impurity transport studies36 using XICS data are discussed in
the given references.

As one of the main impurity diagnostics, the High Effi-
ciency XUV Overview Spectrometer (HEXOS)37–39 covers the
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FIG. 12. (a) HR-XIS and XICS raw images of ArXVIII and ArXVII emis-
sion. (b) Measured and fitted XICS spectra along los crossing the plasma at
the top edge, the center and below the magnetic axis (plots top to bottom,
respectively).

wavelength region between 2.5 and 160 nm, distributed over
four spectral channels, with high spectral and temporal (up to
1 kHz). The most intense resonance lines of medium ionization
stages of expected intrinsic impurities as well as injected tracer
impurities (e.g., Ar, Ne, N) emit light at wavelengths covered
by HEXOS.

Fig. 14 shows overview spectra of the lowest energy
channel of HEXOS for three different discharge scenarios.
Positions of identified emission lines are marked. Clearly
identifiable are oxygen and carbon lines in all cases, as well as
argon lines for the discharge with argon prefill. All spectra also
contain emission lines of fluorine and chlorine, and indications
of sulphur.

The Pulse Height Analysis (PHA) system40,41 is used for
investigation of soft X-ray emission in the energy range from
250 eV to 20 keV. It consists of 3 energy channels equipped
with Silicon Drift Detectors (SDDs). Each SDD is filtered by
a thin foil (Be or Polymer). Each energy channel is equipped
with a set of changeable piezo-slits (0-1.2 mm) and additional
exchangeable Be foils (10-500 µm) to assure appropriate
flux of X-rays under different discharge conditions. The main
purpose of the diagnostic is to identify spectral lines emitted

FIG. 13. Inferred local ion and electron temperature (thick lines) including
samples from posterior probability distribution (thin lines) as well as argon
density profiles of different charge states; los integrated temperatures are
shown with dots.

FIG. 14. HEXOS spectra (spectrometer 4) of three different discharge sce-
narios (green: no argon prefill, blue: with argon prefill, red: with argon prefill
during radiation collapse).

FIG. 15. Integrated spectra from two discharges with (blue) and without
(red) argon prefill (same as in Fig. 14).

FIG. 16. (a) Time traces of the total radiation power detected by selected
channels of the horizontal bolometer camera. (b) Tomographic inversion of
the signals shown in (a) using Gaussian Process Tomography.44

by impurities in the plasma39 as well as estimate the electron
temperature and suprathermal electron distribution from the
continuum radiation. During OP1.1 the PHA system was
launched and tested. Two example spectra detected by the
channel with 8 and 25 µm Be foil are presented in Fig. 15.

Two endoscopes with horizontal and vertical bolometer
cameras based on metal-resistive detectors have been operated
during OP1.1.42,43 The aperture plates and detector holders
are water cooled as protection from thermal overheating as
well as to minimize thermal drifts of the detector offset.
Metal meshes mounted in front of the detectors in addition to
ceramic absorber layers coated on the inner side of the detector
enclosures suppress the EC stray radiation in the detector
chamber by factor of 300. Pneumatically driven shutters
protect the detectors from contamination during machine
conditioning as well as for offset measurements and in situ
calibrations even during long pulse plasma operation.

During OP1.1, no microwave interference on the detected
signals has been observed. Total radiative power losses from
the plasma of 25%-40% of the heating power (being varied
in different experiments) have been derived. Fig. 16 shows
signals from single bolometer channels and reconstructed 2D
emission using the Minerva framework of a hydrogen plasma
with a strong radiation zone at the outer radial region.
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E. The Minerva framework

Minerva is a generic software framework for Bayesian
scientific modeling and data analysis.14 It uses the concept
of Bayesian graphical models45 to fully describe forward
models, statistical and systematic uncertainties, regularizing
priors and their dependencies on each other. Several hundred
modules (nodes in the graphical models) have been written
(e.g., for the equilibrium, Biot-Savart, bremsstrahlung, los
integration). About 20 diagnostic systems have been modeled
and used at JET, MAST, TJ-II, TCV, KSTAR, ASDEX
Upgrade and W7-X, making Minerva the default diagnostic
modeling and analyzing system at W7-X. The Bayesian
approach in combination with the Minerva architecture allows
multiple diagnostics to be easily combined to give evidence
on physics parameters (such as a density profile) from
multiple diagnostics jointly, which can significantly increase
the accuracy of reconstructions.46,47 An important aspect of
the framework is the separation of modeling from generic
inference algorithms such as linear and nonlinear optimization
or Markov Chain Monte Carlo for exploration of the posterior
probability distribution. Minerva is able to call legacy codes
(for example for 3D equilibria or ECE ray tracing) as separate
services running on a virtual cloud using a service oriented
architecture.14,48

III. SUMMARY

The optimized superconducting stellarator Wendelstein
7-X has been successfully commissioned in 2015. The first
experimental campaign with five uncooled graphite inboard
limiters defining the LCFS has been conducted between
December 2015 and March 2016 allowing the integral
commissioning of all machine components and installed
diagnostics. More than 20 diagnostic systems have been
put into operation and delivered in almost all cases reliable
measurements allowing many physics investigations in ∼1000
discharges of up to 6 s length and with plasma temperatures
and densities exceeding predicted values from simulations.
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