provided by The Australian National University

Pacific Journal of Mathematics

REGULARITY AND ANALYTICITY OF SOLUTIONS IN A DIRECTION FOR ELLIPTIC EQUATIONS

YONGYANG JIN, DONGSHENG LI AND XU-JIA WANG

Volume 276 No. 2 August 2015

REGULARITY AND ANALYTICITY OF SOLUTIONS IN A DIRECTION FOR ELLIPTIC EQUATIONS

YONGYANG JIN, DONGSHENG LI AND XU-JIA WANG

In this paper, we study the regularity and analyticity of solutions to linear elliptic equations with measurable or continuous coefficients. We prove that if the coefficients and inhomogeneous term are Hölder-continuous in a direction, then the second-order derivative in this direction of the solution is Hölder-continuous, with a different Hölder exponent. We also prove that if the coefficients and the inhomogeneous term are analytic in a direction, then the solution is analytic in that direction.

1. Introduction

We study the regularity and analyticity of solutions in a given direction to the elliptic equation

(1-1)
$$\sum_{i,j=1}^{n} a_{ij}(x)u_{x_ix_j} + \sum_{i=1}^{n} b_i(x)u_{x_i} + c(x)u = f(x) \quad \text{in } \Omega,$$

assuming that the coefficients a_{ij} , b_i , c and the inhomogeneous term f are smooth or analytic along the direction, where Ω is a bounded domain in the Euclidean space \mathbb{R}^n . We assume that the equation is uniformly elliptic, namely, that there exist positive constants $\Lambda > \lambda > 0$ such that

(1-2)
$$\lambda |\xi|^2 \le \sum a_{ij}(x)\xi_i\xi_j \le \Lambda |\xi|^2 \quad \text{for all } x \in \Omega.$$

We also assume that $b_i, c \in L^{\infty}(\Omega)$, and $f \in L^n(\Omega)$.

The regularity of solutions is a fundamental issue in the study of partial differential equations. Most regularity theories, such as the Schauder estimate and the $W^{2,p}$ estimate, are isotropic; namely, the solution is uniformly regular in all directions. An interesting question is whether the solution to (1-1) is smooth in a direction if the coefficients a_{ij} , b_i , c and the inhomogeneous term f are smooth in this direction only. This question can be asked for more general nonlinear elliptic and parabolic

Jin was supported by ZJNSF LY14A010016 and NSFC 11371323, Li was supported by NSFC 11171266, and Wang was supported by ARC DP1094303 and DP120102718.

MSC2010: primary 35J15; secondary 35B45.

Keywords: Elliptic equation, analyticity, estimates, perturbation method.

equations. One may also consider the regularity when the coefficients a_{ij} , b_i , c and the inhomogeneous term f are smooth in a submanifold of high codimensions.

This is a significant problem in partial differential equations as it is not only stronger than the Schauder estimate but also has applications in areas such as fluid mechanics, partial differential systems, manifolds with nonsmooth metric tensors, and other physical problems such as the propagation of singularities [Taylor 2000; Kukavica and Ziane 2007; Cao and Titi 2008; 2011]. For many PDE systems if one can first prove the regularity of solutions in a direction, one may be able to obtain the full regularity. At a first glance, one may feel that an affirmative answer would be too good to be true, even for an expert in the area. However in this paper we show that this is indeed true at least in dimension two, and also in higher dimensions if the coefficients are continuous. At the moment we are not aware of a counterexample without the continuity. This question is also open for most nonlinear equations and deserves further investigations.

The analyticity of solutions is also an important topic in the regularity theory of partial differential equations. For the linear elliptic equation (1-1), it is well known that if the coefficients a_{ij} , b_i , c and the inhomogeneous term f are analytic, then the solution is also analytic. A similar question is whether the solution is analytic in a direction if a_{ij} , b_i , c and f are analytic only in the given direction.

Let us first state our results on the analyticity of solutions in a given direction:

Theorem 1.1. Let $u \in W^{2,n}(\Omega)$ be a strong solution to (1-1). Assume that the coefficients a_{ij} , b_i , c and the inhomogeneous term f are independent of the variable x_n . Then the solution u is analytic in x_n .

The proof of Theorem 1.1 is based on the Krylov–Safonov Hölder-continuity of linear elliptic equations. Using the $W^{2,p}$ estimate, we also have:

Theorem 1.2. Let $u \in W^{2,n}(\Omega)$ be a strong solution to (1-1). Assume that the coefficients a_{ij} are continuous, and a_{ij} , b_i , c and f are analytic in the variable x_n . Then the solution u is analytic in x_n .

In Theorem 1.1, we do not assume the continuity of the coefficients a_{ij} , b_i , c but in Theorem 1.2 we do. An interesting question is whether one can remove the continuity of the a_{ij} in Theorem 1.2. An affirmative answer can be given in dimension two:

Theorem 1.3. Let $u \in W^{2,2}(\Omega)$ be a strong solution to (1-1). Assume that n = 2 and a_{ij} , b_i , c and f are analytic in the variable x_2 . Then the solution u is analytic in x_2 .

Our results are stronger than the classical results on the analyticity of solutions to linear elliptic equations. In the classical theory the coefficients a_{ij} , b_i , c and the inhomogeneous term f are assumed to be analytic in all directions.

When the coefficients are Hölder-continuous in a given direction, we have the following directional $C^{2,\alpha}$ regularity:

Theorem 1.4. Let $u \in W^{2,n}(\Omega)$ be a strong solution to (1-1). Suppose that a_{ij} , b_i , c are C^{α} in the ξ -direction for some $0 < \alpha < 1$ and $a_{ij} \in C^0(\Omega)$ and satisfy (1-2). Suppose $f \in L^p(\Omega)$ for some $p > n/\alpha$. Then for any $0 < \beta < \alpha - n/p$ and any $y, z \in \Omega_{\delta}$, we have the estimate

$$(1-3) \quad |\partial_{\xi}\partial_{x}u(y) - \partial_{\xi}\partial_{x}u(z)|$$

$$\leq Cd^{\beta} \left[\sup_{\Omega} |u| + ||f||_{L^{p}(\Omega)} + \int_{d}^{1} \frac{\omega_{f,\xi}(r)}{r^{1+\beta}} \right] + C \int_{0}^{d} \frac{\omega_{f,\xi}(r)}{r} + C ||a_{ij}||_{C_{\varepsilon}^{\alpha}(\Omega)} (||f||_{L^{p}(\Omega)} + \sup_{\Omega} |u|) d^{\alpha - n/p},$$

where $\Omega_{\delta} = \{x \in \Omega \mid \text{dist}(x, \partial \Omega) > \delta\}$ and d = |y - z|. The constant C depends on $n, \alpha, \beta, \delta, p, \lambda, \Lambda$ and the modulus of continuity of a_{ij} .

In Theorem 1.4, ξ is a given unit vector, and the notation $\omega_{f,\xi}$ is defined at the beginning of Section 4. The continuity assumption of the a_{ij} is for the use of the $W^{2,p}$ estimate, hence it suffices to assume that the a_{ij} are in the VMO space [Chiarenza et al. 1993], or the a_{ij} are continuous in n-1 variables [Kim and Krylov 2007]. In particular, in dimension two, by the $W^{2,p}$ estimate in the latter reference, the continuity of the a_{ij} is not needed. Hence we have:

Corollary 1.5. Let $u \in W^{2,2}(\Omega)$ be a strong solution to (1-1). Assume that n = 2 and a_{ij} , b_i , c and f are Hölder-continuous in direction ξ . Then $\partial_{\xi} \partial_x u$ is Hölder-continuous.

Note that the Hölder-continuity of $\partial_{\xi} \partial_{x} u$ in Theorem 1.4 and Corollary 1.5 is uniform in all directions. But the Hölder exponent of the second derivative is smaller than that of the coefficients and we need to assume $f \in L^{p}$ for a large p.

Theorem 1.4 improves [Tian and Wang 2010, Theorem 3.2], where the coefficients a_{ij} were assumed to be Lipschitz in ξ , and the directional $C^{2,\alpha}$ regularity was obtained by differentiating (1-1). We point out that Corollary 1.5 was also obtained in [Dong 2012, Section 6]. By the $W^{2,p}$ estimate [Kim and Krylov 2007], related result holds in higher dimension too. That is, if u is a strong solution to (1-1) and if a_{ij} , b_i , c and f are Hölder-continuous in $x' = (x_1, \ldots, x_{n-1})$, then $\partial_{x'}\partial_x u$ is Hölder-continuous. The $C^{2,\alpha}$ regularity of solutions in a given direction was also investigated in [Dong and Kim 2011]. See also [Tian and Wang 2010] for discussions.

To prove Theorems 1.1–1.3, we introduce appropriate function spaces and establish related interpolation inequalities. We will prove Theorem 1.1 in Section 2, Theorems 1.2 and 1.3 in Section 3, and Theorem 1.4 in Section 4. In Section 5, we give a brief discussion on equations of divergence form.

2. Proof of Theorem 1.1

For simplicity we assume $b_i = c = 0$; namely, we consider the equation

(2-1)
$$L[u] := \sum_{i,j=1}^{n} a_{i,j}(x')u_{ij} = f(x) \text{ in } \Omega,$$

where Ω is a bounded domain in \mathbb{R}^n , $x' = (x_1, \dots, x_{n-1})$, and $u_{ij} = u_{x_i x_j}$. The proof is similar if $b_i \neq 0$ and $c \neq 0$, provided they satisfy the conditions specified in the introduction. We assume that the coefficients a_{ij} are measurable and satisfy the uniformly elliptic condition (1-2), $f \in L^n(\Omega)$, and the a_{ij} and f are analytic in the x_n variable.

Set
$$u' = u_{x_n}, u'' = u_{x_n x_n},$$

$$u^{(k)} = \frac{\partial^k u}{\partial x_n^k}, \quad k = 1, 2, \dots,$$

$$\langle u \rangle_{\alpha, \Omega} = \sup_{x, y \in \Omega} \left\{ \frac{|u(x) - u(y)|}{|x - y|^{\alpha}} \mid (y - x) // e_n \right\},$$

and

(2-2)
$$|u|_{k+\alpha,\Omega} = \sup_{\Omega} |u| + \langle u^{(k)} \rangle_{\alpha,\Omega}, \quad k = 0, 1, 2, \dots,$$

$$||u||_{k+\alpha,\Omega} = \sup_{\Omega} |u| + \sup_{x,y \in \Omega} \frac{|D^k u(x) - D^k u(y)|}{|x - y|^{\alpha}},$$

where $0 < \alpha \le 1$ and $(y - x)//e_n$ means the vector y - x is parallel to the vector $e_n = (0, \dots, 0, 1)$. We also set

$$\langle u^{(k)} \rangle_{\alpha,\Omega}^{(\beta)} = \sup_{Q_{2r}(x) \subset \Omega} r^{k+\alpha+\beta} \langle u^{(k)} \rangle_{\alpha,Q_r(x)}, \quad \beta \in \mathbb{R},$$

$$(2-3) \qquad |u|_{k+\alpha,\Omega}^{(\beta)} = \sup_{Q_{2r}(x) \subset \Omega} [r^{\beta} ||u||_{L^{\infty}(Q_r(x))} + r^{k+\alpha+\beta} \langle u^{(k)} \rangle_{\alpha,Q_r(x)}],$$

and

$$\|u\|_{k+\alpha,\Omega}^{(\beta)} = \sup_{Q_{2r}(x) \subset \Omega} \left[r^{\beta} \|u\|_{L^{\infty}(Q_r(x))} + r^{k+\alpha+\beta} \sup_{y,z \in Q_r(x)} \frac{|D^k u(y) - D^k u(z)|}{|y - z|^{\alpha}} \right],$$

where $Q_r(x)$ denotes the open cube with center x and side-length 2r. We can extend the above definition to $\alpha = 0$ by letting

$$\begin{split} |u|_{k,\Omega}^{(\beta)} &= \sup_{Q_{2r}(x) \subset \Omega} [r^{\beta} \|u\|_{L^{\infty}(Q_r(x))} + r^{k+\beta} \langle u^{(k-1)} \rangle_{1,Q_r(x)}] & \text{if } k > 0, \\ |u|_{0,\Omega}^{(\beta)} &= \sup_{Q_{2r}(x) \subset \Omega} r^{\beta} \|u\|_{L^{\infty}(Q_r(x))} & \text{if } k = 0. \end{split}$$

We point out the equivalence of the norm $|u|_{k+\alpha,\Omega}^{(\beta)}$ given in (2-3) and the norm

$$[u]_{k+\alpha,\Omega}^{(\beta)} := \sup_{Q_{(1+\sigma)r}(x)\subset\Omega} [r^{\beta} \|u\|_{L^{\infty}(Q_r(x))} + r^{k+\alpha+\beta} \langle u^{(k)} \rangle_{\alpha,Q_r(x)}],$$

where $\sigma > 0$ is a constant. Namely,

$$C^{-1}|u|_{k+\alpha,\Omega}^{(\beta)} \le [u]_{k+\alpha,\Omega}^{(\beta)} \le C|u|_{k+\alpha,\Omega}^{(\beta)},$$

for some constant C depending only on n, k, α , β and σ . To prove the above inequalities, it suffices to divide the cube $Q_{3r/2}$ into 2^n disjoint smaller cubes if $\sigma \in \left[\frac{1}{2}, 2\right]$, and divide into more, smaller cubes for other σ . Note that if $\beta = -k$, the constant C is independent of k.

We also point out three differences between our definition of the norms $|u|_{k+\alpha,\Omega}^{(\beta)}$ and the usual one [Gilbarg and Trudinger 1998]. That is, (i) the derivative in the former one is taken only on the x_n -direction; (ii) in the Hölder seminorm (2-2) we assume that $(y-x)/\!/e_n$; and (iii) the supremum in (2-3) is taken among all cubes $Q_r(x)$ satisfying the condition $Q_{2r}(x) \subset \Omega$. The reason of choosing the cubes with the property $Q_{2r}(x) \subset \Omega$ is that the norm is homogeneous under rescaling.

First we prove an interpolation inequality for the norm $||u||_{k+\alpha}^{(\beta)}$:

Lemma 2.1. Suppose that $j + \beta < k + \alpha$, where j, k = 0, 1, 2, ... and $0 \le \alpha, \beta \le 1$. Assume that $u \in C^{k,\alpha}(\Omega)$. Then there exists a positive constant C depending on j, k, α, β , such that

$$(2\text{-}4) \qquad \|u\|_{j+\beta,\Omega}^{(\gamma)} \le C[\|u\|_{k+\alpha,\Omega}^{(\gamma)}]^{(j+\beta)/(k+\alpha)}[\|u\|_{0,\Omega}^{(\gamma)}]^{1-(j+\beta)/(k+\alpha)}.$$

Proof. It is well known [Hörmander 1976] that there is a positive constant $C = C(j, k, \alpha, \beta)$ such that

$$(2-5) ||u||_{j+\beta,Q_1(0)} \le C(||u||_{k+\alpha,Q_1(0)})^{(j+\beta)/(k+\alpha)}(||u||_{L^{\infty}(Q_1(0))})^{1-(j+\beta)/(k+\alpha)}.$$

For any $Q_r(x) \subset \Omega$, by rescaling, we obtain

$$(2-6) \quad \|u\|_{L^{\infty}(Q_{r}(x))} + r^{j+\beta} \langle D^{j}u \rangle_{\beta, Q_{r}(x)}$$

$$\leq C(\|u\|_{L^{\infty}(Q_{r}(x))})^{1-(j+\beta)/(k+\alpha)}$$

$$\times (\|u\|_{L^{\infty}(Q_{r}(x))} + r^{k+\alpha} \langle D^{k}u \rangle_{\alpha, Q_{r}(x)})^{(j+\beta)/(k+\alpha)}.$$

That is,

$$r^{\gamma} \|u\|_{L^{\infty}(Q_{r}(x))} + r^{j+\beta+\gamma} \langle D^{j}u \rangle_{\beta,Q_{r}(x)}$$

$$\leq C (r^{\gamma} \|u\|_{L^{\infty}(Q_{r}(x))})^{1-(j+\beta)/(k+\alpha)}$$

$$\times (r^{\gamma} \|u\|_{L^{\infty}(Q_{r}(x))} + r^{k+\alpha+\gamma} \langle D^{k}u \rangle_{\alpha,Q_{r}(x)})^{(j+\beta)/(k+\alpha)}.$$

Taking the supremum of all cubes $Q_r(x)$ with $Q_{2r}(x) \subset \Omega$, we obtain (2-4).

Next we extend the inequality (2-4) to the norm $|u|_{k+\alpha,\Omega}^{(\beta)}$:

Lemma 2.2. Suppose that $j + \beta < k + \alpha$, where j, k = 0, 1, 2, ... and $0 \le \alpha, \beta \le 1$. Assume that $u \in L^{\infty}(\Omega)$ and $u^{(k)} \in C^{\alpha}(\Omega)$. Then there exists a positive constant C depending on j, k, α, β , such that

$$|u|_{j+\beta,\Omega}^{(\gamma)} \le C[|u|_{k+\alpha,\Omega}^{(\gamma)}]^{(j+\beta)/(k+\alpha)}[|u|_{0,\Omega}^{(\gamma)}]^{1-(j+\beta)/(k+\alpha)}.$$

Proof. By the rescaling argument in the proof of Lemma 2.1, it suffices to prove

$$(2-7) |u|_{j+\beta,Q_1(0)} \le C(|u|_{k+\alpha,Q_1(0)})^{(j+\beta)/(k+\alpha)} (||u||_{L^{\infty}(Q_1(0))})^{1-(j+\beta)/(k+\alpha)}.$$

By the definition (2-3), it suffices to prove

$$(2-8) \qquad \langle u^{(j)} \rangle_{\beta, Q_1(0)} \le C(|u|_{k+\alpha, Q_1(0)})^{(j+\beta)/(k+\alpha)} (\|u\|_{L^{\infty}(Q_1(0))})^{1-(j+\beta)/(k+\alpha)}.$$

Again, by the definition of (2-3), there exists x'_0 such that

$$\langle u^{(j)} \rangle_{\beta, Q_1(0)} \le 2 \sup \left\{ \frac{|u^{(j)}(x'_0, x_n) - u^{(j)}(x'_0, y_n)|}{|x_n - y_n|^{\beta}} \mid -1 < x_n, y_n < 1 \right\}$$

$$= 2 \langle u^{(j)}(x'_0, \cdot) \rangle_{\beta, I},$$

where $I = (-1, 1) \subset \mathbb{R}^1$ is the unit interval. By (2-5) in the one-dimensional case, the right-hand side is bounded by

$$\langle u^{(j)}(x'_0, \cdot) \rangle_{\beta, I} \le (\|u(x'_0, \cdot)\|_{k+\alpha, I})^{(j+\beta)/(k+\alpha)} (\|u(x'_0, \cdot)\|_{L^{\infty}(I)})^{1-(j+\beta)/(k+\alpha)}$$

$$\le (|u|_{k+\alpha, Q_1(0)})^{(j+\beta)/(k+\alpha)} (\|u\|_{L^{\infty}(Q_1(0))})^{1-(j+\beta)/(k+\alpha)}.$$

Theorem 2.3. Let $u \in W^{2,n}(\Omega)$ be a strong solution of (2-1), where the coefficients a_{ij} are measurable and independent of x_n and satisfy the uniformly elliptic condition (1-2). Assume that f is analytic in x_n . Then there exists a constant $C = C(n, \lambda, \Lambda)$ such that, for any $Q_R(x_0) \subset \Omega$, the following inequality holds:

$$|u^{(k)}(x_0)| \le \left(\frac{Ck}{R}\right)^k (\|u\|_{L^{\infty}(Q_R(x_0))} + 1).$$

Proof. As the coefficients a_{ij} are independent of x_n and u is a strong solution, one sees that

$$u'_{\delta} := \frac{1}{\delta} (u(x + \delta e_n) - u(x))$$

is a strong solution to $L[u] = f'_{\delta}$, where L is the elliptic operator in (2-1). Hence the Krylov–Safonov Hölder estimate holds for u'_{δ} , uniformly in δ . Similarly,

$$u_{\delta}'' := \frac{1}{\delta^2} (u(x + \delta e_n) + u(x - \delta e_n) - 2u(x))$$

is a strong solution to $L[u] = f_{\delta}''$, and is uniformly Hölder-continuous as $\delta \to 0$. Sending $\delta \to 0$, we see that u'' is Hölder-continuous. By induction, we see that for any k > 0, $u^{(k)}$ is Hölder-continuous, and

$$(2-10) \langle u^{(k)} \rangle_{\alpha, Q_{1/4}(x)} \le C (\|u^{(k)}\|_{L^{\infty}(Q_{1/2}(x))} + \|f^{(k)}\|_{L^{\infty}(Q_{1/2}(x))})$$

for all k = 1, 2, ..., and the constant C is independent of k.

Set $Q_0 = Q_R(x_0)$. Let $Q_{2r}(\hat{x}) \subset Q_R(x_0)$ be any given cube. Then there exist $x_1, x_2 \in Q_r(\hat{x})$ with $(x_2 - x_1)//e_n$ such that

$$r^{1+\alpha}\langle u'\rangle_{\alpha,Q_r(\hat{x})}\leq 2r^{1+\alpha}\frac{|u'(x_2)-u'(x_1)|}{|x_2-x_1|^\alpha}.$$

If $|x_2 - x_1| \ge \frac{1}{4}r$, then, by Lemma 2.2 with j = 1, $\beta = 0$, k = 1,

$$(2-11) \quad r^{1+\alpha} \langle u' \rangle_{\alpha, Q_{r}(\hat{x})} \\ \leq 2 \cdot 4^{\alpha} r |u'(x_{1}) - u'(x_{2})| \\ \leq 4^{1+\alpha} r ||u'||_{L^{\infty}(Q_{r}(\hat{x}))} \\ \leq C \left(r^{1+\alpha} \langle u' \rangle_{\alpha, Q_{r}(\hat{x})} + ||u||_{L^{\infty}(Q_{r}(\hat{x}))} \right)^{1/(1+\alpha)} (||u||_{L^{\infty}(Q_{r}(\hat{x}))})^{\alpha/(1+\alpha)} \\ \leq C \left[(r^{1+\alpha} \langle u' \rangle_{\alpha, Q_{r}(\hat{x})})^{1/(1+\alpha)} (||u||_{L^{\infty}(Q_{r}(\hat{x}))})^{\alpha/(1+\alpha)} + ||u||_{L^{\infty}(Q_{r}(\hat{x}))} \right].$$

If $|x_2 - x_1| < \frac{1}{4}r$, then, by (2-10) and Lemma 2.2,

$$(2-12) \quad r^{1+\alpha} \langle u' \rangle_{\alpha, Q_{r}(\hat{x})} \leq 2 \cdot r^{1+\alpha} \langle u' \rangle_{\alpha, Q_{r/4}(x_{1})}$$

$$\leq C[r \|u'\|_{L^{\infty}(Q_{r/2}(x_{1}))} + r \|f'\|_{L^{\infty}(Q_{r/2}(x_{1}))}]$$

$$\leq C\{(r^{1+\alpha} \langle u' \rangle_{\alpha, Q_{r/2}(x_{1})})^{1/(1+\alpha)} (\|u\|_{L^{\infty}(Q_{r/2}(x_{1}))})^{\alpha/(1+\alpha)}$$

$$+ \|u\|_{L^{\infty}(Q_{r/2}(x_{1}))} + r \|f'\|_{L^{\infty}(Q_{r/2}(x_{1}))}\}.$$

Taking the supremum among all the cubes $Q_r(\hat{x})$ with $Q_{2r}(\hat{x}) \subset Q_R(x_0)$, we obtain from the above estimates (2-11) and (2-12) that

$$\langle u' \rangle_{\alpha,Q_0}^{(0)} \leq C \Big\{ (\langle u' \rangle_{\alpha,Q_0}^{(0)})^{1/(1+\alpha)} (\|u\|_{L^{\infty}(Q_0)})^{\alpha/(1+\alpha)} + \|u\|_{L^{\infty}(Q_0)} + R\|f'\|_{L^{\infty}(Q_0)} \Big\},$$

which implies

$$|u|_{1+\alpha,Q_0}^{(0)} \le C(\|u\|_{L^{\infty}(Q_0)} + R\|f'\|_{L^{\infty}(Q_0)}).$$

By Lemma 2.2 it follows that

$$||u'||_{L^{\infty}(Q_{R/2}(x_0))} \le \frac{C}{R}(||u||_{L^{\infty}(Q_0)} + R||f'||_{L^{\infty}(Q_0)}).$$

Hence we obtain

$$|u'(x_0)| \le \frac{C}{R} (\|u\|_{L^{\infty}(Q_0)} + R\|f'\|_{L^{\infty}(Q_0)})$$

$$\le \frac{C}{R} (\|u\|_{L^{\infty}(Q_0)} + 1),$$

where we used the analyticity of f in x_n .

Next we estimate higher derivatives of u at x_0 . Suppose by induction that

$$|u^{(k)}(x_0)| \le \left(\frac{C}{R}\right)^k k^k (\|u\|_{L^{\infty}(Q_0)} + 1).$$

By (2-13), (2-14), and observing that for any $x \in Q_{R/(k+1)}(x_0)$, $Q_{kR/(k+1)}(x) \subset Q_R(x_0)$, we have

$$|u^{(k+1)}(x_0)| = |(u^{(k)})'(x_0)|$$

$$\leq \frac{C}{\frac{R}{k+1}} \left(||u^{(k)}||_{L^{\infty}(Q_{R/(k+1)}(x_0))} + \frac{R}{k+1} ||f^{(k+1)}||_{L^{\infty}(Q_{R/(k+1)}(x_0))} \right)$$

$$\leq \frac{C(k+1)}{R} \left\{ \left(\frac{C}{\frac{k}{k+1}R} \right)^k k^k (||u||_{L^{\infty}(Q_0)} + 1) + \frac{R}{k+1} ||f^{(k+1)}||_{L^{\infty}(Q_0)} \right\}$$

$$\leq \left(\frac{C}{R} \right)^{k+1} (k+1)^{k+1} (||u||_{L^{\infty}(Q_0)} + 1).$$

In the last inequality we used the analyticity of f in x_n .

Theorem 2.4. Let $u \in W^{2,n}(\Omega)$ be a strong solution to (2-1). Assume that the coefficients a_{ij} are measurable and independent of x_n and satisfy (1-2). Assume that f is analytic in x_n . Then the solution u is analytic in x_n .

Proof. For any given point $x_0 = (x_0', x_{0,n})$ in Ω , let $r_0 = \frac{1}{4} \operatorname{dist}(x_0, \partial \Omega)$. Consider the Taylor expansion of u in $Q_{r_0}(x_0)$

$$(2-15) u(x'_0, x_n) = \sum_{k=0}^n \frac{u^{(k)}(x_0)}{k!} (x_n - x_{0,n})^k + \frac{u^{(n+1)}(x'_0, \xi)}{(n+1)!} (x_n - x_{0,n})^{n+1},$$

where $\xi = tx_{0,n} + (1-t)x_n$ for some $t \in (0, 1)$. By Theorem 2.3, we know that

$$|u^{(k)}(x_0)| \le \left(\frac{Ck}{r_0}\right)^k M,$$

$$|u^{(k+1)}(x_0', \xi)| \le \left(\frac{C(k+1)}{r_0}\right)^{k+1} M,$$

where $M := ||u||_{L^{\infty}(Q_{2r_0}(x_0))} + 1$. By Stirling's formula we have

$$(k+1)^{(k+1)} < e^{k+1}(k+1)!$$
.

Hence when $|x - x_0| \le r_0/2Ce$ we have

$$\frac{|u^{(k)}(x_0)|}{k!}|x_n - x_{0,n}|^k \le \frac{M}{2^k} \to 0 \text{ as } k \to \infty.$$

Hence u is analytic in the x_n direction.

3. Proof of Theorem 1.2

In this section we prove the analyticity of solutions in x_n to the equation

(3-1)
$$L[u] := \sum_{i,j=1}^{n} a_{ij}(x)u_{ij} = f(x) \text{ in } \Omega,$$

where the coefficients a_{ij} also depend on x_n . We assume that the a_{ij} are in $C^0(\Omega)$ and satisfy (1-2) and $f \in L^p(\Omega)$ $(p \ge n)$. We also assume that a_{ij} and f are analytic in x_n and satisfy

$$(3-2) |\partial_{x_n}^k a_{ij}| + |\partial_{x_n}^k f| \le B^k k!$$

for all $k \ge 1$, where B > 0 is a constant.

As before, we set $u' = u_{x_n}$, $u'' = u_{x_n x_n}$ and $u^{(k)} = \frac{\partial^k u}{\partial x_n^k}$ for all integer $k \ge 1$. In this section we also set

$$[u]_{W^{2,p}(\Omega)} = \sum_{|s|=2} \|D^s u\|_{L^p(\Omega)},$$

$$[u^{(\ell)}]_{W^{2,p}(\Omega)}^{(\beta)} = \sup_{Q_r(x) \subset \Omega} d_{Q_r(x)}^{\ell+2-n/p+\beta} [u^{(\ell)}]_{W^{2,p}(Q_r(x))},$$

$$\|u^{(\ell)}\|_{L^p(\Omega)}^{(\beta)} = \sup_{Q_r(x) \subset \Omega} d_{Q_r(x)}^{\ell-n/p+\beta} \|u^{(\ell)}\|_{L^p(Q_r(x))},$$

for $\ell = 0, 1, 2, ...$ and $\beta \in \mathbb{R}$, where $d_{Q_r(x)} = \text{dist}(Q_r(x), \partial \Omega)$. By the $W^{2,p}$ estimate, we have:

Lemma 3.1. Let $u \in W^{2,n}(\Omega)$ be a strong solution to (3-1). Assume that the a_{ij} are in $C^0(\Omega)$ and satisfy (1-2), $f \in L^p(\Omega)$ $(p \ge 1)$, and $Q_R(x_0) \subset \Omega$. There exists a constant C such that, if $0 < r < r + \delta < R$, then

$$(3-4) ||u||_{W^{2,p}(Q_r(x_0))} \le C \left\{ \frac{1}{\delta^2} ||u||_{L^p(Q_{r+\delta}(x_0))} + ||f||_{L^p(Q_{r+\delta}(x_0))} \right\},$$

where C depends only on n, p, λ , Λ and the moduli of the continuity of the coefficients a_{ij} .

Proof. When $r \leq \delta$, by the $W^{2,p}$ estimate for elliptic equations [Gilbarg and Trudinger 1998] and a rescaling argument, we have

When $\delta < r$, we choose $m \ge 2$ such that $r/m \le \delta < r/(m-1)$, and equally divide the cube $Q_r(x_0)$ into smaller cubes with side-length r/m. Then

$$||D^2u||_{L^p(Q_r(x_0))}^p = \sum_i ||D^2u||_{L^p(Q_{r/m}(x_i))}^p.$$

By (3-5),

Note that for each $Q_{r/m}(x_i)$ there are at most 3^n cubes of the form $Q_{2r/m}(x_j)$ intersecting with it. Hence, summing up, we obtain

$$(3-7) ||D^2u||_{L^p(Q_r(x_0))}^p \le C\bigg(\frac{1}{\delta^{2p}}||u||_{L^p(Q_{r+\delta}(x_0))}^p + ||f||_{L^p(Q_{r+\delta}(x_0))}^p\bigg).$$

We obtain (3-4).

We remark that in Lemma 3.1 the assumption $u \in W^{2,n}(\Omega)$ implies that $f \in L^n(\Omega)$. But the inequality (3-4) holds for all $p \ge 1$.

Theorem 3.2. Let $u \in W^{2,n}(\Omega)$ be a solution to (3-1). Assume that the a_{ij} are in $C^0(\Omega)$ and satisfy (1-2). Assume also that the a_{ij} and f are analytic in x_n and satisfy (3-2). Then u is analytic in x_n .

Proof. By (3-1), we have

(3-8)
$$\sum a_{ij}(x + \delta e_n)[u'_{\delta}]_{ij} = -\sum [a_{ij}]'_{\delta}u_{ij} + f'_{\delta},$$

where $u'_{\delta} = (1/\delta)[u(x + \delta e_n) - u(x)]$, $[a_{ij}]'_{\delta} = (1/\delta)[a_{ij}(x + \delta e_n) - a_{ij}(x)]$, and $e_n = (0, \dots, 0, 1)$ is the unit vector on the x_n -axis. Since the a_{ij} are continuous, by the $W^{2,p}$ estimate, we see that $u'_{\delta} \in W^{2,p}(\Omega')$ (p = n) for any $\Omega' \subset \Omega$. Sending $\delta \to 0$, we obtain that $u' \in W^{2,p}_{loc}(\Omega)$ and is a solution to $L[u'] = f' - a'_{ij}u_{ij}$. Similarly $u^{(k)} \in W^{2,p}_{loc}(\Omega)$ and is a solution to

(3-9)
$$L[u^{(k)}] = f^{(k)} - \sum_{\ell=1}^{k} {\ell \choose k} a_{ij}^{(\ell)} u_{ij}^{(k-\ell)} := f^{(k)} - \phi \quad \text{in } \Omega,$$

where $\binom{\ell}{k} = k!/(\ell!(k-\ell)!)$.

We will prove Theorem 3.2 by induction. There is no loss of generality in assuming that $\Omega = Q_0$ is the cube of side-length two centered at the origin. By the definition of $[u]_{W^{2,p}(Q_0)}^{(n/p)}$, there exists a cube $Q_{r_0}(x_0) \subset Q_0$ such that

$$[u]_{W^{2,p}(Q_0)}^{(n/p)} \le 2d_0^2 [u]_{W^{2,p}(Q_{r_0}(x_0))},$$

where $d_0 = \operatorname{dist}(Q_{r_0}(x_0), \partial Q_0)$. We may assume that the center of Q_{r_0} is the origin; otherwise we may replace $Q_{r_0}(x_0)$ by the larger cube $Q_{1-d_0}(0)$. Therefore the last inequality becomes

$$[u]_{W^{2,p}(Q_0)}^{(n/p)} \le 2(1-r_0)^2 [u]_{W^{2,p}(Q_{r_0})},$$

where Q_{r_0} is centered at the origin. Thanks to Lemma 3.1, there is a constant C independent of r_0 such that

$$|[u]_{W^{2,p}(Q_{r_0})} \le C\{4(1-r_0)^{-2} ||u||_{L^p(Q'_{r_0})} + ||f||_{L^p(Q'_{r_0})}\}$$

$$\le C\{4(1-r_0)^{-2} ||u||_{L^p(Q_0)} + ||f||_{L^p(Q_0)}\},$$

where $Q'_{r_0} = Q_{r_0+(1-r_0)/2} \subset Q_0$. Hence we obtain

$$(3-11) [u]_{W^{2,p}(Q_0)}^{(n/p)} \le C(\|u\|_{L^p(Q_0)} + \|f\|_{L^p(Q_0)}).$$

Next we consider the $W^{2,p}$ estimate for u'. Similarly to (3-10), there exists a cube Q_{r_1} , centered at the origin, such that

$$[u']_{W^{2,p}(Q_0)}^{(n/p)} \le 2(1-r_1)^3 [u']_{W^{2,p}(Q_{r_1})}.$$

By (3-9) and Lemma 3.1,

$$[u']_{W^{2,p}(Q_{r_1})} \leq C \left\{ \frac{9}{(1-r_1)^2} \|u'\|_{L^p(Q'_{r_1})} + \|f'\|_{L^p(Q'_{r_1})} + \sum_{i,j=1}^n \|a'_{ij}u_{ij}\|_{L^p(Q'_{r_1})} \right\},$$

where $Q'_{r_1} = Q_{r_1+(1-r_1)/3}$ is a cube centered at the origin. By the interpolation inequality, the right-hand side of the above formula is

$$\leq C \left\{ (1-r_1)^{-3} \|u\|_{L^p(Q'_{r_1})} + (1-r_1)^{-1} \|D^2 u\|_{L^p(Q'_{r_1})} + \|f'\|_{L^p(Q'_{r_1})} + B \|D^2 u\|_{L^p(Q'_{r_1})} \right\}
\leq C B (1-r_1)^{-3} \{ \|u\|_{L^p(Q_0)} + \|f'\|_{L^p(Q_0)} + [u]_{W^{2,p}(Q_0)}^{(n/p)} \right\}.$$

Therefore we obtain

$$[u']_{W^{2,p}(Q_0)}^{(n/p)} \le CB(\|u\|_{L^p(Q_0)} + \|f\|_{L^p(Q_0)} + 1),$$

where the number 1 arises in $||f'||_{L^p(Q_0)}$.

By induction, let us assume for $\ell = 0, 1, 2, ..., k$ that

$$(3-12) [u^{(\ell)}]_{W^{2,p}(Q_0)}^{(n/p)} \le A^{\ell} \ell! (\|u\|_{L^p(Q_0)} + \|f\|_{L^p(Q_0)} + 1).$$

Then, similarly to (3-10), there exists a cube $Q_{r_{k+1}} \subset Q_0$, centered at the origin, such that

$$(3-13) [u^{(k+1)}]_{W^{2,p}(Q_0)}^{(n/p)} \le 2(1-r_{k+1})^{k+3}[u^{(k+1)}]_{W^{2,p}(Q_{r_{k+1}})},$$

where $Q_{r_{k+1}}$ is a cube with center at the origin. By Lemma 3.1, with $\delta = \frac{1 - r_{k+1}}{k+3}$,

$$(1 - r_{k+1})^{k+3} [u^{(k+1)}]_{W^{2,p}(Q_{r_{k+1}})}$$

$$\leq C (1 - r_{k+1})^{k+3} \left\{ \frac{(k+3)^2}{(1 - r_{k+1})^2} \|u^{(k+1)}\|_{L^p(Q'_{r_{k+1}})} + \|f^{(k+1)}\|_{L^{\infty}(Q'_{r_{k+1}})} + \sum_{i=1}^n \sum_{m=0}^k {m \choose k+1} \|a_{ij}^{(k+1-m)} u_{ij}^{(m)}\|_{L^p(Q'_{r_{k+1}})} \right\},$$

where $Q'_{r_{k+1}} := Q_{r_{k+1}+(1-r_{k+1})/(k+3)}$. Note that $\operatorname{dist}(Q'_{r_{k+1}}, \partial Q_0) = \frac{k+2}{k+3}(1-r_{k+1})$. We have

$$\begin{aligned} (k+3)^2 (1-r_{k+1})^{k+1} \|u^{(k+1)}\|_{L^p(Q'_{r_{k+1}})} \\ & \leq (k+3)^2 \left(\frac{k+3}{k+2}\right)^{k+1} \left(\frac{k+2}{k+3}(1-r_{k+1})\right)^{k+1} [u^{(k-1)}]_{W^{2,p}(Q'_{r_{k+1}})} \\ & \leq 4(k+3)^2 [u^{(k-1)}]_{W^{2,p}(Q_0)}^{(n/p)}. \end{aligned}$$

Similarly,

$$\begin{split} (1-r_{k+1})^{k+3} \|a_{ij}^{(k+1-m)} u_{ij}^{(m)}\|_{L^{p}(Q'_{r_{k+1}})} \\ & \leq \|a_{ij}^{(k+1-m)}\|_{L^{\infty}(Q_{0})} (1-r_{k+1})^{m+2} [u^{(m)}]_{W^{2,p}(Q'_{r_{k+1}})} \\ & \leq 4 \|a_{ij}^{(k+1-m)}\|_{L^{\infty}(Q_{0})} [u^{(m)}]_{W^{2,p}(Q_{0})}^{(n/p)}. \end{split}$$

Hence for fixed i, j, by the induction assumptions,

$$(1 - r_{k+1})^{k+3} \sum_{m=0}^{k} {m \choose k+1} \|a_{ij}^{(k+1-m)} u_{ij}^{(m)}\|_{L^{p}(Q'_{r_{k+1}})}$$

$$\leq 4 \sum_{m=0}^{k} {m \choose k+1} \|a_{ij}^{(k+1-m)}\|_{L^{\infty}(Q_{0})} [u^{(m)}]_{W^{2,p}(Q_{0})}^{(n/p)}$$

$$\leq 4(k+1)! A^{m} B^{k+1-m} (\|u\|_{L^{p}(Q_{0})} + \|f\|_{L^{p}(Q_{0})} + 1)$$

$$\leq 4(k+1)! A^{k} B(\|u\|_{L^{p}(Q_{0})} + \|f\|_{L^{p}(Q_{0})} + 1).$$

Hence by (3-13) we obtain

$$\begin{aligned} [u^{(k+1)}]_{W^{2,p}(Q_0)}^{(n/p)} &\leq C \big\{ (k+3)^2 [u^{(k-1)}]_{W^{2,p}(Q_0)}^{(n/p)} + \|f^{(k+1)}\|_{L^{\infty}(Q_0)} \\ &\qquad \qquad + (k+1)! A^k B(\|u\|_{L^p(Q_0)} + \|f\|_{L^p(Q_0)} + 1) \big\}. \end{aligned}$$

By (3-2) and the induction assumption (3-12), we then obtain

$$[u^{(k+1)}]_{W^{2,p}(Q_0)}^{(n/p)} \le C(k+1)!(A^{k-1} + A^k B + B^{k+1})(\|u\|_{L^p(Q_0)} + \|f\|_{L^p(Q_0)} + 1).$$

Choosing $A \gg B$, we obtain (3-12) for k+1.

From (3-12), we obtain that

$$[u^{(k+1)}]_{W^{2,p}(Q_{1/2}(0))} \le 2^{k+1} A^{k+1} (k+1)! (\|u\|_{L^p(Q_0)} + \|f\|_{L^p(Q_0)} + 1).$$

By the Sobolev embedding and since p > n, we have

$$|u^{(k+1)}(0)| \le C2^{k+1}A^{k+1}(k+1)!.$$

Hence u is analytic in x_n at the origin.

As we remarked in Section 1, the continuity assumption on the a_{ij} can be relaxed. The continuity is used for the $W^{2,p}$ estimate; it suffices to assume that the a_{ij} are continuous in any n-1 variables [Kim and Krylov 2007]. In particular, in the dimension-two case, we can remove the continuity of a_{ij} in Theorem 1.2, as the analyticity of a_{ij} automatically implies that they are continuous in one variable. Therefore, for the equation

(3-14)
$$\sum_{i,j=1}^{2} a_{ij}(x)u_{ij} = f(x) \text{ in } \Omega,$$

where the coefficients a_{ij} satisfy the uniformly elliptic condition (1-2), we have:

Theorem 3.3. Let $u \in W^{2,2}(\Omega)$ be a strong solution to (3-14). Assume that the a_{ij} satisfy (1-2) and assume that a_{ij} and f are analytic in x_2 . Then under the above conditions, u is analytic in x_2 .

4. Proof of Theorem 1.4

Let Ω be a bounded domain in \mathbb{R}^n . Let ξ be a unit vector in \mathbb{R}^n and ϕ a function defined in Ω . Set

$$\omega_{\phi,\xi}(r) = \sup\{|\phi(x) - \phi(x + t\xi)| \mid x, x + t\xi \in \Omega, |t| \le r\}.$$

We say ϕ is Hölder-continuous in the ξ direction with Hölder exponent α if $\omega_{\phi,\xi} \in C^{\alpha}$, and write $\phi \in C^{\alpha}_{\xi}(\Omega)$, with the norm

$$\|\phi\|_{C^{\alpha}_{\xi}(\Omega)} = \sup_{x \in \Omega} |\phi(x)| + \sup_{t > 0} \frac{\omega_{\phi,\xi}(t)}{t^{\alpha}}.$$

To prove Theorem 1.4, we assume for simplicity that $b_i = c = 0$ and consider the equation

(4-1)
$$L[u] := \sum_{i,j=1}^{n} a_{ij}(x)u_{ij} = f(x) \text{ in } \Omega,$$

where the coefficients a_{ij} satisfies the uniformly elliptic condition (1-2). The proof below is based on a perturbation argument and follows closely that of [Wang 2006].

Proof of Theorem 1.4. Without loss of generality we assume $\xi = e_1 = (1, 0, ..., 0)$ and $\Omega = B_1(0)$, the unit ball. We set

$$B_k = B_{2^{-k}}(0), \quad \hat{a}_{ij}(x) = a_{ij}(0, x_2, \dots, x_n), \quad \hat{f}(x) = f(0, x_2, \dots, x_n).$$

For k = 0, 1, 2, ..., let u_k be the solution of

(4-2)
$$\sum_{i,j=1}^{n} \hat{a}_{ij}(x)(u_k)_{x_i x_j} = \hat{f}(x) \quad \text{in } B_k,$$
$$u_k = u \quad \text{on } \partial B_k.$$

Then

(4-3)
$$\sum_{i,j=1}^{n} \hat{a}_{ij}(x)(u_k - u)_{x_i x_j} = \sum_{i,j=1}^{n} (a_{ij}(x) - \hat{a}_{ij}(x))u_{x_i x_j} + \hat{f}(x) - f(x) \text{ in } B_k,$$
$$u_k - u = 0 \text{ on } \partial B_k.$$

Hence, by the Alexandrov maximum principle, for $k \geq 1$,

$$\begin{aligned} (4\text{-}4) \quad &\sup_{B_{k}} |u - u_{k}| \\ &\leq C2^{-k} \left[\int_{B_{k}} |(a_{ij}(x) - \hat{a}_{ij}(x)) u_{x_{i}x_{j}}|^{n} dx \right]^{1/n} + C2^{-2k} \omega_{f,\xi}(2^{-k}) \\ &\leq C2^{-k} \|a_{ij}\|_{C_{\xi}^{\alpha}(B_{k})} \left[\int_{B_{k}} |x|^{n\alpha} |u_{x_{i}x_{j}}|^{n} dx \right]^{1/n} + C2^{-2k} \omega_{f,\xi}(2^{-k}) \\ &\leq C2^{-k} \|a_{ij}\|_{C_{\xi}^{\alpha}(B_{k})} \left[\left(\int_{B_{k}} |x|^{n\alpha p/(p-n)} dx \right)^{(p-n)/p} \left(\int_{B_{k}} |u_{x_{i}x_{j}}|^{p} dx \right)^{n/p} \right]^{1/n} \\ &\qquad \qquad + C2^{-2k} \omega_{f,\xi}(2^{-k}) \\ &\leq C2^{-k} \|a_{ij}\|_{C_{\xi}^{\alpha}(B_{k})} (2^{-k})^{\alpha+1-n/p} \|u\|_{W^{2,p}(B_{k})} + C2^{-2k} \omega_{f,\xi}(2^{-k}) \\ &\leq C(A \cdot (2^{-k})^{2+\alpha-n/p} + 2^{-2k} \omega_{f,\xi}(2^{-k})), \end{aligned}$$

where

$$A = \|u\|_{W^{2,p}(B_1)} \|a_{ij}\|_{C_{\varepsilon}^{\alpha}(\Omega)}.$$

Since the a_{ij} are continuous and satisfy the uniformly elliptic condition, by the $W^{2,p}$ estimate,

$$A \leq C(\|u\|_{L^p(\Omega)} + \|f\|_{L^p(\Omega)}) \|a_{ij}\|_{C_r^{\alpha}(\Omega)}.$$

Hence

$$(4-5) ||u_k - u_{k+1}||_{L^{\infty}(B_{k+1})} \le C\{A \cdot (2^{-k})^{2+\alpha-n/p} + 2^{-2k}\omega_{f,\xi}(2^{-k})\}$$

$$= C2^{-2k}\{A \cdot (2^{-k})^{\alpha-n/p} + \omega_{f,\xi}(2^{-k})\}.$$

Since $w_k := u_{k+1} - u_k$ satisfies

$$\hat{a}_{ij}(x)w_{x_ix_j}=0$$

in B_{k+1} , where the coefficients $\hat{a}_{ij}(x)$ are independent of x_1 , by differentiating the equation and by the $W^{2,p}$ estimate, we have

$$\|\partial_{\xi} w_k\|_{W^{2,p}(B_{k+2})} \le C2^{3k} \|w_k\|_{L^{\infty}(B_{k+1})}$$
 for all $p > 1$.

Hence by the Sobolev embedding theorem,

$$\|\partial_{\xi} w_k\|_{C^{1,\beta}(B_{k+2})} \le C 2^{2k+2\beta} \|w_k\|_{L^{\infty}(B_{k+1})}$$
 for all $\beta \in (0,1)$.

Therefore by rescaling,

$$\|\partial_{\xi}\partial_{x}w_{k}\|_{L^{\infty}(B_{k+2})} \leq C[A\cdot(2^{-k})^{\alpha-n/p} + \omega_{f,\xi}(2^{-k})],$$

$$(4-6) \qquad \|\partial_{\xi}\partial_{x}w\|_{C^{\beta}(B_{k+2})} \leq C2^{k\beta}[A\cdot(2^{-k})^{\alpha-n/p} + \omega_{f,\xi}(2^{-k})].$$

As the coefficients a_{ij} are continuous, the solution can be approximated by smooth solutions. Hence, to prove Theorem 1.4, we may assume that u is smooth, so that

$$D^2u_k(0) \to D^2u(0)$$
.

For y near 0, let $m \ge 1$ be such that

$$2^{-m-4} < |y| < 2^{-m-3}$$
.

Then

$$(4-7) \quad |\partial_{\xi}\partial_{x}u(y) - \partial_{\xi}\partial_{x}u(0)| \leq |\partial_{\xi}\partial_{x}u_{m}(y) - \partial_{\xi}\partial_{x}u_{m}(0)| + |\partial_{\xi}\partial_{x}u_{m}(0) - \partial_{\xi}\partial_{x}u(0)| + |\partial_{\xi}\partial_{x}u(y) - \partial_{\xi}\partial_{x}u(y)|.$$

We have

$$(4-8) |\partial_{\xi}\partial_{x}u_{m}(0) - \partial_{\xi}\partial_{x}u(0)| \leq \sum_{k=m}^{\infty} |\partial_{\xi}\partial_{x}u_{k}(0) - \partial_{\xi}\partial_{x}u_{k+1}(0)|$$

$$\leq C \sum_{k=m}^{\infty} [A \cdot (2^{-k})^{\alpha - n/p} + \omega_{f,\xi}(2^{-k})]$$

$$\leq C \left\{ A \cdot (2^{-m})^{\alpha - n/p} + \int_{0}^{|y|} \frac{\omega_{f,\xi}(r)}{r} \right\}$$

$$\leq C \left\{ A \cdot |y|^{\alpha - n/p} + \int_{0}^{|y|} \frac{\omega_{f,\xi}(r)}{r} \right\}.$$

Similarly,

$$|\partial_{\xi}\partial_{x}u(y) - \partial_{\xi}\partial_{x}u_{m}(y)| \leq C\left\{A \cdot |y|^{\alpha - n/p} + \int_{0}^{|y|} \frac{\omega_{f,\xi}(r)}{r}\right\}.$$

By (4-6) we have

$$(4-9) |\partial_{\xi}\partial_{x}w_{k}(y) - \partial_{\xi}\partial_{x}w_{k}(0)| \leq ||\partial_{\xi}\partial_{x}w_{k}||_{C^{\beta}(B_{k+2})}|y|^{\beta}$$

$$\leq C|y|^{\beta}2^{k\beta}[A\cdot(2^{-k})^{\alpha-n/p} + \omega_{f,\xi}(2^{-k})].$$

Write

$$u_m = u_1 + \sum_{k=1}^{m-1} w_k.$$

We have, for $\beta < \alpha - n/p$,

$$\begin{aligned} (4\text{-}10) \quad |\partial_{\xi}\partial_{x}u_{m}(y) - \partial_{\xi}\partial_{x}u_{m}(0)| \\ & \leq |\partial_{\xi}\partial_{x}u_{1}(y) - \partial_{\xi}\partial_{x}u_{1}(0)| + \sum_{k=1}^{m-1} |\partial_{\xi}\partial_{x}w_{k}(y) - \partial_{\xi}\partial_{x}w_{k}(0)| \\ & \leq C|y|^{\beta} \bigg(\|u_{1}\|_{L^{\infty}(\Omega)} + \sum_{k=1}^{m-1} 2^{k\beta} \Big(A \cdot (2^{-k})^{\alpha - n/p} + \omega_{f,\xi}(2^{-k}) \Big) \bigg) \\ & \leq C|y|^{\beta} \bigg(\|u\|_{L^{\infty}(\Omega)} + \|f\|_{L^{p}(\Omega)} + \int_{|y|}^{1} \frac{\omega_{f,\xi}(r)}{r^{1+\beta}} \Big). \end{aligned}$$

This completes the proof of Theorem 1.4.

5. Equation of divergence form

We consider the following linear elliptic equation of divergence form:

(5-1)
$$Lu = \operatorname{div}(A(x)\nabla u(x)) = \operatorname{div} f(x) \quad \text{in } \Omega,$$

where the coefficient matrix $A(x) = (a_{ij}(x))_{n \times n}$ satisfies the uniformly elliptic condition (1-2) and $f(x) = (f_1(x), f_2(x), \dots, f_n(x)) \in [L^p(\Omega)]^n$ for p > 1. We assume also that a_{ij} and f are analytic in x_n , and that there exists a constant B > 0 such that

$$(5-2) |\partial_{x_n}^k a_{ij}| + |\partial_{x_n}^k f| \le B^k k!$$

for all $k \geq 1$.

Definition 5.1. Let 1 . We say that <math>u is a solution to (5-1) if $u \in W^{1,p}_{loc}(\Omega)$ and satisfies

$$\int_{\Omega} a_{ij}(x)u_{x_j}\phi_{x_i} dx = \int_{\Omega} f(x)\phi_{x_i} dx$$

for all $\phi \in C_0^{\infty}(\Omega)$.

As before, we set $u' = u_{x_n}$, $u'' = u_{x_n x_n}$ and $u^{(k)} = \frac{\partial^k u}{\partial x_n^k}$ for all integers $k \ge 1$. We also define

$$[u]_{W^{1,p}(\Omega)} = ||Du||_{L^p(\Omega)},$$

$$(5-3) \qquad ||u^{(k)}||_{W^{1,p}(\Omega)}^{(\beta)} = \sup_{Q_r(x) \subset \Omega} d_{Q_r(x)}^{k+1-n/p+\beta} [u^{(k)}]_{W^{1,p}(Q_r(x))},$$

$$||u^{(k)}||_{L^p(\Omega)}^{(\beta)} = \sup_{Q_r(x) \subset \Omega} d_{Q_r(x)}^{k-n/p+\beta} ||u^{(k)}||_{L^p(Q_r(x))},$$

where $d_{Q_r(x)} = \operatorname{dist}(Q_r(x), \partial \Omega)$, k is a nonnegative integer, and p > 1 is a constant. By the $W^{1,p}$ estimate for the divergence form (5-1) in [Di Fazio 1996], we have:

Lemma 5.2. Let u be a solution to (5-1). Assume that the a_{ij} satisfy (1-2), $f \in [L^p(\Omega)]^n$ (p > 1) and $Q_R(x_0) \subset \Omega$. There exists a constant C such that, if $0 < r < r + \delta < R$, then

$$(5-4) [u]_{W^{1,p}(Q_r(x_0))} \le C \left\{ \frac{1}{\delta} \|u\|_{L^p(Q_{r+\delta}(x_0))} + \sum_{i=1}^n \|f_i\|_{L^p(Q_{r+\delta}(x_0))} \right\},$$

where the constant C depends only on n, p, λ , Λ .

By Lemma 5.2 we then have:

Theorem 5.3. Let u be a solution to (5-1). Assume that the a_{ij} satisfy (1-2) and $f \in [L^p(\Omega)]^n$ (p > n). Assume that the a_{ij} and f are analytic in the variable x_n . Then u is analytic in x_n .

The proofs of Lemma 5.2 and Theorem 5.3 are similar to those in Section 3 and are omitted here. Note that the assumption p > n in Theorem 5.3 is for the use of Sobolev embedding; namely, by the estimate $||u^{(k)}||_{W^{1,p}(Q_r(0))} \le C$ one infers that $|u^{(k)}(0)| \le C_1$.

References

[Cao and Titi 2008] C. Cao and E. S. Titi, "Regularity criteria for the three-dimensional Navier–Stokes equations", *Indiana Univ. Math. J.* **57**:6 (2008), 2643–2661. MR 2010b:35332 Zbl 1159.35053

[Cao and Titi 2011] C. Cao and E. S. Titi, "Global regularity criterion for the 3D Navier–Stokes equations involving one entry of the velocity gradient tensor", *Arch. Ration. Mech. Anal.* **202**:3 (2011), 919–932. MR 2854673 Zbl 1256.35051

[Chiarenza et al. 1993] F. Chiarenza, M. Frasca, and P. Longo, " $W^{2,p}$ -solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients", *Trans. Amer. Math. Soc.* **336**:2 (1993), 841–853. MR 93f:35232 Zbl 0818.35023

[Di Fazio 1996] G. Di Fazio, "L^p estimates for divergence form elliptic equations with discontinuous coefficients", *Boll. Un. Mat. Ital. A* (7) **10**:2 (1996), 409–420. MR 97e:35034 Zbl 0865.35048

[Dong 2012] H. J. Dong, "Gradient estimates for parabolic and elliptic systems from linear laminates", *Arch. Ration. Mech. Anal.* **205**:1 (2012), 119–149. MR 2927619 Zbl 1258.35040

[Dong and Kim 2011] H. J. Dong and S. Kim, "Partial Schauder estimates for second-order elliptic and parabolic equations", *Calc. Var. Partial Differential Equations* **40**:3-4 (2011), 481–500. MR 2012d:35025 Zbl 1221.35078

[Gilbarg and Trudinger 1998] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, revised 2nd ed., Grundlehren der Math. Wissenschaften 224, Springer, Berlin, 1998. MR 2001k:35004 Zbl 1042.35002

[Hörmander 1976] L. Hörmander, "The boundary problems of physical geodesy", *Arch. Ration. Mech. Anal.* **62**:1 (1976), 1–52. MR 58 #29202a Zbl 0331.35020

[Kim and Krylov 2007] D. Kim and N. V. Krylov, "Elliptic differential equations with coefficients measurable with respect to one variable and VMO with respect to the others", *SIAM J. Math. Anal.* **39**:2 (2007), 489–506. MR 2008j:35031 Zbl 1138.35308

[Kukavica and Ziane 2007] I. Kukavica and M. Ziane, "Navier–Stokes equations with regularity in one direction", J. Math. Phys. 48:6 (2007), Article ID #065203. MR 2008g:35155 Zbl 1144.81373

[Taylor 2000] M. E. Taylor, *Tools for PDE: pseudodifferential operators, paradifferential operators, and layer potentials*, Mathematical Surveys and Monographs **81**, American Mathematical Society, Providence, RI, 2000. MR 2001g:35004 Zbl 0963.35211

[Tian and Wang 2010] G. J. Tian and X.-J. Wang, "Partial regularity for elliptic equations", *Discrete Contin. Dyn. Syst.* **28**:3 (2010), 899–913. MR 2011e:35077 Zbl 1193.35025

[Wang 2006] X.-J. Wang, "Schauder estimates for elliptic and parabolic equations", *Chinese Ann. Math. Ser. B* **27**:6 (2006), 637–642. MR 2007f:35106 Zbl 1151.35329

Received July 14, 2014. Revised October 27, 2014.

YONGYANG JIN
DEPARTMENT OF APPLIED MATHEMATICS
ZHEJIANG UNIVERSITY OF TECHNOLOGY
HANGZHOU, 310023
CHINA

yongyang@zjut.edu.cn

Dongsheng Li School of Mathematics and Statistics Xi'an Jiaotong University Xi'an, 710049 China

lidsh@xjtu.edu.cn

XU-JIA WANG
CENTRE FOR MATHEMATICS AND ITS APPLICATIONS
AUSTRALIAN NATIONAL UNIVERSITY
CANBERRA ACT 0200
AUSTRALIA

xu-jia.wang@anu.edu.au

PACIFIC JOURNAL OF MATHEMATICS

msp.org/pjm

Founded in 1951 by E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)

EDITORS

Don Blasius (Managing Editor)
Department of Mathematics
University of California
Los Angeles, CA 90095-1555
blasius@math.ucla.edu

Paul Balmer Department of Mathematics University of California Los Angeles, CA 90095-1555 balmer@math.ucla.edu

Robert Finn
Department of Mathematics
Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Sorin Popa Department of Mathematics University of California Los Angeles, CA 90095-1555 popa@math.ucla.edu Vyjayanthi Chari Department of Mathematics University of California Riverside, CA 92521-0135 chari@math.ucr.edu

Kefeng Liu Department of Mathematics University of California Los Angeles, CA 90095-1555 liu@math.ucla.edu

Jie Qing Department of Mathematics University of California Santa Cruz, CA 95064 ging@cats.ucsc.edu Daryl Cooper
Department of Mathematics
University of California
Santa Barbara, CA 93106-3080
cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics
The University of Hong Kong
Pokfulam Rd., Hong Kong
jhlu@maths.hku.hk

Paul Yang Department of Mathematics Princeton University Princeton NJ 08544-1000 yang@math.princeton.edu

PRODUCTION

Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI
CALIFORNIA INST. OF TECHNOLOGY
INST. DE MATEMÁTICA PURA E APLICADA
KEIO UNIVERSITY
MATH. SCIENCES RESEARCH INSTITUTE
NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY
UNIV. OF BRITISH COLUMBIA
UNIV. OF CALIFORNIA, BERKELEY
UNIV. OF CALIFORNIA, DAVIS
UNIV. OF CALIFORNIA, LOS ANGELES
UNIV. OF CALIFORNIA, RIVERSIDE
UNIV. OF CALIFORNIA, SAN DIEGO
UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ
UNIV. OF MONTANA
UNIV. OF OREGON
UNIV. OF SUTHERN CALIFORNIA
UNIV. OF UTAH
UNIV. OF WASHINGTON
WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2015 is US \$420/year for the electronic version, and \$570/year for print and electronic. Subscriptions, requests for back issues and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box

Subscriptions, requests for back issues and changes of subscribers address should be sent to Pacinic Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and Web of Knowledge (Science Citation Index).

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall #3840, Berkeley, CA 94720-3840, is published twelve times a year. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLow® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/

© 2015 Mathematical Sciences Publishers

PACIFIC JOURNAL OF MATHEMATICS

Volume 276 No. 2 August 2015

Free evolution on algebras with two states, II MICHAEL ANSHELEVICH	257
	• • •
Systems of parameters and holonomicity of A-hypergeometric systems CHRISTINE BERKESCH ZAMAERE, STEPHEN GRIFFETH and EZRA MILLER	281
Complex interpolation and twisted twisted Hilbert spaces FÉLIX CABELLO SÁNCHEZ, JESÚS M. F. CASTILLO and NIGEL J. KALTON	287
The ramification group filtrations of certain function field extensions JEFFREY A. CASTAÑEDA and QINGQUAN WU	309
A mean field type flow, II: Existence and convergence JEAN-BAPTISTE CASTÉRAS	321
Isometric embedding of negatively curved complete surfaces in Lorentz–Minkowski space	347
BING-LONG CHEN and LE YIN	
The complex Monge–Ampère equation on some compact Hermitian manifolds JIANCHUN CHU	369
Topological and physical link theory are distinct ALEXANDER COWARD and JOEL HASS	387
The measures of asymmetry for coproducts of convex bodies QI Guo, JINFENG Guo and XUNLI SU	401
Regularity and analyticity of solutions in a direction for elliptic equations YONGYANG JIN, DONGSHENG LI and XU-JIA WANG	419
On the density theorem for the subdifferential of convex functions on Hadamard spaces	437
MINA MOVAHEDI, DARYOUSH BEHMARDI and SEYEDEHSOMAYEH HOSSEINI	
L ^p regularity of weighted Szegő projections on the unit disc SAMANGI MUNASINGHE and YUNUS E. ZEYTUNCU	449
Topology of complete Finsler manifolds admitting convex functions SORIN V. SABAU and KATSUHIRO SHIOHAMA	459
Variations of the telescope conjecture and Bousfield lattices for localized categories of spectra F. LUKE WOLCOTT	483