L T

/

1\

=y

Assembly of long error-prone reads using de

Bruijn graphs

Yu Lin®', Jeffrey Yuan®', Mikhail Kolmogorov®', Max W. Shen?, Mark Chaisson®, and Pavel A. Pevzner®?

aDepartment of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92092; and "Department of Genome Sciences,

University of Washington, Seattle, WA 98105

Edited by Michael S. Waterman, University of Southern California, Los Angeles, CA, and approved October 6, 2016 (received for review March 23, 2016)

The recent breakthroughs in assembling long error-prone reads
were based on the overlap-layout-consensus (OLC) approach and
did not utilize the strengths of the alternative de Bruijn graph
approach to genome assembly. Moreover, these studies often
assume that applications of the de Bruijn graph approach are lim-
ited to short and accurate reads and that the OLC approach is
the only practical paradigm for assembling long error-prone reads.
We show how to generalize de Bruijn graphs for assembling long
error-prone reads and describe the ABruijn assembler, which com-
bines the de Bruijn graph and the OLC approaches and results in
accurate genome reconstructions.

de Bruijn graph | genome assembly | single-molecule sequencing

he key challenge to the success of single-molecule sequenc-

ing (SMS) technologies lies in the development of algorithms
for assembling genomes from long but inaccurate reads. The pio-
neer in long reads technologies, Pacific Biosciences, now pro-
duces accurate assemblies from long error-prone reads (1, 2).
Goodwin et al. (3) and Loman et al. (4) demonstrated that
high-quality assemblies can be obtained from even less-accurate
Oxford Nanopore reads. Advances in assembly of long error-
prone reads recently resulted in the accurate reconstructions of
various genomes (5-10). However, as illustrated in Booher et
al. (11), the problem of assembling long error-prone reads is far
from being resolved even in the case of relatively small bacterial
genomes.

Previous studies of SMS assemblies were based on the overlap-
layout-consensus (OLC) approach (12) or a similar string graph
approach (13), which require an all-against-all comparison of
reads (14) and remain computationally challenging (see refs. 15—
17 for a discussion of the pros and cons of this approach). More-
over, there is an assumption that the de Bruijn graph approach,
which has dominated genome assembly for the last decade, is
inapplicable to long reads. This is a misunderstanding, because
the de Bruijn graph approach, as well as its variation called the
A-Bruijn graph approach, was developed to assemble rather long
Sanger reads (18). There is also a misunderstanding that the de
Bruijn graph approach can only assemble highly accurate reads
and fails when assembling long error-prone reads. Although this
is true for the original de Bruijn graph approach to assembly
(15-17), the A-Bruijn graph approach was originally designed
to assemble inaccurate reads as long as any similarities between
reads can be reliably identified. Moreover, A-Bruijn graphs have
proven to be useful even for assembling mass spectra, which rep-
resent highly inaccurate fingerprints of amino acid sequences
of peptides (19, 20). However, although A-Bruijn graphs have
proven to be useful in assembling Sanger reads and mass spec-
tra, the question of how to apply A-Bruijn graphs for assembling
long error-prone reads remains open.

de Bruijn graphs are a key algorithmic technique in genome
assembly (15, 21-24). In addition, de Bruijn graphs have been
used for sequencing by hybridization (25), repeat classifica-
tion (18), de novo protein sequencing (20), synteny block
construction (26), genotyping (27), and Ig classification (28).
A-Bruijn graphs are even more general than de Bruijn graphs;

E8396-E8405 | PNAS | Published online December 12, 2016

for example, they include breakpoint graphs, the workhorse of
genome-rearrangement studies (29).

However, as discussed in ref. 30, the original definition of a de
Bruijn graph is far from being optimal for the challenges posed
by the assembly problem. Below, we describe the concept of an
A-Bruijn graph, introduce the ABruijn assembler for long error-
prone reads, and demonstrate that it generates accurate genome
reconstructions.

The Key Idea of the ABruijn Algorithm

The Challenge of Assembling Long Error-Prone Reads. Given the
high error rates of SMS technologies, accurate assembly of long
repeats remains challenging. Also, frequent k-mers dramatically
increase the number of candidate overlaps, thus, complicating
the choice of the correct path in the overlap graph. A common
solution is to mask highly repetitive k-mers as done in the Celera
Assembler (31) and Falcon (32). However, such masking may
lead to losing some correct overlaps. Below we illustrate these
challenges using the Xanthomonas genomes as an example.

Booher et al. (11) recently sequenced various strains of the
plant pathogen Xanthomonas oryzae and revealed the striking
plasticity of transcription activator-like (fal) genes, which play
a key role in Xanthomonas infections. Each fal gene encodes a
TAL protein, which has a large domain formed by nearly identi-
cal TAL repeats. Because variations in fal genes and TAL repeats
are important for understanding the pathogenicity of various
Xanthomonas strains, massive sequencing of these strains is an
important task that may enable the development of novel mea-
sures for plant disease control (33, 34). However, assembling
Xanthomonas genomes using SMS reads (let alone, short reads)
remains challenging.

Significance

When the long reads generated using single-molecule se-
quencing (SMS) technology were made available, most
researchers were skeptical about the ability of existing algo-
rithms to generate high-quality assemblies from long error-
prone reads. Nevertheless, recent algorithmic breakthroughs
resulted in many successful SMS sequencing projects. How-
ever, as the recent assemblies of important plant pathogens
illustrate, the problem of assembling long error-prone reads
is far from being resolved even in the case of relatively short
bacterial genomes. We propose an algorithmic approach for
assembling long error-prone reads and describe the ABruijn
assembler, which results in accurate genome reconstructions.

Author contributions: Y.L,, J.Y., M.K., and P.A.P. designed research; Y.L., J.Y., M.K., M.W.S.,
and P.A.P. performed research; Y.L, M.K., and M.C. analyzed data; and Y.L, M.K., and
P.A.P. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Y.L, J.Y.,, and M.K. contributed equally to this work.

2To whom correspondence should be addressed. Email: ppevzner@ucsd.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi: 10.
1073/pnas.1604560113/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1604560113

mailto:ppevzner@ucsd.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1604560113/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1604560113/-/DCSupplemental
http://www.pnas.org/cgi/doi/10.1073/pnas.1604560113

L T

/

1\

=y

Depending on the strain, Xanthomonas genomes may harbor
over 20 tal genes with some tal genes encoding over 30 TAL
repeats. Assembling Xanthomonas genomes is further compli-
cated by the aggregation of various types of repeats into complex
regions that may extend for over 30 kb in length. These repeats
render Xanthomonas genomes nearly impossible to assemble
using short reads. Moreover, as Booher et al. (11) described,
existing SMS assemblers also fail to assemble Xanthomonas
genomes. The challenge of finishing draft genomes assembled
from SMS reads extends beyond Xanthomonas genomes (e.g.,
many genomes sequenced at the Centers for Disease Control are
being finished using optical mapping) (35).

Another challenge is using SMS technologies to assemble
metagenomics datasets with highly variable coverage across
various bacterial genomes. Because the existing assemblers
for long error-prone reads generate fragmented assemblies
of bacterial communities, there are as yet no publications
describing metagenomics applications of SMS technologies.
Below we benchmark ABruijn and other state-of-the-art SMS
assemblers on Xanthomonas genomes and the Bugula neritina
metagenome.

From de Bruijn Graphs to A-Bruijn Graphs. In the A-Bruijn graph
framework, the classical de Bruijn graph DB(String, k) of a
string String is defined as follows. Let Path(String, k) be a path
consisting of |String| — k + 1 edges, where the i-th edge of this
path is labeled by the i-th k-mer in String and the i-th vertex
of the path is labeled by the i-th (k-1)-mer in String. The de
Bruijn graph DB(String, k) is formed by gluing together iden-
tically labeled vertices in Path(String, k) (Fig. 1). Note that this
somewhat unusual definition results in exactly the same de Bruijn
graph as the standard definition (see ref. 36 for details).

We now consider an arbitrary substring-free set of strings V'
(which we refer to as a set of solid strings), where no string
in V is a substring of another one in V. The set V' consists
of words (of any length) and the new concept Path(String, V')
is defined as a path through all words from V appearing in
String (in order) as shown in Fig. 1. Afterward, we glue identi-
cally labeled vertices as before to construct the A-Bruijn graph
AB(String, V) as shown in Fig. 1. Clearly, DB(String, k) is
identical to AB(String,>." "), where 2" ~! stands for the set
of all (k-1)-mers in alphabet 3.

The definition of AB(String, V') generalizes to AB(Reads, V')
by constructing a path for each read in the set Reads and further
gluing all identically labeled vertices in all paths. Because the
draft genome is spelled by a path in AB(Reads, V') (18), it seems
that the only thing needed to apply the A-Bruijn graph concept
to SMS reads is to select an appropriate set of solid strings V, to
construct the graph AB(Reads, V'), to select an appropriate path
in this graph as a draft genome, and to correct errors in the draft
genome. Below we show how ABruijn addresses these tasks.

The Challenge of Selecting Solid Strings. Different approaches to
selecting solid strings affect the complexity of the resulting
A-Bruijn graph and may either enable further assembly using
the A-Bruijn graph or make it impractical. For example, when
the set of solid strings V ="' consists of all (k-1)-mers,
AB(Reads,S_F~") may be either too tangled (if k is small) or
too fragmented (if % is large).

Although this is true for both short accurate reads and long
error-prone reads, there is a key difference between these two
technologies with respect to their resulting A-Bruijn graphs. In
the case of Illumina reads, there exists a range of values & so
that one can apply various graph simplification procedures [e.g.,
bubble and tip removal (18, 23)] to enable further analysis of the
resulting graph. However, these graph simplification procedures
were developed for the case when the error rate in the reads does

Lin et al.

De Bruijn graph

A-Bruijn graph

GAT

DB(String, 3) AB(String,V)

Fig. 1. Constructing the de Bruijn graph (Left) and the A-Bruijn graph
(Right) for a circular String=CATCAGATAGGA. (Left) From Path(String, 3) to
DB(String, 3). (Right) From Path(String, V) to AB(String, V) for V = {CA, AT,
TC, AGA, TA, AC}. The figure illustrates the process of bringing the vertices
with the same label closer to each other (middle row) to eventually glue
them into a single vertex (bottom row). Note that some symbols of String
are not covered by strings in V. We assign integer shift(v, w) to the edge
(v, w) in this path to denote the difference between the positions of v and
w in String (i.e., the number of symbols between the start of v and the start
of w in String).

not exceed 1% and fail in the case of SMS reads where the error
rate exceeds 10%.

An Outline of the ABruijn Algorithm. We classify a k-mer as
genomic if it appears in the genome and nongenomic otherwise.
Ideally, we would like to select a set of solid strings containing all
genomic k-mers and no nongenomic k-mers.

Although the set of genomic k-mers occurring in the set of
reads is unknown, we show how to identify a large set of predom-
inantly genomic k-mers by selecting sufficiently frequent k-mers
in reads. However, this is not sufficient for assembly, because
some genomic k-mers are missing and some nongenomic k-mers
are present in the constructed set of solid k-mers. Moreover,
even if we were able to construct a very accurate set of genomic
k-mers, the de Bruijn graph constructed on this set would be
too tangled because typical values of k£ range from 15 to 25
(otherwise it is difficult to construct a good set of solid k-mers).
Instead, we construct the A-Bruijn graph on the set of identi-
fied solid k-mers rather than the de Bruijn graph on all k-mers
in reads. Although only a small fraction of the k-mers in each
read are solid (and hence this is a very incomplete representation
of reads), overlapping reads typically share many solid k-mers
(compared with nonoverlapping reads). Therefore, a rough esti-
mate of the overlap between two reads can be obtained by finding
the longest common subpath between the two read-paths using a
fast dynamic programming algorithm. Hence, the A-Bruijn graph
can function as an oracle, from which one can efficiently identify

PNAS | Published online December 12, 2016 | E8397

>
o
S
[~}
29
<m
o
o=
;Z
=2
£
&z
=
]
)

COMPUTER SCIENCES

L T

z

1\

=y

the overlaps of a given read with all other reads by considering all
possible overlaps at once. The genome is assembled by repeat-
edly applying this procedure and borrowing the path extension
paradigm from short read assemblers (37-39).

Each assembler should minimize the number of misassemblies
and the number of basecalling errors. The described approach
minimizes the number of misassemblies but results in an inac-
curate draft genome with many basecalling errors. We later
describe an error-correction approach, which results in accurate
genome reconstructions.

Assembling Long Error-Prone Reads

Selecting Solid Strings for Constructing A-Bruijn Graphs. We define
the frequency of a k-mer as the number of times this k-mer
appears in the reads and argue that frequent k-mers (for suffi-
ciently large k) are good candidates for the set of solid strings.
We define a (k, t)-mer as a k-mer that appears at least ¢ times in
the set of reads.

We classify a k-mer as unique (repeated) if it appears once
(multiple times) in the genome. Fig. 2 shows the histogram of
the number of unique/repeated/nongenomic 15-mers with given
frequencies for the ECOLI SMS dataset described in Results,
Datasets. As Fig. 2 illustrates, the lion’s share of 15-mers with fre-
quencies above a threshold ¢ are genomic (¢ = 7 for the ECOLI
dataset). To automatically select the parameter ¢, we compute
the number of k-mers with frequencies exceeding ¢, and select a
maximal ¢ such that this number exceeds the estimated genome
length. As Fig. 2 illustrates, this selection results in a small num-
ber of nongenomic k-mers while capturing most genomic k-mers.

Finding the Genomic Path in an A-Bruijn Graph. After construct-
ing an A-Bruijn graph, one faces the problem of finding a path
in this graph that corresponds to traversing the genome and
then correcting errors in the sequence spelled by this path (this
genomic path does not have to traverse all edges of the graph).
Because the long reads are merely paths in the A-Bruijn graph,
one can use the path extension paradigm (37-39) to derive the
genomic path from these (shorter) read-paths. exSPAnder (38)
is a module of the SPAdes assembler (24) that finds a genomic

8
10
107 B unique 15-mer
M repeated 15-mer
6
10 H non-genomic 15-mer
5
10

10°

10°
2
10
10
0

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Fig. 2. The histograms of the number of 15-mers with given fre-
quencies for the ECOLI dataset from Escherichia coli. The bars for
unique/repeated/nongenomic 15-mers for the E. coli genome are stacked
and shown in green/red/blue according to their fractions. ABruijn automat-
ically selects the parameter t and defines solid strings as all 15-mers with
frequencies at least t = 7 for the ECOLI dataset. We found that increas-
ing the automatically selected values of t by 1 results in equally accurate
assemblies. There exist 4.1, 0.1, and 0.5 million (3.9, 0.1, and 0.3 million)
unique, repeated, and nongenomic 15-mers, respectively, for ECOLI at t =7
(t =8). Although larger values of k (e.g., kK = 25) also produce high-quality
SMS assemblies, we found that selecting smaller rather than larger k results
in slightly better performance.

E8398 | www.pnas.org/cgi/doi/10.1073/pnas.1604560113

path in the assembly graph constructed from short reads based
either on read-pair paths or read-paths, which are derived from
SMS reads as in hybridSPAdes (40). Recent studies of bacterial
plankton (41), antibiotics resistance (42), and genome rearrange-
ments (43) demonstrated that hybridSPades works well even for
coassembly with less-accurate nanopore reads. Below we sketch
the hybridSPAdes algorithm (40) and show how to modify the
path extension paradigm to arrive at the ABruijn algorithm.

hybridSPAdes. hybridSPAdes uses SPAdes to construct the de
Bruijn graph solely from short accurate reads and transforms
it into an assembly graph by removing bubbles and tips (24). It
represents long error-prone reads as read-paths in the assembly
graph and uses them for repeat resolution.

A set of paths in a directed graph (referred to as Paths)
is consistent if the set of all edges in Paths forms a single
directed path in the graph. We further refer to this path as
ConsensusPath(Paths). The intuition for the notion of the con-
sistent (inconsistent) set of paths is that they are sampled from
a single segment (multiple segments) of the genomic path in the
assembly graph (see ref. 40).

A path P’ in a weighted graph overlaps with a path P if a suf-
ficiently long suffix of P (of total weight at least minQOuverlap)
coincides with a prefix of P’ and P does not contain the entire
path P’ as a subpath. Given a path P and a set of paths Paths,
we define Pathsminoveriap (P) as the set of all paths in Paths that
overlap with P.

Our sketch of hybridSPAdes omits some details and deviates
from the current implementation to make similarities with the
A-Bruijn graph approach more apparent (e.g., it assumes that
there are no chimeric reads and only shows an algorithm for con-
structing a single contig).

hybridSPAdes(ShortReads, LongReads, k, minOverlap)
construct the de Bruijn graph on k-mers from ShortReads
transform the de Bruijn graph into the assembly graph
ReadPaths < the set of paths in the assembly graph corresponding to
all reads from LongReads
InitialPath < an arbitrary read-path from ReadPaths
GrowingPath < InitialPath
while forever
OverlapPaths < ReadPathsy, inOveriap (GrowingPath)
if the set OwerlapPaths is consistent
if ConsensusPath(OverlapPaths) contains InitialPath
return the string spelled by GrowingPath (as the complete
genome)
if ConsensusPath(OwverlapPaths) overlaps with GrowingPath
extend GrowingPath by ConsensusPath(OverlapPaths)
else

return the string spelled by GrowingPath (as one of the contigs)

From hybridSPAdes to longSPAdes. Using the concept of the
A-Bruijn graph, a similar approach can be applied to assembling
long reads only. The pseudocode of longSPAdes differs from the
pseudocode of hybridSPAdes by only the top three lines shown
below:
longSPAdes(LongReads, k, t, minOverlap)

construct the A-Bruijn graph on (k, t)-mers from LongReads

transform the A-Bruijn graph into the assembly graph

We note that longSPAdes constructs a path spelling out an
error-prone draft genome that requires further error correction.
However, error correction of a draft genome is faster than the
error correction of individual reads before assembly in the OLC
approach (1-4).

Although hybridSPAdes and longSPAdes are similar,
longSPAdes is more difficult to implement because bubbles in
the A-Bruijn graph of error-prone long reads are more complex

Lin et al.

http://www.pnas.org/cgi/doi/10.1073/pnas.1604560113

L T

/

1\

=y

than bubbles in the de Bruijn graph of accurate short reads
(SI Appendix, section SI1). As a result, the existing graph sim-
plification algorithms fail to work for A-Bruijn graphs made
from long error-prone reads. Although it is possible to modify
the existing graph simplification procedures for long error-prone
reads (to be described elsewhere), this paper focuses on a differ-
ent approach that does not require graph simplification.

From longSPAdes to ABruijn. Instead of finding a genomic path in
the simplified A-Bruijn graph, ABruijn attempts to find a cor-
responding genomic path in the original A-Bruijn graph. This
approach leads to an algorithmic challenge: Although it is easy
to decide whether two reads overlap given an assembly graph, it
is not clear how to answer the same question in the context of
the A-Bruijn graph. Note that although the ABruijn pseudocode
below uses the same terms “overlapping” and “consistent” as
longSPAdes, these notions are defined differently in the context
of the A-Bruijn graph. The new notions (as well as parameters
Jumyp and mazOverhang) are described below.

ABruijn(LongReads, k, t, minOverlap, jump, mazxOverhang)
construct the A-Bruijn graph on (k, t)-mers from LongReads
ReadPaths < the set of paths in the assembly graph corresponding to
all reads from LongReads
InitialPath < an arbitrary read-path in the A-Bruijn graph
GrowingPath < InitialPath
ReadPath < InitialPath
while forever
OwverlapPaths < all paths in ReadPaths overlapping ReadPath
(w.r.t. minOwverlap, jump and maxOverhang)
if the set OwerlapPaths is consistent
if InitialPath is a consistent path in OwverlapPaths
return the string spelled by GrowingPath (as a circular
contig)
ConsensusPath < a most-consistent path in OwerlapPaths
extend GrowingPath by ConsensusPath
ReadPath < ConsensusPath
else

return the string spelled by GrowingPath (as one of the contigs)

The constructed path in the A-Bruijn graph spells out an error-
prone draft genome (or one of the draft contigs). For simplicity,
the pseudocode above describes the construction of a single con-
tig and does not cover the error-correction step. In reality, after
a contig is constructed, ABruijn maps all reads to this contig and
uses the remaining reads to iteratively construct other contigs.
Also, ABruijn attempts to extend the path to the “left” if the
path extension to the “right” halts.

Common jump-Subpaths. Given a path P in a weighted directed
graph (weights correspond to shifts in the A-Bruijn graph), we
refer to the distance dp(v, w) along path P between vertices v
and w in this path (i.e., the sum of the weights of all edges in the
path) as the P-distance. The span of a subpath of a path P is
defined as the P-distance from the first to the last vertex of this
subpath.

Given a parameter jump, a jump-subpath of P is a subse-
quence of vertices v; ... v, in P such that dp(vi, vit1) < jump
for all ¢ from 1 to ¢t—1. We define Pathjum,(P) as a jump-
subpath with the maximum span out of all jump-subpaths of a
path P.

A sequence of vertices in a weighted directed graph is called
a common jump-subpath of paths P; and P, if it is a jump-
subpath of both P; and P, (Fig. 3). The span of a common jump-
subpath of P; and P is defined as its span with respect to path
P1 (note that this definition is nonsymmetric with respect to P;
and P»). We refer to a common jump-subpath of paths P; and
P, with the maximum span as Pathjumy (P1, P2) (With ties broken
arbitrarily).

Lin et al.

425 494 455 475 453 453 721 758

Fig. 3. Two overlapping reads from the ECOLI dataset and their common
jump-subpath with maximum span that contains 50 vertices and has span
6,714 with respect to the bottom read (for jump =1,000). The left and right
overhangs for these reads are 425 and 434. The weights of the edges in the
A-Bruijn graph are shown only if they exceed 400 bp.

Below we describe how the ABruijn assembler uses the notion
of common jump-subpaths with maximum span to detect over-
lapping reads.

Finding a Common jump-Subpath with Maximum Span. For the sake
of simplicity, below we limit our attention to the case when paths
P, and P, traverse each of their shared vertices exactly once.

A vertex w is a jump-predecessor of a vertex v in a path P if
P traverses w before traversing v and dp(w, v) < jump.

We define P(v) as the subpath of P from its first vertex
to v. Given a vertex v shared between paths P; and P>, we
define spanjump (v) as the largest span among all common jump-
subpaths of paths P; (v) and P2(v) ending in v. The dynamic pro-
gramming algorithm for finding a common jump-subpath with
the maximum span is based on the following recurrence:

max
all jump-predecessors w of v in Py and Po

SPAT jumyp (v) = {Spanjump (w) + dPl (w, U)}

Given all paths sharing vertices with a path P, common jump-
subpaths with maximum span with P for all of them can be
computed using a single scan of P. See SI Appendix, section
SI1 for a fast heuristic for finding a common jump-subpath with
maximum span.

Overlapping Paths in A-Bruijn Graphs. We define the right over-
hang between paths P; and P> as the minimum of the distances
from the last vertex in Pathjump(P1, P2) to the ends of P; and
P5. Similarly, the left overhang between paths P, and P is the
minimum of the distances from the starts of P, and P- to the first
vertex in Pathjump (P1, P2).

Given parameters jump, minQOuverlap and mazOverhang, we
say that paths P; and P, overlap if they share a common
jump-subpath of span at least minOuverlap and their right
and left overhangs do not exceed mazOQOverhang. To decide
whether two reads have arisen from two overlapping regions
in the genome, ABruijn checks whether their correspond-
ing read-paths P; and P» overlap (with respect to parame-
ters jump, minOuverlap, and mazOverhang). Given overlapping
paths P; and P, we say that P; is supported by P, if the
P -distance from the last vertex in Pathjump(P1, P2) to the end
of P; is smaller than the P»-distance from the last vertex in
Pathjump(P1, P2) to the end of P,. SI Appendix, section SI2
describes the range of parameters that work well for genome
assembly.

Additional Complications with the Implementation of the Path Exten-
sion Paradigm. Although it seems that the notion of overlapping
paths allows us to implement the path extension paradigm for
A-Bruijn graphs, there are two complications. First, the path
extension algorithm becomes more complex when the growing
path ends in a long repeat (39). Second, chimeric reads may end
up in the set of overlapping read-paths extending the growing
path in the ABruijn algorithm. Also, a set of extension candi-
dates may include a small fraction of spurious reads from other
regions of the genome (see SI Appendix, section SI2 for statistics

PNAS | Published online December 12, 2016 | E8399

BIOPHYSICS AND

COMPUTER SCIENCES

>
o
o
=
]
@
-
<
=
=]
=
<
=
>
a
=
o
o

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1604560113/-/DCSupplemental/pnas.1604560113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1604560113/-/DCSupplemental/pnas.1604560113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1604560113/-/DCSupplemental/pnas.1604560113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1604560113/-/DCSupplemental/pnas.1604560113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1604560113/-/DCSupplemental/pnas.1604560113.sapp.pdf

L T

/

1\

BN AS PNAS D)

on spurious overlaps). Below we describe how ABruijn addresses
these complications.

Most-Consistent Paths. Given a path P in a set of paths Paths,
we define rightSupportpauns (P) as the number of paths in Paths
that support P. leftSupportpans(P) is defined as the number
of paths in Paths that are supported by P. We also define
Supportpans(P) as the minimum of rightSupportpasns (P) and
leftSupportpauns (P). A path P is most-consistent if it maximizes
Supportpans (P) among all paths in Paths (Fig. 4, Top).

Given a set of paths Paths overlapping with ReadPath,
ABruijn selects a most-consistent path for extending ReadPath.
Our rationale for selecting a most-consistent path is based on the
observation that chimeric and spurious reads usually have either
limited support or themselves support few other reads from the
set Paths. For example, a chimeric read in Paths with a spurious
suffix may support many reads in Paths but is unlikely to be sup-

Ps rightSupport = 0, leftSupport = 4, Support=0
>
rightSupport = 1, leftSupport = 4, Support = 1
Ps g pp ftSupy Py >

rightSupport = 2, leftSupport = 2, Support = 2

P3

rightSupport = 3, leftSupport = 1, Support = 1

GrowingPath

GrowingPath

Fig. 4. (Top) A growing path (shown in green) and a set of five paths Paths
above it (extending this path). The gray path with Supportp,is(P) = 2 is the
most-consistent path in the set Paths. (Middle) A growing path (shown in
green) ending in a repeat (represented by the internal edge in the graph),
and eight read-paths that extend this growing path (five correct extensions
shown in blue and three incorrect extensions shown in red. (Bottom) A sup-
port graph for the above eight read-paths. Note that the blue read-path 1 is
connected by edges with all red read-paths because it is supported by all red
paths even though these paths do not contain any short suffix of read-path
1 (the ABruijn graph framework is less sensitive than the de Bruijn graph
framework with respect to overlap detection).

E8400 | www.pnas.org/cgi/doi/10.1073/pnas.1604560113

ported by any reads in Paths. SI Appendix, section SI1 describes
how ABruijn detects chimeric reads.

Support Graphs. When exSPAnder extends the growing path, it
takes into account the local repeat structure of the de Bruijn
graph, resulting in a rather complex decision rule in the case
when the growing path contains a repeat (38, 39). Fig. 4, Middle
shows a fragment of the de Bruijn graph with a repeat of mul-
tiplicity 2 (internal edge), a growing path ending in this repeat
(shown in green), and eight read-paths that extend this growing
path. exSPAnder analyzes the subgraph of the de Bruijn graph
traversed by the growing path, ignores paths starting in the edges
corresponding to repeats, and selects the remaining paths as can-
didates for an extension (reads 1, 2, and 3 in Fig. 4, Middle).
Below we show how to detect that a growing path ends in a
repeat in the absence of the de Bruijn graph and how to ana-
lyze read-paths ending/starting in a repeat in the A-Bruijn graph
framework.

Fig. 4, Bottom shows a support graph with eight vertices (each
vertex corresponds to a read-path in Fig. 4, Middle. There is
an edge from a vertex v to a vertex w in this graph if read v
is supported by read w. The vertex of this graph with maximal
indegree corresponds to the rightmost blue read-path (read 8)
and reveals four other blue read-paths as its predecessors, that
is, vertices connected to the vertex 8 (cluster of blue vertices in
Fig. 4, Bottom). The remaining three vertices in the graph rep-
resent incorrect extensions of the growing path and reveal that
this growing path ends in a repeat (cluster of red vertices in
Fig. 4, Bottom). This toy example illustrates that decomposing
the vertices of the support graph into clusters helps to answer the
question of whether the growing path ends in a repeat (multiple
clusters) or not (single cluster).

Although exSPAnder and ABruijn face a similar challenge
while analyzing repeats, the A-Bruijn graph, in contrast to the
de Bruijn graph, does not reveal local repeat structure. How-
ever, it allows one to detect reads ending in long repeats using
an approach that is similar to the approach illustrated in Fig. 4.
Below we show how to detect such reads and how to incorporate
their analysis in the decision rule of ABruijn.

Identifying Reads Ending/Starting in a Repeat. Given a set of reads
Reads supporting a given read, we construct a support graph
G(Reads) on |Reads| vertices. We further construct the transi-
tive closure of this graph, denoted G*(Reads), using the Floyd—
Warshall algorithm. Fig. 5 presents the graph G(Reads) for a
read that does not end in a long repeat and for another read that
ends in a long repeat.

ABruijn partitions the set of vertices in the graph G (Reads)
into nonoverlapping clusters as follows. It selects a vertex v with
maximum indegree in G*(Reads) and, if this indegree exceeds
a threshold (the default value is 1), removes this vertex along
with all its predecessors from the graph. We refer to the set of
removed vertices as a cluster of reads and iteratively repeat this
procedure on the remaining subgraph until no vertex in the graph
has indegree exceeding the threshold. Fig. 5 illustrates that this
decomposition results in a single cluster for a read that does not
end in a repeat and in two clusters for a read that ends in a repeat.

We classify a read as a read ending in a repeat if the number
of clusters in G*(Reads) exceeds 1 (the notion of a read starting
from a repeat is defined similarly). A set of reads is called incon-
sistent if all reads in this set either end or start in a repeat, and
consistent otherwise. ABruijn detects all reads ending and start-
ing in a repeat before the start of the path extension algorithm;
3.2 and 6.4% of all reads in ECOLI and BLS datasets, respec-
tively, end in repeats.

The Path Extension Paradigm and Repeats. ABruijn attempts to
exclude reads ending in repeats while selecting a read that

Lin et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1604560113/-/DCSupplemental/pnas.1604560113.sapp.pdf
http://www.pnas.org/cgi/doi/10.1073/pnas.1604560113

g

W
(12861 (4895

Fig. 5. (Left) Support graph G(Reads) for a read in the BLS dataset (Results,
Datasets) that does not end in a long repeat. Reads in the BLS dataset
are numbered in order of their appearance along the genome. The green
vertex represents a chimeric read. The blue vertex has maximum degree
in G*(Reads) and reveals a single cluster consisting of all vertices but the
green one. A vertex 281 with large indegree (5) and large outdegree (3) in
G*(Reads) is a most-consistent read-path, and it is selected for path exten-
sion (unless it ends in a repeat). (Right) Support graph G*(Reads) for a read
in the BLS dataset that ends in a long repeat. The green vertex represents
a chimeric read. The blue vertex has maximum degree in G*(Reads) and
reveals a cluster consisting of nine blue vertices. The vertex 4901 with large
indegree (4) and large outdegree (4) in G*(Reads) is a most-consistent read-
path, and it is selected for path extension if it does not start in a repeat. The
red vertex reveals another cluster consisting of five red vertices. Generally,
we expect that a read ending in a long repeat of multiplicity m will result
in m clusters because reads originating different instances of this repeat are
not expected to support each other and, thus, are not connected by edges
in G*(Reads).

extends the growing path. Because this is not always possible,
below we describe two cases: The growing path does not end in a
repeat and the growing path ends in a repeat.

If the growing path does not end in a repeat, our goal is to
exclude chimeric and spurious reads during the path extension
process. ABruijn, thus, selects a read from Reads that (i) does
not end in a repeat and (if) supports many reads and is sup-
ported by many reads. Condition ii translates into selecting a ver-
tex whose indegree and outdegree are both large (i.e., a most-
consistent path). In the case that all reads in Reads end in a
repeat, ABruijn selects a read that satisfies the condition ii but
ends in a repeat.

If the growing path ends in a repeat, ABruijn uses a strat-
egy similar to exSPAnder to avoid reads that start in a repeat
as extension candidates (e.g., all reads in Fig. 4, Middle except
for reads 1, 2, and 3). It thus selects a read from Reads that (7)
does not start in a repeat and (ii) supports many reads and is sup-
ported by many reads. To satisfy condition ii, ABruijn selects a
most-consistent read among all reads in Reads that do not start
in a repeat. If there are no such reads, ABruijn halts the path
extension procedure.

Correcting Errors in the Draft Genome

Matching Reads Against the Draft Genome. ABruijn uses BLASR
(44) to align all reads against the draft genome. It further com-
bines pairwise alignments of all reads into a multiple alignment.
Because this alignment against the error-prone draft genome is
rather inaccurate, we need to modify it into a different alignment
that we will use for error correction.

Our goal now is to partition the multiple alignment of reads to
the entire draft genome into thousands of short segments (mini-
alignments) and to error-correct each segment into the consen-
sus string of the mini-alignment. The motivation for constructing
mini-alignments is to enable accurate error-correction methods

Lin et al.

that are fast when applied to short segments of reads but become
too slow in the case of long segments.

The task of constructing mini-alignments is not as simple as
it may appear. For example, breaking the multiple alignment
into segments of fixed size will result in inaccurate consensus
sequences because a region in a read aligned to a particular seg-
ment of the draft genome has not necessarily arisen from this
segment [e.g., it may have arisen from a neighboring segment
or from a different instance of a repeat (misaligned segments)].
Because many segments in BLASR alignments are misaligned,
the accuracy of our error-correction approach (that is designed
for well-aligned reads) may deteriorate.

We, thus, search for a good partition of the draft genome that
satisfies the following criteria: (/) Most segments in the partition
are short, so that the algorithm for their error-correction is fast,
and (i) with high probability, the region of each read aligned to a
given segment in the partition represents an error-prone version
of this segment. Below we show how to construct a good partition
by building an A-Bruijn graph.

Defining Solid Regions in the Draft Genome. We refer to a position
(column) of the alignment with the space symbol “-” in the ref-
erence sequence as a nonreference position (column) and to all
other positions as a reference position (column). We refer to the
column in the multiple alignment containing the i-th position in
a given region of the reference genome as the i-th column. The
total number of reads covering a position ¢ in the alignment is
referred to as Cov ().

A nonspace symbol in a reference column of the alignment
is classified as a match (or a substitution) if it matches (or does
not match, respectively) the reference symbol in this column. A
space symbol in a reference column of the alignment is classified
as a deletion. We refer to the number of matches, substitutions,
and deletions in the i-th column of the alignment as Match(z),
Sub(), and Del(i), respectively. We refer to a nonspace symbol
in a nonreference column as an insertion and denote Ins(i) as
the number of nucleotides in the nonreference columns flanked
between the reference columns ¢ and i + 1 (Fig. 6).

For each reference position i, Cov(i) = Match(i) + Sub(%) +
Del(i). We define the match, substitution, and insertion rates at
position ¢ as Match(z)/Cov(z), Sub(z)/ Cov(z), Del(i)/Cov(3),
and Ins(i)/Cov(i), respectively. Given an [-mer in a draft
genome, we define its local match rate as the minimum match
rate among the positions within this /[-mer. We further define
its local insertion rate as the maximum insertion rate among the
positions within this /-mer.

An [-mer in the draft genome is called («, 3)-solid if its local
match rate exceeds « and its local insertion rate does not exceed
B. When « is large and § is small, («, 8)-solid I-mers typically
represent the correct {-mers from the genome. The last row in
Fig. 6, Bottom Left shows all of the (0.8, 0.2)-solid 4-mers in the
draft genome. SI Appendix, section SI3 describes how to use the
draft genome to construct mini-alignments, demonstrates that
(0.8, 0.2)-solid [-mers in the draft genome are extremely accu-
rate, and describes the choice of parameters o and 3 that work
well for assembly.

The contiguous sequence of («, 8)-solid I-mers forms a solid
region. There are 139,585 solid regions in the draft assembly of
the ECOLI dataset (for [=10). Our goal now is to select a posi-
tion within each solid region (referred to as a landmark) and to
form mini-alignments from the segments of reads spanning the
intervals between two consecutive landmarks.

Breaking the Multiple Alignment into Mini-Alignments. Because
(a, B)-solid I-mers are very accurate (for appropriate choices of
o, B and [), we use them to construct yet another A-Bruijn graph
with much simpler bubbles. Because analyzing errors in homonu-
cleotide runs is a difficult problem (2), we select landmarks

PNAS | Published online December 12, 2016 | E8401

BIOPHYSICS AND

COMPUTER SCIENCES

>
o
o
=
]
@
-
<
=
=
=
<
=
>
o
=
(=}
o

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1604560113/-/DCSupplemental/pnas.1604560113.sapp.pdf

L T

/

1\

=y

H

N A0 Q0 QaQ Q@
|
Q

ref

read;

ref

reads,

ref

reads

ref

ready

ref

reads

Coe
HE B
HH

> >
R Qe B
QAR
H4 aa
HH aa
aa B
H e

Qr >
HH HH HH HH Q0

aa »a aa
TR B Bl e Q0

L 2 e Ko
> 00 Q0

T
HH HH =88 A4
e
Qo
Ha aa aa aa =
Qe Qo
HH H8 Ao

=
>» aa o
HH B> >P> Q0

>Q >

- N
i

ref
read;
reads;
reads
ready
reads

> >

> >

Path(read;, V)

ATGA,

GAAATCA GTCAT
? ?

read;

CATTCA GITCA
? ?

(ATGA,

readsy

GAAACA, TCCTCGAR
? ?

[ATGA,

reads

OO0

> Q>

GAAACA,

@ CAGGTA,

GTATTACA;

read,

?

GTCTTAAR
?

reads

RN
RAQQRG

AB(Alignment)

Cov(z)
Match(t)
Del(i)
Sub(i)
Ins(z) 2 4 1 3

\ (ATGA,1)

cCowupp B
orkhaHHHHA

~oruRONR®
cowupp P>
NOw O QB BRR RO
~okruoHOQOQOOQOQQ®
cowup P>
OCRATAN QQQ®
couwuHHHHEHAH®
mReaQPrQ QQ5
orRAuHHRA

H

Fig. 6.

GTCAT

GAAATCA

GTTCA

~RrwaPQ0 Qg
Q
cowupppE PRy
orHBaHHR
m~oRaBEQEERS

(=2 N

TCCTCGA'
?

SCATTAC,
CTTA,

(Top Left) The pairwise alignments between a reference region ref in the draft genome and five reads Reads = {reads, read,, reads, reads, reads}.

All inserted symbols in these reads with respect to the region ref are colored in blue. (Bottom Left) The multiple alignment Alignment constructed
from the above pairwise alignments along with the values of Cov(i), Match(i), Del(i), Sub(i) and Ins(i). The last row shows the set V of (0.8, 0.2)-solid 4-
mers. The nonreference columns in the alignment are not numbered. (Right) Constructing AB(Alignment), that is, combining all paths Path(read;, V) into
AB(Alignment). Note that the 4-mer ATGA corresponds to two different nodes with labels 1 and 13. The three boundaries of the mini-alignments are
between positions 2 and 3, 7 and 8, and 14 and 15. The two resulting necklaces are formed by segments { GAATCA, GATTCA, GAAACA, GAAACA, GAGGTA}

and {GTCAT, GTTCA, TCCTCGAT, GTATTACAT, GTCTTAAT}.

outside homonucleotide runs as described in SI Appendix,
section SI3. ABruijn analyzes each mini-alignment and error-
corrects each segment between consecutive landmarks (the aver-
age length of these segments is only ~30 nucleotides).

Constructing the A-Bruijn Graph on Solid Regions in the Draft
Genome. We refer to the multiple alignment of all reads against
the draft genome as Alignment. We label each landmark by
its landmark position in Alignment and break each read into a
sequence of segments aligned between consecutive landmarks.
We further represent each read as a directed path through the
vertices corresponding to the landmarks that it spans over. To
construct the A-Bruijn graph AB(Alignment), we glue all iden-
tically labeled vertices in the set of paths resulting from the reads
(Fig. 6, Right).

Labeling vertices by their positions in the draft genome (rather
than the sequences of landmarks) distinguishes identical land-
marks from different regions of the genome and prevents exces-
sive gluing of vertices in the A-Bruijn graph AB(Alignment).
We note that whereas the A-Bruijn graph constructed from
reads is very complex, the A-Bruijn graph AB(Alignment) con-
structed from reads aligned to the draft genome is rather simple.
Although there are many bubbles in this graph, each bubble is
simple, making the error correction step fast and accurate.

The edges between two consecutive landmarks (two vertices
in the A-Bruijn graph) form a necklace consisting of segments
from different reads that align to the region flanked by these
landmarks (Fig. 6, Right shows two necklaces). Below we describe
how ABruijn constructs a consensus for each necklace (called the
necklace consensus) and transforms the inaccurate draft genome
for the ECOLI dataset into a polished genome to reduce the
error rate to 0.0004% for the ECOLI dataset (only 19 putative
errors for the entire genome).

A Probabilistic Model for Necklace Polishing. Each necklace con-
tains read-segments Segments = {segi, sega, . . ., segm } and our

E8402 | www.pnas.org/cgi/doi/10.1073/pnas.1604560113

goal is to find a consensus sequence Consensus maximizing
Pr(Segments|Consensus) = [[;~, Pr(seg;|Consensus), where
Pr(seg;|Consensus) is the probability of generating a segment
seg; from a consensus sequence Consensus. Given an align-
ment between a segment seg; and a consensus Consensus, we
define Pr(seg;|Consensus) as the product of all match, mis-
match, insertion, and deletion rates for all positions in this
alignment.

The match, mismatch, insertion, and deletion rates should be
derived using an alignment of any set of reads to any reference
genome. SI Appendix, section SI4 illustrates that the statistical
parameters for the P6-C4 Pacific Bioscience datasets are nearly
identical to the parameters of the older P5-C3 protocol.

ABruijn selects a segment of median length from each neck-
lace and iteratively checks whether the consensus sequence for
each necklace can be improved by introducing a single muta-
tion in the selected segment. If there exists a mutation that
increases Pr(Segments|Consensus), we select the mutation that
results in the maximum increase and iterate until convergence.
We further output the final sequence as the error-corrected
sequence of the necklace. As described in ref. 2, this greedy
strategy can be implemented efficiently because a mutation max-
imizing Pr(Segments|Consensus) among all possible mutated
sequences can be found in a single run of the forward-backward
dynamic programming algorithm for each sequence in Segments.
The error rate after this step drops to 0.003% for the ECOLI
dataset.

Error-Correcting Homonucleotide Runs. The probabilistic approach
described above works well for most necklaces but its perfor-
mance deteriorates when it faces the difficult problem of estimat-
ing the lengths of homonucleotide runs, which account for 46%
of the E. coli genome (see discussion on pulse merging in ref. 2).
We, thus, complement this approach with a homonucleotide like-
lihood function based on the statistics of homonucleotide runs.
In contrast to previous approaches to error-correction of long

Lin et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1604560113/-/DCSupplemental/pnas.1604560113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1604560113/-/DCSupplemental/pnas.1604560113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1604560113/-/DCSupplemental/pnas.1604560113.sapp.pdf
http://www.pnas.org/cgi/doi/10.1073/pnas.1604560113

L T

/

1\

=y

error-prone reads, this new likelihood function incorporates all
corrupted versions of all homonucleotide runs across the train-
ing set of reads and reduces the error rate sevenfold (from 0.003
to 0.0004% for the ECOLI dataset) compared with the standard
likelihood approach.

To generate the statistics of homonucleotide runs, we need
an arbitrary set of reads aligned against a training reference
genome. For each homonucleotide run in the genome and each
read spanning this run, we represent the aligned segment of
this read simply as the set of its nucleotide counts. For exam-
ple, if a run AAAAAAA in the genome is aligned against
AATTACA in a read, we represent this read-segment as 4A3X,
where X stands for any nucleotide differing from A. After col-
lecting this information for all runs of AAAAAAA in the ref-
erence genome, we obtain the statistics for all read segments
covering all instances of the homonucleotide run AAAAAAA
(SI Appendix, section SI4). We further use the frequencies in
this table for computing the likelihood function as the product
of these frequencies for all reads in each necklace (frequen-
cies below a threshold 0.001 are ignored). It turned out that
the frequencies in the resulting table hardly change when one
changes the dataset of reads, the reference genome, or even
the sequencing protocol from P6-C4 to the older P5-C3. To
decide on the length of a homonucleotide run, we simply select
the length of the run that maximizes the likelihood function.
For example, using the frequencies from SI Appendix, Table S2,
if Segments = {5A,6A4,6A4,7A,6A1C}, Pr(Segments|6A) =
0.156 x 0.4392 x 0.115 x 0.074 > Pr(Segments|7A) = 0.049 x
0.156% x0.385x0.045 and we select AAAAAA over AAAAAAA
as the necklace consensus.

Although the described error-correcting approach results in a
very low error rate even after a single iteration, ABruijn realigns
all reads and error-corrects the prepolished genome in an itera-
tive fashion (three iterations by default).

Results

Because CANU (1) improved on PBcR (45) with respect to both
speed and accuracy, we limited our benchmarking to ABruijn
and CANU v1.2 using the following datasets.

Datasets. The E. coli KI2 dataset (46) (referred to as ECOLI)
contains 10,277 reads with ~55x coverage generated using the
P6-C4 Pacific Biosciences technology.

The E. coli K12 Oxford Nanopore dataset (4) (referred to as
ECOLlIun0) contains 22,270 reads with ~29x coverage.

The BLS and PXO datasets were derived from X. oryzae strains
BLS256 and PXO99A previously assembled using Sanger reads
(47, 48) and reassembled using Pacific Biosciences P6-C4 reads
in Booher et al. (11). The BLS dataset contains 89,634 reads
(=234 x coverage), and the PXO dataset contains 55,808 reads
(=141x coverage). The assembly of BLS and PXO datasets
is particularly challenging because these genomes have a large
number of fal genes.

The B. neritina dataset (referred as BNE) contains 1,127,494
reads (estimated coverage ~25x) generated using the P6-C4
Pacific Biosciences technology. B. neritina is a microscopic
marine eukaryote that forms colonies attached to the wetted
surfaces and forms symbiotic communities with various bacte-
ria. B. neritina is the source of bryostatin, an anticancer and
memory-enhancing compound (49). B. neritina is also a model
organism for biofouling, studies of accumulation of various
organisms on wetted surfaces that present a risk to underwater
construction.

The symbiotic bacteria live inside of B. neritina making it
impossible to isolate the B. neritina DNA from the bacterial
DNA for genome sequencing. As the result, despite the impor-
tance of B. neritina, all attempts to sequence it so far have
failed (50). The total genome size of the symbiotic bacteria in

Lin et al.

B. neritina is significantly larger than the estimated size of the
B. neritina genome (135 Mb). Thus, sequencing B. neritina
presents a complex metagenomics challenge.

We have also assembled the S. cerevisiae W303 genome (S/
Appendix, section SIS).

The Challenge of Benchmarking SMS Assemblies. High-quality
short-read bacterial assemblies typically have error-rates on the
order of 107°, which typically result in 50 to 100 errors per
assembled genome (51). Because assemblies of high-coverage
SMS datasets are often even more accurate than assemblies of
short reads, short-read assemblies do not represent a gold stan-
dard for estimating the accuracy of SMS assemblies. Moreover,
the E. coli K12 strain used for SMS sequencing of the ECOLI
dataset differs from the reference genome. Thus, the standard
benchmarking approach based on comparison with the reference
genome (52) is not applicable to these assemblies.

We used the following approach to benchmark ABruijn and
CANU against the reference E. coli KI2 genome. There are
2,892 and 2,887 positions in E. coli K12 genome where the refer-
ence sequence differs from ABruijn and CANU +Quiver, respec-
tively. However, ABruijn and CANU+Quiver agree on 2,873 of
them, suggesting that most of these positions represent muta-
tions in E. coli K12 compared with the reference genome. Both
CANU+Quiver and ABruijn suggest that the ECOLI dataset
was derived from a strain that differs from the reference E. coli
K12 genome by a 1,798-bp inversion, two insertions (776 and
180 bp), one deletion (112 bp), and seven other single positions.
We, thus, revised the E. coli KI2 genome to account for these
variations and classified a position as an ABruijn error if the
CANU +Quiver sequence at this position agreed with the revised
reference but not with the ABruijn sequence (CANU errors are
defined analogously).

Assembling the ECOLI Dataset. ABruijn and CANU assembled the
ECOLI dataset into a single circular contig structurally concor-
dant with the E. coli genome. We further estimated the accu-
racy of ABruijn and CANU in projects with lower coverage by
down-sampling the reads from ECOLI. For each value of cover-
age, we made five independent replicas and analyzed errors in all
of them.

In contrast to ABruijn, CANU does not explicitly circular-
ize the reconstructed bacterial chromosomes but instead outputs
each linear contig with an identical (or nearly identical) prefix
and suffix. We used these suffixes and prefixes to circularize bac-
terial chromosomes and did not count differences between some
of them as potential CANU errors. However, for some replicas
with coverage 40x, 35x, 30%, and 25x, CANU missed short
2-kb to 7-kb fragments of the genome (possibly due to low cov-
erage in some regions), thus, preventing us from circularization.
To enable benchmarking, we did not count these missing regions
as CANU errors. Also, at coverage 30x, CANU (i) failed to
assemble the ECOLI dataset into a single contig for one out of
five replicas and (i) correctly assembled bacterial chromosome
for another replica but also generated a false contig (probably
formed by chimeric reads). In contrast, ABruijn correctly assem-
bled all replicas for all values of coverage.

Table 1 illustrates that, in contrast to ABruijn, CANU gen-
erates rather inaccurate assemblies without Quiver, a tool that
uses raw machine-level HDF5 signals for polishing: 637 errors
(160 insertions and 477 deletions) and 19 errors (12 insertions
and 7 deletions) for CANU and ABruijn, respectively. How-
ever, after applying Quiver, the number of errors reduces to
14 (1 insertion and 13 deletions) and 15 (2 insertions and 13
deletions) for CANU and ABruijn, respectively. SI Appendix,
section SI6 describes how to further reduce the error rates
by ~ 20%. ABruijn assembled the ECOLI dataset in ~8 min
and polished it in ~36 min (the memory footprint was 2 Gb).

PNAS | Published online December 12, 2016 | E8403

>
o
S
[~}
29
<m
o
o=
;Z
=2
£
&z
=
]
)

COMPUTER SCIENCES

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1604560113/-/DCSupplemental/pnas.1604560113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1604560113/-/DCSupplemental/pnas.1604560113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1604560113/-/DCSupplemental/pnas.1604560113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1604560113/-/DCSupplemental/pnas.1604560113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1604560113/-/DCSupplemental/pnas.1604560113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1604560113/-/DCSupplemental/pnas.1604560113.sapp.pdf

L T

/

1\

=y

Table 1. Summary of errors for CANU and ABruijn assemblies of
the ECOLI, BLS, and PXO datasets as well as for the downsampled
ECOLI datasets with coverage varying from 50 x to 25x

Coverage CANU ABruijn CANU+ Quiver ABruijn+ Quiver
BLS 73 5 51 31
PXO 1,162 21 130 15
ECOLI 637 19 14 15
ECOLI 50% 703 33 20 18
ECOLI 45x 829 45 29 29
ECOLI 40 x 1,158 84 45 45
ECOLI 35x% 1,541 153 88 84
ECOLI 30x 2,470 291 175 154
ECOLI 25x 3,053 687 322 329

To offset CANU assembly errors in the case of 30x coverage, we pro-
vided the average number of errors for four replicas with best results (out
of five).

ABruijn and CANU have similar running times: 2,599 s and
2,488 s, respectively (4,873 s and 4,803 s for ABruijn+Quiver and
CANU +Quiver, respectively).

To enable a fair benchmarking and to offset the artifacts of
CANU assemblies at 30x coverage, we collected statistics of
errors for four out of five best assemblies for each value of cov-
erage. Table 1 illustrates that both ABruijn and CANU main-
tain accuracy even in relatively low coverage projects but CANU
assemblies become fragmented and may miss short segments
when the coverage is low. ST Appendix, section SI7 illustrates
that the lion’s share of ABruijn errors occur in the low-coverage
regions.

Assembling the ECOLI,ano Dataset. Both the Nanocorrect assem-
bler described in Loman et al. (53) and ABruijn assembled
the ECOLI,q,, dataset into a single circular contig structurally
concordant with the E. coli KI2 genome with error rates 1.5
and 1.1%, respectively (2,475 substitutions, 9,238 insertions, and
40,399 deletions for ABruijn). We note that, in contrast to the
more accurate Pacific Biosciences technology, Oxford Nanopore
technology currently has to be complemented by hybrid coassem-
bly with short reads to generate finished genomes (40-43).

Although further reduction in the error rate in Oxford
Nanopore assemblies can be achieved by machine-level process-
ing of the signal resulting from DNA translocation (4), it is still
two orders of magnitude higher that the error rate for the down-
sampled ECOLI dataset with similar 30x coverage by Pacific
Biosciences reads (Table 1) and below the acceptable standards
for finished genomes. Because Oxford Nanopore technology is
rapidly progressing, we decided not to optimize it further using
signal processing of raw translocation signals.

Assembling Xanthomonas Genomes. Because HGAP 2.0 failed to
assemble the BLS dataset, Booher et al. (11) developed a special
PBS algorithm for local tal gene assembly to address this defi-
ciency in HGAP. They further proposed a workflow that first
launches PBS and uses the resulting local tal gene assemblies
as seeds for a further HGAP assembly with custom adjustment
of parameters in HGAP/Celera workflows. Although HGAP 3.0
resulted in an improved assembly of the BLS dataset, Booher
et al. (11) commented that the PBS algorithm is still required
for assembling other Xanthomonas genomes. Because PBS rep-
resents a customized assembler for fal genes that is not designed
to work with other types of complex repeats, development of a
general SMS assembly tool that accurately reconstructs repeats
remains an open problem.

We launched ABruijn with the automatically selected param-
eters ¢ = 28 and ¢ = 18 for the BLS and PXO datasets, respec-
tively (all other parameters were the same default parameters

E8404 | www.pnas.org/cgi/doi/10.1073/pnas.1604560113

that we used for the ECOLI dataset). ABruijn assembled the
BLS dataset into a circular contig structurally concordant with
the BLS reference genome. It also assembled the PXO dataset
into a circular contig structurally concordant with the PXO ref-
erence genome but, similarly to the initial assembly in Booher
et al. (11), it collapsed a 212-kb tandem repeat.

CANU assembled the BLS dataset into a circular contig struc-
turally concordant with the BLS reference genome but assem-
bled the PXO dataset into two contigs, a long contig similar to the
reference genome (with a collapsed 212-kb tandem repeat and
three large indels of total length over 1,500 nucleotides) and a
short contig. In summary, ABruijn+Quiver and CANU + Quiver
assemblies of the BLS dataset resulted in only 31 and
51 errors, respectively. Surprisingly, ABruijn without Quiver
resulted in a better assembly than ABruijn+Quiver with only
five errors.

To evaluate errors for the PXO dataset, we decided to
ignore the short contig generated by CANU and a collapsed
212-kb repeat (generated by both CANU and ABruijn).
ABruijn+Quiver assembly of the PXO dataset resulted in only
15 errors whereas CANU+Quiver assembly resulted in 130
errors, including one insertion of 100 nucleotides.

Assembling the B. neritina Metagenome. We have assembled the
B. neritina metagenome and further analyzed all long contigs at
least 50 kb in size (1,319 and 1,108 long contigs for CANU and
ABruijn, respectively). We ignored shorter contigs because they
are often formed by a few reads or even a single read. The total
length of long contigs was 171 Mb for CANU and 202 Mb for
ABruijn. SI Appendix, section SI8 shows the histogram of the
total length of contigs with a given coverage. Because the spread
of the distribution of coverage for B. neritina significantly exceeds
the spread we observed in other SMS datasets (typically within
15% of the average coverage), we attribute most bins with cov-
erage below 20x to contigs from symbiotic bacteria (the tallest
peak in the histogram suggests that the average coverage of B.
neritina is 25 x). Running AntiSmash (54) on the ABruijn assem-
bly revealed nine bacterial biosynthetic gene clusters encoding
natural products that, similarly to bryostatin, may represent new
bioactive compounds.

We attribute the large difference in the total contig length to
fragmentation in CANU assemblies in the case of low-coverage
datasets, which we observed in our analysis of the downsampled
ECOLI datasets. This fragmentation may have also contributed
to differences in the N50 (98 kb vs. 242 kb) between CANU and
ABruijn.

However, differences in N50 are poor indicators of assembly
quality in the case when the reference genome is unknown. We,
thus, conducted an additional analysis using the Core Eukaryotic
Genes Mapping Approach (CEGMA) that was used in hundreds
of previous studies for evaluating the completeness of eukary-
otic assemblies (55). CEGMA evaluates an assembly by check-
ing whether its contigs encode all 248 ultraconserved eukaryotic
core protein families. CANU and ABruijn assemblies missed 18
and 11 out of 248 core genes, respectively (7.3% vs. 4.4%). Thus,
although both CANU and ABruijn generated better assemblies
than typical eukaryotic short read assemblers (that often miss
over 20% of core genes), the ABruijn assembly improved on the
CANU assembly in this respect.

See SI Appendix, section SI9 for running time and memory
footprints of various assemblies.

Discussion

We developed the ABruijn algorithm aimed at assembling bac-
terial and relatively small eukaryotic genomes from long error-
prone reads. Because the number of bacterial genomes that
are currently being sequenced exceeds the number of all other

Lin et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1604560113/-/DCSupplemental/pnas.1604560113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1604560113/-/DCSupplemental/pnas.1604560113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1604560113/-/DCSupplemental/pnas.1604560113.sapp.pdf
http://www.pnas.org/cgi/doi/10.1073/pnas.1604560113

L T

/

1\

=y

genome sequencing projects by an order of magnitude, accurate
sequencing of bacterial genomes remains an important goal.
Because short-read technologies typically fail to generate long
contiguous assemblies (even in the case of bacterial genomes),
long reads are often necessary to span repeats and to generate
accurate genome reconstructions.

Because traditional assemblers were not designed for work-
ing with error-prone reads, the common view is that OLC is
the only approach capable of assembling inaccurate reads and
that these reads must be error-corrected before performing the
assembly (1). We have demonstrated that these assumptions are

1. Berlin K, et al. (2015) Assembling large genomes with single-molecule sequencing
and locality-sensitive hashing. Nat Biotechnol 33:623-630.

2. Chin C-§, et al. (2013) Nonhybrid, finished microbial genome assemblies from long-
read SMRT sequencing data. Nat Methods 10:563-569.

3. Goodwin S, et al. (2015) Oxford nanopore sequencing and de novo assembly of a
eukaryotic genome. Genome Res 25:1758-1756.

4. Loman NJ, Quick J, Simpson JT (2015) A complete bacterial genome assembled de
novo using only nanopore sequencing data. Nat Methods 12:733-735.

5. Koren S, et al. (2013) Reducing assembly complexity of microbial genomes with single-
molecule sequencing. Genome Biol 14:101.

6. Koren S, Phillippy AM (2015) One chromosome, one contig: Complete micro-
bial genomes from long-read sequencing and assembly. Curr Opin Microbiol 23:
110-120.

7. Lam KK, LaButti K, Khalak A, Tse D (2015) FinisherSC: A repeat-aware tool for upgrad-
ing de-novo assembly using long reads. Bioinformatics 31:3207-3209.

8. Chaisson MJ, et al. (2015) Resolving the complexity of the human genome using
single-molecule sequencing. Nature 517:608-611.

9. Huddleston J, et al. (2014) Reconstructing complex regions of genomes using long-
read sequencing technology. Genome Res 24:688-696.

10. Ummat A, Bashir A (2014) Resolving complex tandem repeats with long reads. Bioin-
formatics 30:3491-3498.

11. Booher NJ, et al. (2015) Single molecule real-time sequencing of Xanthomonas oryzae
genomes reveals a dynamic structure and complex TAL (transcription activator-like)
effector gene relationships. Microb Genom 1:1-22.

12. Kececioglu JD, Myers EW (1995) Combinatorial algorithms for DNA sequence assem-
bly. Algorithmica 13:7-51.

13. Myers EW (2005) The fragment assembly string graph. Bioinformatics 21:79-85.

14. Myers EW (2014) Efficient local alignment discovery amongst noisy long reads. Algo-
rithms in Bioinformatics, Lecture Notes in Computer Science, eds Brown D, Morgen-
stern B (Springer, New York), Vol 8701, pp 52-67.

15. Idury RM, Waterman MS (1995) A new algorithm for DNA sequence assembly. J Com-
put Biol 2:291-306.

16. Li Z, et al. (2012) Comparison of the two major classes of assembly algorithms:
Overlap-layout-consensus and de-Bruijn-graph. Brief Funct Genomics 11:25-37.

17. Pevzner PA, Tang H, Waterman MS (2001) An Eulerian path approach to DNA frag-
ment assembly. Proc Nat/ Acad Sci USA 98:9748-9753.

18. Pevzner PA, Tang H, Tesler G (2004) De novo repeat classification and fragment assem-
bly. Genome Res 14:1786-1796.

19. Bandeira N, Clauser KR, Pevzner PA (2007) Shotgun protein sequencing: Assembly of
peptide tandem mass spectra from mixtures of modified proteins. Mol Cell Proteomics
6:1123-1134.

20. Bandeira N, Pham V, Pevzner P, Arnott D, Lill JR (2008) Automated de novo protein
sequencing of monoclonal antibodies. Nat Biotechnol 26:1336-1338.

21. Butler J, et al. (2008) ALLPATHS: De novo assembly of whole-genome shotgun
microreads. Genome Res 18:810-820.

22. Simpson JT, et al. (2009) ABySS: A parallel assembler for short read sequence data.
Genome Res 19:1117-1123.

23. Zerbino DR, Birney E (2008) Velvet: Algorithms for de novo short read assembly using
de Bruijn graphs. Genome Res 18:821-829.

24. Bankevich A, et al. (2012) SPAdes: A new genome assembly algorithm and its appli-
cations to single-cell sequencing. J Comput Biol 19:455-477.

25. Pevzner PA (1989) /-tuple DNA sequencing: Computer analysis. J Biomol Struct Dyn
7:63-73.

26. Pham SK, Pevzner PA (2010) DRIMM-Synteny: Decomposing genomes into evolution-
ary conserved segments. Bioinformatics 26:2509-2516.

27. Igbal Z, Caccamo M, Turner |, Flicek P, McVean G (2012) De novo assembly and geno-
typing of variants using colored de Bruijn graphs. Nat Genet 44:226-232.

28. Bonissone SR, Pevzner PA (2016) Immunoglobulin classification using the colored anti-
body graph. J Comp Biol 23:483-494.

Lin et al.

incorrect and that the A-Bruijn approach can be used for assem-
bling genomes from long error-prone reads. We believe that ini-
tial assembly with ABruijn, followed by construction of the de
Bruijn graph of the resulting contigs, followed by a de Bruijn
graph-aware reassembly with ABruijn may result in even more
accurate and contiguous assemblies of SMS reads.

ACKNOWLEDGMENTS. We thank Dmitry Antipov, Bahar Behsaz, Adam
Bogdanove, Anton Korobeinikov, Mihai Pop, Steven Salzberg, and Glenn
Tesler for their many useful comments; Mike Rayko for his help with analyz-
ing the B. neritina assemblies; and Alexey Gurevich for his help with QUAST
and AntiSmash.

29. LinY, Nurk S, Pevzner PA (2014) What is the difference between the breakpoint graph
and the de Bruijn graph? BMC Genom 15:6.

30. Lin Y, Pevzner PA (2014) Manifold de Bruijn graphs. Algorithm Bioinformatics
8701:296-310.

31. Myers E, et al. (2000) A whole-genome assembly of Drosophila. Science 287:2196-
2204.

32. Chin C, et al. (2016) Phased diploid genome assembly with single molecule real-time
sequencing. biorxiv:056887.

33. Schornack S, Moscou MJ, Ward ER, Horvath DM (2013) Engineering plant disease resis-
tance based on TAL effectors. Annu Rev Phytopathol 51:383-406.

34. Doyle E, Stoddard B, Voytaz D, Bogdanove A (2013) TAL effectors: Highly adapt-
able phytobacterial virulence factors and readily engineered DNA-targeting proteins.
Trends Cell Biol 23: 390-398.

35. Williams M, et al. (2016) Bordetella pertussis strain lacking pertactin and pertussis
toxin. Emerg Infect Dis. 22:319-322.

36. Compeau PEC, Pevzner PA (2014) Bioinformatics Algorithms: An Active-Learning
Approach (Active Learning Publishers, Victoria, BC, Canada).

37. Boisvert S, Raymond F, Godzaridis E, Laviolette F, Corbeil J (2012) Ray meta: Scalable
de novo metagenome assembly and profiling. Genome Biol 13:122.

38. Prjibelski AD, et al. (2014) ExSPAnder: A universal repeat resolver for DNA fragment
assembly. Bioinformatics 30:293-301.

39. Vasilinetc |, Prjibelski AD, Gurevich A, Korobeynikov A, Pevzner PA (2015) Assembling
short reads from jumping libraries with large insert sizes. Bioinformatics 31:3261-
3268.

40. Antipov D, Korobeynikov A, Pevzner PA (2015) hybridSPAdes: An algorithm for co-
assembly of short and long reads. Bioinformatics 32:1009-1115.

41. Labont JM, et al. (2015) Single-cell genomics-based analysis of virushost interactions
in marine surface bacterioplankton. ISME J 9:2386-2399.

42. Ashton PM, et al. (2015) Minion nanopore sequencing identifies the position and
structure of a bacterial antibiotic resistance island. Nat Biotechnol 33:296-300.

43. Risse J, et al. (2015) A single chromosome assembly of Bacteroides fragilis strain BE1
from Illumina and MinlON nanopore sequencing data. Gigascience 4:60.

44. Chaisson MJ, Tesler G (2012) Mapping single molecule sequencing reads using basic
local alignment with successive refinement (BLASR): Application and theory. BMC
Bioinformatics 13:238.

45. Koren S, et al. (2012) Hybrid error correction and de novo assembly of single-molecule
sequencing reads. Nat Biotechnol 30:693-700.

46. Kim KE, et al. (2014) Long-read, whole-genome shotgun sequence data for five model
organisms. Sci Data 1:140045.

47. Bogdanove AJ, et al. (2011) Two new complete genome sequences offer insight
into host and tissue specificity of plant pathogenic Xanthomonas spp. J Bacteriol
193:5450-5464.

48. Salzberg SL, et al. (2008) Genome sequence and rapid evolution of the rice pathogen
Xanthomonas oryzae PXO99A. BMC Genom 9:204

49. Trost BM, Dong G (2008) Total synthesis of bryostatin 16 using atom-economical and
chemoselective approaches. Nature 456:485-488.

50. Lopanik NB, et al. (2008) In vivo and in vitro trans-acylation by BryP, the putative bryo-
statin pathway acyltransferase derived from an uncultured marine symbiont. Chem
Biol 15:1175-1186.

51. Ronen R, Boucher C, Chitsaz H, Pevzner P (2012) SEQuel: Improving the accuracy of
genome assemblies. Bioinformatics 28:188-196.

52. Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: Quality assessment tool for
genome assemblies. Bioinformatics 29:1072-1075.

53. Loman NJ, Quick J, Simpson JT (2015) A complete bacterial genome assembled de
novo using only nanopore sequencing data. bioRxiv:015552.

54. Medema MH, et al. (2011) antiSMASH: Rapid identification, annotation and analysis
of secondary metabolite biosynthesis gene clusters. Nucleic Acids Res 39:w339.

55. Parra G, Bradnam K, Korf | (2007) CEGMA: A pipeline to accurately annotate core
genes in eukaryotic genomes. Bioinformatics 23:1061-1067.

PNAS | Published online December 12, 2016 | E8405

BIOPHYSICS AND

COMPUTER SCIENCES

>
o
o
=
]
@
-
<
=
=]
=
<
=
>
™
=
o
o

