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The purpose of this paper is to solve the fault tolerant filtering and fault detec-
tion problem for a class of open quantum systems driven by a continuous-
mode bosonic input field in single photon states when the systems are subject
to stochastic faults. Optimal estimates of both the system observables and the
fault process are simultaneously calculated and characterized by a set of coupled
recursive quantum stochastic differential equations. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4952760]

I. INTRODUCTION

Due to the presence of inherent uncertainties in quantum measurements, the theory of quan-
tum filtering plays a fundamental role in quantum measurement based feedback control, which is
similar to what an optimal filter does in classical stochastic control systems with partial or noisy
observations. Since the publishing of Belavkin’s early work1–3 and independent work in the physics
community,4 quantum filtering theory has become routine and is applied in many research areas. For
the modern form of quantum filtering, we refer to the work by Bouten et al.5

In practice, classical randomness may be introduced into the system dynamics of quantum
systems, which requires that both classical and quantum randomness should be dealt with simulta-
neously. For example, the existence of stochastic fluctuations in magnetic flux or gate voltages may
cause random changes in the Hamiltonian of a superconducting quantum system.13 A spin system
may be subject to stochastically fluctuating fields that will introduce classical randomness into the
system dynamics.14 For an atom interacting with a laser beam, classical randomness arises in the
atomic dynamics due to the occurrence of stochastic faults in the laser device.15,16 For an open
quantum system, the introduction of random system Hamiltonians in the system dynamics results
in a unitary system evolution that depends on some classical random variables. Consequently, the
quantum filter has to be redesigned so that the optimal estimates of system observables can be
calculated. In addition, estimation of the fault process is of fundamental significance in applications
like guiding control law design and should be paid enough attention.

Single photons are vital in realization of all-optical quantum networks and quantum commu-
nication protocols. A single photon is a non-classical state of light in the sense that it cannot be
described in terms of a classical electric field, and is fundamentally different from a Gaussian
state. This situation makes single photons very useful in quantum information processing. Recently,
some results have been reported on the analysis of quantum systems driven by a single photon
input. For instance, the interaction between single photon packets and excited atoms is analyzed
in Refs. 7 and 8, detailed results of the response of a linear quantum system to single photon input
fields were given; quantum filtering of open quantum systems driven by fields in single photon
states can be found in Refs. 9–12. In this paper, we concentrate on a class of open quantum systems
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probed by a continuous-mode bosonic input field in single photon states and subject to stochastic
faults. By applying a quantum-classical conditional expectation method in our recent work,17 a fault
tolerant design of the quantum filter for this class of open quantum systems is given. The equations
of the conditional density distribution of the fault process are also obtained based on which a
possible criterion for fault detection is provided.

II. HEISENBERG-PICTURE DYNAMICAL MODELS

The following typical experimental setup in quantum optics is considered in this paper: a laser
probe field interacts with a cloud of atoms trapped in a cavity and is subsequently continuously
detected by a homodyne detector which gives rise to a classical measurement signal. In particular,
we consider the case where the input field is placed in a continuous-mode single photon state

�
1ξ


.11

Here ξ(t) is a normalized complex-valued function representing the single photon wave packet
shape and satisfying

 ∞
0 |ξ(τ)|2dτ = 1. To specify a light field with non-Gaussian statistics, e.g., a

field in a single photon state, involves in principle the specification of all possible correlation func-
tions and is far from being practical. One possible way of specifying such non-Gaussian statistics
can be achieved by modelling the apparatus that produces the light, and coupling the generated
output light from the obtained model into the quantum system under study. Following a similar idea
in Ref. 11, where an ancilla two-level quantum system As driven by a vacuum field was used to
model the effect of the single photon state for B(t) on the atom system Gs = (I,LGs,HGs), we start
from the cascaded system as in Fig. 1. The ancilla system As is initially prepared in its excited state
|↑⟩ and its interaction with the vacuum input field is described by

(SAs,LAs,HAs) = (I, λ(t)σ−,0), (1)

where λ(t) = ξ(t)√
ω(t) and ω(t) =  ∞

t |ξ(τ)|2dτ. The output field of the ancilla system As is then fed

into the atom system Gs, i.e., As and Gs form a cascaded quantum network driven by a vacuum
field. The unitary U(t) of the cascaded system satisfies the following quantum stochastic differential
equation:

dU(t) =
(
−iH − 1

2
L†L

)
dt + LdB†(t) − L†dB(t)


U(t), (2)

with initial condition U(0) = I. We have assumed ~ = 1 by using atomic units in this paper. Accord-
ing to quantum network theory19,20 the bounded Hermitian operator H = HGs + HAs

+ ℑ{L†
Gs

LAs}, where ℑ{X} is the imaginary part of X , is the Hamiltonian of the cascaded sys-
tem. B(t) and B†(t) are the field operators representing quantum noises, and together with the
cascaded system operator L = LAs + LGs they model the interaction between the cascaded system
and the laser probe field. From quantum stochastic calculus,21–23 the forward of quantum noise
dB(t) = B(t + dt) − B(t) satisfies

dB(t)dB†(t) = dt,

dB†(t)dB(t) = dB(t)dB(t) = dB†(t)dB†(t) = 0.

In terms of system state, letting system Gs be initialized in π0, we write ρ0 = |↑⟩ ⟨↑| ⊗ π0 ⊗ |υ⟩ ⟨υ|,
where |υ⟩ represents the vacuum state. It is noted that (2) is given in Itô form, as will all stochastic
differential equations in this paper.

FIG. 1. A schematic representation of the physical scenario, where an ancilla system is used to model the effect of the single
photon state for B(t) on the atom system.
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The cascaded system and the laser field form a composite system on the Hilbert space
C = C2 ⊗HS ⊗ E = C2 ⊗HS⊗Et]⊗E(t, where we have used the continuous temporal tensor prod-
uct decomposition of the Fock space E= Et]⊗E(t into the past and future components. In what
follows, we assume that dim(HS) = n < ∞. The observables of the ancilla system and the atom
system are described by self-adjoint operators on C2 and HS, respectively. Any cascaded system
operator A ⊗ X at time t is given by jt(A ⊗ X) = U†(t)(A ⊗ X ⊗ I)U(t) and satisfies20,24

djt(A ⊗ X) = jt(LL,H(A ⊗ X))dt + jt([A ⊗ X,L])dB†(t) + jt([L†, A ⊗ X])dB(t), (3)

where the so-called Lindblad generator is defined by

LL,H(X) = −i[X,H] + L†X L − 1
2
(L†LX + X L†L).

The above description is only an idealization of the real physical interactions. In many practical
implementations, the system Hamiltonian may be randomly changing because of, e.g., the intro-
duction of faulty control Hamiltonians when implementing an imperfect experimental setup,15,16

or random fluctuations of the external electromagnetic field (laser intensity).13,25 In this case, the
system Hamiltonian can be appropriately modelled by a time-varying random Hermitian operator
functional H(F(t)) that depends on some classical stochastic process F(t). Using the quantum Itô
rule,22 one still has d(U†(t)U(t)) = d(U(t)U†(t)) = 0 in (2), which implies that U(t) is a unitary
operator depending on the stochastic process F(t). For the sake of simplicity, we still write U(t)
instead of the functional form U(F, t). From the unitarity of U(t), one can conclude that the commu-
tativity of operators is preserved, that is, [ jt(A), jt(B)] = 0 if [A,B] = 0 where A,B are two cascaded
system operators on C. Here the commutator is defined by [A,B] = AB − BA.

It is observed from the stochastic model (2) that U(t) depends on B(t ′) and B†(t ′), 0 ≤ t ′ < t,
since the increment operators dB(t) and dB†(t) are future pointing.20 Consequently,

[U(t),dB(t)] = [U(t),dB†(t)] = 0. (4)

Similarly, the time evolution operator U(t, s) = U(t)U†(s) from time s to time t depends only on the
field operators dB(s′) and dB†(s′) with s′ between s and t. The commutation relations then show
that

[U(t, s),B(τ)] = [U(t, s),B†(τ)] = 0, τ ≤ s. (5)

In a quantum optical system, the measurement of a system observable is usually performed by
detecting the probe field observables, aiming to not perturb the subsequent evolution of the system
observable. This is the basic concept behind the so-called quantum non-demolition (QND) measure-
ments, which is adopted in this work. For the physical scenario under consideration in this paper, the
observation process is given by Y (t) = jt(Q(t)) = U†(t)(I ⊗ I ⊗ Q(t))U(t) where Q(t) = B(t) + B†(t)
is the real quadrature of the input field satisfying [Q(t),Q(s)] = 0. Physically, Y (t) may repre-
sent the integrated photocurrent arising in a perfect homodyne photon detection setup. Combining
(4) and (5) with the fact that [I ⊗ I ⊗ Q(t), A ⊗ X ⊗ I] = 0, it is easy to show that: (i) [Y (t),Y (s)] =
0 at all times s, t and (ii) [Y (s), jt(A ⊗ X)] = 0,∀s ≤ t. These two properties guarantee that (i) Y (t)
can be continuously monitored without perturbing the subsequent system evolution, and (ii) it is
possible to make a conditional statistical inference of any observable jt(A ⊗ X) from the history of
Y (t). In addition, by using the quantum Itô rule, one has

dY (t) = U†(t)(L + L†)U(t)dt + dQ(t), (6)

from which Y (t) has the form of jt(L + L†) = U†(t)(L + L†)U(t) with a noise term Q(t).

III. QUANTUM FILTERING AND FAULT DETECTION OF QUANTUM SYSTEMS DRIVEN
BY SINGLE PHOTON FIELDS

In classical (non-quantum) engineering, a fault (abrupt or incipient) refers to any kind of unde-
sired deviation of the characteristic properties or parameters of the system from normal conditions,
which can often lead to a reduction in performance or even loss of key functions in the physical
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plant. Thus, a fault tolerant design possesses practical significance in engineering. Recall the class
of quantum systems described in Section II. In the laser-atom interaction picture, the spectrum of
the classical electromagnetic field enclosed in a cavity depends on the geometric construction of
the cavity, while the laser-atom interaction is described by a dipole interaction Hamiltonian that
depends on the intensity of the electromagnetic field.26 Therefore, if the setup of the cavity suffers
from a fault, e.g., an abrupt variation in its geometry, the intensity of the electromagnetic field inside
will be unavoidably changed and an unexpected additional Hamiltonian term will be introduced into
the quantum system. In this case, the atom system Hamiltonian will be given by a random Hermitian
operator HGs(F(t)) that depends on the fault process F(t), and the cascaded system Hamiltonian is
then given by H(F(t)) = HGs(F(t)) + ℑ{L†

Gs
λ(t)σ−}.

In practice, the fault process is normally modelled on a classical probability space (Ω,F,P)
by a continuous-time Markov chain {F(t)}t≥0 adapted to {Ft}t≥0,27–29 which coincides with the
phenomenon that physical systems may transit among a set of different faulty modes at random time
points. The state space of F(t) is often chosen to be the finite set S = {e1,e2, . . . ,eN} (for some
positive integer N) of canonical unit vectors in RN . Let pt = (p1

t ,p
2
t , . . . ,p

N
t )T be the probability

distribution of F(t), i.e., pk
t =P(F(t) = ek), k = 1,2, . . . ,N and suppose that the Markov process

F(t) has a so-called Q matrix or transition rate matrix Π = (a jk) ∈ RN×N . Then pt satisfies the
forward Kolmogorov equation dpt

dt
= Πpt. Because Π is a Q matrix, we have a j j = −


j,k a jk,

and a jk ≥ 0, j , k. Then F(t) is a corlol process27 satisfying the following stochastic differential
equation:

dF(t) = ΠF(t)dt + dM(t), (7)

where M(t)= F(t)− F(0) −  t

0 ΠF(τ−)dτ is an {Ft} martingale27 that satisfies sup
0≤t≤T

E(|M(t)|2) <
∞. In addition, we assume that the statistics of Fl are unperturbed by quantum measurements due to
the lack of significant quantum backaction on classical systems.

Example 3.1. The above description of the faulty mode in open quantum systems can be found
in the literature. For example, in Ref. 16, the quantum system may have a “rectangular” pulsive
(piecewise constant) external Hamiltonian which was supposed to be bounded and applied to the
quantum system at time T . In practice, it is reasonable to assume that T is an exponential random
variable with a constant parameter λ > 0. Let

zt =



0, if t < T ;
1, if t ≥ T.

(8)

Then the system Hamiltonian has the form of H(t) = H0 + ztH1 where H0 represents the free
Hamiltonian and H1 is the external Hamiltonian. From (8) one knows zt is a Poisson type sto-
chastic process with rate λ stopped at its first jump time T and has an associated martingale
Mt = zt − λ min(t,T). Thus we have

dzt = λ(1 − zt)dt + dMt . (9)

Then the fault process F(t) = [1 − zt, zt]′ takes values in {e1,e2} and satisfies

dF(t) =


−λ 0
λ 0


F(t) +



−1
1


dMt . (10)

The aim of this work is to derive equations of the fault tolerant quantum filter and fault detec-
tion for this class of open quantum systems driven by fields in single photon states. To be specific,
we use a reference probability approach to simultaneously find the least-mean-square estimates of
a system observable X ∈ B(H) at time t and the fault process F(t) for the quantum system under
consideration, given the observation process Y (t). Because now we have both quantum and classical
randomnesses to be dealt with, we introduce a combined quantum-classical expectation operator
P̃(·) = EP{Tr{ρ0(·)}} : B(H) → R for convenient calculation. Then the goal of this work can be
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accomplished if we can compute the following estimates:

σ
j
t (A ⊗ X) = P̃(F(t),e j


U†(t)(A ⊗ X)U(t)|Yt), (11)

where A is any observable of the ancilla system, Yt is the commutative von Neumann algebra
generated by Y (s) up to time t, and ⟨·, ·⟩ is the inner product in RN . The definition of the quantum-
classical conditional expectation can be found in the Appendix and a complete treatment can be
found in Ref. 17. This conditional expectation can be formulated using the framework of describing
random observables in Refs. 17 and 18 it has been explained under this framework. In fact, a set of
commutative random observables is isomorphic to a set of classical random variables on a unique
classical probability space model, which implies that the joint statistics between a set of commuta-
tive random observables can be well defined using the associated classical conceptions. Generally,
the quantum-classical conditional expectation is equivalent to a particular quantum conditional
expectation5,18 and contains classical conditional expectation6 as a special case. The elementary
properties of classical conditional expectation, for example, linearity, positivity, the tower prop-
erty, and “taking out what is known,”6 still hold for the above defined conditional expectation. In
addition, we have

∥ F(t),e j


U†(t)(A ⊗ X)U(t) − σ j

t (A ⊗ X)∥P̃ ≤ ∥ F(t),e j


U†(t)(A ⊗ X)U(t) − Y ∥P̃, (12)

for all Y∈ Yt, where ∥X ∥P̃ = P̃(X†X). This guarantees the optimality of σ j
t (A ⊗ X) in the mean

square sense.
The following lemma plays a fundamental role in deriving the quantum filtering equation and

the fault detection equation.

Lemma 3.1. Let V (t) be a random operator satisfying the quantum stochastic differential equa-
tion

dV (t) =
(
−iH(F(t)) − 1

2
L†L

)
dt + LdQ(t)


V (t), (13)

with V (0) = I. Then

σ
j
t (A ⊗ X) = U†(t) P̃

(
F(t),e j


V †(t)(A ⊗ X)V (t)|Qt

)
P̃(V †(t)V (t))|Qt) U(t), (14)

where Qt is the commutative von Neumann algebra generated by Q(s) up to time t.

Proof. See the Appendix.

Based on Lemma 3.1, the following theorem can be obtained.

Theorem 3.1. The conditional expectation σ j
t (A ⊗ X) satisfies the following quantum stochas-

tic differential equation:

dσ j
t (A ⊗ X) = *

,

N
k=1

a jkσ
k
t (A ⊗ X) + σ j

t (LL,H (e j)(A ⊗ X))+
-

dt

+ *
,
σ

j
t ((A ⊗ X)L + L†(A ⊗ X)) − σ j

t (A ⊗ X)
N
k=1

σk
t (L + L†)+

-
dW (t), (15)

where the so-called Lindblad generator is given by

LL,H(X) = i[H,X] + L†X L − 1
2
(L†LX + X L†L),

and the innovation process W (t) = Y (t) −  t

0
N

k=1σ
k
s (L + L†)ds is a Wiener process under P̃.

Proof. Using the Itô product rule, and from the mutual independence of {Q(t),M(t),F(0)}, the
following result can be obtained:
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P̃(F(t),e j


V †(t)(A ⊗ X)V (t)|Qt)

= P̃(F(0),e j


X) +

 t

0
P̃(ΠF(s),e j


V †(s)XV (s)|Qs)ds

+

 t

0
P̃

(
F(s),e j


V †(s)LL,H (e j)(X)V (s)|Qs

)
ds

+

 t

0
P̃

(
F(s),e j


V †(s)(X L + L†X)V (s)|Qs

)
dQ(s). (16)

In addition, from the property of the Q matrix Π, we have

ΠF(s),e j


=


F(s),ΠTe j


=


F(s),N

k=1 a jkek

=

N
k=1 a jk ⟨F(s),ek⟩. Define h j

t (A ⊗ X) = P̃(F(t),e j


V †(t)(A ⊗ X)V (t)|Qt).

Then from (16) we have

dh j
t (X) = *

,

N
k=1

a jkhk
t (X) + h j

t (LL,H (e j)(X))+
-

dt + h j
t (X L + L†X)dQ(t). (17)

(15) can be obtained from (17) using some manipulations in quantum stochastic calculus. The proof
is thus completed.

We are interested in the conditional estimation of the system operator only. Using quantum Itô
rule, one has

*
,

LLAs,HAs
(I) LLAs,HAs

(σ−)
LLAs,HAs

(σ+) LLAs,HAs
(σ+σ−)

+
-
=

*....
,

0 − |ξ(t)|
2

2ω(t) σ−

− |ξ(t)|
2

2ω(t) σ+ − |ξ(t)|
2

ω(t) σ+σ−

+////
-

. (18)

Then by defining the following conditional expectations:

*.
,

σ
j
t,00(X) σ

j
t,01(X)

σ
j
t,10(X) σ

j
t,11(X)

+/
-
=

*.....
,

σ
j
t ((σ+σ−) ⊗ X)

ω(t)
σ

j
t (σ+ ⊗ X)
ω(t)

σ
j
t (σ− ⊗ X)
ω(t) σ

j
t (I ⊗ X)

+/////
-

, (19)

the following coupled nonlinear stochastic differential equation can be obtained from (15):

dσ j
t,11(X) =




N
k=1

a jkσ
k
t,11(X) + σ j

t,11(LLGs,HGs(e j)(X)) + σ j
t,01([X,LGs

])ξ†(t) + σ j
t,10([L†Gs

,X])ξ(t)



dt

+

σ
j
t,11(X LGs

+ L†
Gs

X) + σ j
t,01(X)ξ†(t) + σ j

t,10(X)ξ(t) − σ j
t,11(X)Kt


dW (t),

dσ j
t,10(X) =




N
k=1

a jkσ
k
t,10(X) + σ j

t,10(LLGs,HGs(e j)(X)) + σ j
t,00([X,LGs

])ξ†(t)



dt

+

σ
j
t,10(X LGs

+ L†
Gs

X) + σ j
t,00(X)ξ†(t) − σ j

t,10(X)Kt


dW (t),

dσ j
t,01(X) =




N
k=1

a jkσ
k
t,01(X) + σ j

t,01(LLGs,HGs(e j)(X)) + σ j
t,00([X,LGs

]ξ†(t))



dt

+

σ
j
t,01(X LGs

+ L†
Gs

X) + σ j
t,00(X)ξ†(t) − σ j

t,01(X)Kt


dW (t),

dσ j
t,00(X) =




N
k=1

a jkσ
k
t,00(X) + σ j

t,00(LLGs,HGs(e j)(X))



dt

+

σ
j
t,00(X LGs

+ L†
Gs

X) − σ j
t,00(X)Kt


dW (t), (20)

where Kt = σ
j
t,11(LGs + L†

Gs
) + σ j

t,01(I)ξ(t) + σ j
t,01(I)ξ†(t) and the innovation process W (t) is given

by W (t) = dY (t) − Ktdt.
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With the following relations:

*
,

σt,00(X) σt,01(X)
σt,10(X) σt,11(X)

+
-
=

*.....
,

N
k=1σ

k
t ((σ+σ−) ⊗ X)
ω(t)

N
k=1σ

k
t (σ+ ⊗ X)
ω(t)N

k=1σ
k
t (σ− ⊗ X)
ω(t)

N

k=1
σk

t (I ⊗ X)

+/////
-

=

*.....
,

P̃(U†(t)((σ+σ−) ⊗ X)U(t)|Yt) P̃(U†(t)(σ+ ⊗ X)U(t)|Yt)
ω(t)

P̃(U†(t)(σ− ⊗ X)U(t)|Yt)
ω(t) P̃(U†(t)(I ⊗ X)U(t)|Yt)

+/////
-

, (21)

the following coupled nonlinear stochastic differential equations can be obtained:

dσt,11(X) =



N
k=1

σk
t,11(LLGs,HGs(ek)(X)) + σt,01([X,LGs])ξ†(t) + σt,10([L†Gs

,X])ξ(t)



dt

+

σt,11(X LGs + L†

Gs
X) + σt,01(X)ξ†(t) + σt,10(X)ξ(t) − σt,11(X)Kt


dW (t),

dσt,10(X) =



N
k=1

σk
t,10(LLGs,HGs(ek)(X)) + σt,00([X,LGs])ξ†(t)




dt

+

σt,10(X LGs + L†

Gs
X) + σt,00(X)ξ†(t) − σt,10(X)Kt


dW (t),

dσt,01(X) =



N
k=1

σk
t,01(LLGs,HGs(ek)(X)) + σt,00([X,LGs]ξ†(t))




dt

+

σt,01(X LGs + L†

Gs
X) + σt,00(X)ξ†(t) − σt,01(X)Kt


dW (t),

dσt,00(X) =
N
k=1

σk
t,00(LLGs,HGs(ek)(X))dt +


σt,00(X LGs + L†

Gs
X) − σt,00(X)Kt


dW (t). (22)

Note that σt,11(X) = P̃(U†(t)(I ⊗ X)U(t)|Yt) is exactly the least-mean-square estimate of the
atom observable X at time t and (22) are the so-called fault tolerant single photon quantum filter
equations. When π jk = 0,∀ j , k, HGs(F(t)) ≡ HGs and this system is partly decoupled and reduces
to the single photon quantum filtering equation of U†(t)XU(t) given by Yt in Ref. 11,

dσ̄t,11(X) = 
σ̄t,11(LLGs,HGs

(X)) + σ̄t,01([X,LGs])ξ†(t) + σ̄t,10([L†Gs
,X])ξ(t) dt

+

σ̄t,11(X LGs + L†

Gs
X) + σ̄t,01(X)ξ†(t) + σ̄t,10(X)ξ(t) − σ̄t,11(X)Kt


dW (t),

dσ̄t,10(X) = 
σ̄t,10(LLGs,HGs

(X)) + σ̄t,00([X,LGs])ξ†(t)


dt

+

σ̄t,10(X LGs + L†

Gs
X) + σ̄t,00(X)ξ†(t) − σ̄t,10(X)Kt


dW (t),

dσ̄t,01(X) = 
σ̄t,01(LLGs,HGs

(X)) + σ̄t,00([X,LGs]ξ†(t))


dt

+

σ̄t,01(X LGs + L†

Gs
X) + σ̄t,00(X)ξ†(t) − σ̄t,01(X)Kt


dW (t),

dσ̄t,00(X) = σ̄t,00(LLGs,HGs
(X))dt +


σ̄t,00(X LGs + L†

Gs
X) − σ̄t,00(X)Kt


dW (t), (23)

where

*
,

σ̄t,00(X) σ̄t,01(X)
σ̄t,10(X) σ̄t,11(X)

+
-
=

*.....
,

P(U†(t)((σ+σ−) ⊗ X)U(t)|Yt) P(U†(t)(σ+ ⊗ X)U(t)|Yt)
ω(t)

P(U†(t)(σ− ⊗ X)U(t)|Yt)
ω(t) P(U†(t)(I ⊗ X)U(t)|Yt)

+/////
-

.

In addition, the conditional probability densities of the fault process are given by

p̂ j
t = P(F(t) = e j |Yt) = P̃(


F(t),e j

 |Yt) = σ j
t (I ⊗ I), (24)
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which satisfy the following coupled equations using Theorem 3.1:

dp̂ j
t =

N
k=1

a jk p̂k
t dt + *

,
σ

j
t (L + L†) − p̂ j

t

N
k=1

σk
t (L + L†)+

-
dW (t). (25)

Let p̂t = [p̂1
t , . . . , p̂

N
t ]′. Then (25) can be rewritten in a vector form as

dp̂t = Π p̂tdt + G(t)dW (t), (26)

where G(t) = N
k=1 ekσk

t (L + L†) − p̂t
N

k=1σ
k
t (L + L†). Equation (26) is the corresponding fault

detection equation. Here σ
j
t (L + L†) = P̃(F(t),e j


U†(t)(I ⊗ (L + L†))U(t)|Yt) can be calculated

using the recursive stochastic differential equation (15).
One can observe that after the classical measurement results are obtained, our prior knowledge

about the probability distribution of the stochastic process F(t) has been refined from the forward
Kolmogorov equation dpt

dt
= Πpt to (26). The system of coupled equations (25) or the vector form

(26) represents the conditional probability distribution of the system under any faulty mode. It can
be used to determine whether a particular type of fault has happened within the system at time t.
A possible criterion for fault detection is given by

The jth fault happens, if p̂ j
t ≥ p0, (27)

where 1 ≥ p0 > 0 is a threshold value chosen by the users. Here “the jth fault happens” means
that one could determine at time t that the system Hamiltonian has jumped to HGs(e j), which has
practical significance in fault repairing and control law design. Note that sometimes multiple faulty
modes might be determined from the fault detection strategy in (27). To solve this problem one
could carefully choose the threshold probability value p0 or using different fault detection criteria,
see, e.g., Ref. 30.
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APPENDIX: ESSENTIAL DEFINITIONS, THEOREMS AND PROOFS

Definition A.1 (Quantum-classical conditional expectation). Let C be a commutative von Neu-
mann algebra on H. Given a Rnr valued classical random variable R on (Ω,F,P) and a corre-
sponding unitary operator UR, define C̃ = {X |X = ν(R)U†RYUR,Y ∈ C, ν : Rnr → C} to be a set of
commutative random observables. The map P̃(·| C̃) is called (a version of) the quantum-classical
conditional expectation from C̃′ onto C̃, if P̃(P̃(X | C̃)Y ) = P̃(XY ) for all X ∈ C̃′ and Y ∈ C̃.

Theorem A.1 (Quantum-classical Bayes formula). Consider the classical probability space
model (Ω,F,P), the set of random observables C and the quantum-classical expectation operator
P̃ defined in Section III. Suppose a new probability measure Q is defined by dQ = ΛdP, where the
F− measurable random variable Λ is the classical Radon-Nikon derivative. Choose V ∈ C̃′ such
that V †V > 0 and P̃(ΛV †V ) = 1. Then we can define on C̃′ a new quantum-classical expectation
operator Q̃ by Q̃(X) = P̃(ΛV †XV ) and

Q̃(X | C̃) = P̃(ΛV †XV/ C̃)
P̃(ΛV †V/ C̃) , ∀X ∈ C̃′. (A1)

Proof of Lemma 3.1. Let Q̃t be a normal state as Q̃t(X) = P̃(U†(t)XU(t)).
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Note that Yt = U†(t)QtU(t) follows from the fact that U†(t)Q(s)U(t) = U†(s)Q(s)U(s). From
Definition A1 one can obtain that

P̃(F(t),e j


U†(t)XU(t)|Yt) = U†(t)Q̃t(F(t),e j


X |Qt)U(t) (A2)

almost surely under P̃.
In addition, suppose the system is initialized at π0 =


k

pk |αk⟩ ⟨αk | and we define a curve

|ψk(t)⟩ = U(t)(|αk⟩ ⊗ |υ⟩). Using the fact that dB(t) |υ⟩ = 0, one obtains (see Equation (6.13)
in Ref. 21)

d |ψk(t)⟩ = {(−iH(F(t)) − 1
2

L†L)dt + LdQ(t)} |ψk(t)⟩ . (A3)

In other words, U(t)(|αk⟩ ⊗ |υ⟩) = V (t)(|αk⟩ ⊗ |υ⟩) since U(0) = V (0) = I. After some mathemat-
ical manipulation, one obtains Tr(ρ0U†(t)XU(t)) = Tr(ρ0V †(t)XV (t)) which leads to

P̃(F(t),e j


U†(t)XU(t)) = P̃(F(t),e j


V †(t)XV (t)). (A4)

Then we can apply Theorem A.1 by replacing (Λ,X,V, C̃) by (1,F(t),e j


X,V (t),Qt) and obtain

Q̃t(F(t),e j


X |Qt) =

P̃(F(t),e j


V †(t)XV (t)|Qt)

P̃(V †(t)V (t)|Qt) . (A5)

Lemma 3.1 can be concluded combining (A2) and (A5).
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