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ABSTRACT

The presence of large-scale Ekman pumping associated with the climatological wind stress curl is the

textbook explanation for low biological activity in the subtropical gyres. Using an idealized, eddy-resolving

model, it is shown that Eulerian-mean Ekman pumping may be opposed by an eddy-driven circulation,

analogous to the way in which the atmospheric Ferrel cell and the Southern Ocean Deacon cell are opposed

by eddy-driven circulations. Lagrangian particle tracking, potential vorticity fluxes, and depth–density

streamfunctions are used to show that, in the model, the rectified effect of eddies acts to largely cancel the

Eulerian-mean Ekman downwelling. To distinguish this effect from eddy compensation, it is proposed that

the suppression of Eulerian-mean downwelling by eddies be called ‘‘eddy cancellation.’’

1. Introduction

There exist a number of circulations in the ocean

and atmosphere that are prominent in Eulerian-mean

velocity fields but are inconsistent with observed

tracer distributions, for example, the Deacon cell in

the Southern Ocean (Döös andWebb 1994). When the

effect of eddies is included in the averaging operator,

these circulations are dramatically altered or disappear

entirely.

Large-scale sinking due to Eulerian-mean Ekman

pumping is believed to dominate the vertical motion in

subtropical gyres (see, e.g., Oschlies 2002; Williams and

Follows 2011) and to form part of an intergyre over-

turning circulation known as the Ekman cell. A sche-

matic of the Ekman cell is shown in Fig. 1. The diabatic

circulation of the Ekman cell is difficult to reconcile with

the adiabatic nature of the ocean interior. Cancellation

of large-scale downwelling in subtropical gyres by an

eddy-induced circulation would remove the substantial

diapycnal transport across the subtropical thermocline

associated with the Ekman cell. As described by Griffies

et al. (2015), if the ocean interior is adiabatic and tem-

perature surfaces are approximately aligned with den-

sity surfaces, then we expect the net vertical transfer of

heat to be small and the downward transport of heat by

the mean flow to be opposed by vertical eddy transports.

Downwelling in the subtropical gyres is also believed

to remove nutrients from the oligotrophic surface waters

(Williams and Follows 2011). Cancellation of the

Ekman cell by eddies may help settle the long-standing

discrepancy between new production and estimated

nutrient supply in the gyre-scale nutrient budget (see,

e.g., McGillicuddy 2016; Williams and Follows 1998,

2011). Because such a large proportion of the ocean

surface is covered by subtropical gyres, these regions

contribute approximately half of all marine export

production (Jenkins and Doney 2003; Williams and

Follows 2011). This large contribution means that im-

proving our understanding of vertical transports in

subtropical gyres has implications for the global nutrient

and carbon budgets. The presence of an eddy-induced
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circulation balancing time-mean Ekman downwelling

also has implications for mode-water formation and the

maintenance and structure of the thermocline (see, e.g.,

Henning and Vallis 2004; Marshall 2000; Marshall et al.

2002; Polton and Marshall 2003; Radko and Marshall

2004b; Xu et al. 2016).

This paper is organized as follows: Section 2 describes

the atmospheric Ferrel cell and the Deacon cell in the

Southern Ocean, their sensitivity to the choice of aver-

aging technique, and some theoretical background re-

garding different methods for averaging flows. Section 3

contains the hypothesis that we seek to test in this paper.

In section 4, we present the model used for our idealized

simulations. In section 5, we present the results of our

Lagrangian particle tracking experiments. In section 6,

we use vertical fluxes of potential vorticity to examine

the balance between vertical potential vorticity fluxes

from Eulerian-mean advection and eddies. Section 7 quan-

tifies the extent to which eddies oppose the Eulerian-mean

circulation through the use of depth–density overturning

streamfunctions. In section 8, we present our concluding

remarks and some possibilities for future work that could

expand upon our current results.

2. Averaging flows and vanishing circulations

To develop an understanding of the chaotic and tur-

bulent patterns of circulation commonly observed in the

ocean and atmosphere, we need to take an average of

the flow. However, the way in which we take this aver-

age can have a dramatic impact on the structure,

strength, and even direction of the diagnosed circulation

(see, e.g., Plumb andMahlman 1987). In turbulent flows,

such as those analyzed in geophysical fluid dynamics, the

transport ofmass and tracers due to fast, small-scale, time-

varying features of the flow field can be substantial. If our

averaging operator does not account for these transports,

then there may be substantial differences between the

transport of the averaged flow and the averaged transport

of the flow. While taking an average cannot create a flow

where none exists, it can provide a misleading description

of the flow if considered in isolation.

The rectified effect of eddies is a combination of

downgradient diffusion along isopycnals and advective

transport (Gent et al. 1995; Plumb 1979). In certain

geometries, this advective transport can lead to upgra-

dient transport (Lee et al. 1997) and can oppose circu-

lations in the Eulerian-mean fields. There are multiple

studies showing that correctly representing eddies is a

necessary condition for accurately modeling the distri-

bution of tracers. For example, Follows and Marshall

(1996) modeled the distribution of a transient radioisotope

of carbon and found that models without mesoscale eddies

were unable to reproduce the observed distribution.

a. Averaging flows

We restrict our attention to two averaging techniques

because they are conceptually simple and encompass the

range of behaviors that we wish to discuss. For a more

rigorous and mathematically demanding approach to

averaging the equations of motion, the reader is referred

to Young (2012) and Maddison and Marshall (2013).

FIG. 1. A schematic of the Ekman cell, adapted from Marshall (2000). The thick black lines

show the circulation of the Ekman cell with fluid sinking in the subtropics and returning to the

surface in the subpolar and tropical latitudes. The white arrows show the direction of Ekman

transport and pumping, while the gray arrows show the eddy transports that oppose the

Eulerian-mean Ekman transport.
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1) EULERIAN MEAN

Taking the Eulerian mean of a field is straightforward:

a time averaging operation is performed independently at

each spatial location.A variableX is separated into a time-

mean component, usually denoted X, and time-varying

component, denoted X0. The effect of eddies and other

variability is taken into account by calculating the cross

correlations between terms. For example, if we take the

inviscid Boussinesq zonal momentum equation and

apply a time averaging operator, the equation becomes

›u

›t
1 u � =u2 f y52

1

r
0

›p

›x
2= � u0u0 , (1)

in which u is the zonal velocity, u is the three-dimensional

velocity field, f is the Coriolis parameter, y is the merid-

ional velocity, r0 is the referencedensity, p is the pressure,

x and t are the zonal and temporal coordinates, and the

final term represents the effect of the variability on the

time-mean field, known as the Reynolds stress. We retain

the time derivative of the time-mean zonal velocity, since

this term describes changes over time scales comparable

with, or longer than, the time scale of the time-mean

operator. The Eulerian-mean formalism splits the ten-

dency terms into contributions from time-mean and time-

varying components. It is this artificial separation that

lead Dunkerton (1980, p. 392) to state that the Eulerian

mean ‘‘can be and has been misleading.’’

Within the Eulerian-mean framework it is possible to

identify circulations that are incompatible with observed

tracer distributions, such as the Deacon cell in the South-

ernOcean (Danabasoglu et al. 1994;Döös andWebb 1994;

Marshall 1997). The location of inconsistencies between

Eulerian-mean circulations and tracer distributions

highlights areas where the time-varying contribution

is nonnegligible.

Another example of a situation in which the Eulerian-

mean velocity field is misleading may be found by con-

sidering the propagation of planar waves across the

surface of a fluid otherwise at rest. The fluid velocity at

the wave crests is in the direction of wave propagation,

and the particles are lifted and moved forward as a crest

passes their position. As a trough passes their location,

the particles are lowered and advected in the opposite

direction. The magnitude of the wave velocity decays

with depth, which leads to the particles experiencing a

net displacement after eachwave period, despite the fact

that below the level of the wave troughs the Eulerian-

mean velocity is identically zero. The difference be-

tween the Eulerian-mean velocity and the velocity

following a particle is known as the Stokes’ drift velocity.

For further discussion of Stokes’ drift the reader is re-

ferred to chapter 3 of Williams and Follows (2011).

2) GENERALIZED LAGRANGIAN MEAN

Themathematics of the generalized Lagrangian-mean

(GLM) framework is formidable, but in this case we

require only an intuitive understanding of its impli-

cations. GLM was developed as a framework to ana-

lyze wave–mean flow interactions in the stratosphere

(Andrews and McIntyre 1978a,b). The GLM velocity is

not defined following a single fluid parcel but rather

following the center of mass of a collection of fluid

parcels that span the region being averaged (Andrews

and McIntyre 1978a). For example, to calculate a zonal

average, a tube of particles would be initialized along a

line of latitude. However, after some finite period of

time, the particle distribution can be sufficiently altered

by the fluid motion that interpretation of the velocity

and location of the centroid of the distribution becomes

difficult. Figure 2 shows this problem schematically. In

FIG. 2. A schematic showing the issue of reinitialization in GLM

theory. The initially circular distribution of particles (top) is de-

formed by the flow field and (bottom) after some finite period of

time is substantially altered. Once the distribution is sufficiently

altered, the location and velocity of the centroid are no longer

meaningful quantities.
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the initial circular configuration, the location and mo-

mentum of the centroid may be easily associated with

the average motion of the surrounding fluid. However,

once advection has sufficiently distorted that distribu-

tion, shown schematically in the lower portion of Fig. 2,

it is no longer clear that the GLM over the parcel is a

meaningful quantity. The issue of reinitialization within

GLM theory is briefly discussed by Dunkerton (1980),

who recommends a case-by-case approach.

b. Vanishing circulations

1) FERREL CELL

The Ferrel cell is an atmospheric circulation with air

rising in the subpolar latitudes and sinking in the sub-

tropical latitudes. Because this circulation involves

colder air rising and warmer air sinking, it cannot be

sustained by density differences due to temperature.

Circulations such as this are known as thermally indirect

and require the input of energy to maintain (Vallis

2006). The presence of a Ferrel cell in atmospheric cir-

culations is dependent on the averaging process used to

analyze the atmosphere (Dunkerton 1978). Plumb and

Mahlman (1987) provide an excellent illustration of how

sensitive the existence of the Ferrel cell is to averaging.

Plumb and Mahlman present time and zonal means of

the velocity fields from a general circulation model in

which there are three circulation cells in each hemi-

sphere. However, when Plumb and Mahlman compute

the effective transport circulation, which is similar to the

GLM but allows for spatially inhomogeneous diffusion,

the circulation pattern shows only two cells in each

hemisphere, and the Ferrel cell is no longer present.

Furthermore, when comparing the two transport fields,

they give opposite results for the direction of meridional

transport at the surface at a number of latitudes.

2) DEACON CELL

The Deacon cell is a meridional circulation in the

Southern Ocean characterized by upwelling of deep-

water south of the Antarctic Circumpolar Current (ACC),

northward movement of this fluid in the surface Ekman

layer, and downwelling north of the ACC (see, e.g., Speer

et al. 2000). A Deacon cell can be clearly seen in the time-

and zonal-mean circulations of the coarse-resolution

ocean model used by Danabasoglu et al. (1994). When

Danabasoglu et al. include an eddy-induced bolus velocity

in their analysis, there is a near-complete cancellation of

theDeacon cell.Whilemostmodels do not reproduce such

near-complete cancellation, they do show a substantially

smaller residual overturning circulation that is directed

along isopycnals and consistent with the observed water

masses (Marshall 1997; Marshall and Radko 2003). The

existence and strength of the Deacon cell, which are de-

pendent not only on the flow field but also the choice of

averaging operator, are relevant to our understanding of

subduction, the formation of deep water, and to tracer

advection (see, e.g., Abernathey et al. 2011; Dufour et al.

2012; Marshall 1997; Marshall and Radko 2003).

The similarities between the Ferrel cell in the atmo-

sphere and the Deacon cell in the Southern Ocean have

been explored previously. For example, Karoly et al.

(1997) showed that both the Ferrel and Deacon cells are

the result of correlations between zonal variations in

density and meridional flow, not zonal mean buoyancy

forcing. This means that if the averaging is performed

using density as the vertical coordinate, neither circu-

lation cell is apparent. Several other studies have also

found that the use of density as the vertical coordinate

for their time- and zonal-mean averaging operations

resulted in the disappearance of the Deacon cell (Döös
and Webb 1994; Hirst et al. 1996).

3) EKMAN CELL

The Ekman cell is a diabatic circulation hypothesized

to link Ekman-driven downwelling in subtropical gyres

with Ekman upwelling in the tropics and subpolar regions.

Figure 1, which has been adapted from Marshall (2000),

shows a schematic of the Ekman cell. The concept of

Ekman cells is used extensively in the biogeochemistry

literature. For example, Najjar and Keeling (2000) describe

a fluid parcel traversing the Ekman cell and use the

changes in nutrient concentration and light availability to

explain observed productivity and oxygen fluxes. Even

when the Ekman cell is not invoked, the surface Ekman

flows and the resulting upwelling and downwelling are

often used when analyzing the nutrient budget of the

subtropical regions (e.g., Williams and Follows 1998).

The geometry of subtropical gyres is more complex

than the near-zonal flows in the atmosphere and South-

ern Ocean. The presence of nonlinear, inertial recircu-

lations and variation in gyre shape with depth makes it

more difficult to directly diagnose and analyze theEkman

cell. Polton and Marshall (2007) use horizontal integrals

of time-mean vertical potential vorticity fluxes to explore

the Ekman cell in a 1/48 horizontal resolution ocean gen-

eral circulation model. They find that the time-mean

advective flux is partially opposed by an eddy-induced

flux and suggest that a higher-resolution model with a

better resolved mesoscale eddy field may lead to a more

complete cancellation.

3. Hypothesis

As described above, there are multiple thermally in-

direct circulations in Eulerian-mean fields that are
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largely opposed by eddy-driven circulations. Given that

the Ekman cell shares many characteristics with these

circulations, we seek to test the following hypothesis:

there exists an eddy-driven circulation that opposes the

Eulerian-mean Ekman cell.

4. Model

Our model is designed to explore the dynamical ef-

fects of resolved mesoscale variability. As such, we

focus on resolution, not realism, and have simplified

both the geometry and the thermodynamics of our

model. Themodel domain covers 658 of latitude and 308
of longitude. The basin has a continental shelf in the

west that is 58 wide and slopes gently downward until

reaching 200-m depth, at which point it drops steeply to

4000-m depth. The rest of the domain is a uniform

depth of 4000m. Our model employs a single variable

linear equation of state that depends only on temper-

ature. A sinusoidal wind forcing is used to drive the

horizontal circulation. We drive a meridional over-

turning circulation with relaxation of the surface tem-

perature field to a linear function of latitude and

relaxation to an exponential temperature profile in a

sponge region occupying the southernmost 58 of the

domain. The sponge region does not alter any other

model variables. The model domain and momentum

forcing are shown in Fig. 3.

We use the MITgcm (Marshall et al. 1997) in a hy-

drostatic configuration to numerically solve the equa-

tions of motion on a spherical grid with a horizontal

resolution of 1/88 and 40 unevenly spaced vertical levels.

The vertical grid spacing is 10m at the surface and in-

creases to 360m at the bottom. Midlatitude mesoscale

variability is well resolved by ourmodel, as evidenced by

the strong, inertial recirculation regions surrounding the

zonal extension of the western boundary currents shown

in Fig. 3. The model is spun up using a coarser grid, in-

terpolated to 1/88, and integrated for 60 model years until

statistically steady. The simulation is then integrated

for a further 10 model years, and the analysis presented

here is based on the final 10 years. Momentum dissipa-

tion is provided by a combination of Laplacian and

biharmonic Smagorinsky viscosity schemes (Griffies

and Hallberg 2000; Smagorinsky 1963). The combi-

nation of Laplacian and biharmonic viscosity allows

lower values for each to be used, resulting in a less vis-

cous simulation (Chassignet and Marshall 2008).

FIG. 3. Schematic of the model used in this paper. The surface shows the Eulerian-mean

temperature field and Bernoulli potential contours. The eastern face shows the zonally in-

tegrated depth–latitude overturning circulation calculated from the Eulerian-mean fields. The

southern face shows the continental shelf and rise. The zonal wind forcing is shown to the west

of the model domain. Note that the model uses a spherical polar grid but is shown here as

a cuboid for simplicity.
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The simulation employs the Prather advection scheme

(Prather 1986), and thus we expect very little spurious

diapycnal mixing (Hill et al. 2012). We include some

horizontal and vertical diffusion, with diffusivities of 100

and 1025m2 s21, respectively, to reduce grid-scale noise

in the temperature field. The model does not use a

convective parameterization, such as KPP (Large et al.

1994) or otherwise, because the nonlocal buoyancy

fluxes and elevated diffusivities would be problematic

for our potential vorticity flux budgets and particle

tracking experiments as well as adding to the com-

putational expense. Since our interest lies below the

mixed layer in the region of the subtropical mode

water and thermocline, we believe this to be an ac-

ceptable idealization.

5. Lagrangian particle tracking

To compute the combined effect of eddies and the

mean flow, we use the GLM framework. However, be-

cause the shape of wind-driven gyres varies substantially

with depth, we use Lagrangian particle tracking tech-

niques to compute an approximate GLM velocity nu-

merically. As described in section 2, the GLM velocity is

the mean velocity following a collection of parcels that

span the region being averaged. We estimate the GLM

velocity in the subtropical mode water of our model by

seeding a cloud of particles there. The subtropical mode

water in our model is the mass of weakly stratified fluid

above the thermocline in the subtropical gyre. We deal

with the issue of reinitialization, mentioned in section 2

and discussed by Dunkerton (1980), pragmatically. Our

Lagrangian particles are observed to begin leaving the

region of interest after 3 months of model integration.

Thus, we track particles for 3 months before calculating

the center of mass of the particles’ distribution and re-

seeding new particles within an ellipsoid around this

point. Only the location of the ellipsoid changes; its size

remains constant throughout the experiments.

We use a fourth-order Runge–Kutta scheme to nu-

merically solve the three coupled ordinary differential

equations for each particle. Velocity fields are linearly

interpolated in space and time to each particle’s loca-

tion. The code we use is part of a Python module for

analyzing MITgcm simulations that can be found online

(at http://doddridge.me/publications/dmh2016). To test

for sensitivity to the time step chosen in our algorithm,

we computed a test set of pathways using a time step of

1min. Using any time step up to 1 h gives results that are

indistinguishable for 10 yr of model time; hence, we

use a time step of 1 h.

Similarly to Pennel and Kamenkovich (2014), we

perform two different particle tracking experiments and

artificially alter the velocity field used to advect some of

the particles. In the first particle tracking experiment, we

advect the particles using the full, time-varying velocity

fields, which have been saved every 5 model days. Using

the full velocity fields to advect our Lagrangian particles

provides us with a numerical estimate of the GLM ve-

locity of the weakly stratified subtropical mode water. In

the other, we use the Eulerian-mean velocity fields.

Following Lagrangian particles in the Eulerian-mean

velocity fields provides us with a velocity that is con-

ceptually similar to the GLM velocity but with the effect

of eddies removed. The difference between these two

results is an estimate of the rectified effect of eddies on

the bulk transport of fluid in the subtropical gyre.

The results of our Lagrangian particle tracking experi-

ments are shown in Fig. 4. The particles advected by the

full velocity fields remain above the thermocline, while the

particles advected by the Eulerian-mean velocities are

downwelled through the thermocline. The average vertical

velocity of the particles in the Eulerian-mean velocity

fields is initially comparable with the Ekman pumping

velocity computed from the wind stress curl, but as they

are downwelled the vertical motion slows to approxi-

mately half of the gyre-averagedEkmanpumping velocity.

We performed a similar experiment using a coarser-

resolution version of our model that included a Gent–

McWilliams mesoscale eddy parameterization (Gent

FIG. 4. The results of the particle tracking experiments, showing

the location of the center of mass of a cloud of particles every 3

months. Purple circles show the center of mass of the particles in

the full velocity field, and the green squares show the center of mass

of the particles in the Eulerian-mean velocity field. The thin black

line shows the trajectory given by the gyre average Ekman

pumping velocity.
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et al. 1995). The model velocity fields showed down-

welling, while the residual velocity fields, model plus

bolus, did not. This result indicates that the GM meso-

scale eddy parameterization is able to reproduce the

eddy dynamics that are responsible for the cancellation

of Ekman pumping.

The downwelling experienced by particles in the

Eulerian-mean fields suggests that there is an Ekman

cell in the Eulerian-mean velocities, while the trajectory

of the particles in the full velocity fields supports the

hypothesis that there exists an eddy-induced circulation

that opposes the Eulerian-mean downwelling.

6. Vertical fluxes of potential vorticity

Polton andMarshall (2007) use a framework that links

vertical fluxes of potential vorticity with the advection of

buoyancy to examine similarities between overturning

circulations in the Southern Ocean and wind-driven

gyres. Polton and Marshall (2007) find an eddy-mean

balance in the Southern Ocean and in strongly eddying

regions of the subtropical gyre but were hindered by the

horizontal resolution of their model; at 1/48, it was un-
able to satisfactorily resolve the mesoscale eddy field.

Since our model is better able to resolve the mesoscale

eddy field, we expect to find a greater contribution from

eddy-induced fluxes of potential vorticity throughout

the gyre.

Potential vorticity fluxes have been used extensively

to investigate the structure of geophysical flows. Haynes

and McIntyre (1990) laid the groundwork with their

impermeability theorem by showing that potential vor-

ticity substance is unable to pass through density sur-

faces. Schär (1993) generalized Bernoulli’s theorem to

show that in a statistically steady state, potential vorticity

flux vectors are constrained, even in time-varying diabatic

flows, to lie along the intersections between surfaces of

constant density and surfaces of constant Bernoulli po-

tential, here defined as P 5 (u2 1 y2)/2 1 p/r0 1 gz,

where u and y are the horizontal velocity components,

p is the pressure, r0 is the reference density, and g is

the gravitational constant. The vertical component of

the velocity field is excluded to maintain consistency

with the hydrostatic approximation. The imperme-

ability of Bernoulli potential surfaces is less general

than the impermeability theorem of Haynes and

McIntyre (1990), since it applies only at a statistically

steady state.

We use the potential vorticity flux framework de-

scribed by Polton and Marshall (2007), based on earlier

work by Marshall (2000) and Polton and Marshall

(2003), and the reader is directed to those papers or the

attached appendix for a detailed discussion of the

FIG. 5. Results of our potential vorticity flux analysis at 450-m depth

in the subtropical gyre. (a) Synopsis of the vertical potential vorticity

fluxes. (b) The eddy-induced fluxes. (c) Potential vorticity flux due to

Eulerian-mean advection in the subtropical gyre. (d) The sum of

Eulerian-mean advection and eddy-induced fluxes plotted with a

reduced range for the color bar. This residual is balanced by potential

vorticity fluxes due to buoyancy forcing.Arrows from (a) to (b) indicate

which points correspond to which Bernoulli potential contours.
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framework. This method essentially takes advantage of

the impermeability of Bernoulli surfaces to potential

vorticity flux vectors at a statistically steady state (Schär
1993) to define regions on a depth surface over which the

area integral of vertical potential vorticity fluxes is con-

strained to sum to zero. While the net flux of potential

vorticity is constrained to be zero, there is no other re-

striction on the relative magnitude of the different terms.

We use this framework to explore the balance be-

tween Eulerian-mean advection and eddy-induced

transport identified in section 5. In a statistically steady

state, the vertical potential vorticity fluxes can be de-

composed into the following different processes:

Advection ~J
adv

5 r
0
~Qw , (2)

Buoyancy changes ~J
buoy

5 qzB , (3)

Mechanical forcing ~J
fric

5 k3F � =r, and (4)

Eddies ~J
eddy

5 k3F
R
� =r2 qz= � u0r0 . (5)

Here, the overbar represents Eulerian-mean terms, the

tilde represents terms constructed from Eulerian-mean

variables, ~Q52(1/r0)q
z(›r/›z) is potential vorticity,

qz is the vertical component of Eulerian-mean absolute

vorticity, w is the Eulerian-mean vertical velocity, B is

the Eulerian mean of all nonadvective terms in the

buoyancy equation, F is the Eulerian-mean momentum

forcing, and FR is the Reynolds stress contribution to the

Eulerian-mean momentum equation. These fluxes are

integrated between closed contours of Eulerian-mean

Bernoulli potential on a constant depth surface.

Figure 5a shows a synopsis of the potential vorticity

fluxes due to Eulerian-mean advection, eddies, and

buoyancy forcing in the subtropical gyre. The negative

fluxes fromEulerian-mean advection are consistent with

Ekman-driven downwelling in the Eulerian-mean fields.

The vertical potential vorticity flux intensity from eddies

is shown in Fig. 5b and is predominantly balanced by

fluxes due to Eulerian-mean advection, shown in Fig. 5c.

The residual between eddies and Eulerian-mean ad-

vection is shown in Fig. 5d with a reduced color scale and

is balanced by fluxes due to buoyancy forcing.

The potential vorticity fluxes in the subpolar gyre are

shown in Fig. 6, with Figs. 6a and 6c providing a synopsis

of the flux intensities plotted on two sets of axes for the

sake of clarity. The positive values for Eulerian-mean

advection are consistent with Ekman-driven upwelling.

The Eulerian-mean advective fluxes, shown in Fig. 6d,

are balanced by fluxes due to eddies (Fig. 6b) and

buoyancy forcing.

Our results show that the potential vorticity flux due

to time-mean advection is opposed by an eddy-induced

flux and suggest that the rectified effect of eddies op-

poses the time-mean advection, consistent with the re-

sults of the Lagrangian particle tracking experiments.

7. Depth–density overturning streamfunctions

Our Lagrangian particle tracking experiments and

analysis of potential vorticity fluxes have provided

strong evidence for an eddy-driven circulation that op-

poses the Eulerian-mean Ekman downwelling. We now

seek to quantify this effect through the use of an over-

turning streamfunction.

Initially, we sought to construct an overturning cir-

culation around Eulerian-mean geostrophic stream-

lines, similar to the method described by Marshall and

Radko (2003) for the Antarctic Circumpolar Current.

However, both the shape and topology of the gyres in

our model, and in the ocean, vary substantially with

depth, complicating the definition of an unambiguous

coordinate system to serve as the gyre equivalent of the

depth–latitude coordinate system used for the Antarctic

Circumpolar Current. Instead, we use the depth–density

overturning streamfunction developed by Nurser and

Lee (2004). Using the depth–density formalism obviates

the need to specify an explicit geometry for our

streamfunction. Since our model employs a linear

equation of state that depends only on temperature,

there is a one-to-one correspondence between density

and temperature. Henceforth, we will refer to these as

depth–temperature streamfunctions.

The depth–temperature overturning streamfunction

calculated using the Eulerian-mean velocity and tem-

perature fields is shown in Fig. 7a. There is evidence of

two circulations superimposed on top of each other. The

blue lobes, rotating counterclockwise, represent a me-

ridional overturning circulation driven by dense-water

formation in the north of the domain and upwelling in

the sponge at the southern boundary along the imposed

temperature profile shown by the blue line. This me-

ridional overturning circulation spans the entire domain

and will henceforth be referred to as the MOC. The red

lobes, which rotate clockwise, show fluid sinking in the

158–208C range and upwelling at colder temperatures.

When we calculate this streamfunction using the in-

stantaneous fields, and then average, we obtain a strik-

ingly different result. The 12-Sv (1 Sv [ 106m3 s21)

MOC in Fig. 7b is stronger than the circulation of 6 Sv

from Fig. 7a. The overturning streamfunction calculated

from the instantaneous fields is also more adiabatic; the

water mass transformations occur primarily at the sur-

face or in the southern sponge region.

Since the only difference between Figs. 7a and 7b is the

time-varying component, this provides a way to quantify
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FIG. 6. Results of our potential vorticity flux analysis at 450-m depth in

the subpolar gyre. (a),(c) Synopsis of the vertical fluxes in the subpolar

gyre plotted on separate axes for clarity. (b) The eddy-induced fluxes.

(d) Potential vorticity flux due to Eulerian-mean advection in the sub-

polar gyre. Arrows from (a) and (c) to (b) indicate which points corre-

spond to which Bernoulli potential contours.
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the rectified transport due to eddies. We define our eddy-

driven depth–temperature overturning streamfunction as

C
eddy

5C
inst

2C
mean_fields

, (6)

where the overbar again represents a time-averaged

operator, andCinst is calculated at each time level in the

saved data and then averaged. The eddy-driven over-

turning streamfunction is shown in Fig. 7c.

The Ekman cell in Fig. 7a is somewhat obscured by

the MOC. We can remove the MOC by appropriately

masking the domain when calculating the depth–

temperature streamfunction. Masking the sponge re-

moves the upwelling component of the MOC. It is less

straightforward to mask the downwelling limb of the

MOC.Wehave testedboth latitude-based criteria,masking

northward of a specified latitude, and temperature-based

criteria, masking regions with a temperature that is less

than a specified cutoff temperature. Neither of these

methods was able to completely isolate the Ekman cell

from the MOC, but both gave similar results. Figure 7d

shows the depth–temperature overturning streamfunction

FIG. 7. Depth–temperature overturning streamfunctions from our idealizedmodel. The black arrows indicate the direction of fluid transport:

red lobes rotate clockwise, and blue ones rotate counterclockwise. The blue line represents the temperature profile in the sponge region and is

thus the profile along which we expect upwelling in the sponge region. (a) Calculated from the Eulerian-mean fields and shows the meridional

overturning circulation in blue with a second circulation, the Ekman cell, superimposed in red. (b) The depth–temperature streamfunction

calculated from instantaneous model fields and then averaged. (c) The difference between these two is the eddy contribution to the depth–

temperature streamfunction. (d) As in (a), but calculated from the masked domain that removes the meridional overturning circulation by

excluding the northern- and southernmost 108 of latitude. (e) The time average of the instantaneous streamfunction from the masked domain

and (f) the eddy streamfunction from themasked domain. Below 600m, the unmasked streamfunctions in (a)–(c) close between 1000- and 2000-m

depth. The masked streamfunctions in (d) and (e) continue to similar depths but do not close because of the masking procedure.
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calculated excluding the southern- and northernmost

108 of latitude. In the masked streamfunction, the two

red lobes from Fig. 7a are now connected and form a

single, thermally indirect circulation. The masked

streamfunction does not close because we are consid-

ering an open domain. We have truncated the

streamfunction at the dashed line in Fig. 7d, which

represents the maximum temperature in our model at

each depth.

Figure 7e shows the masked instantaneous depth–

temperature overturning streamfunction. The sinking at

approximately 158C occurs within the subtropical gyre

and is consistent with the expected 10Sv of Ekman

pumping from our wind stress curl. However, as shown

by this streamfunction, the Ekman pumping is unable to

penetrate deeper than 200m below the surface. The

other feature to note is that this circulation is thermally

direct; cold water is downwelled and warmer water is

upwelled. In this framework, the eddy-induced over-

turning is stronger than the Eulerian-mean overturning,

leading to the subduction of colder water and the up-

welling of warmer water. Figure 7f shows the eddy-

induced overturning streamfunction calculated in the

masked domain.

The plots shown in Fig. 7 exclude the deep ocean

below 600-m depth. The circulation below this depth is

less interesting, with the unmasked streamfunctions

(Figs. 7a–c) closing between 1000- and 2000-m depth.

The masked streamfunctions (Figs. 7d and 7e) continue

to similar depths but do not close because of themasking

procedure, while Fig. 7f closes in the upper 600m.

8. Concluding remarks

We found three lines of evidence to support our hy-

pothesis that an eddy-driven circulation opposes the

Eulerian-mean Ekman cell: Our Lagrangian particle

tracking experiments show that the residual vertical

velocity averaged over the subtropical gyre is small;

the potential vorticity flux budget shows a balance

between Eulerian-mean advection and eddies, with a

small, but nonnegligible, contribution from buoyancy

changes; and in depth–temperature space, overturning

streamfunctions indicate that an eddy-driven circula-

tion opposes the Eulerian-mean Ekman cell and pre-

vents the downwelled fluid from penetrating deeper

than 200m below the surface.

The main conclusion of this paper is that eddies play a

substantial role in setting the residual overturning cir-

culation within wind-driven gyres, which have long been

described with time-mean linear theories. While the

idealized nature of our model may have enhanced this

effect and contributed to the near-complete cancellation

of the Ekman-driven downwelling, we expect some level

of cancellation to be a robust result. Near-complete

cancellation between eddies and the Eulerian-mean

flow is consistent with the results of Griffies et al.

(2015), who found a balance between vertical heat fluxes

from Eulerian-mean advection and eddy advection

throughout their eddy-resolving global model.

The presence of a nonnegligible contribution from

buoyancy changes in our potential vorticity flux bud-

get is consistent with the results of Henning and Vallis

(2004), who found a partial balance between dia-

pycnal eddy-driven mass fluxes and mean upwelling.

They also found that the residual from this balance

was smaller than either of the terms and was balanced

by diffusion. Our results are also consistent with

the idealized numerical experiments of Radko and

Marshall (2004a), who found a balance between mean

advection and eddies in global buoyancy and potential

vorticity budgets.

Although we show compensation between an eddy-

driven overturning circulation and an Eulerian-mean

circulation, we wish to highlight that this effect is

subtly different to the concept of ‘‘eddy compensa-

tion.’’ Within the Southern Ocean literature, the term

eddy compensation is used to refer to the dynamic

change of the eddy-driven overturning circulation in

response to a change in the wind stress (Viebahn and

Eden 2010). The eddy-driven overturning circulation

partially compensates for changes in the surface

Ekman transport (Morrison and Hogg 2013). Eddy com-

pensation is part of the dynamic adjustment of the

residual overturning circulation toward a new equi-

librium. Unlike eddy compensation, the phenomenon

discussed in this paper is an equilibrium balance between

an Eulerian-mean circulation and an eddy-induced

circulation. To emphasize the difference between the

dynamic concept of eddy compensation and the equi-

librium concept discussed here, we suggest eddy can-

cellation as the name for the phenomenon discussed in

this paper.

Sverdrup balance predicts that the horizontal gyre

transport will increase with the wind stress curl, but it is

unclear how the vertical transport would respond or the

time scale over which this response would occur. Within

the Southern Ocean literature, there are numerous

studies showing that the presence of eddies in models of

the SouthernOcean reduces the sensitivity of the residual

meridional overturning circulation to changes in wind

stress (see, e.g., Abernathey et al. 2011; Hallberg and

Gnanadesikan 2006; Henning and Vallis 2005; Munday

et al. 2013; Viebahn and Eden 2010). It may therefore be

of interest to investigate how the Eulerian-mean down-

welling and eddy-driven upwelling in eddy-resolving
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models of subtropical gyres respond to changes in the

wind stress. In particular, understanding the time

scale of the eddy-driven response should provide

insight into the dynamical and biogeochemical re-

sponse of subtropical gyres to changes in the wind

stress.

The existence of an eddy-driven circulation that op-

poses the Eulerian-mean Ekman cell would explain the

unexpected eddy-driven downwelling in the subpolar

gyre found by McGillicuddy et al. (2003). Since our re-

sults show that an eddy-driven circulation opposes the

Ekman velocity, we expect to see eddy-driven down-

welling in the subpolar gyre. Our result may also help to

explain the low correlation between maps of biological

activity and time-mean Ekman pumping (see, e.g.,

Palter et al. 2005).

If large-scale, Ekman-driven downwelling is effec-

tively canceled at depth in subtropical gyres, this

has substantial implications for our understanding of

the nutrient budget of these regions. Ekman-driven

downwelling is invoked as a mechanism to remove

nutrients from the subtropical gyres (e.g., Jenkins and

Doney 2003; Kähler et al. 2009; McGillicuddy et al.

1998; Williams and Follows 1998). The presence of a

gyre-scale rectified transport opposing this down-

welling would allow nutrients to be recycled more

easily within subtropical gyres, thereby reducing the

quantity of new nutrients required to supply the ob-

served levels of productivity. Although Lee and Williams

(2000) examined the balance between eddy diffusion,

eddy advection, and Ekman transport in the horizontal

movement of nutrients, the idea of eddy cancellation in

the vertical is a qualitatively different role for eddies

than has been previously proposed (e.g., McGillicuddy

et al. 1998, 2003; McGillicuddy 2016). By lowering the

required supply of nutrients, this could settle the long-

standing discrepancy between estimates of nutrient

supply and export production in subtropical gyres.

Results from such a study will be reported in a future

manuscript.
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APPENDIX

Calculating the Potential Vorticity Fluxes

Following Marshall (2000) and Polton and Marshall

(2007), we calculate vertical fluxes of potential vor-

ticity within closed contours of Eulerian-mean

Bernoulli potential. Marshall (2000) constructed an

integral constraint on vertical fluxes of potential vor-

ticity within closed contours of Bernoulli potential.

The framework developed by Marshall (2000) was

used by Polton and Marshall (2007) to explore the

vertical structure of subtropical gyres and to examine

dynamical similarities between these gyres and the

Southern Ocean.

Under the Boussinesq approximation with an incom-

pressible fluid in which the density r is a materially con-

served tracer, the potential vorticity evolution equation

from Ertel (1942) becomes

2r
0

DQ

Dt
5 q � =B1=r �

�
=3

�
F2

r2 r
0

r
0

gk

��
, (A1)

where r0 is a reference density; Q 5 2(q/r0) � =r is the

potential vorticity; q is the absolute vorticity; B repre-

sents all nonadvective processes that affect density; F

represents the mechanical and body forcings acting on

the fluid, such as viscosity and surface wind forcing; and

g is the gravitational acceleration. Because our simula-

tions employ a single variable linear equation of state,

we use in situ density for these calculations. In models

with more complex thermodynamics, or in the ocean,

potential density or neutral density (McDougall 1987)

would be more appropriate.

The negative sign in the definition of potential vor-

ticity ensures that the large-scale potential vorticity is

positive in the Northern Hemisphere and hence that the

advective flux in the simulations we consider is in the

same direction as the fluid velocity, rather than anti-

parallel. Throughout this paper the potential vorticityQ

is approximated as

2
1

r
0

( f 1 z)
›r

›z
, (A2)

where f and z represent the vertical components of

planetary and relative vorticity, respectively. For par-

ticularly large-scale or weak-flow applications, this may

be simplified even further by ignoring the contribution

from relative vorticity.

As noted by Haynes andMcIntyre (1987, 1990), Eq.

(A1) may be recast into a flux form equation that

relates the local time derivative of potential vorticity

to the divergence of a potential vorticity flux vector J.
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The flux form of the potential vorticity conservation

equation is

›

›t
(r

0
Q)1= � J5 0, (A3)

where J is the potential vorticity flux vector that in-

cludes advective and nonadvective flux terms. As de-

fined in Eq. (A3), only the divergence of the potential

vorticity flux vector is constrained. Therefore, the

potential vorticity flux may also contain any arbitrary

divergence free vector field; this represents a gauge

invariance for the potential vorticity flux vector field.

Since the divergence of the curl of an arbitrary vector

field is identically zero, we include a gauge term in this

form. The resulting potential vorticity flux vector field

is given by

J5 r
0
Qu1 qB1

�
F2

r2 r
0

r
0

gk

�
3=r1=3A ,

(A4)

where = 3 A represents the gauge.

The form presented in Eq. (A4) explicitly shows the

advective and nonadvective contributions to the po-

tential vorticity flux.

To derive an alternate formalism, we begin with the

hydrostatic Boussinesq momentum equation written in

terms of the Bernoulli potential and take the cross

product of each term with the gradient of density. After

some simplification, this gives

J5 q
›r

›t
1

�
›v

›t
1=P

�
3=r1=3A , (A5)

where P 5 (u2 1 y2)/2 1 p/r0 1 gz is the Bernoulli

potential, consistent with the hydrostatic approximation

and v 5 (u, y, 0). This form makes explicit the imper-

meability of density and Bernoulli surfaces in the

steady-state solution, provided that the gauge is chosen

such that = 3 A is equal to zero. Haynes and McIntyre

(1987, 1990) were the first to generalize Ertel’s theorem

to show that isentropic surfaces are impermeable to

potential vorticity. This is known as ‘‘the impermeability

theorem.’’ Schär (1993) generalized Bernoulli’s theorem
to show that in a statistically steady state, potential

vorticity flux vectors are constrained to lie along the

intersections between surfaces of constant density and

surfaces of constant Bernoulli potential, even in time-

varying diabatic flows. The impermeability of Bernoulli

potential surfaces is less general than the impermeability

theorem of Haynes andMcIntyre (1990), since it applies

only at a statistically steady state.

a. Eulerian-mean potential vorticity flux

Equations (A4) and (A5) describe the instantaneous

flux of instantaneous potential vorticity. It is possible to

examine Eulerian-mean potential vorticity fluxes by

applying a suitable time filter to the instantaneous

equations. To derive the Eulerian-mean potential

vorticity fluxes, we start by filtering the momentum

and buoyancy equations into time-mean X and time-

varying X0 components. Using this notation, the time-

filtered hydrostatic Boussinesq momentum equation

takes the form

›v

›t
1 q3 u1q0 3 u0 1=~P1=

v0 � v0
2

5F2
Dr

r
0

gk̂ , (A6)

where ~P represents theBernoulli potential constructed from

Eulerian-meanquantities, and ~P5 (u2 1 y2)/21 p/r0 1 gz,

where u and y are the Eulerian-mean horizontal ve-

locity components, p is the Eulerian-mean pressure,

r0 is the reference density, g is the gravitational

constant, z is the vertical coordinate, and the time

derivative represents changes over time scales com-

parable with, or longer than, the time scale of the

time-mean operator. Equation (A6) can be simplified

if the eddy contributions are grouped into a single

term FR 52q0 3 u0 2=(v0 � v0)/2 to give

›v

›t
1 q3 u1=~P5F1F

R
2

Dr

r
0

gk̂ . (A7)

Applying the same time filter to the buoyancy equa-

tion results in

›r

›t
1 u � =r5B2= � u0r0 , (A8)

where the nondivergence of the velocity field has

been used to simplify the second term on the right-

hand side.

If these time-filtered momentum and buoyancy

equations are used to construct the potential vorticity

flux vectors, then we get

~J5 r
0
~Qu1q(B2= � u0r0)

1

�
F1F

R
2

Dr

r
0

gk̂

�
3=r1=3A, and (A9)

~J5 q
›r

›t
1

�
›v

›t
1=~P

�
3=r1=3A . (A10)

These equations have the same form as the in-

stantaneous equations, shown in Eqs. (A4) and (A5),

except that F and B have been replaced by F1FR and

B2= � u0r0, respectively, to take into account the
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rectified effect of eddies. Since they are exact, these

potential vorticity fluxes are necessarily equivalent

to the results derived in Young (2012) and Maddison

and Marshall (2013).

To preserve the impermeability of surfaces of con-

stant density and Bernoulli potential, the gauge used

throughout this paper is chosen such that =3A5 0.

b. Vertical PV flux

FollowingMarshall (2000), we use the impermeability

of surfaces of constant density andBernoulli potential to

create volumes into which there is no net flux of po-

tential vorticity. We construct these volumes by taking

an isosurface of Bernoulli potential and enclosing a

volume with a surface of constant depth. Since there can

be no net flux of potential vorticity across the Bernoulli

potential isosurface, theremust also be no net flux across

the depth surface that forms the closed volume, pro-

vided that the amount of potential vorticity substance

inside the volume is constant. While the net flux is

constrained to zero by construction, it is not clear a

priori which processes should dominate the dynamical

balance.

The integral may be performed with either of the

expressions for potential vorticity flux, Eqs. (A9) and

(A10), or any linear combination of the two.

When performing this integral, the =~P3=r term

vanishes. This was shown by Marshall (2000), who,

through the use of vector identities and Stokes’ theorem,

converted an area integral inside a closed contour of

Bernoulli potential,

ðð
l

(=~P3=r) dA , (A11)

into a line integral around contours of constant

Bernoulli potential with the form

2

þ
›l

r=~P � dr , (A12)

which must equal zero, since the edge of the area is

defined as a line of constant Bernoulli potential, and so

=~P � dr is identically zero everywhere on ›l. The only

other terms in Eq. (A10) include time derivatives,

which can be used to check the impact of model drift

on the results. These drift terms relate to changes in

the storage of potential vorticity substance within the

constructed volume.

We obtain our potential vorticity flux diagnos-

tics by integrating the vertical component of Eq.

(A9) minus Eq. (A10) between closed contours of

Bernoulli potential on a depth surface. The integral

has the form

ðð
l

k̂ �
�
r
0
~Qu1 q(B2= � u0r0)

1

�
F1F

R
2

Dr

r
0

gk̂

�
3=r2 q

›r

›t
2

›v

›t
3=r

�
dA5 0,

(A13)

where l is defined as the area between two closed con-

tours of Bernoulli potential.

The terms in Eq. (A13) describe the vertical potential

vorticity flux due to specific physical processes. This can

be made explicit by rewriting Eq. (A13) as

ðð
l

(~J
adv

1 ~J
buoy

1 ~J
fric

1 ~J
eddy

1 ~J
drift

) dA5 0, (A14)

where

~J
adv

5 r
0
~Qw (A15)

is the potential vorticity flux from advection by the

Eulerian-mean vertical velocity,

~J
buoy

5qzB (A16)

is the flux due to buoyancy forcing,

~J
fric

5 k3F � =r (A17)

is the flux due to forcings in the momentum equation,

~J
eddy

5 k3F
R
� =r2 qz= � u0r0 (A18)

is the eddy-induced flux, and

~J
drift

52k3
›v

›t
� =r2 qz›r

›t
(A19)

is the flux due to model drift. In each of these, the su-

perscript z refers to the vertical component.

c. Evaluating potential vorticity fluxes in the model

The fluxes shown in Eqs. (A15)–(A19) were evalu-

ated from a simulation spanning 10 yr of model time.

The potential vorticity and Bernoulli potential were

constructed from the Eulerian-mean variables. Con-

sistent with the hydrostatic approximation, the verti-

cal velocity was not included in the calculation of the

Bernoulli potential. The eddy contribution to the po-

tential vorticity flux

~J
eddy

5 k3F
R
� =r2 qz= � u0r0 (A20)

consists of the rectified effect of eddies in the mo-

mentum equation and the buoyancy equation. These
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rectified eddy terms were calculated online by aver-

aging and saving the terms qzu, qzy, uu, yy, and ur. The

eddy contributions were then calculated as the differ-

ence between these terms and the product of the in-

dividual Eulerian-mean fields. For example, the zonal

velocity eddy term is calculated as

u0u0 5 uu2 u u , (A21)

which requires that we average uu and u and save them

at the end of the 10-yr simulation. Unlike Polton and

Marshall (2007), we use the full three-dimensional ve-

locity to calculate the divergence of the eddy buoyancy

flux, since we were able to save these variables. The

potential vorticity fluxes due to model drift ~Jdrift were

evaluated and consistently found to be negligible at the

depths analyzed in this paper.
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