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Natural orbitals (NOs) are central constituents for evaluating correlation energies through efficient
approximations. Here, we report the closed-form expression of the NOs of two-electron quantum
rings, which are prototypical finite-extension systems and new starting points for the development
of exchange-correlation functionals in density functional theory. We also show that the natural
occupation numbers for these two-electron paradigms are in general non-vanishing and follow the
same power law decay as atomic and molecular two-electron systems. C 2016 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4940919]

I. INTRODUCTION

The systems consisting of two electrons on a ring,
on a sphere, or on a hypersphere1–7 have recently
attracted considerable interest due to their uniform electronic
distributions. Their properties are intrinsically different8–10

from those of the celebrated infinite uniform electron gas
(UEG), which has been the fundamental starting point
for the design of exchange-correlation functionals within
density functional theory (DFT).11 From this perspective,
these new finite UEGs are not merely toy-models but pave a
tremendously promising path for the improvement of DFT.12,13

Therefore, it is important to better understand the properties
of such prototype models.

In this paper, we will focus on the two-electrons-on-
a-ring systems (also known as two-electron quantum rings)
because, as shown by Loos and Gill,5 they exhibit exact
closed-form solutions (in the nonrelativistic domain) for some
“magic” radius values. This means that the electron-electron
repulsion energy, a pivotal energy component in quantum
chemical systems, can be exactly calculated. It is known from
the seminal work by Gilbert14 that this component can be,
in principle, expressed in terms of the spinless first-order
(or one-particle) reduced density matrix (1-RDM),15 denoted
ρ1 (r⃗; r⃗ ′). Consequently, it would be beneficial to characterize
the 1-RDM for two-electron quantum rings.

This problem is equivalent to determine the full set of
the so-called natural orbitals (NOs)16 since they diagonalize
the 1-RDM by definition. Here, our aim is to show that they
can be obtained in closed form and to discuss their main
features in comparison with those for (infinite) two-electron
atomic or molecular systems, which have been extensively
studied by Giesbertz and van Leeuwen in a stimulating series
of papers.17–19 Such studies are in the continuation of many
works dealing with the 1-RDM and NOs for model systems,
such as harmonium, the Moshinsky atom, the helium atom,
the H2

+ and H2 molecules.20–31

a)Author to whom correspondence should be addressed. Electronic mail:
vincent.tognetti@univ-rouen.fr

Furthermore, NOs are central constituents for evaluating
correlation energies through approximations32–41 to the two-
particle reduced density matrix (2-RDM). In particular,
one of us is interested in the evaluation of interac-
tion energies between atoms-in-molecules using Pendás’
interacting quantum atoms (IQAs) scheme42,43 and in
going beyond the semi-quantitative Kohn-Sham (KS)-IQA
approach44 by incorporating correlation effects through
NOs.45,46

Let us also recall that, besides energetic considerations,
NOs or their various avatars are also instrumental in extracting
physicochemical information from quantum calculations. For
example, they are linked to the popular natural bond orbital
(NBO) framework47 for studying chemical bonding, and bear
some similarities with the natural transition orbital (NTO)48

and the recent natural excitation orbital (NEO)49 analyses
employed to explore electronic excitation processes.

Atomic units are used throughout.

II. GENERAL SOLUTION

A. Natural orbitals for any polynomial solution

Let us first recall that in two-electron quantum rings
(where each electron is located by an angle θ), the exact
wavefunction can be factorized as the product of an intracule
(ω = θ1 − θ2) contribution and an extracule (Ω = (θ1 + θ2)/2)
contribution. The latter is associated with the total angular
momentum, which we will take to be equal to zero for
convenience. Therefore, only the intracule part needs to be
further investigated. As described in Ref. 5, this presents
degenerate pairs of solutions, one corresponding to the singlet
spin state (S = 0) and one to the triplet (S = 1) spin state.

Here we will focus on the singlet state, in which the
required antisymmetry of the full electronic wavefunction is
brought by the spin function, while its real spatial counterpart
(that we will simply call ψ) is symmetric under the exchange
of the two electrons. As a consequence, throughout this paper,
only spatial coordinates will be considered, the spin variables
being irrelevant for our analysis.

0021-9606/2016/144(5)/054108/6/$30.00 144, 054108-1 © 2016 AIP Publishing LLC
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Such a choice will allow a straightforward comparison
with the helium atom in its singlet electronic ground state,
as studied by Giesbertz and van Leeuwen. Let us recall
that in the Hartree-Fock description of He, only one atomic
orbital, coined “1s”, is doubly occupied, while the inclusion
of electron correlation effects leads to a slight depopulation
of the first NO (1.984 at the CCSD/aug-cc-pVT5Z level of
theory) for the benefit of the second (0.007) and third (0.003)
NOs, effects we want to study in two-electron rings.

To this aim, following Loos and Gill,5 we define the
interelectronic distance

u = R
√

2 − 2 cosω, (1)

where R is the radius of ring. As a solution of a Heun-like
equation,50 ψ can be cast in the general symmetric form given
by

ψ
(a,b)
R (u) = u

(
1 +

u
2R

)a/2(
1 − u

2R

)b/2
P(a,b)(u), (2)

where a and b are either 0 and 1, and P(a,b) is (in general) an
infinite power series. However, for some specific values of R,
this series is finite and thus reduces to a polynomial of order
n. We will restrict our analysis to the family {a = 0, b = 0},
i.e., we will not consider the so-called “irrational solutions”,5

and examine only the following family:

ψ̃
{Ai}
R (u) = K {Ai}

R
*
,
u +

n
i=2

Aiui+
-
≡ K {Ai}

R Q{Ai}
R (u), (3)

where K {Ai}
R is the normalization constant. For the sake of

clarity, all further dependencies on ({Ai}, R) will not be
explicitly written. Our goal is now to find the exact NOs
χk for these particular Q functions. To do this, we recall
the general NO definition for any two-electron wavefunction
in any dimension (where we use Löwdin’s normalization
convention51 and assume real functions),

ρ1(r⃗1; r⃗ ′1) = 2

ψ(r⃗1, r⃗2)ψ(r⃗ ′1, r⃗2)dr⃗2 =

∞
k=0

nk χk(r⃗1)χk(r⃗ ′1).
(4)

nk being the so-called natural occupation numbers with

∞
k=0

nk = 2. (5)

The literature20,52,53 reports that NOs are also solutions of
ψ(r⃗1, r⃗2)χk(r⃗2)dr⃗2 = ck χk(r⃗1). (6)

As demonstrated in Appendix A, these two representations
are known to be linked by the following general relationship
(independent of the form of the wavefunction):

∀ k nk = 2c2
k . (7)

In the particular case of (3), Eq. (6) reduces to

K

2π
0

Q (u) χk (θ2) Rdθ2 = ck χk (θ1) . (8)

First, we search for even NOs. Because they are periodic
functions of θ1, they can be expanded using the following
Fourier series:

χk (θ1) =
∞
j=0

bkj cos ( jθ1) . (9)

Knowing that u is a function of ω (see Eq. (1)), we expand Q
as a Taylor series in cosω,

Q(u) =
∞
i=0

aicosiω. (10)

Using Eqs. (9) and (10), Eq. (8) becomes

RK

2π
0



∞
i=0

ai cosi (θ1 − θ2)




∞
j=0

bkj cos ( jθ2)


dθ2

= ck χk (θ1) , (11)

which is equivalent to

RK
∞
i=0

∞
j=0

aibkjIij (θ1) = ck χk (θ1) , (12)

where

Iij(θ1) =
 2π

0
cosi(θ1 − θ2) cos( jθ2)dθ2 = πvij cos( jθ1), (13)

thanks to the properties of Chebyshev polynomials.54 The
expression of vij (that notably depends on the parity of integers
i and j) is given by Eq. (B3). Equation (12) can thus be written
as

πRK
∞
j=0

d jbkj cos ( jθ1) =
∞
j=0

ckbkj cos ( jθ1) , (14)

where d j =
∞
i≥ j

aivij. The uniqueness of the Fourier series

expansion yields

∀ j πRKd jbkj = ckbkj. (15)

In the case of strictly decreasing d j sequences — a condition
that will be fulfilled by all of the cases studied below — Eq.
(15) imposes that, for a given k value (i.e., a given NO), one
and only one bkj is not equal to 0. In other words, only one
term in the sum of Eq. (9) does not vanish. Thus, we have
demonstrated that the even NOs belong to the {cos (kθ1)}
family. It can similarly be shown that the odd solutions belong
to the {sin (kθ1)} one with the same ck,0 values. Such results
may have been anticipated from symmetry considerations
since NOs are generally adapted to the symmetry group of the
system in case of non-degeneracies (see, for example, Ref. 55
for a more general discussion).

Then, combining Eqs. (7) and (15), the occupation
numbers are finally given by

nk = 2π2R2K2d2
k . (16)

B. Closed forms of natural occupations
for polynomials of degree three

For the sake of brevity, we now restrict our analysis
to polynomials up to degree three (Ai>3 = 0). Closed-form
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expressions for dk can then be derived with Mathematica,56

as proven in Appendix B. It turns out that

dk =
Y2(k)
Y4(k) , (17)

where Yl denotes a polynomial of degree l. Hence,

nk ≈
k→∞

γ

k4 . (18)

Note that we have obtained the same power law as the one
reported by Giesbertz and van Leeuwen17 for two-electron
systems in infinite space (like, for instance, the helium atom).
The fact that two-electron quantum rings exhibit similar
natural occupation decay as atoms or molecules is one more
incentive to view them as powerful models for the development
of new energy functionals for chemical applications. Equation
(18) also calls for two additional remarks.

First, the decay law is valid whether the wavefunction
corresponds to a ground or an excited state. Second, it is
instructive to consider a cuspless (non-exact) polynomial
wavefunction. For example,

ψcuspless(u) =
M
i=1

qiu2i =

M
l=1

q̃i cosiω, (19)

which only includes even powers of u. The Taylor series in
cosω is now a finite sum contrarily to cases where odd powers
of u (of the

√
1 − cosω

2p+1
type) are involved. The NOs

of ψcuspless can be straightforwardly determined using Eqs.
(11)-(15) simply by substituting ai by q̃i. As a consequence

of the finite expansion for ψcuspless, the d̃ j =
∞
i≥ j

q̃ivij values

are exactly equal to zero for j >M . This implies, through
Eq. (15), the existence of vanishing occupation numbers, a
situation that cannot occur when a cusp exists at u = 0.

III. PARTICULAR RINGS

We now focus on specific numerical cases in order to
discuss the role of the ring radius on the natural occupations.

A. The simplest (non-exact) wavefunction with a node

As a first example, let us consider the simplest Q(0)
wavefunction featuring a node when the two electrons touch
(i.e., at u = 0), for which A(0)

2 = A(0)
3 = 0 and K (0) = 1

2
√

2πR2

(see Eq. (3)). Even if it does not correspond to an exact
wavefunction, it has a clear pedagogical interest by virtue of
its simplicity, which is embodied in the very compact form
taken by Eq. (16),

n(0)
k
= *
,

d(0)
k

2R
+
-

2

. (20)

Using the results given in Appendix B, one can derive that




n(0)
0 =

16
π2 , n(0)

2m =
16
π2

(
1

−1 + 16m2

)2

,

n(0)
1 =

16
9π2 , n(0)

2m+1 =
16
π2

(
1

3 + 16m + 16m2

)2

.

(21)

Numerically, one obtains n(0)
0 = 1.62, n(0)

1 = 0.18, n(0)
2

= 0.01, n(0)
k≥3 < 10−2. The correctness of this result is ensured

by n(0)
0 + 2


k≥1

n(0)
k
= 2, where the factor 2 takes into account

the {cos (kθ1),sin (kθ1)} degeneracy. It is remarkable that
these occupation numbers are independent of the ring radius.

B. Exact ground state wavefunctions

We now consider exact ground state polynomial
wavefunctions epitomized by the R1 =

√
3/2 and R2 =

√
23/2

radii. They are markedly characterized by the existence of a
single node at u = 0. For the first radius value, the exact
polynomial solution5 corresponds to AR1

2 = 1/2, AR1
3,4,5 = 0.

Note that this exact value for A2 is dictated by a Kato-like cusp
condition,57,58 which states that, in one-dimensional systems,5

we have

ψ(u) = u(1 + u/2) +O(u3). (22)

The NO occupation numbers are then found to be equal
to nR1

0 = 1.48, nR1
1 = 0.26, nR1

k≥2 < 10−2. With respect to the
approximate solution discussed in Sec. III A, one can
see that there is a consequent depopulation of the first
nodeless NO in favor of the second one (with one node),
due to the now correct full description of the electron cor-
relation.

For the second example, the exact solution is defined
by AR2

2 = 1/2, AR2
3 = 5/92, AR2

4,5 = 0,5 which gives nR2
0

= 1.33, nR2
1 = 0.33, nR2

k≥2 < 10−3. A still larger amount of
electrons are now in the second NO. In view of these results,
one could speculate that the higher the radius, the higher the
population of the second NO.

To check the validity of this conjecture, we have
considered two new ground state solutions that were
not reported in Ref. 5 (where only two {a = 0, b = 0}
solutions were explicitly given), which correspond to

the following ring radii: R3 =


93
2 +

3
2

√
681 and R4

=


273
2 +

3
2

√
3777. The expressions for their solutions are

gathered in Appendix C. The related occupations numbers
are nR3

0 = 1.17, nR3
1 = 0.41, and nR4

0 = 1.07, nR4
1 = 0.45, fully

corroborating the increasing of n1 with the ring size, even
if the nodeless orbital still remains the most populated
one.

Note that the population of the second NO is considerably
higher (more than one order of magnitude) than the one for
the helium atom. From this perspective, two-electron rings
could constitute models of choice for the design of accurate
correlation functionals, notably to describe strong cor-
relation.

The observation that the electrons are mostly occupying
the two first NOs is also consistent with the fact that the
exact electronic distributions correspond to uniform electron
densities. Indeed,

ρ (r⃗) ≡ ρ1 (r⃗; r⃗) =
∞
k=0

nk | χk (θ1)|2

≈ n0χ0(θ1)2 + n1

(
χ1,cos(θ1)2 + χ1,sin(θ1)2

)
.

(23)
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As χ0 (θ1) ∝ 1 and χ1,cos(θ1)2 + χ1,sin(θ1)2 ∝ cos2θ1 + sin2θ1
≡ 1, we recover that two-electron quantum rings are
UEGs.9,10,12

Finally, it follows from these results and from the fact that
the kinetic energy associated to the first NO is equal to zero
that the KS correlation kinetic energy is mainly described by
the second NO. Such a property could be of interest for the
design of new correlation functionals since, for UEGs, one
can in principle determine the total correlation energy from
the correlation kinetic energy component, a feature notably
exploited by Ragot and Cortona for the derivation of the RC
correlation functional.59,60

C. An example of an exact excited state wavefunction

As a final example, we now consider an exact excited
state solution in the form of a fourth degree polynomial61 for

R5 =


93
2 −

3
2

√
681. This exact wavefunction has three nodes

and its parameters are provided in Appendix C.
We obtained n0 = 0.70, n1 = 0.57, n2 = 0.09. In order to

compare these results, one should first recall that R1 < R5 < R2
and that the first NO population for the ground state of rings R1
and R2 was higher than 1.30, while the population of the second
lower than 0.35. Accordingly, even if we do not know a closed-
form expression for the ground state of ring R5, it is reasonable
to assess that the populations of the first two NOs will obey the
same inequalities. Thus, as intuitively expected, the population
of the second NO considerably increases in this excited
state.

However, the importance of the third NO shows that
NOs may not provide a compact representation of electronic
transitions (i.e., several orbitals have to be considered). Such
an observation legitimizes the use of NTO48 or NEO49 analysis
to facilitate the interpretation of such processes.

IV. CONCLUSIONS

In this paper, we have analytically determined the natural
orbitals and the natural occupations for quantum systems
consisting of two electrons confined on a one-dimensional
sphere (i.e., a ring). They have been found to be non-
vanishing and decaying following a 1/k4 power law for
ground and excited states, similarly to two-electron atomic or
molecular systems where the electrons can move in infinite
space. We have observed an increase in the population of the
second NO as the ring radius increases or when excited states
are considered. Such results may support the use of these
simple models to build energy representations, in particular
for correlation, which could be subsequently applied to real
chemical problems.
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APPENDIX A: PROOF OF EQS. (6) AND (7)

Considering the full set of one-electron functions ηk
satisfying 

ψ (r⃗1, r⃗2) ηk (r⃗2) dr⃗2 = ckηk (r⃗1) , (A1)

the wavefunction can be expanded as

ψ (r⃗1, r⃗2) =

i, j

γij ηi (r⃗1) η j (r⃗2) . (A2)

Using Eq. (A1), the orthogonality of the {ηk} set, and
integrating over r⃗2, one can show that the {ηk} diagonalize
the wavefunction. Hence, the 1-RDM reads

2


*.
,


i

ciηi (r⃗1) ηi (r⃗2)+/
-

*.
,


j

cjη j

�
r⃗ ′1
�
η j (r⃗2)+/

-
dr⃗2

= 2

i, j

cicjηi (r⃗1) η j

�
r⃗ ′1
� 

ηi (r⃗2) η j (r⃗2) dr⃗2

= 2

i

c2
i ηi (r⃗1) ηi �r⃗ ′1

�
. (A3)

APPENDIX B: EXPRESSION OF dj

For Q(A2,A3,B)
R (u) = R

√
2


1 − cos(θ1 − θ2) + 2A2R2(1
− cos(θ1 − θ2)) + 23/2A3R3(1 − cos(θ1 − θ2))3/2, one has the
following Taylor expansion:

Q(u) =
∞
i=0

ai cosi (θ1 − θ2) , (B1)

where
(1/2
α

)
denotes a generalized binomial coefficient, and




a0 =
√

2R + 2A2R2 + 23/2A3R3,

a1 = −
1
√

2
R − 2A2R2 − 3

√
2A3R3,

ai≥2 = R
√

2(−1)i *
,

1/2
i
+
-
+ 23/2A3(−1)i *

,

3/2
i
+
-
.

(B2)

Due to Eq. (13), the first term only involves even terms. More
specifically, one can show, using the Chebyshev polynomials
of the first kind,54 that




v00 = 2,

vij = 0 for




i < j
even i ≥ odd j
odd i ≥ even j

,

vij = *
,

i
(i − j)/2

+
-
/2i−1 for




even i ≥ even j
odd i ≥ odd j

.

(B3)

Therefore, we have
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d0 = a0v00 +

∞
p=1

a2pv2p,0

= 23/2R + 4A2R2 + 25/2A3R3 +

∞
p=1


R
√

2 *
,

1/2
2p

+
-
+ 23/2A3R3 *

,

3/2
2p

+
-


*
,

2p
p
+
-
/22p−1

=
8
π

R + 4A2R2 +
64
3π

A3R3. (B4)

Similarly, using the fact that only odd terms contribute to d1, we obtain

d1 = a1v11 +

∞
p=1

a2p+1v2p+1,1

= − 1
√

2
R − 2A2R2 − 3

√
2A3R3 −

∞
p=1


R
√

2 *
,

1/2
2p + 1

+
-
+ 23/2A3R3 *

,

3/2
2p + 1

+
-


*
,

2p + 1
p

+
-
/22p

= − 8
3π

R − 2A2R2 − 64
5π

A3R3. (B5)

For any even index higher or equal to 2,

d2m =

∞
p=m

a2pv2p,2m

=

∞
p=m


R
√

2 *
,

1/2
2p

+
-
+ 23/2A3R3 *

,

3/2
2p

+
-


*
,

2p
p − m

+
-
/22p−1

=
1
π

�
72 − 128m2� R + 192A2R3

9 − 160m2 + 256m4 . (B6)

Finally, for any odd index higher or equal to 3,

d2m+1 =

∞
p=m

a2p+1v2p+1,2m+1

= −
∞

p=m


R
√

2 *
,

1/2
2p + 1

+
-
+ 23/2A3R3 *

,

3/2
2p + 1

+
-


*
,

2p + 1
p − m

+
-
/22p

=
1
π

�
40 − 128m − 128m2� R + 192A3R3

−15 − 32m + 224m2 + 512m3 + 256m4 . (B7)

APPENDIX C: EXACT SOLUTIONS FOR RINGS WITH RADIUS R3, R4, AND R5

The polynomial coefficients are equal to




A2 =
1
2
, A3 =

−3 +
√

681
336

, A4 =
−387 + 17

√
681

20160
for R3,

A2 =
1
2
, A3 =

381 + 2
√

3777
6756

, A4 =
−387 + 29

√
3777

324288
, A5 =

−72375 + 1513
√

3777
243432192

for R4,

A2 =
1
2
, A3 = −

3 +
√

681
336

, A4 = −
387 + 17

√
681

20160
for R5,

(C1)

associated to the following energies:




2
105

(
31 −

√
681

)
for R3,

25
13512

(
91 −

√
3777

)
for R4,

2
105

(
31 +

√
681

)
for R5.

(C2)
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