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Uniform electron gases. III. Low-density gases
on three-dimensional spheres
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(Received 23 June 2015; accepted 10 August 2015; published online 25 August 2015)

By combining variational Monte Carlo (VMC) and complete-basis-set limit Hartree-Fock (HF)
calculations, we have obtained near-exact correlation energies for low-density same-spin electrons
on a three-dimensional sphere (3-sphere), i.e., the surface of a four-dimensional ball. In the VMC
calculations, we compare the efficacies of two types of one-electron basis functions for these strongly
correlated systems and analyze the energy convergence with respect to the quality of the Jastrow
factor. The HF calculations employ spherical Gaussian functions (SGFs) which are the curved-space
analogs of Cartesian Gaussian functions. At low densities, the electrons become relatively localized
into Wigner crystals, and the natural SGF centers are found by solving the Thomson problem (i.e., the
minimum-energy arrangement of n point charges) on the 3-sphere for various values of n. We have
found 11 special values of n whose Thomson sites are equivalent. Three of these are the vertices of
four-dimensional Platonic solids — the hyper-tetrahedron (n = 5), the hyper-octahedron (n = 8), and
the 24-cell (n = 24) — and a fourth is a highly symmetric structure (n = 13) which has not previously
been reported. By calculating the harmonic frequencies of the electrons around their equilibrium
positions, we also find the first-order vibrational corrections to the Thomson energy. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4929353]

I. INTRODUCTION

In a recent series of papers,1–8 we have shown that the be-
havior of electrons in the (flat) Euclidean space RD is surpris-
ingly similar to the behavior in the (curved) D-dimensional
manifold SD, the surface of a (D + 1)-dimensional ball.9 By
exploiting this similarity between electrons on a line10,11 and
electrons on a ring,6–8,12 we have constructed a new type of
correlation functional (the generalized local-density approxi-
mation) for density functional theory (DFT) calculations and
we have shown that this new functional yields accurate corre-
lation energies in a variety of one-dimensional systems.7,8

However, our ultimate goal is to construct improved func-
tionals13 for three-dimensional (3D) systems and, to this end,
we seek accurate correlation energies from the spherical space
S3 (henceforth called a glome), which is the surface of a
four-dimensional (4D) ball. Electrons in R3 or S3 enjoy three
degrees of translational freedom but the properties of n elec-
trons on a glome (n-glomium) have hitherto received little
attention.4,14–17

An n-glomium is defined by the number n of electrons and
the glome radius R. Its electron density is

ρ = n/(2π2R3) (1)

but it is often measured via the Wigner-Seitz radius18

rs =
(

3π
2n

)1/3

R, (2)

a)Electronic mail: peter.gill@anu.edu.au
b)Author to whom correspondence should be addressed. Electronic mail:

pf.loos@anu.edu.au

which measures the average distance between neighbouring
electrons. High-density systems (which are weakly corre-
lated) have small rs values while low-density systems (which
are strongly correlated) have large rs values. In the present
study, we focus our attention on low-density glomiums with
2 ≤ n ≤ 48.

In the low-density regime, the Coulomb energy (which de-
cays as R−2) dominates over the kinetic energy (which decays
as R−1) and the n electrons localize onto particular points on
the glome that minimize their (classical) Coulomb repulsion.
These minimum-energy configurations are called Wigner crys-
tals19 and, if all of its sites are topologically equivalent, we will
call it a uniform lattice.

The work is organized as follows. In Sec. II, we study
the Thomson problem on a glome and discuss the uniform
solutions. In Sec. III, we calculate the harmonic vibrational
energy of the electrons as they oscillate around their lattice
positions. In Secs. IV and V, respectively, we report Hartree-
Fock (HF), near-exact and correlation energies of n-glomium
at various densities. Unless otherwise stated, all energies are
reduced (i.e., per electron). Atomic units are used throughout.

II. THE THOMSON PROBLEM

What arrangement of n unit point charges on a unit D-
sphere minimizes their classical Coulomb energy? This gener-
alizes a question posed by Thomson as he devised the “plum
pudding” model of atomic structure.20 Although the model
was abandoned long ago, the Thomson problem continues to
intrigue mathematicians and has resurfaced in many fields of
science: surface ordering of liquid metal drops confined in Paul

0021-9606/2015/143(8)/084114/6/$30.00 143, 084114-1 © 2015 AIP Publishing LLC
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traps,21 fullerenes-like molecules,22 arrangements of protein
subunits on spherical viruses,23 or multielectron bubbles in
liquid helium.24,25

The Thomson problem on a 1-sphere (i.e., a ring) is
trivial and the solutions consist of charges uniformly spaced
around the ring. The problem on a 2-sphere is challenging
and, although it has been studied numerically up to large
values of n,26–28 mathematically rigorous solutions29 have been
established only for n ∈ {2,3,4,5,6,12}.

The Thomson problem on a 3-sphere (i.e., a glome) seeks
the global minimum ε0 = V (x0) of

V (x) =
n

i< j

r−1
i j , (3)

where x describes the positions of the n charges on the glome
and ri j is the Euclidean distance between charges i and j,
measured through the unit glome. It has attracted much less
attention30,31 than the D = 2 problem.

We performed a numerical study to determine the values
of n ≤ 50 for which the Thomson minimum-energy config-
uration on a glome is uniform. Although it would be more
suitable to use a global optimization, because we consider
relatively small numbers of electrons, we adopt the following
computational strategy: for each n, we generated randomly at
least 1000 distinct initial structures and minimized their energy
using local optimization algorithms, as implemented in the
M software package.32 Our numerical experiments
indicate that there are eleven uniform lattices. Their energy ε0
and principal moments of inertia are listed in Table I and their
Cartesian coordinates are in the supplementary material.33 The
set {2,3,4,6,8,12,24} of n values for uniform D = 2 Thomson
lattices17 is a subset of the D = 3 set but we do not understand
the reasons for this.

The principal moments of inertia of a lattice indicate the
degree of its symmetry. Generalizing the standard notation
for 3D structures,34 we define a “hyperspherical top” as a 4D
structure with four equal moments; the extremely symmetrical
n = 5, 6, 8, 10, 13, 24, and 48 lattices are of this type. We define

a “spherical top” as a lattice in which three of the four moments
are equal; the n = 2 (prolate) and n = 4 (oblate) lattices are of
this type. We define a “symmetric top” as a lattice in which the
moments form two pairs; the n = 3 and n = 12 lattices are of
this type.

The glome lattices for n = 2 (a diameter) and n = 3 (equi-
lateral triangle) are the same as on a 1-sphere and 2-sphere. The
glome lattice for n = 4 (regular tetrahedron) is the same as on a
2-sphere. The n = 5 lattice is a regular hyper-tetrahedron (also
called a regular simplex35), a 4D Platonic solid with ten equal
side lengths. The n = 6 lattice is the union of an equilateral
triangle in the wx-plane and another such triangle in the yz-
plane. The n = 8 lattice is a hyper-octahedron (or 16-cell), a 4D
Platonic solid with vertices at ±1 on each of the four Cartesian
axes. The n = 10 lattice is the union of a regular pentagon
in the wx-plane and another such pentagon in the yz-plane,
while the n = 12 lattice is the union of two perpendicular
triangular prisms. The n = 13 lattice is peculiar to the D = 3
Thomson problem and, to the best of our knowledge, has not
been previously described. The n = 24 lattice is the 24-cell,
a 4D Platonic solid with no analogue in 3D. It is the union
of a hyper-octahedron and a hyper-cube. The n = 48 lattice is
peculiar to the D = 3 Thomson problem.

III. HARMONIC VIBRATIONAL ENERGY

The energy EW of an n-electron Wigner crystal on a glome
can be estimated by solving the Schrödinger equation in the
harmonic potential

V2(x) = V (x0) + 1
2
(x − x0)T ·H · (x − x0), (4)

where H is the 3n × 3n second-derivative (Hessian) matrix

Hi j =
∂2V (x)
∂ti∂t j

�����x=x0

(5)

and the ti are suitable tangential coordinates. The square roots
of the Hessian eigenvalues are the harmonic frequenciesωi and

TABLE I. Non-reduced Thomson energy ε0 and principal moments of inertia Ik of the Thomson lattices on a unit glome.

n ε0 I1 I2 I3 I4

2 1/2 0 2 2 2
3 3/

√
3 3/2 3/2 3 3

4 6/


8/3 8/3 8/3 8/3 4
5 10/


5/2 15/4 15/4 15/4 15/4

6 9/
√

2+6/
√

3 9/2 9/2 9/2 9/2
8 24/

√
2+4/2 6 6 6 6

10
10

2sin(π/5) +
25
√

2
+

10
2sin(2π/5) 15/2 15/2 15/2 15/2

12a 6
2c
+

12
√

3s
+

12
√

2+2s2
+

24
√

2− s2
+

12
√

4− s2
6(1+c2) 6(1+c2) 6(1+ s2) 6(1+ s2)

13


k=1,2,4

26
2−2cos(kπ/13)cos(5kπ/13) 39/4 39/4 39/4 39/4

24 96/1+72/
√

2+96/
√

3+12/2 18 18 18 18

48
24
2
+

240
√

2
+

48
2±
√

2
+

96
2±
√

2/2
+

96
2±
√

6/2
+

96
2± (√3−1)/2

+
96

2± (√3+1)/2
36 36 36 36

ac = cosθ, s = sinθ and θ = 0.793 553 668 5 . . ..
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TABLE II. Reduced Thomson energy E0, harmonic vibrational energy E1,
near-exact energy E , Hartree-Fock energy EHF, and correlation energy Ec

(in mEh) for various n and rs.

rs 20 50 100 150

E0 16.633 6.653 3.327 2.218
E0+E1 23.068 8.281 3.902 2.531

n = 2 E 23.928 8.385 3.924 2.540
EHF 24.911 8.795 4.100 2.643
−Ec 0.983 0.410 0.176 0.103

E0 33.557 13.423 6.711 4.474
E0+E1 41.074 15.324 7.384 4.840

n = 3 E 41.783 15.405 7.400 4.847
EHF 43.811 16.079 7.664 5.000
−Ec 2.028 0.674 0.264 0.153

E0 48.507 19.403 9.701 6.468
E0+E1 57.190 21.600 10.478 6.890

n = 4 E 57.155 21.550 10.461 6.882
EHF 59.886 22.358 10.757 7.046
−Ec 2.731 0.808 0.296 0.164

E0 62.009 24.804 12.402 8.268
E0+E1 71.916 27.310 13.288 8.750

n = 5 E 71.038 27.119 13.238 8.728
EHF 74.240 27.985 13.537 8.888
−Ec 3.202 0.866 0.299 0.160

E0 75.564 30.226 15.113 10.075
E0+E1 85.823 32.821 16.030 10.575

n = 6 E 85.406 32.682 15.986 10.553
EHF 88.283 33.530 16.293 10.720
−Ec 2.877 0.848 0.307 0.167

E0 99.390 39.756 19.878 13.252
E0+E1 110.951 42.681 20.912 13.815

n = 8 E 110.614 42.620 20.915 13.823
EHF 112.893 43.234 21.115 13.927
−Ec 2.279 0.614 0.200 0.104

E0 122.336 48.934 24.467 16.311
E0+E1 133.974 51.879 25.508 16.878

n = 10 E 133.522 51.767 25.485 16.874
EHF 136.154 52.479 25.727 17.002
−Ec 2.632 0.712 0.242 0.128

E0 143.339 57.336 28.668 19.112
E0+E1 155.615 60.441 29.766 19.710

n = 12 E 154.713 60.269 29.740 19.707
EHF 157.560 61.001 29.970 19.822
−Ec 2.847 0.732 0.230 0.115

E0 153.600 61.440 30.720 20.480
E0+E1 165.909 64.554 31.821 21.079

n = 13 E 164.804 64.322 31.767 21.061
EHF 167.947 65.126 32.033 21.196
−Ec 3.143 0.804 0.266 0.135

E0 252.272 100.909 50.454 33.636
E0+E1 265.600 104.280 51.647 34.285

n = 24 E 264.917 104.138 51.624 34.280
EHF 267.464 104.793 51.831 34.387
−Ec 2.547 0.655 0.207 0.107

TABLE II. (Continued.)

rs 20 50 100 150

E0 425.792 170.317 85.158 56.772
E0+E1 439.690 173.833 86.401 57.449

n = 48 E 438.667 173.681 86.406 57.474
EHF 441.542 174.334 86.581 57.547
−Ec 2.875 0.653 0.175 0.073

Jellium −Ec 6.839 3.607 2.080 1.499

one can then write

EW =
ε0

R
+

Nvib
i=1 ωi

2R3/2 +O(R−2) (6)

= E0 + E1 +O(R−2). (7)

One finds that, for n > 3 particles in S3, exactly 3n − 6 of the
Hessian eigenvalues are non-zero and six vanish because they
correspond to rotations on the glome. This is analogous to
the familiar 3n − 6 rule36 for non-linear molecules vibrating
in R3. Numerical values of E0 + E1 for a range of n and rs are
presented in Table II.

IV. HARTREE-FOCK ENERGIES

We now turn to the ab initio treatment of n spin-up elec-
trons on a glome, i.e., ferromagnetic n-glomium. We have
performed HF calculations37 in a basis of s-type spherical
Gaussian functions (SGFs),17

GA
α(r) =


α

2π2I1(2α) exp(α r · A), r ∈ S3, (8)

where A ∈ S3 is the center of the SGF, α is the exponent, and I1
is a modified Bessel function.38 A SGF behaves like a Gaussian
near A and is therefore a natural basis function for describing
a localized electron. Moreover, the product of two SGFs is a
third SGF which make them computationally attractive.39 All
the required one- and two-electron integrals can be found in
Ref. 17.

Adopting the “Gaussian lobe” philosophy introduced by
Whitten40 many years ago, we use off-center s-type SGFs
to mimic SGFs of higher angular momentum. The basis set
consists of a grid of s-type SGFs with same exponent α clus-
tered around each Thomson site (see Fig. 1). The complete
basis set (CBS) HF energy is obtained by successively adding
Level 0 (L0), Level 1 (L1), Level 2 (L2), and Level 3 (L3)
functions to the basis set. In each calculation, we optimize the
SGF exponent α and the nearest-neighbor distance δ using the
Newton-Raphson optimization procedure. Our target accuracy
was 1 microhartree (µEh) per electron. The resulting HF ener-
gies for a range of n and rs are shown in Table II.

Table III reports HF energies of n-glomium as the basis
set is gradually improved. SGFs are optimal for localized
electronic systems but become less efficient as the density
increases so the convergence for rs > 20 is always at least as
fast as for rs = 20. We therefore show results for rs = 20, the
most challenging case.
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FIG. 1. Three-dimensional SGF grid used at each Thomson site in HF
calculations. The Level 0 (L0), Level 1 (L1), Level 2 (L2), and Level 3 (L3)
functions are represented in purple, red, green, and blue, respectively. δ is the
shortest distance (around the glome) between two grid points.

For a given value of rs, the minimal-basis (L0) expo-
nent α grows, i.e., the electrons become more localized, as
n increases. The results of Table III show that L2 achieves
µEh accuracy for all n values and, indeed, L1 suffices for
the largest n values. It is well known that, on a 2-sphere, the
number of nearest neighbors around an electron approaches
six (hexagonal lattice) for large n.41 Similarly, on a glome, the
number of nearest neighbors approaches eight (body-centered
cubic lattice).18 Thus, for large n, the density around each
electron becomes approximately isotropic, and the L2 and L3
functions become largely superfluous.

V. NEAR-EXACT ENERGIES

To obtain near-exact energies for electrons on a glome,
we have performed variational Monte Carlo (VMC) calcula-
tions.42 The trial wave function is of the form

ΨT = Ψ0 eJ, (9)

where Ψ0 is a Slater determinant of either SGFs17 or hyper-
spherical harmonics43,44 (HSHs),

Ykℓm(χ,θ,φ) = Cℓ+1
k−ℓ(cos χ)sinℓ χYℓm(θ,φ). (10)

Cℓ
k

is a Gegenbauer polynomial and Yℓm is a spherical har-
monic.38 The Jastrow factor J is a symmetric function of the
interelectronic distances ri j containing two-body (2B), three-

body (3B), and four-body (4B) terms.45,46 More details will be
reported elsewhere.47

At low densities, the energy minimization procedure is
unstable and the parameters of the Jastrow factor were there-
fore optimized by variance minimization using Newton’s
method.48–51 In all calculations, the statistical error obtained
by reblocking analysis52,53 is under 1 µEh. For small numbers
of electrons, comparisons with extrapolated full configuration
interaction (FCI) calculations54,55 indicate that our VMC ener-
gies have sub-µEh accuracy. They are reported in Table II for
various rs and n values.

Because we have observed that many-body effects are
more important for small rs, we have studied the convergence
of the energy for rs = 20 and various n values as 2B, 3B,
and 4B terms are successively included. We found that the
inclusion of 3B terms systematically lowers the energies by
up to 20 µEh per electron but that the inclusion of 4B terms
offers less than 1 µEh per electron. We therefore eschewed 4B
terms in the calculations with rs > 20.

When SGFs were used, the determinantΨ0 corresponds to
a HF Level 0 calculation (i.e., a single SGF on each Thomson
site) but the value of the SGF exponent was optimized to mini-
mize the VMC energy. We found that the SGF basis is superior
to the HSH basis for n = 8, 10, 12, and 24, while the two basis
sets yield identical energies for the other cases. 8-, 10-, 12-, and
24-glomium are “open-shell” systems, i.e., the highest occu-
pied shell of HSHs is partially occupied and there are several
low-lying determinants with significant weights. In contrast,
SGFs at the Thomson lattice sites naturally describe the local-
ized electrons and are particularly well suited to these sys-
tems. For 48-glomium, computational limitations precluded
full exponent optimization and the results in Table II were
therefore obtained with HSHs. They are probably less accurate
than the other energies.

VI. DISCUSSION

By taking the difference between the CBS-HF energies of
Sec. IV and the VMC energies of Sec. V, we have obtained the
near-exact correlation energies Ec of n-glomium for various rs
and n values. Our results are reported in Table II.

While we have shown that, in 1D, the correlation energy is
a smooth and monotonic function of n,6,7 the situation is rather
different in 3D. As shown in Figure 2 (where have plotted Ec as
a function of n), the reduced correlation energies do not change
monotonically as n increases. Instead, they initially increase
and reach a maximum at n = 5 or n = 6. Beyond n = 5, they
oscillate and tend to decrease slowly with n, especially at

TABLE III. HF energies (in mEh) for ferromagnetic n-glomium with rs = 20. There are M basis functions per Thomson site.

Basis set Number of electrons n

Level M 2 3 4 5 6 8 10 12 13 24 48

0 1 24.983 43.939 60.016 74.277 88.345 112.911 136.249 157.626 167.991 267.468 441.543
1 7 24.917 43.816 59.890 74.253 88.290 112.893 136.169 157.606 167.951 267.464 441.542
2 19 24.911 43.811 59.886 74.240 88.283 112.893 136.154 157.560 167.947 267.464 441.542
3 27 24.911 43.811 59.886 74.240 88.283 112.893 136.154 157.560 167.947 267.464 441.542
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FIG. 2. Reduced correlation energy Ec (in mEh) as a function of n for
various rs.

very low densities. The oscillations are probably due to “shell
effects” which originate from partially filled energy level in
open-shell systems (see above). Such shell effects are also
observed in 2D.17 For fixed n, our numerical results show that
Ec decreases as r−3/2

s for large rs. This is expected due to
the cancellation of the leading term (proportional to r−1

s ) in
the exact and HF energies expansion at large rs (see Eq. (6)).
We have also reported the correlation energies56–58 of the jel-
lium model (which corresponds to n → ∞) in Table II. Exact
jellium energies are available in many previous papers56–63

but fully relaxed HF energies64,65 are rare. As a result, most
of the jellium correlation energies in the literature are based
on unrelaxed HF energies and are consequently significantly
larger than ours.

The harmonically corrected Thomson energy (E0 + E1)
is usually higher than the exact energy but n = 2 and
n = 3 are exceptional cases. At very low densities, however, it
always approximates the exact energy well. Including the first
anharmonic correction E2 would probably yield even better
estimates.66,67

VII. CONCLUSION

The goal of this work was to generate benchmark corre-
lation energies for the development of improved correlation
functionals for DFT calculations on 3D systems. To achieve
this, we have studied the correlation energies of low-density
spin-polarized electron gases on a glome.

First, we looked at the Thomson problem on a glome,
using numerical optimization algorithms to locate uniform
lattices, i.e., those in which all the lattice sites are equivalent,
for n ≤ 50. We found eleven uniform lattices. We also noted
that three of these uniform lattices correspond to well-known
4D Platonic solids: the hyper-tetrahedron (n = 5), the hyper-
octahedron (n = 8), and the 24-cell (n = 24). Moreover, we
have pointed out the highly symmetric case of n = 13 and we
stressed that this polychoron has not been previously described
anywhere in the literature. By taking into account the quantum
oscillation of the electrons around their equilibrium positions,
we obtained the harmonic vibrational contribution to the (clas-
sical) Thomson energy. As expected, the sum of the Thomson
and harmonic energies is a very good approximation of the
exact energy at very low density.

Moreover, by systematically increasing the number of
s-type SGF basis functions around each Thomson site, we

obtained the CBS HF energy of n-glomium for a range of
densities (20 ≤ rs ≤ 150). In general, the convergence anal-
ysis reveals that only L2 calculations are required to converge
the HF energies to microhartree accuracy. However, we note
that as we move into the high-density regime, more s-type SGF
functions are needed to reach the CBS limit. In this regime,
HSHs might constitute a more suitable one-electron basis set.
We will investigate this in a forthcoming paper.

The near-exact energies were obtained using highly accu-
rate VMC stochastic calculations using HSH and SGF one-
electron basis sets. We have shown that four-body terms in the
Jastrow factor have insignificant effect on the energy. The ener-
gies obtained using both basis sets are in very good agreement,
except for 8-, 10-, 12-, and 24-glomium where the SGF basis
is superior.

The present work is a significant step towards the con-
struction of correlation functionals for molecules and solids.
The next step is to generate accurate correlation energies
within the high density regime, and for partially polarized sys-
tems. This work is underway and our results will be reported
elsewhere.
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