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Reflection electron energy loss spectra from some insulating materials (CaCO3, Li2CO3, and SiO2)
taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk
sensitive and a well-defined onset of inelastic excitations is observed from which one can infer
the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with
a procedure that includes the recoil shift and recoil broadening affecting these measurements. The
width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material
(Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si
atoms are compared with the calculated ones, and good agreement is found, especially if the effect
of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the
inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can
obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO2, good agreement
is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the
intensity near the edge scales as (E − Egap)1.5. For CaCO3, the band gap obtained here (7 eV) is about
1 eV larger than the previous experimental value, whereas the value for Li2CO3 (7.5 eV) is the first
experimental estimate. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4929911]

I. INTRODUCTION

The band gap of materials determines many of their
electrical properties. The band gap is also the property that is
rather difficult to calculate based on density functional theory
(DFT). For wide-gap insulators, (Reflection) electron energy
loss spectroscopy ((R)EELS) is often used to determine its
magnitude, but quantitative extraction of the band gap value is
often difficult and frequently relies on extrapolating the straight
line corresponding to the leading edge of the loss structure.
See, e.g., Ref. 1 for some recent examples. This procedure
is not very rigorous and the accuracy of the obtained result
is hard to judge. For low incoming energies, interpretation is
even more difficult due to the significant contributions to the
measured spectrum of both intrinsic surface states and defects
present at the surface.

Within electron microscopy, the extraction of the band gap
from the experimental (transmission) electron energy loss data
was set on a more solid footing by Rafferty and Brown.2 They
devised a fitting procedure within the framework of the Bethe
theory3 and extracted the band gap based on the theoretical
shape for the onset of the energy loss spectrum. We will try
here to investigate if this approach works also for REELS, at
relatively high energies when the contribution of surface losses
should be small, and the surface condition is less critical as
one probes relatively deep in materials.

A complicating factor is that at higher energies the
large-angle deflection of electrons implies the transfer of a

measurable amount of energy to the scattering atom. This
transferred energy depends on the mass and the velocity of the
scattering atom. Thus, the shape of the elastic peak is not a
simple Gaussian corresponding to the experimental resolution
and an accurate determination of the band gap requires quanti-
tative understanding of these effects. All electrons detected in
a REELS experiment have scattered elastically from a target
atom, and hence are affected by these recoil losses. Electrons
that contribute to the elastic peak have created no inelastic
excitations in the solid. The onset of the energy loss spectrum,
used to extract the band gap values, is due to projectiles that
have created a single electron-hole pair in the target.

At very large incoming energies, the elastic peak of an
electron scattered from a light atom in the target may be
the same as the energy of an electron that has scattered
elastically from a heavy atom and created an electron-hole pair.
Understanding these spectra requires thus a good description
of both the elastic peak and the onset of the band gap. It is this
description that is the topic of this paper. The elastic peak is
fitted based on the composition of the sample and the mean
kinetic energy of the atoms present. In fact, the spectroscopy
described here is one of the very few methods that can measure
the mean kinetic energies of atoms directly. Hence, we describe
how the mean kinetic energy (an interesting quantity in itself)
can be calculated in some detail to see if the interpretation used
here is realistic. In practice, from the measurement at high
incoming energies (40 keV), one determines the mean kinetic
energy Ke(X) of element X and these values are compared
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to calculated ones. At somewhat lower energies (5 keV), one
can then fit the onset of the inelastic losses based on these
kinetic energies. In some cases (e.g., Li2CO3), one requires
a combined fit of spectra taken at different energies to get
a good estimate of both the kinetic energy and the band
gap.

II. THEORETICAL BACKGROUND

A. Band gap measurement

In a REELS spectrum of an insulator, the elastic peak
is followed by a region of essentially zero intensity up to a
certain energy loss after which there is additional intensity
due to inelastic excitations. When we neglect defect states
and polaronic excitations, the onset of the loss spectrum
corresponds to the band gap. However, the onset is convoluted
by the experimental resolution (and Doppler broadening). The
band gap value assigned to an energy loss spectrum depends
then on the shape of the loss function assumed. As statistics
is limited, deconvolution of the experimental resolution is
usually not an option and one has to rely on a model. The
most crude, but widely used method of interpreting such a
spectrum, is by approximating the leading edge by a straight
line and assigning the band gap to the energy where this straight
line intersects the energy axis. Drawing this line is not unique
and the statistical error involved in this procedure is hard to
trace.

For determining the band gap, one has to know the
shape of the onset of the loss function. The often used
straight line approximation assumes that the loss function
near the onset resembles C(E − Egap), but this assumption is
usually made implicitly. In the context of EELS experiments
in a transmission electron microscope (TEM), Rafferty and
Brown2 argued that the shape of the onset should be close to
(E − Egap)0.5 for direct gap semiconductors and (E − Egap)1.5
for indirect gap semiconductors. This approach has been
discussed in other TEM-related publications, noticeably in
the context of an apparent sample-thickness dependence of
the band gap and complications due to presence of Cherenkov
radiation4,5 and the effect of numerical treatment of the data
on the band gap obtained.6

Can one use the Rafferty and Brown approach in a REELS
experiment? This is not a trivial question. It completely ne-
glects surface excitations which have a major influence in low
energy REELS experiments, but it could become a reasonable
approximation for REELS experiments at multiple keV in
a non-surface sensitive geometry as described here. Another
important difference is that in a TEM-EELS experiment there
is an aperture that limits the range of momentum transfer q of
the detected electron, see, e.g., Ref. 4 how this can be used
to study indirect transitions. In REELS, one relies on elastic
scattering to deflect the detected electrons, which corresponds
to the absence of a limiting aperture. So our aim will be slightly
more modest. Rather than assuming that the intensity near the
band gap is proportional to (E − Egap) (as is done implicitly
in the straight line approximation), we will fit our data with
(E − Egap)0.5 and (E − Egap)1.5 and see how the resulting band
gap varies. This will give a range of band gap values that are

consistent with the data, and a more precise determination will
only be possible if an a priori assumption of the shape can be
justified based on theory. It would be even more helpful if
theory could not only describe the shape of the onset, but also
provide an estimate of its intensity relative to that of the elastic
peak.

For the measurement of the band gap with high-energy
electrons to work, one needs a good understanding of the
recoil effects that affect REELS measurements. This will be
discussed next.

B. Recoil effects in high-energy
REELS measurements

In a large-angle scattering event, there is momentum
transferred from the projectile electron to a target. It turns
out that the transferred momentum q is absorbed by a single
atom, and the energy transferred to this atom (mass Mi) can be
calculated, assuming that this atom is free. This recoil energy
Er depends then on the momentum p of the target atom before
the collision,7

Er =
q2

2Mi
+

q · p
Mi

. (1)

Er is thus equal to the energy transfer to a stationary atom
(q2/2Mi) plus a Doppler broadening term. This equation is
very similar to the one describing (x-ray) Compton scattering,
and hence these experiments, when measuring the width
of the peak, are sometimes described as electron Compton
scattering (ECS). First, we will neglect the influence of
multiple scattering and the magnitude of q is then set by the
incoming energy and the angle between the electron gun and
the analyzer: θscat, which is 135◦ in our case. For isotropic
targets (polycrystalline or powder samples, but not single
crystals), the width of the elastic peak σ can be related to
the mean kinetic energy Ke(X) of atom X by

σ =


4
3

EX
r Ke(X), (2)

where EX
r is the mean recoil energy of element X : q2/2MX.8

For targets consisting of atoms of different mass, the elastic
peak consists of several components which for large enough q
values will show up experimentally as separate peaks. It then
becomes possible to determine the width of each peak and
hence, the mean kinetic energy of each constituent.

Here, we use as targets SiO2, CaCO3, and Li2CO3. The
measured kinetic energies obtained by electron scattering are
compared with the results of two methods of calculations both
based on the harmonic approximation: the first is the standard
computational methods of infra-red (IR) spectroscopy9 and the
second relies on DFT.

C. Calculation of atomic kinetic energies

The atomic kinetic energy, Ke, of atoms constituting a
molecular solid is contributed by three motions: external (lat-
tice) translational-vibrations, librations (hindered rotations) of
the whole molecule, and internal molecular vibrations. In ionic
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molecular solids, e.g., Li2CO3, the binding between the Li
cation and the molecular CO3 anionic unit is much weaker than
the strong covalent bonds within the CO3 anion. Thus, Ke of the
O and C atoms in Li2CO3 is expected to be governed mainly by
the internal vibrational frequencies of the anion. The present
semi-empirical (SE) approach for calculating Ke utilizes the
experimental internal and external characteristic frequencies
measured by IR and Raman techniques and in some cases by
inelastic neutron scattering (INS); this SE approach assumes
the harmonic approximation and a decoupling between the
three modes of motion.

The procedure of calculating the kinetic energy of the car-
bon and oxygen atoms constituting the CO3 unit is applicable
to both Li2CO3 and CaCO3. Note that the carbonate anion
has a trigonal symmetry (D3h) forming a planar equilateral
triangle with the O-atoms at the vertices and the C-atom at the
center of mass; CO3 has thus 6 normal internal modes, two of
which are degenerate due to the symmetry of the molecule.
Besides the internal vibrational modes, Ke(X);(X = C,O) is
also contributed by the external motions of translational- and
librational-vibrations of the whole molecule. Thus, the kinetic
energy of the X atom in CO3 may be written as

Ke(X) = St(X)α(νt,T) + Sr(X)α(νr ,T)

+

6
j=1

Sj(X)α(νj,T), (3)

where St(X), Sr(X), and Sj(X) are the energy fractions
taken by the X-atom in the external motions of vibrations
(translational) and libration, and in the internal j ( j = 1 . . . 6)
normal vibrations, respectively (Table I). α(νl,T), defined as

α(νl,T) = hνl

(
1

ehν1/kT − 1
+

1
2

)
, (4)

is the kinetic energy of an harmonic oscillator of frequency νl
(l = t,r, j), with t and r, the characteristic frequencies of the
lattice vibrations and librations of CO3 in Li2CO3/CaCO3, k the
Boltzmann constant, and T the thermodynamic temperature.
Note also that the contribution of translation and libration to
the kinetic energy may be also deduced from a knowledge

of the Debye temperature of the molecular solid via its
bulk specific heat.9 The fraction of the translational motion,
(e.g., St = 16/60 for O atoms), is directly obtained from the
mass ratio of the O atom to that of CO3. Sr(X) is deduced
classically by accounting for the moments of inertia as dictated
by the geometry of free CO3.9 Sj(X), the energy fraction
shared by the X atom in the jth internal mode, may be
deduced as explained in Ref. 9. The necessary input data for
the determination of the Sj(X) values are the 6 experimental
IR vibrational frequencies of CO3

2− in Li2CO3 and CaCO3
taken from the literature (Table I) and the corresponding
four force constants: K1 (bending of the O–C–O angle), K2
(C–O symmetric stretch), K3 (C–O asymmetric stretch), and
K5 (restoring force which brings back the C–O to the CO3
molecular plane).9

It should be emphasized that the above calculation was
carried out by assuming free CO3 and is also applicable to CO3
bonded is a crystal. It turns out that there is a slight difference
between the two cases reflecting itself in small changes in
geometry and normal frequencies. The overall effect of the
above changes on the values of Ke(C) and Ke(O) was calcu-
lated and found to be small and less than 1%, thus justifying the
above procedure. Note that the above SE procedure cannot be
used to calculate Ke(Li) because of the absence of any optical
information to describe the Li motion in the molecular crystal.
This drawback was overcome by using the phonon density of
states (DOS), as is done using the DFT method.

D. Calculations based on DFT

The determination of Ke based on DFT calculations
was done for the cases of SiO2 and Li2CO3. The structural,
electronic, and phonon properties of the monoclinic Li2CO3
and ofα-SiO2 (quartz) were recently simulated using DFT.12–14

Validation of the calculations was achieved by comparing the
resulting bulk, thermodynamic, and elastic properties against
available theoretical data and experimental measurements,
where a good agreement was found. In both studies, the partial
density of states (PDOS) of each constituent atom in a supercell
of Li2CO3 and α-SiO2 was simulated.

TABLE I. Experimental frequencies10,11 and calculated kinetic energy fractions Sl(X). The characteristic fre-
quencies of translation and libration11 were adopted for calculating Ke of both CaCO3 and Li2CO3. AB, SB,
SS, and AS denote asymmetric bend (degenerate), symmetric bend, symmetric stretch, and asymmetric stretch
(degenerate), respectively, of CO3. The last two rows indicate the total energy fractions shared by the atoms in the
external and internal modes of motions. Note that for each atom, the sum over all energy fractions is unity.9

Spectroscopy DFT

ν k Li2CO3, CaCO3 Li2CO3

l Mode cm−1 105 dyn/cm Sl(C) Sl(O) Sl(C) Sl(O) Sl(Li)
t Trans. 200 0.2002 0.2667 0.1765 0.5291 0.1544
r Lib. 300 0 0.3333 0.0240 0.0796 0.8266
1, 2 AB 680 0.5944 0.0767 0.0855 0.0192 0.0997 0.0094
3 SB 879 0.7470 0.2666 0.0222 0.2617 0.0243 0.0007
4 SS 1065 5.5125 0 0.1111 0.0018 0.1104 0.0002
5, 6 AS 1415 1.7235 0.1899 0.0478 0.2487 0.0286 0.0008

External 0.2 0.6 0.2 0.61 0.98
Internal 0.8 0.4 0.8 0.39 0.02
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FIG. 1. gx(ν) profiles for Li2CO3, as calculated using DFT in Refs. 12
and 13. Indicated in the upper plot are the lattice phonon spectral range
(0-600 cm−1) and the optical characteristic internal (normal) modes of the
carbonate unit. AB, SB, SS, and AS correspond to the asymmetric bend
(double degenerate), symmetric bend, symmetric stretch, and asymmetric
stretch (double degenerate) of the carbonate unit.

The above calculated PDOS was utilized in the present
study for deducing the mean kinetic energy, Ke, of the Li,
C, and O atoms in Li2CO3 and of Si and O in SiO2. In
addition, in Ref. 13, the projection of the PDOS was also
calculated along each of the three crystallographic directions
enabling the kinetic energy of each constituent atom to be
estimated along and perpendicular to the molecular plane of the
carbonate unit. The PDOS of the X atom in the lattice supercell,
hereby denoted as gx(ν), provides the frequency distribution
covering the entire range of lattice and internal phonon states.
Figure 1 depicts the DFT calculated PDOS of the C, O, and
Li atoms in Li2CO3, as an average over the calculated PDOS
of Refs. 12 and 13, and Fig. 2 shows the calculated PDOS for
SiO2.

The figure emphasizes the fact that the Li atoms mostly
participate in the (low-frequency) lattice modes and are only
weakly affected by the internal, more energetic, modes of the
carbonate unit. Fig. 1 also illustrates the fractions shared by
the C and O atoms in the internal modes, in close correlation to
the data calculated in Table I using the standard spectroscopic

FIG. 2. gx(ν) profiles (x = Si-solid, O-dashed) for SiO2 (quartz), calculated
and provided by the authors of Ref. 14.

method.9 Finally, it is interesting to note that despite of
the optical normal modes being a single frequency features,
while the phonon spectra give the actual continuous frequency
distribution, both yield Ke(C) and Ke(O) values which are in
close agreement (see Table I). For a crystal, Ke(X) can be
written as

Ke(X) = 3
2

 ν f
νi

gX(ν)α(ν)dν ν f
νi

gX(ν)dν , (5)

with α(νi) corresponding harmonic oscillator of the ith phonon
state, and νi, νf the frequency boundaries of the gx(ν). Table II
summarizes the calculated kinetic energies of the atomic
constituents of CaCO3 and Li2CO3 using the above semi-
empirical and DFT procedures.

It is clearly noted from Table II that for both carbonate
salts, the ECS measurements and the two types of theoretical
approaches systematically yield Ke(C) > Ke(O). At first
glance, this outcome could be understood intuitively from the
fact that the C-atom, being the light partner in the CO3 unit,
is expected to share the major part of the normal frequencies.

TABLE II. Calculated and ECS measured atomic kinetic energy of 16O and 12C and of the 7Li, 28Si, and
40Ca cations in CaCO3, Li2CO3, and SiO2 at 295 K. DFT values were calculated using Eq. (5) where in
Li2CO3 an average over raw data from Refs. 12 and 13 was taken. Raw data for SiO2 were adapted from
Ref. 14. Semi-empirical values were calculated from Eq. (3) using the lattice and internal frequencies of Table I.
Experimental starred values are corrected for multiple scattering based on Monte Carlo simulations as discussed
in Section IV B.

Calculated (meV) Experiment (meV)

Spectros. DFT ECS

Sample O C O C Cation O C Cation

CaCO3 69 ± 2 101 ± 3 48 ± 1
64 ± 2∗ 94 ± 3∗ 46 ± 1∗

Li2CO3 61.7 97 . 4 60 . 5 98 50.8 64 ± 2 100 ± 3 57 ± 5
62 ± 2∗ 98 ± 3∗ 52 ± 5∗

SiO2 - - 62 . 2 . . . 65.2 66 ± 3 . . . 70 ± 2
61 ± 3∗ . . . 68 ± 2∗
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The geometry of the carbonate molecule, where the C atom
is centered at the equilateral O3 triangle, imposes however
some restrictions on the mobility of the C atom. From an
examination of the calculated energy fractions of Table II,
one may clearly see that the C atom is excluded from both
the symmetric stretch motion (S4 = 0), having the strongest
internal frequency, as well as from the external rotational
modes (Sr = 0). Nonetheless, the energy fractions shared by
the C atom in the remaining modes compensate for the above
loss and the overall outcome is in favor of Ke(C) relative to
Ke(O).

It is very interesting to note that the semi-empirical
calculations produce practically the same results as those of the
DFT method. It is also interesting to note that for the Li cations
the DFT value of Ke(Li) is 50.8 meV (Table II). This is far
higher than that of a pure Li metal which may be calculated by
using the Debye approximation yielding Ke(Li) = 42.3 meV
at 295 K obtained using a Debye temperature of θ (Li)= 448 K
for metallic Li. Note that the value for metallic Li is only≈11%
larger than that of a free Li atom being 3

2 kT , whereas the value
for Li cations is 35% larger, complying with the fact that the
ionic bond between Li and CO3 is far stronger than the metallic
Li bond.

III. BAND GAP RESULTS

A. SiO2

The first example we discuss is SiO2. The SiO2 layer was
grown on a Si wafer by thermal oxidation and was 200 nm
thick, much thicker than the probing depth of our electron
scattering experiment (≈65 nm). Here, the band gap value is
well established (8.9 eV15) and it is used here as a test case for
the validity of the analysis method.

In the analysis procedure, we try to fit the elastic peak
plus the onset of the inelastic part of the spectrum. The elastic
peak fitting procedure is described extensively in Ref. 16. For
homogeneous samples, the contribution of each element Ii is
proportional to its concentration and its cross section for elastic
scattering over 135◦ which has been tabulated.17 Its intrinsic
width is related to its kinetic energy.

These aspects are all evident in Fig. 3 for an experiment
of a SiO2 sample on which a small amount of Au (≈1 Å)
was deposited. The incoming beam here, and for all spectra
reported in this work, was along the surface normal. The first
peak is due to the heaviest atom present: Au and the large
intensity of this peak is due to its large cross section, which
scales approximately as Z2. The second and third peaks are
due to Si and O. Both peaks are considerably wider than the
Au peak, illustrating that the Doppler broadening is resolved.
The Si and O peak area ratio reflects their cross section and the
stoichiometry of the film (the fit indicates a Si:O concentration
ratio is within 5% of the nominal stoichiometry). The Au
layer was added to help establish the energy resolution of the
spectrometer. Au has a low Debye temperature (170 K), and
hence at room temperature its kinetic energy should be close
to 3

2 kT . From the observed width and the calculated Doppler
broadening, one can deduce the experimental resolution.
Aided by this knowledge, one can then extract the Doppler

FIG. 3. The elastic peak of 40 keV electrons backscattered from SiO2 on
which ≈1 Å of Au was deposited.

broadening of the Si and O peak. The fit describes the data
very well and the obtained values for the mean kinetic energy
are given in Table II.

The onset of the energy loss spectrum was studied for a
second sample, without Au deposition. Measurements were
done at 5 keV (Fig. 4) and at 40 keV (Fig. 5). At 5 keV,
there is still a noticeable asymmetry in the SiO2 elastic peak.
Compared to the 40 keV measurement, the recoil shifts are 8
fold smaller and not fully resolved any more but still influence
the peak shape. The energy loss spectrum at 5 keV is very
similar to the ones published by Jin et al.,18 and the loss
structure for the 40 keV measurement appears slightly more
“washed out.” At both energies, the elastic peaks can be
fitted with the same kinetic energy and stoichiometry (and
the tabulated cross section at 5 and 40 keV) and the Si and O
components of the fit are shown as well.

The probability that an electron creates an electron-hole
pair is taken to be independent of the atom that scattered the
electron elastically. If the atom was stationary, its contribution
to the inelastic part of the spectrum would start at EX

r + Egap
and be proportional to CIX(E − Egap)A with A, the assumed
exponent of the onset. The onset is broadened by both the
experimental resolution and the Doppler broadening (which
depends on the element that scattered the electron elastically),
as determined from the elastic peak. The results are shown in
the lower panel of Figs. 4 and 5. As the onset is sharper at
5 keV, we will mainly use this measurement for the discussion
of the band gap. The fit with an exponent A = 1.5 is marginally
better in reproducing the shape of the onset of the energy loss
spectra. The inferred gap values for the fit with A = 0.5 and
A = 1.5 are quite different, ≈9.5 eV and ≈9.0 eV, respectively.
This is due to the rapid onset for A = 0.5 and the more gradual
onset for A = 1.5.

The obtained values are only meaningful if they do not
depend on the cut-off energy of the fit. This is investigated in
Table III. There is a strong correlation between C and Egap
values. The effect of a decrease in C can be compensated to

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.56.107.4 On: Mon, 02 Nov 2015 03:18:08



104203-6 Vos et al. J. Chem. Phys. 143, 104203 (2015)

FIG. 4. Spectra taken at 5 keV from a SiO2 sample over a wide energy range
(top). The elastic peak is clearly asymmetric and can be fitted with a Si and
an O component (center). The lower panel shows the onset of the inelastic
contribution fitted with different exponents as described in the main text.

some extent by a decrease of Egap and the values for which the
best fit is obtained depend somewhat on the energy of the upper
limit of the fit. For each cut-off energy, the Egap value obtained
is 0.5 eV smaller for A = 0.5 compared to A = 1.5. SiO2 is an

FIG. 5. Similar figure for Fig. 4 but now for an incoming energy of 40 keV. In
the lower panel, we show now as well the contribution of electrons scattered
from Si and O to the onset of the loss spectrum.

indirect gap insulator; hence, the approach of Ref. 2 suggests
A = 1.5. The value for Egap obtained with this exponent is
9 ± 0.2 and is indeed consistent with the commonly accepted
value of 8.9 eV.

For the 40 keV measurement, one obtains an Egap of
8.86 ± 0.1 using A = 1.5 and 9.55 ± 0.1 using A = 0.5. Thus,
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TABLE III. Influence of the upper limit of the fit for the 5 keV measurement
on the obtained values for Egap and C .

Fit limit EGap, A= 0.5 C , A= 0.5 EGap, A= 1.5 C , A= 1.5

10.35 9.06 ± 0.1 0.0033 8.6 ± 0.3 0.0022
10.6 9.3 ± 0.1 0.0051 8.8 ± 0.2 0.0033
10.85 9.55 ± 0.08 0.0082 9.0 ± 0.1 0.0048
11.1 9.7 ± 0.06 0.010 9.1 ± 0.1 0.0056
11.35 9.65 ± 0.05 0.010 9.0 ± 0.1 0.0048

the analysis method gives very consistent values for the 5 keV
and 40 keV measurements, which confirms the assumption
that also the onset of the loss spectrum is affected by Doppler
broadening.

B. CaCO3

A second example that was studied was CaCO3. Here,
the information about the band gap is much more scarce. The
usually quoted value of 6.0 eV was obtained from REELS data
taken at lower energy (200 eV),19 where the technique is very
surface sensitive. The onset of the inelastic spectrum in that
paper is not particularly sharp. DFT band structure calculations
indicate that CaCO3 is an indirect gap semiconductor with a
band gap of ≈5 eV.20–22

Two samples were measured here: calcite single crystal
and a pill pressed from CaCO3 powder. The elastic peak was
again studied at 40 keV after deposition of a small amount of
Au. The obtained fit is shown in Fig. 6. The separation of the
Au–Ca and Au–O was somewhat smaller than expected for
40 keV incoming energy. The incoming energy was treated as
a fitting parameter, and turned out to be ≈38 keV. Thus, the
sample surface charged by approximately 2 keV. From the fit,
we obtained a nominal stoichiometry of Ca1.0C1.1O3.0 using
the tabulated cross sections. The larger error for C indicates
that it is more difficult dealing with this element, as it appears
at a shoulder only. The obtained values for the mean kinetic

FIG. 6. 40 keV measurement of a CaCO3 pill on which ≈1 Å of Au was
deposited.

energy are also shown in Table II. They are consistent with
earlier published data.24 With the knowledge of the mean
kinetic energy, we can analyze the 5 keV spectra of CaCO3
(without Au) in the same way as was done for SiO2. Two
different samples were studied at 5 keV: a calcite crystal and a
pill pressed from a powder. The results shown in Fig. 7 are for
the pill. The energy loss spectrum is shown on a wide energy
scale in the top panel. It is compared with a TEM-EELS energy
loss spectrum of calcite from geological origin, taken from
Ref. 23. The zero point of their spectrum (it did not contain the
elastic peak) was slightly adjusted for better agreement. Most
features are seen in both spectra, and the reduced intensity at
larger losses in the TEM-EELS spectrum is a consequence of
reduced multiple scattering in a thin sample. The elastic peak
of the 5 keV data could again be fitted with the mean kinetic
energy obtained at 40 keV (central panel), and the lower panel
shows the onset of the contribution due to inelastic excitations.
Two fits were done. Assuming a value A = 1.5, one obtains a
band gap of 7.1 ± 0.2 eV. A value of 7.5 ± 0.2 was obtained
for A = 0.5.

The calcite single crystal sample displayed strong charg-
ing. At 40 keV nominal incoming energy, the Ca–O separation
was consistent with an incoming energy near 32-35 keV.
Using the nominal value of the incoming energy of 5 keV,
the calculated elastic peak shape was much broader than the
observed one. Again, treating the incoming energy as a fitting
parameter, it was inferred that the sample surface has charged
by ≈2.5 keV. In Fig. 8, the onset of the band gap is compared
for these two samples. The single crystal sample shows a
somewhat more gradual onset of the loss spectrum. Using
A = 1.5, a band gap is obtained here of 6.6 eV, about 0.5 eV
less than for the pill material.

C. Li2CO3

Finally, we consider the case of Li2CO3. It plays an
important role in the Li-air battery technology25 and medical
applications. DFT calculations give here a band gap of 4.9-
5.1 eV,12,13,26 whereas a GW calculation gives a value of
8.83 eV.26 There are no experimental values of the band gap
known to us. Here, we used again a pill pressed from a powder
(Alfa Aesar 99.99%). Such powder is known to have the
monoclinic structure.27 Li2CO3 forms a hexagonal phase at
high pressure28 which has a rather different calculated band
gap,13 but this phase transforms back to the monoclinic one at
ambient pressure.

For these very light materials, the recoil shifts are large
and the onset of the band gap overlaps with the contribution
of the lightest element present: Li. For Li, even the recoil
shift for the two isotopes (6Li and 7Li) is noticeably different,
and the contribution of each isotope was fitted separately. The
concentration of 6Li was determined by a mass spectrometer to
be 7.5%. Au was again deposited on the surface, but now with a
nominal thickness of only ≈0.2 Å. As the Au signal was easily
separated from the Li2CO3 signal, even for 5 keV incoming
energy, all the measurements were done with Au on the surface.
The results for 3 different energies (5 keV, 25 keV, and 40 keV)
are shown in Fig. 9. For the highest incoming energy, fitting
of the spectrum becomes difficult as the onset of the inelastic
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FIG. 7. Figure similar to Fig. 4 but now for CaCO3. The dashed line in the
upper panel, which is the loss spectrum obtained by TEM-EELS,23 is shown
for comparison.

spectrum extends under the Li peaks (especially for 6Li), and
determining the width (and area) of the Li contribution now
depends critically on the shape of the background assumed.
Hence, spectra taken at the 3 incoming energies were fitted in

FIG. 8. A comparison of the 5 keV energy loss spectra for a calcite single
crystal and calcite powder compressed in a pill.

such a way that the same band gap was used in all three cases as
well as the same A value. The nominal stoichiometry derived
from the fit was Li2.0C0.90O3.0. Here, the errors are somewhat
larger due to the weakness of the Li signal but still agrees

FIG. 9. Spectra of a Li2CO3 on which some Au was deposited, taken at 5 keV,
25 keV, and 40 keV incoming energy. The decomposition of the elastic peak
in different components is shown as well.
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within 10% with the nominal composition. The Au atoms are
at the surface and in the fitting procedure did not contribute to
the onset seen, as electrons scattered from Au did not travel
through Li2CO3. Li2CO3 is a direct gap semiconductor13 and
the plots in Fig. 9 are for A = 0.5.

The obtained band gap was 7.6 eV for A = 0.5 and 7.1 eV
for A = 1.5. These values are larger than the DFT value, but
smaller than the value obtained by a GW calculation.26 Using
this fitting procedure, we obtained a good fit assuming the
nominal stoichiometry. The obtained kinetic energies are given
in Table II as well. In this case, only a combined understanding
of the band gap and the elastic peak shape leads to meaningful
results.

IV. DISCUSSION

A. Bandgap measurement

The measurement of the band gap by REELS is concep-
tually very easy, but in reality it is quite hard to extract precise
values. In this work, we extract band gap values based on a
fitting procedure that describes the elastic peak precisely and
an assumed energy dependence of the onset of the loss feature
I = C(E − Egap)A. Here, it is demonstrated that varying A from
0.5 to 1.5 changes the obtained band gap by about 0.5 eV. The
procedure developed for TEM-EELS by Rafferty and Brown2

seems to lead to the right band gap value for SiO2 indicating
that A = 1.5 could also be the right exponent for analysing
REELS spectra for indirect gap semiconductors. For CaCO3
compressed powder, we obtained significant larger values
(7.15 ± 0.2 eV for A = 1.5 and 7.5 ± 0.2 eV for A = 0.5) than
the value of 6 ± 0.35 eV reported by Baer and Blanchard.19

For the single crystal calcite measurement, the band gap values
are about 0.5 eV smaller, but still larger than those of Baer
and Blanchard. For Li2CO3, the obtained gap is between 7.1
(A = 1.5) and 7.6 eV (A = 0.5), in between the DFT and GW
values. Any claim of the extraction of precise (e.g., 0.1 eV
precision) band gap value in a REELS experiment without
knowledge of the functional shape of the onset of the loss
intensity should be treated with caution.

B. Mean kinetic energy

In Table II, we have seen reasonable, but not perfect
agreement between calculated and measured mean-kinetic
energies. One of the crucial assumptions for the validity of the
analysis here is occurrence of only one large-angle scattering
event. This assumption was investigated using Monte Carlo
simulations. In brief, electrons impinging along the surface
normal are followed in the crystal. Trajectories are calculated
based on the elastic scattering cross section as calculated by
ELSEPA.29 The electrons are followed until they leave the solid
again, or their path length exceeds 10 times the inelastic mean
free path λ, which is ≈64 nm for 40 keV electrons in SiO2.30

If the electron leaves the crystal at an angle corresponding
to the direction towards the detector, then the trajectory is
“accepted,” and the elastic peak is constructed based on these
trajectories only.

For each deflection, the recoil losses are calculated in
two different ways: (a) By assuming the scattering atom is
stationary and the recoil energy is then simply q2/2M . In
this way, it is easy to pinpoint the influence of multiple
elastic scattering events. (b) Assuming the atoms are vibrating,
i.e., including the Doppler broadening. The momentum
component of the scattering atom along q (pq) is then assumed
to be Gaussian with a width given by Eq. (2). For each
collision, the momentum component pq is chosen randomly
from this Gaussian distribution and the recoil energy loss is
calculated from Eq. (1). The contribution of these trajectories
to the elastic peak will depend on the path length L. Only
the fraction exp(−L/λ) of these trajectories will not create
electronic excitations and thus contribute to the elastic peak.
The simulated elastic peak is obtained from the sum of the
detected trajectories, weighted by this factor.

Examples are shown in Fig. 10. Without Doppler broad-
ening, there are two completely separated peaks in the recoil
distribution, for scattering from Si and O. For the case of only a
single elastic deflection, these peaks have a rectangular shape.
This is due to the finite opening angle assumed. Unfortunately,
it is too time consuming to perform these simulations for the
actual opening angle of the experiment (≈0.2◦). We carried out
the simulations for opening angles between 3◦ and 12◦. Only
for opening angles of 12◦ does it contribute noticeable to the
extracted mean kinetic energy. An opening angle of 3◦ was
used in the final simulation.

For the trajectories with more than one deflection, the
energy distribution does not have a rectangular shape, but is
slightly broadened. In almost all these cases, the trajectory
consists of one large angle scattering event and one or more
small scattering angles. This is due to the shape of the
elastic scattering distribution which is very strongly peaked
for small scattering angles. Trajectories with many scattering
events tend to be longer, and hence their contribution to
the elastic peak decreases rapidly with increasing number of
deflections.

In the bottom panel of Fig. 10, we show the simulated
spectrum (dots) for one of more deflections as obtained when
the Doppler broadening is taken into account. This spectrum
is still quite noisy. It differs from the experimental one as no
finite energy resolution is taken into account. Convoluting the
obtained distribution with the experimental energy resolution
(here, 0.37 eV FWHM), one obtains the smooth curve. Indeed
this curve resembles the experiment very closely.

The smooth curve is then fitted in the same way as the
experimental data are fitted, that is, we interpret the result of
the simulations, assuming that only one elastic deflection took
place. Good fits are obtained but the kinetic energy is slightly
larger (≈2-3 meV for Si and ≈5 meV for O) than what is used
as input to the simulations. This difference is due to multiple
scattering. Correcting the experimentally obtained values by
this difference we obtain 61 meV for O and 68 meV for Si,
very close to the theoretical estimates.

Similar small corrections were obtained for Li2CO3 and
CaCO3 based on the same approach. It appears that the multiple
scattering correction is the largest for the lightest element in a
compound. For the lightest element, a relative small deflection
from the heavy element (a frequent occurrence due to its
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FIG. 10. In the top panel, we show for SiO2 the distribution of the recoil
energy for trajectories with the number of elastic collisions Nel as indicated.
In this case, the scattering was assumed from stationary atoms. The lower
panel (dots) shows the elastic peak of all trajectories, as obtained when the
motion of the atom is taken into account. Applying the experimental energy
resolution of 0.37 eV full-width half-maximum results in the smooth curve.

large elastic scattering cross section) in combination with
a large-angle deflection from the light element (a relatively
rare occurrence) has a significant contribution to the overall
intensity and results in a broadening of the peak of the lightest
element. In case of Li2CO3, it was hard to get enough statistics
in the (weak) Li peak, and the obtained correction was from a
simulation that ran over a 10 day period.

Thus, in summary, v-shaped trajectories dominate, else
the spectrum would not separate in different peaks, each
corresponding to a specific atom. Multiple deflections cause
deviations from a perfect v-shape, but in almost all cases there
is still one dominant collision over an angle close to the one
dictated by the experimental setup (i.e., 135◦). The simulations
suggest that small deviations around this value cause some
additional broadening and hence it has to be accounted for if
one wants to extract mean kinetic energies with high accuracy.

Similar conclusions on multiple scattering were obtained in
the case of carbon in graphite and diamond.31

V. CONCLUSION

Clearly, these measurements contain information about
the band gap and the mean kinetic energy of the atoms.
Extracting accurate numbers for these quantities requires great
care. For the precise determination of the mean kinetic energy,
one cannot neglect the influence of multiple scattering. If
this is done, the agreement between theory and experiment
is quite good. For the determination of the band gap, a good
understanding of the elastic peak shape is required. Moreover,
the assumption made for the energy dependence of the onset
of the loss spectrum has a significant influence on the value of
the band gap obtained, and this assumption has to be justified
on theoretical grounds. The technique, as described here, can
have important applications for the determination of the band
gap in thin films with thicknesses of several tens of nm, as
under these conditions optical techniques are not easily appli-
cable.
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