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The arcsine is asinine: the analysis of proportions in ecology
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Abstract. The arcsine square root transformation has long been standard procedure when
analyzing proportional data in ecology, with applications in data sets containing binomial and
non-binomial response variables. Here, we argue that the arcsine transform should not be used
in either circumstance. For binomial data, logistic regression has greater interpretability and
higher power than analyses of transformed data. However, it is important to check the data
for additional unexplained variation, i.e., overdispersion, and to account for it via the
inclusion of random effects in the model if found. For non-binomial data, the arcsine
transform is undesirable on the grounds of interpretability, and because it can produce
nonsensical predictions. The logit transformation is proposed as an alternative approach to
address these issues. Examples are presented in both cases to illustrate these advantages,
comparing various methods of analyzing proportions including untransformed, arcsine- and
logit-transformed linear models and logistic regression (with or without random effects).
Simulations demonstrate that logistic regression usually provides a gain in power over other
methods.
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INTRODUCTION

Proportional data are widely made use of in ecology.

During 2008–2009, over one-third of papers published in

Ecology analyzed proportions, according to a review of

every fourth article published during this period (Table

1, 51 of 134 papers analyzed proportions). The simplest

approach, used in 19 of 51 papers (37%; Table 1), was to

analyze untransformed sample proportions using linear

models (e.g., ANOVA, linear regression, or some

generalization). The most common method of analysis

was to utilize the arcsine square root (‘‘arcsine’’

henceforth) transform followed by a linear model, with

20 (39%) adopting this procedure. This transform is

recommended in statistical texts for biologists and

ecologists (Sokal and Rohlf 1995, Zar 1998, Gotelli

and Ellison 2004), although is notably absent from many

applied regression texts aimed at practicing statisticians

(Myers 1990, Venables and Ripley 2002). The likely

reason behind this disparity is that the arcsine transform

has been superseded by more modern methods of

analysis such as logistic regression, used in only 13

(25%) papers, and not used at all with ANOVA designs.

There are two situations where the arcsine transform

is used, which are very different from a statistical point

of view. First, data might be binomial in the sense that

they are of the form ‘‘x out of n,’’ e.g., 18 of 25 bats

survived. Such data may or may not be overdispersed, as

discussed later. Second, data might be collected on a

proportional scale (values between 0 and 1) but are not

actually binomial. Instead the data are usually contin-

uous and often considered as percentages, e.g., 78%

nitrogen content. Currently the arcsine transform is used

in the analysis of both these situations (Table 1).

In this paper, we argue that the arcsine transform

should no longer be used in either situation. Where data

are binomial, logistic regression should be used instead,

with random effects if overdispersion is found. Where

data are non-binomial, there is no motivation to use the

arcsine transform at all, and instead efforts should be

placed into searching for a transform that satisfies

linearity assumptions, while if possible, being useful for

interpretation.

In the context of analyzing sex-ratio data, Wilson and

Hardy (2002) produced an extensive discussion as to

why logistic regression should replace the arcsine
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transform. This paper extends those results in several

ways: describing the use of generalized linear mixed

models (GLMM) when the data are binomial and

overdispersed; emphasizing the use of logistic regression

for ANOVA designs where it is currently rarely used

(Table 1); considering the case of non-binomial propor-

tions; discussing the issue of interpretability and the

limitation of the arcsine transform in this respect; and

broadening the focus to all types of proportional data

collected in ecology as opposed to just sex-ratio data.

METHODS

Binomial data

A variable x is known to be binomial if it counts the

number of times some outcome (usually dubbed a

‘‘success’’) occurs out of n independent trials, each

having the same probability of ‘‘success’’ p. If the

response variable is a proportion calculated as y ¼ x/n,

the first-choice model is the binomial distribution with

parameters n and p. The variance of such binomial

proportions will be a quadratic function of the mean:

var(y) ¼ p(1 � p)/n. Hence the equal variance

assumption required in linear models is not satisfied,

which can (among other things) reduce power at

detecting differences between proportions, as seen in

Simulations.

The motivation behind using the arcsine transform

comes from its ability to stabilize the variance of

binomial data, in the sense that it becomes approxi-

mately constant after transformation. This result,

proven using a Taylor series expansion (known as a

‘‘delta method’’ result; Shao 1998), is

varðarcsin
ffiffiffi

y
p Þ’ varðyÞ

4pð1� pÞ ¼
pð1� pÞ

4npð1� pÞ ¼
1

4n
: ð1Þ

The result is approximate however, and typically does

not work well if p is close to 0 or 1. Note also from Eq. 1

that the transform only achieves approximately equal

variance when the same number of trials n is used to

estimate each sample proportion. In other circumstanc-

es, the arcsine transform fails to achieve its goal of

variance stabilization. The transform also has the effect

of making the transformed proportions roughly nor-

mally distributed, although how well normality is

achieved depends upon sample size. Normalization is a

desirable goal but, contrary to Wilson and Hardy

(2002), it should not be the main goal of transforma-

tions, given that linear models are robust to non-

normality but sensitive to heteroscedasticity (Faraway

2006).

The arcsine transform reached its zenith in the mid-

20th century due to its simple application, and hence is

suggested in texts whose first editions appeared around

the 1960s and 1970s (e.g., Sokal and Rohlf 1995, Zar

1998). However with the advent of faster computers and

the increasing functionality of statistical programs,

logistic regression has emerged as an alternative

approach. Logistic regression is a special case of

generalized linear models (Dobson 2002) that broadens

the linear model in two ways: by assuming the data are

binomial rather than normal; and by assuming the

‘‘logit’’ of proportions, log( p/[1� p]), is a linear function

of the predictors (as opposed to applying this assump-

tion to the sample proportions themselves).

We propose the use of logistic regression over an

arcsine transformed linear model to binomial data for

three reasons: (1) The logit-link function is monotonic

and maps [0,1] to the whole real line, ensuring first that

predicted proportions will always be between 0 and 1,

and second that if the relationship between logit( p) and

x is determined to be increasing, so will the relationship

between p and x over all possible x. One might think

these criteria to be a minimal requirement of any

transformation of proportions, and yet the arcsine

transform does not satisfy the latter due to the sine

function’s periodicity. This is especially a major concern

if extrapolation is a primary purpose of the constructed

model, although not the only situation in which non-

monotonicity can result in problems. (2) The coefficients

in logistic regression have a natural interpretation: a one

unit increase in the predictor x leads to an increase in the

odds p/(1� p) by a factor of eb, where b is the relevant

regression parameter. (3) Logistic regression correctly

models the mean–variance relationship of binomial data

as var(y)¼p(1� p)/n. Fitting a linear model instead with

an arcsine-transformed response does not use this

relationship exactly, only approximately so. This can

potentially lead to incorrect conclusions (as standard

TABLE 1. Literature review revealing the main methods of analyzing proportional data in ecology.

Method Binomial� Non-binomial Number of papers Percentage of papers

Untransformed linear model 7 (7) 12 (8) 19 (15) 37 (54)
Arcsine linear model 14 (8) 6 (4) 20 (12) 39 (43)
Logistic regression/GLMM 13 (0) 0 13 (0) 25 (0)
Logit linear model 0 1 (1) 1 (1) 2 (4)
Total 34 (15) 19 (13) 53 (28)� 104 (100)�

Notes: Results are based on 51 papers analyzing proportional data, found in a sample of 134 papers published in Ecology as
articles, from 2008 to 2009, ignoring the CORONA issue of November 2008. Results for ANOVA designs only are expressed in
parentheses.

� Articles are classified according to whether or not they report any analyses in which the response variable is a binomial (x out
of n) proportion, or a non-binomial proportion.

� Note that two articles analyzed proportions using both an arcsine linear model and logistic regression.
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errors may be biased) and inefficiency (sample estimates

of parameters may be not as precise). Note that of the

three advantages listed above, (1) and (2) relate to the

logit function itself. Therefore even for non-binomial

data, a logit transformation can be useful for these very

two reasons, as discussed later.

Sometimes the data are of the form ‘‘x out of n’’ but

not exactly binomial, due to additional factors which

result in variability exceeding that expected by the

binomial distribution. This is commonly referred to as

overdispersion. One simple method of diagnosing over-

dispersion is to consider the ratio of the residual

deviance (deviance being a likelihood-based measure of

goodness of fit analogous to sums of squares) to its

degrees of freedom: if substantially greater than one

then data are overdispersed compared to the binomial

(Dobson 2002). More formal methods of assessing

overdispersion are available (Collett 2002). A useful

approach for modeling overdispersion is to add a

normally distributed random intercept term to the

model for each binomial count (Jiang 2007). The

subsequent model is a mixed effects logistic regression,

a special case of generalized linear mixed models

(GLMM). While the mathematics of GLMM estimation

are challenging (Jiang 2007), the approach has been

implemented in many statistics packages nowadays e.g.,

glmer( ) from the lme4 package in R (Bates et al. 2009).

Quasi-binomial logistic regression, in which the

variance of x is var(x) ¼ /np(1 � p) where / is known

as the overdispersion parameter, is also sometimes used

to model overdispersed data. However, this is an ad hoc

approach which does not correspond to any known

distribution, and provides a plausible model for over-

dispersion only in restricted settings (Collett 2002).

Non-binomial data

If data are non-binomial, i.e., not of the form ‘‘x out

of n,’’ then logistic regression is no longer applicable,

and usually the distribution of the data is no longer

known. Instead an alternative approach is to transform

proportions in order to (approximately) fulfill linear

modeling assumptions. Consequently, there is no

justification to prefer the arcsine transform over any

other transform, as variance stabilization is now no

longer a goal.

One criterion that should be considered in choosing a

transformation is interpretation, and parameters from

an arcsine-transformed linear model fit are not simple to

interpret. Further, it is desirable to choose a transform

that maps proportions y 2 [0, 1] monotonically to the

whole real line (�‘, ‘). If this is not done then it

becomes possible to obtain nonsensical predicted values,

as illustrated in Examples.

One transform that does satisfy both the above

criteria is the logit transform: log(y/[1 � y]). This both

maps proportions to the whole real line and has a

natural interpretation as described in reason 2. One

difficulty, though, with using this transform is that

sample proportions equal to 0 and 1 transform to

undefined values �‘ and ‘, respectively. An ad hoc

solution to this problem is to add some small value e to

both the numerator and denominator of the logit

function, which introduces minimal bias while still

satisfying the criteria above. This approach is a

modification of the ‘‘empirical logistic transform’’

(Collett 2002) for data that are not discrete. We propose

taking as e the minimum non-zero proportion y, or if

proportions are large, the minimum non-zero value for 1

� y. This approach is compared with alternatives in

Appendix B, where results suggest the qualitative

interpretation of results might not be sensitive to the

value of n, but slope coefficients may be. Users are

encouraged to experiment with different values of e.
Whatever transform is ultimately used, it is important

to check diagnostic plots (Faraway 2006) to assess how

well the transformed values satisfy linear modeling

assumptions. A particularly important plot is that of

residuals vs. fits (or residuals vs. predictor variables),

which is used to check for absence of any pattern, i.e., no

evidence of nonlinearity or heteroscedasticity. In small

sample sizes (e.g., n , 30), a normal probability plot

should also be considered. Likewise in the case of

GLMM, it is important to check that the random effects

component of the model has no evidence of a systematic

trend and is roughly normally distributed (Faraway

2006). See the Supplement for illustrations of how to do

this in R.

EXAMPLES

In this section, we present two examples from the

ecology literature illustrating the methods above, and

the advantages of using logistic regression or logit-

transform. All analysis and graphs were done in R 2.9.0

(R Development Core Team 2009).

Something fishy

The first example comes from an article examining the

patterns of energy balance in teleost fish (Arrington et

al. 2002). It set out to determine whether or not the

proportion of fish with empty stomachs, sampled from

various geographic locations, differed across trophic

levels (Fig. 1a). The response variable was binomial,

with success being that a fish had an empty stomach. In

the original analysis, the proportions were analyzed

using the arcsine transform followed by a two-way

ANOVA. The arcsine transform is commonly used to

analyze this type of data, with 8 of 14 (57%) articles in

our survey utilizing some form of ANOVA after arcsine

transforming a binomial response. There appears to be a

lack of recognition that logistic regression can be used in

such situations, and hence this example emphasizes that

logistic regression/GLMM can handle ANOVA designs

just as effectively as they handle the standard regression

setup. See the Supplement for related R code.

Results suggest there was significant variation across

trophic levels within each geographic location, when
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applying ANOVA to untransformed proportions (F9, 242

¼ 14.3, P , 0.001) or arcsine-transformed proportions

(F9, 242 ¼ 13.5, P , 0.001; Appendix A). When logistic

regression was used instead, with a random intercept,

the same conclusion was reached (v2
9 ¼ 88.8, P , 0.001).

A random intercept was included in the model to

account for overdispersion, for which there was very

strong evidence (residual deviance: 5005 on 242 df ),

meaning that there was considerable species to species

variation unexplained by the two predictors (location

and trophic level).

Although there were no qualitative differences in

results across the three methods presented above, this

will not always be the case. To illustrate, we reanalyzed

the data of Arrington et al. (2002) considering noctur-

nally feeding fish only. While the effect of trophic level

was marginally nonsignificant when using ANOVA on

untransformed proportions (F6,47 ¼ 2.25, P ¼ 0.055) or

arcsine-transformed proportions (F6,47 ¼ 2.19, P ¼
0.061), it was significant when using GLMM (v2

6 ¼
14.8, P¼ 0.022). This trend, where results are sometimes

significant when using logistic regression but not when

using the arcsine transform, is not unusual, as will be

shown in Simulations.

Residuals vs. fits plots showed strong evidence of

heteroscedasticity in the untransformed linear fit (Fig.

2a, left), as indicated by a fan-shaped pattern. Presence

of heteroscedasticity means that the proportions fail to

satisfy the linear modeling assumption of constant

variance, invalidating subsequent model inferences.

Heteroscedasticity was lessened but still apparent in

the arcsine transform residual plot (Fig. 2a, center),

whereas the GLMM fit did not exhibit any pattern (Fig.

2a, right), indicating a better model fit. Normal

probability plots suggest the normality assumption was

reasonably satisfied in all cases (Appendix A).

Expanding leaves

This second example forms part of a paper asking

whether plant species with small leaves have shorter

expansion times than large leaved counterparts (Moles

and Westoby 2000). It was chosen as it involved a non-

binomial response, namely percentage loss of leaf area

(LLA), which was regressed against median expansion

time (log10-transformed) and site (Fig. 1b). The arcsine

transformation was used for analysis, as is common for

this type of data (6 of 19, or 32%; Table 1), unless no

transformation is performed at all (12 of 19, or 63%).

LLA increased significantly with expansion time for

untransformed (F1,47 ¼ 5.26, P ¼ 0.026) and arcsine-

transformed proportions (F1,47 ¼ 6.19, P ¼ 0.016;

Appendix B), after adjusting for site. The same

regression was then performed but with logit-trans-

formed LLA as the response. Some of the proportions

were equal to 0, so the smallest non-zero percentage

response (0.48%) was added to the logit function (see

Methods). Conclusions were as previously, i.e., expan-

sion time was significantly related to LLA after

adjusting for site (F1,47 ¼ 6.11, P ¼ 0.017).

A residuals vs. fits plot for the linear model with

untransformed percentages indicated non-constant var-

iance, as illustrated by the funnel-shaped pattern (Fig.

2b, left). While still present, this trend was much reduced

by the arcsine transform (Fig. 2b, center), and was not

evident after the logit transform (Fig. 2b, right). Normal

probability plots indicated that both the arcsine and the

logit transform approximately normalized the data

(Appendix B).

FIG. 1. Data sets used in Examples. (a) Proportion of fish
with empty stomachs by geographic location and trophic group
(Arrington et al. 2002). The limits of a box denote the upper
and lower quartiles, the horizontal bar is the median, and the
1.5IQR criterion has been used to classify outliers. (b)
Percentage loss of leaf area in relation to median expansion
time and site (Moles and Westoby 2000). Note the log scale in
panel (b).
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The advantages for interpretation of analyzing logit-
transformed proportions can be illustrated by consider-

ing the slope parameter for the effect of expansion time.

For logit-transformed LLA, b¼1.71, meaning a one unit
increase in log10(median expansion time) (i.e., a 10-fold

increase in median expansion time) resulted in a

predicted increase in the ‘‘odds of LLA’’ (lost leaf area
divided by leaf area remaining) by a factor of e1.71¼ 5.5.

In contrast, parameters from the arcsine-transformed

model have no simple interpretation. It should be noted
however that the estimate of the slope for logit-trans-

formed data was sensitive to choice of e (Appendix B).

Making predictions of leaf area lost at different

expansion times demonstrate further weaknesses of
analyzing untransformed or arcsine-transformed pro-

portions. When modeling untransformed proportions,

predicted LLA at an expansion time of 19 days was
negative (�1.3%, all predictions at Site¼Heath) and thus

biologically impossible. The arcsine-transformed linear

fit obtained a plausible prediction at 19 days (0.42%), but
because of the non-monotonicity of the transform, this

was also the predicted value at some other expansion

times (e.g., 5.35 days), despite the significant increasing

relationship between expansion time and arcsine-trans-

formed LLA. Furthermore, if expansion time were less

than 5.35 days, then the predicted LLA would be greater

than 0.42% despite the slope of expansion time being

positive. Fortunately no leaves in this data set expanded

this quickly (Moles and Westoby 2000), but it is

plausible (e.g., Aide and Londono 1989). In contrast, a

linear fit to logit-transformed LLA yields two sensible

predicted values (0.005% and 0.76% at expansion time¼
5.35 and 19 days, respectively).

SIMULATIONS

Design

Using simulations, the approaches discussed in

Methods were compared in terms of their accuracy at

maintaining a significance level of 0.05 when there is no

effect to be detected (Type I error) and in their ability to

detect an effect that is present (power). A method is

performing well in simulations if it has Type I error near

0.05 and comparably high power.

A two-sample design was used to mimic data from a

study by Sanford and Worth (2009), which set out to

FIG. 2. Residual vs. fitted values plots for three different analyses of (a) the ‘‘something fishy’’ data shown in Fig. 1a, and (b) the
‘‘expanding leaves’’ data shown in Fig. 1b. Methods of analysis include: untransformed proportions linear model (left column),
arcsine-transformed proportions linear model (center column); and in the right column of panel (b) logit-transformed linear fit. The
right column of panel (a) presents estimated random effects vs. fitted values from a GLMM fit. Note the fan-shaped pattern in the
untransformed residual plot, suggesting a violation of the homoscedasticity assumption. This is evident to a lesser extent after
arcsine transformation and is no longer evident when using logistic methods.
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determine whether there were geographic differences in

the behavior of a predatory snail species. Snails of 64

different lineages, originating from two regions in the

United States (Oregon and California), were compared

in their ability to drill mussels. The response variable,

measured for each lineage, was the proportion (out of 12

snails) that drilled at least one mussel.

In our simulations, there were two groups of

observations, each coming from a bin(12, p) distribu-

tion. In Type I error simulations, p was held constant

across both groups at 0.05, 0.1, or 0.5, whereas in power

simulations p varied across the groups (0.05 vs. 0.1, 0.1

vs. 0.3, 0.3 vs. 0.5). Other properties varied included (1)

number of observations in each group (n¼ 3, 6, 12, 24);

(2) presence or absence of overdispersion, implemented

by adding a normally distributed random effect with

mean 0 and standard deviation 0.94 (this being the value

obtained from a GLMM fit to Sanford and Worth

2009); (3) whether the design was balanced or unbal-

anced, i.e., equal or unequal number of observations per

group. For each configuration, 1000 simulated data sets

were generated. In total, six tests were compared:

untransformed proportions linear fit (equivalent to a

two-sample t test, as in van Belle et al. 2004: section 2.6),

arcsine transformed proportions linear fit, logistic

regression (both a Wald test and a likelihood ratio test),

and GLMM (Wald and likelihood ratio test). Wald tests

are the default output from most logistic regression

software, although likelihood ratio tests often have

better properties (Faraway 2006).

It was predicted a priori that logistic regression and

GLMM would have higher power than the arcsine

method. The reason for this is that maximum likelihood

theory dictates that in large sample sizes no unbiased

estimation procedure is more efficient than maximum

likelihood estimation, provided that the model is correct

(Shao 1998).

While only major results are highlighted here, full

details of Type I error simulations are available in

Appendix C, and of power simulations in Appendix D.

A simulation using a 2 3 2 design, which produced

similar results, is in Appendix E.

Type I error: results

In simulations with no overdispersion, there was little

difference across statistics in Type I error (Fig. 3a, left).

For n ¼ 3 or 6 logistic regression likelihood ratio tests

tended to be slightly liberal and linear model statistics

tended to be slightly conservative, but only to a

FIG. 3. Summary of simulations results (for balanced designs only) from (a) Type I error simulations and (b) power
simulations. Simulations considered a two-sample design, with true proportions in the two samples denoted as p1 and p2, and data
generated as binomial without overdispersion (left) and with overdispersion (right). Results are reported for tests using a linear fit
to untransformed proportions (circles), a linear fit to arcsine proportions (triangles), logistic regression (þ), and GLMM (3)
likelihood ratio tests. Logistic regression power is not reported for overdispersed data (b, right), because of unacceptably high Type
I error (a, right). Note the gain in power of logistic regression and GLMM as compared to untransformed and arcsine-transformed
methods, but also note that in more computationally intensive simulations that keep closer control of Type I error (Appendix F),
the difference in power was not as large. Note log scale on y-axis of panel (a).
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practically significant extent in extreme cases ( p¼0.05, n

¼ 3, Appendix C).

A similar pattern was seen in simulations with

overdispersed data, but with more noticeable Type I

error inflation for GLMM at small sample sizes (Fig. 3a,

right). For n¼ 3, Type I error for GLMM was as high as

0.11, but for n ¼ 12 it was much closer to 0.05 (0.051–

0.073). Note that when overdispersion was present, Type

I error for logistic regression failed to approach 0.05 for

increasing n unless a random effect was included in the

model to account for overdispersion (Fig. 3a, right).

Failing to account for overdispersion leads to underes-

timation of sample uncertainty and hence overestima-

tion of statistical significance.

Having an unequal number of observations per group

had little effect on results (Appendix C).

In all Type I error simulations, Wald tests for logistic

regression and GLMM became conservative as the

probability p approached 0 or 1, although this effect

lessened as sample size increased (Appendix C). This

effect is well known, and it is recommended that the

likelihood ratio or ‘‘analysis of deviance’’ test be used

routinely instead (as in Faraway 2006).

Power: results

The most striking result in power simulations was that

logistic regression and GLMM always had higher power

than untransformed and arcsine transformed linear

models (Fig. 3b). This trend was apparent in all

simulations at all sample sizes. Unbalanced designs did

not appear to affect the rank order of differences in

power across methods, although the magnitude of the

differences in power did vary depending on which group

had the larger sample size (Appendix D).

It should be noted however that much of the power

advantage at small sample sizes was due to differences in

Type I error (with logistic regression being too liberal

and linear models too conservative). This can be

corrected for using resampling, as in the simulations of

Appendix F. Those results demonstrate that after

correcting for differences in Type I error, GLMM

maintains a power advantage usually in the order of 5–

15% for small sample sizes, much smaller than that

suggested by Fig. 3. Logistic regression had higher power

than the arcsine transform in most simulations, but often

had lower power for very small sample sizes (n¼ 3).

DISCUSSION

In this paper, we demonstrated using theory, exam-

ples, and simulations that logistic regression and its

random-effects counterpart have advantages over anal-

ysis of arcsine-transformed data in power and interpret-

ability. For binomial data, power tended to be higher

when using a logistic regression approach than arcsine-

transformed linear models. In addition, the logit

function has a much simpler interpretation, while

avoiding the possibility of nonsensical predicted values.

For non-binomial proportions, there was never any

theoretical reason to use the arcsine transform in the

first place, and we instead suggest using the logit
transform. It is important to recognize that these ideas

apply equally well to proportions collected in ANOVA
designs as to those collected in a regression context.

When applying logistic regression to binomial data, it
is always important to check data for overdispersion. If
it is present but not accounted for, standard errors will

be underestimated and statistical significance overesti-
mated, often considerably so.

If data are binomial and the number of observations is
very small, we saw that Type I error may become a

problem when applying logistic regression. The reason
for this is that logistic regression uses only large-sample

methods of inference (Shao 1998). In such cases, one
might consider using resampling (Davison and Hinkley

1997) or Markov chain Monte Carlo (MCMC) func-
tions to make more accurate inferences (Jiang 2007).

The Supplement contains R code for bootstrap-based
hypothesis testing in one-factor designs, as well as

simulation results demonstrating the effectiveness of this
technique.

Significant progress has been made in the last few
decades in ecological statistics, and some methods
popular decades ago have been superseded by more

effective approaches. The application of logistic regres-
sion and GLMM to binomial data is a case in point.

These methods are implemented in many statistical
packages nowadays, and many helpful references are

available which introduce scientists to the fitting and
interpretation of such models (Faraway 2006, Bolker et

al. 2009). Readers are encouraged to use modern
alternatives to the arcsine transform, and we hope that

textbook revisions will no longer suggest it as a
transformation for proportional data, as it can be

considered an historical antiquity.
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APPENDIX A

Tables and graphs for the analysis of the ‘‘something fishy’’ example: proportion of fish on empty stomachs by geographic
location and trophic group (Ecological Archives E092-001-A1).

APPENDIX B

Tables and graphs related to the analysis of the ‘‘expanding leaves’’ example: percentage loss of leaf area (lla) by median
expansion time and site (Ecological Archives E092-001-A2).

APPENDIX C

Results of Type I error simulations for binomial data, and binomial data with overdispersion (Ecological Archives E092-001-A3).

APPENDIX D

Results of power simulations for binomial data, and binomial data with overdispersion (Ecological Archives E092-001-A4).

APPENDIX E

Results of simulations using a balanced 23 2 design, both for binomial data and binomial data with overdispersion (Ecological
Archives E092-001-A5).

APPENDIX F

Results of simulations using resampling based hypothesis testing to control Type I error in small samples (Ecological Archives
E092-001-A6).

SUPPLEMENT

R code demonstrating how to fit a logistic regression model, with a random intercept term, and how to use resampling-based
hypothesis testing for inference (Ecological Archives E092-001-S1).
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