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Abstract. Species distribution models (SDMs) are an important tool for studying the
patterns of species across environmental and geographic space. For community data, a
common approach involves fitting an SDM to each species separately, although the large
number of models makes interpretation difficult and fails to exploit any similarities between
individual species responses. A recently proposed alternative that can potentially overcome
these difficulties is species archetype models (SAMs), a model-based approach that clusters
species based on their environmental response. In this paper, we compare the predictive
performance of SAMs against separate SDMs using a number of multi-species data sets.
Results show that SAMs improve model accuracy and discriminatory capacity compared to
separate SDMs. This is achieved by borrowing strength from common species having higher
information content. Moreover, the improvement increases as the species become rarer.

Key words: community level modeling; cross validation; generalized linear models; mixture models;
species archetypes; species distribution models.

INTRODUCTION

Species distribution models (SDMs), which relate the

observed occurrence of species to their environment, are

an important tool in conservation planning and

biodiversity management (Elith and Leathwick 2009).

Over the past two decades, there has been substantial

development in the statistical methodology behind

single-species SDMs, from generalized linear models

(GLMs; McCullagh and Nelder 1989) and generalized

additive models (GAMs; Hastie and Tibshirani 1990) to

recent developments in Bayesian modeling techniques

(Chakraborty et al. 2010). For multi-species data sets,

these methods require fitting a large number of models,

which is inefficient and makes interpretation challeng-

ing. This has motivated advances in community-level

approaches, such as multivariate regression trees

(MVPART; De’ath 2002) and community-level multi-

variate adaptive regression splines (MARS; Leathwick

et al. 2006).

Recently, Dunstan et al. (2011) proposed using finite

mixture of regression models (McLachlan and Peel

2000) to analyze community data, which we call species

archetypes models (SAMs). The key idea is to assume

that all species can be classified into a small number of

responses to the environment, referred to as archetypal

responses. By clustering based on environmental re-

sponse, we can borrow strength across species. There-

fore, compared to fitting a large number of separate

SDMs, SAMs allow responses for rarer species to be

estimated with greater precision by grouping them with

prevalent species having statistically similar responses.

Another advantage SAMs have over separate species

models is that management of a large assemblage is

simplified to the handling of a (much) smaller number of

archetypal units.

SAMs differ from other clustering approaches such as

hierarchical agglomerative clustering using distance

measures (Legendre and Legendre 1998) in that it is a

model-based approach. Such an approach allows for

formal inference about which environmental covariates

are associated with species distributions. Other benefits

include: data-driven methods for determining the

number of archetypes, a probabilistic (soft) classification

of each species into different archetypes, and predicted

distributions for each species individually. This last

point is particularly important: it makes possible a

comparison of the predictive performance between

SAMs and separate SDMs.

In this work, we compare the predictive capacity

between methods that separately estimate the environ-

mental response of species (separate SDMs) and SAMs,

which cluster these responses across species, over a

number of real data sets. The methodology we use for

SAMs is given in Dunstan et al. (2013), but this paper is

distinct in that it is the first to specifically compare

SAMs to separate SDMs. In doing so, we evaluate

whether the act of mixing (act of clustering) species
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based on their environmental responses can improve

predictive performance.

DATA SETS AND METHODS

Description of data sets

Four data sets were used for comparison, as

summarized in Table 1. Both presence–absence and

abundance data sets are used to assess how clustering

performs for two commonly recorded response types.

The four data sets vary in the number of sites N and

species S. The environmental predictors used for each

data set, also listed in Table 1, were selected based on a

priori biological assumptions and a simplistic screening

method. The latter involves fitting separate GAMs to

each species and choosing covariates that were signifi-

cant (P , 0.1) for �25% of the models. Continuous

covariates were modeled using quadratic terms (Austin

2002). Finally, for the North West Shelf (NWS) data set

around 2% of the records for abundance were missing,

and we chose to impute the response on these based on

biomass data available for the corresponding sites and

species (see Appendix A for details).

Separate species SDMs

Separate SDMs were modeled as an independent

GLM for each species. For j ¼ 1, . . . , S, the likelihood

function is given as

YN

i¼1

f ðyij; lij;/jÞ; gðlijÞ ¼ b0j þ x 0
i bj ð1Þ

where the response of species j at site i has distribution

f (�) with mean lij. Eq. 1 is the usual formulation for a

GLM, where we assume a distribution on the responses

values and relate the mean of this distribution to a

vector xi¼ (xi1, xi2, . . . , xip)
0 of environmental covariates

( p) using a link function g(�) (Zuur et al. 2007). For

presence–absence data, we assumed a Bernoulli distri-

bution with logit link function. For abundance data, we

used a negative binomial distribution with log link

function to account for the mean–variance overdisper-

sion, which often displays a quadratic relationship

Var(yij)¼ lijþ/jl2
ij where /j is the dispersion parameter

(see, for instance, Warton 2005). We constructed mean–

variance plots for the Butterfly and NWS data sets (not

shown), and verified the presence and quadratic form of

the overdispersion.

An important aspect of our comparison between

SAMs and separate SDMs is that, for each data set, the

same mean structure is used for fitting each separate

GLM and for each archetype of the SAM. This is

necessary to ensure that any difference in predictive

performance observed could be attributed solely to

mixing (see Baselga and Araújo [2009] for a similar

approach).

Species archetype models

The SAM is formulated as follows: for j ¼ 1, . . . , S,

the likelihood function is given as

XG

g¼1

pg

YN

i¼1

f ðyij; lijg;/jÞ gðlijgÞ ¼ b0j þ xi 0bg ð2Þ

where G � S is the number of archetypes, f (�) is the

distribution for the gth archetype (Bernoulli or negative

binomial for presence–absence and abundance data

respectively), and pg, with
PG

g¼1 pg ¼ 1 are the overall

proportion of species whose mean response is governed

by archetype g.

TABLE 1. Data sets used in this study.

Name Organism Reference Type N S Area DNN Covariates

Butterfly butterflies Oliver et al.
(2006)

Ab 66 33 157 0.309 habitat, percentage building in
surrounding area, percentage of
urban vegetation in surrounding
area�

North West
Shelf (NWS)

fish Young and
Sainsbury
(1985)

Ab 464 319 48 968 4.290 depth, distance along the coast,
means and intra-annual standard
deviations of salinity, nitrate,
oxygen, silicone, and sea surface
temperature

Great Barrier
Reef (GBR)

invertebrates Pitcher et al.
(2007)

PA 1189 1562 447 944 7.711 depth, bottom stress, percent gravel,
percentage mud, percentage
carbonate, means and intra-annual
standard deviations of temperature,
oxygen, salinity and K490�

Blue Mountains
(BM)

Myrtaceae
trees/shrubs

NSW Office of
Environment
of Heritage
(2010)

PA 3682 90 78 184 0.858 fire history, annual rainfall, mean
minimum temperature, mean
maximum temperature§

Notes: Features listed include organisms of interest; data type (Abundance [Ab] or presence–absence [PA]); number of sites N;
number of species S; the area surveyed (km2); mean distance to nearest site (DNN; km); and covariates used in the analysis.

� Habitat includes hayfield, mixed-grass prairie, short-grass prairie, and tallgrass prairie.
� K490 is a measure of turbidity.
§ Fire history is a count of previous wildfires and prescribed burns.
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Although both Eqs. 1 and 2 fit a mean model based on

the xi’s, the form of the environmental response from the

two methods are not equivalent. For separate SDMs,

the environmental response is estimated independently

of other species (hence the subscript j on bj). For SAMs,

the environmental response is based on the estimated

coefficients from G� S archetypes (hence the subscript

g on bg). It is this estimation of clustered responses in

SAMs that captures the idea of borrowing strength

across species. Furthermore, unlike other methods such

as agglomerative clustering (Legendre and Legendre

1998), for SAMs the species are classified in a

probabilistic (soft) manner. Finally, note the intercepts

and dispersion parameters in Eq. 2 are species specific,

since we only want to be clustering on the form of the

environmental response (see Dunstan et al. [2013] for a

detailed explanation).

Details regarding the estimation procedure for a SAM

(with fixed G) may be found in Dunstan et al. (2013). To

choose the number of archetypes, we fitted SAMs for a

range of G and chose the one that minimized the

Bayesian information criterion (BIC; Schwarz 1978):

BIC ¼�2 3 log-likelihood function

þ lnS 3ðnumber of parametersÞ

with the number of parameters set to (G – 1)þSþG3p.

If the /j’s need to be estimated as well (for abundance

data), then S is replaced with 2S. Based on extensive

simulations conducted in forthcoming work, we found

that BIC worked quite well for prediction purposes.

Having selected an optimal G, predicted values can be

obtained from the fitted SAM. Note that having b0j
means predictions are obtained individually for each

species. We used a weighted average of the predictions

from each archetype as the final predicted values.

Specifically, the predictions for species j¼ 1, . . . , S, are:

l̂ij ¼
XĜ

g¼1

ŝjgl̂ijg

where ŝjg is the posterior probability of species j

belonging to archetype g. The sjg’s differ from the pg’s
defined in Eq. 2 in two ways: (1) sjg is a species-specific

probability, whereas pg are the overall proportions of

species, belonging to archetype g, (2) sjg are functions of
parameters, whereas pg are parameters themselves.

Furthermore, the vector sj ¼ (s j1, sj2, . . . , sjG) are

precisely the probabilities characterizing the soft classi-

fication feature of SAMs. This is illustrated in Fig. 1

where the predicted species responses (l̂ij; dashed lines)

and the archetypal responses (l̂ijg; solid lines) are slightly

different from each other. Sometimes, as in Fig. 1C, the

two sets of responses are indistinguishable due to ŝjg
being almost 1.

Model comparison and evaluation

For each of the four data sets, we consider two cases:

the first cases implements a ‘‘number of parameters plus

1’’ rule, where species with presences less than or equal

to the number of parameters entering the model are

discarded prior to analysis. This rule is based on the

concept of degrees of freedom (see Zuur et al. [2007] for

an explanation), although with many covariates it tends

to remove a large fraction of species. The second case

implements a ‘‘one-third’’ rule, where species with

presences less than one-third the number of parameters

entering the model are discarded. Both rules remove

extremely rare species, e.g., singletons and species with

zero recorded presences, which is recommended since

these have insufficient information to be modeled well

regardless of the method used (see, for example,

Leathwick et al. [2006]). The one-third rule includes

many more rare species for analysis compared to the

FIG. 1. Plots depicting the archetypal responses (l̂ijg; solid line) to standardized intra-annual mean temperature for three
archetypes (g, denoted as archetypes A, B, and C) for species j at site i in the GBR data set. All other covariates are held fixed at
their respective means. Also plotted are the predicted responses from SAMs (dashed line) of three species (Musculus cumingianus,
Lissocarcinus polybioides, and Choerodon monostigma) that characterize each of these archetypes, in the sense that each species has
a large posterior probability ŝjg of belonging to their respective archetype. Predicted responses from SAMs are based on a weighted
average across all archetypes, and hence they are not exactly equal to the archetypal responses (solid line), although they are share
similar shapes due to the large posterior probability ŝjg. Note also that the predicted species responses from SAMs are considerably
flatter than from fitting a separate SDMs to each species alone (dotted line).
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number of parameters plus 1 rule, motivating a greater

need for methods that can borrow strength across

species, i.e., SAMs.

We assessed predictive performance by measuring

how well models predict to independent ‘‘test’’ data via

cross validation (Hastie et al. 2009). For the Butterfly,

Great Barrier Reef (GBR), and NWS data sets, we used

random cross-validation, whereby 10% of the sites were

randomly sampled out to act as test data, while the

model was fitted to the remaining 90% training sites.

Given the sparse sampling intensity (Table 1; mean

nearest site) for GBR and NWS, and the lack of residual

correlation in relevant diagnostic plots for Butterfly

(plot not shown), then spatial autocorrelation for these

three data sets was negligible. For the Blue Mountains

(BM) data set, however, the high density of sites (Table

1) motivated us to use block cross validation to

(approximately) ensure independence between training

and test data sets. To perform block cross validation, we

divided the area surveyed into 50 3 50 km blocks (38

blocks in total). Each block was then regarded as a

sampling unit, and we randomly sampled 10 blocks for

testing with the model fitted to the remaining 28 training

blocks. For each data set, we considered 40 different

splits of training/test data for the cross-validation

procedure, allowing the construction of confidence

intervals and hypothesis testing for our measures of

predictive performance.

We evaluated performance using predictive log-

likelihood per testing site (abbreviated to log Lp) as a

measure of model calibration and predictive accuracy; a

higher log Lp meant a better fit of the testing data using

the proposed model. For binary data, area under the

ROC curve (AUC; Fielding and Bell 1997) was also used

to evaluate a model’s ability to discriminate between

presences and absences. To assess if SAMs outper-

formed separate GLMs for rare species in particular

(borrowing strength), we plotted species differences in

log Lp (or AUC), averaged over the 40 cross-validation

splits, against species prevalence in the full data set. A

difference greater than 0 in log Lp (or in AUC) meant

greater prediction accuracy (discriminatory capacity) for

SAMs.

RESULTS

Comparable performance for prevalent species

We first considered when each species had sufficient

prevalence to effectively parameterize the environmental

responses relationship separately (number of parameters

plus 1 rule). For the Butterfly data set, this led to 14

species, allowing us to assess predictive performance for

a small assemblage. The mean difference in log Lp was

close to zero (Table 2A), although there was some

evidence that SAMs were predicting better for rarer

species (see Appendix B). In the three larger data sets, we

observed slight evidence in favor of SAMs improving

predictions (Table 2A). For both presence–absence data

sets GBR and BM, SAMs offered small but statistically

significant improvements over separate GLMs in log Lp

and AUC. Plots of individual species differences in

log Lp (and AUC) vs. prevalence presented some

evidence that rarer species were been better predicted

by SAMs compared to separate GLMs (see Appendix B).

The biggest difference between the two methods

occurred for the NWS data set, where log Lp was

substantially higher for SAMs (Table 2A). This result,

however, was largely due to the chosen mean structure

overfitting many of the separate GLMs. A further

analysis comparing SAMs to separate intercept-only

GLMs showed a much smaller but nevertheless statis-

tically significant difference in log Lp in favor of SAMs:

0.022 (0.015, 0.030) (mean and 95% CL). A plot of

species differences in log Lp against prevalence revealed

SAMs outperformed separate intercept-only GLMs by

successfully modeling the responses present in the most

abundant species, while performing comparably for

rarer species (see Appendix B).

Borrowing strength for the rarer species

When more rare species were included in the model

(the one-third rule), strong evidence of SAM’s superior

TABLE 2. Mean differences in predictive log-likelihood per testing site (log Lp) and area under the curve (AUC), along with 95%
confidence intervals in parentheses, when applying (A) ‘‘number of parameters þ 1’’ rule and (B) ‘‘one-third’’ rule.

Rule and data set Sremain Summary of selected G Difference in log Lp Difference in AUC

A) Number of parameters þ 1
Butterfly 14 2 (2, 2.25) 0.005 (�0.033, 0.043)
NWS 122 6 (6, 7) 0.898 (0.862, 0.933)
GBR 137 11 (11, 12) 0.018 (0.015, 0.021) 0.011 (0.007, 0.015)
BM 50 11 (10, 12) 0.010 (0.005, 0.014) 0.001 (�0.006, 0.007)

B) One-third

Butterfly 22 2 (2, 2) 0.745 (0.498, 0.993)
NWS 223 11 (10, 11) 1.074 (1.048, 1.100)
GBR 675 17 (16, 18) 0.089 (0.084, 0.094) 0.052 (0.049, 0.055)
BM 76 13 (11, 13) 0.046 (0.042, 0.049) 0.048 (0.039, 0.057)

Notes: Listed also is the number of species remaining for comparison following application of either rule (Sremain) and the modal
number of archetypes G selected for SAMs across the 40 cross-validation sets (first and third quartiles in parentheses). Difference is
defined as log Lp of SAMs minus log Lp of separate GLMs, and similarly for AUC. Key to data set abbreviations: NWS, North
West Shelf; GBR, Great Barrier Reef; BM, Blue Mountains.
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performance emerged in all four data sets (Table 2B).

Across the four data sets, plots of species differences in

log Lp against prevalence showed strong evidence in the

ability of SAMs to borrow strength across species: the

rarer a species was, the greater the improvement in

predictive performance by mixing over the coefficients

compared to estimating them independently (Fig. 2).

Similar trends were observed for species differences in

AUC (see Appendix B). Further evidence of the SAMs

borrowing strength across species was given by the

number of archetypes chosen in Table 2B, which were

not much more compared to when only the prevalent

species were included in Table 2A. This showed that rare

species had insufficient information to justify an entirely

new response group, and it was more beneficial to class

them with a prevalent species having similar response.

For the Butterfly data set, performance of separate

GLMs worsened due to overfitting of the 10 rare species

newly included. Overfitting with the selected mean

model was also an issue in the NWS data set. For both

data sets, additional comparisons between SAMs and

separate intercept-only GLMs found that while differ-

ences in log Lp dropped considerably, they remained

significant in favor of SAMs for both the Butterfly

(0.041 (0.013, 0.070)) and NWS (0.129 (0.119, 0.140))

data sets.

Greater insight into the improvement in predictive

performance made by SAMs can be gained by visual-

izing how the predicted mean response differed between

SAMs and separate GLMs. This is illustrated in Fig. 1

for three selected archetypes (denoted for simplicity as

archetypes A, B, and C) in the GBR data set. Each plot

shows how the species predicted response from SAMs

(dashed line) and separate GLMs (dotted line) varied as

a function of standardized mean temperature, while

holding the other covariates fixed at their respective

means. Each plot was constructed by choosing, for each

archetype, a species having large posterior probability

ŝjg of belonging to that archetype. Compared to the

predicted responses from separate SDMs (Fig. 1, dotted

line), the archetypal responses (solid line) and the SAM

predicted species’ response (dashed line) are much flatter

in curvature. This is because the SAM predictions, both

archetypal and species, are based on ‘‘average’’ respons-

es across a group of species with similar behavior. These

points led to the significant improvements in predictive

performance.

FIG. 2. Individual species differences in predictive log-likelihood per testing site (log Lp) (averaged across the 40 cross-
validation splits) vs. prevalence, applying the ‘‘one-third’’ rule to (A) Butterfly, (B) North West Shelf (NWS), (C) Great Barrier
Reef (GBR), and (D) Blue Mountains (BM) data sets. Difference here is defined as log Lp of SAMs minus log Lp of separate species
GLMs. For all four data sets, there are very few points less than zero (below the solid horizontal line), indicating that SAMs
consistently outperforms separate GLMs in terms of predictive accuracy. Also, we see that the rarer a species is, the better SAMs
perform relative to separate GLMs. Similar trends were observed for species differences in AUC plotted against prevalence (see
Appendix B).
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DISCUSSION

In this paper, we compared the performance of
separate SDMs and a mixture-model approach on a

number of real data sets. Results showed SAMs
outperformed GLMs both in prediction accuracy and

discriminatory capacity by borrowing strength across
species. Furthermore the rarer a species was, the greater

the improvement made by mixing the coefficients. These
findings complement those found in Leathwick et al.

(2006) and Ovaskainen and Soininen (2011), both of
which found strong evidence that community models

outperformed univariate counterparts when many re-
corded species were sparse. Comparing across the four

data sets in Table 2A and B, we observed an interesting
trend: the larger the ratio S/N was, the better SAMs

perform relative to single species GLMs. This is an
important finding, since, in many ecological surveys, the

number of species is often a significant fraction of the
number of sites (sometimes even greater than 1). These
results thus present a strong argument for adopting a

model-based clustering approach for such data sets.

One drawback of our comparison was the use of
GLMs as the basic modeling tool, as they are limited in
their ability to model the often complex relationships in

ecology (Leathwick et al. 2006). To see if relaxing
assumptions on the mean model made any difference, we

fitted separate GAMs to the same 40 cross-validation
splits used for the Butterfly and BM data sets, and

compared the predictions made against SAMs (mixture
of GLMs). We found that while separate GAMs

predicted better than SAMs for abundant species, SAMs
continued to strongly outperform GAMs for rarer

species (see Appendix C). From this, we conclude that
mixture modeling is a powerful technique that could, in

principle, be applied to any modeling tool. A topic of
future research will be to extend SAMs to encompass

mixture of GAMs, to further improve predictive
performance.

SAMs can be considered as a type of hierarchical
model, meaning they share similarities with Generalized

Linear Mixed Models (GLMMs). Both SAMs and
GLMMs borrow strength in order to better model rare
species. A key difference however is that the latent

variable (random effect) in SAMs is categorical, while in
GLMMs it is assumed to be normally distributed (e.g.,

Ives and Helmus 2011). Importantly, it is the categorical
latent variable in SAMs that facilitates the clustering of

species into archetypes. SAMs also differ from the
hierarchical model proposed by Ovaskainen and Soini-

nen (2011) in two ways: (1) SAMs are fitted via
maximum likelihood, which is computationally less

intensive compared to the Bayesian approach of
Ovaskainen and Soininen (2011) that requires elicitation

of prior distributions, (2) we develop SAMs in a broader
framework to handle abundance data and perform

model selection (see Dunstan et al. 2013).
Species archetype modeling is an ‘‘assemble and

predict together’’ strategy (Ferrier and Guisan 2006),

and such an approach has a number of strengths

reflected in this paper. Better parameterization allows

greater power at uncovering environmental responses

relationships in rare species. Consequently, SAMs may

provide more reliable extrapolations to new locations in

geographic and environmental space. The very idea of a

‘‘species archetype’’ embodies the notion of borrowing

strength across species, allowing biodiversity manage-

ment to be simplified into strategies for a smaller

number of archetypal units. At the same time, individual

species distributions are easily obtained. This capacity to

easily switch focus from the community level to species

level and vice versa is an important advantage of SAMs.
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SUPPLEMENTAL MATERIAL

Appendix A

Imputation of the response for the NWS data set (Ecological Archives E094-174-A1).

Appendix B

Additional results for comparison between species archetype models (SAMs) and separate species distribution models (SDMs)
(Ecological Archives E094-174-A2).

Appendix C

Comparing the performance of SAMs and separate species generalized additive models (GAMs) (Ecological Archives
E094-174-A3).
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