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ABSTRACT

Pegasus III (Peg III) is one of the few known ultra-faint stellar systems in the outer halo of the Milky Way. We
present the results from a follow-up campaign with Magellan/IMACS and Keck/DEIMOS. Deep stellar
photometry down to »r 250 mag at 50% completeness level has allowed accurate measurements of its photometric
and structural properties. The color–magnitude diagram of Peg III confirms that the stellar system is well described
by an old (12 Gyr) and metal-poor ([Fe/H]−2.0 dex) stellar population at a heliocentric distance of
215±12 kpc. The revised half-light radius = r 53 14h pc, ellipticity  = -

+0.38 0.38
0.22, and total luminosity

= - M 3.4 0.4V are in good agreement with the values quoted in our previous paper. We further report on the
spectroscopic identification of seven, possibly eight, member stars of Peg III. The Ca II triplet lines of the brightest
member stars indicate that Peg III contains stars with metallicity as low as [Fe/H]=−2.55±0.15 dex. Peg III
has a systemic velocity of −222.9±2.6 km s−1 and a velocity dispersion of -

+5.4 2.5
3.0 km s−1. The inferred

dynamical mass within the half-light radius is ´-
+

M1.4 101.1
3.0 6 and the mass-to-light ratio = -

+M L 1470V 1240
5660

 M L , providing further evidence that Peg III is a dwarf galaxy satellite. We find that Peg III and another distant
dwarf satellite Pisces II lie relatively close to each other (D = d 43 19spatial kpc) and share similar radial
velocities in the Galactic standard-of-rest frame (D = v 12.3 3.7GSR km s−1). This suggests that they may share a
common origin.

Key words: Local Group – planets and satellites: individual (Pegasus III, Pisces II)

1. INTRODUCTION

The census of satellite galaxies and star clusters associated
with the Milky Way (MW) has been continuously updated for
the last decade. Following the success of the Sloan Digital Sky
Survey (SDSS; York et al. 2000), which revealed the presence
of “ultra-faint” ( > -M 5V ) MW satellites (e.g., Willman
et al. 2005; Belokurov et al. 2006; Zucker et al. 2006; Irwin
et al. 2007; Koposov et al. 2007; Walsh et al. 2007; Balbinot
et al. 2013; Kim & Jerjen 2015a), recent wide-field photometric
surveys have been instrumental in finding many more such
systems in the MW halo, and probing to increasingly faint
levels (e.g., Bechtol et al. 2015; Drlica-Wagner et al. 2015;
Kim et al. 2015b, 2016; Kim & Jerjen 2015b; Koposov et al.
2015a; Laevens et al. 2015a, 2015b; Martin et al. 2015; Luque
et al. 2016; Torrealba et al. 2016a, 2016b). A growing number
of the newly discovered MW satellites are filling the gap
between the classical dwarf galaxies and globular clusters in
the size–luminosity plane, meaning that it is increasingly
difficult to classify these systems using only these two
parameters (Willman & Strader 2012). Instead, the approach
of determining their kinematics or chemistry still remains valid
as a main diagnostic for distinguishing the two types of stellar
systems (e.g., see discussions in Belokurov et al. 2014;
Laevens et al. 2014; Kirby et al. 2015c; Voggel et al. 2016;
Weisz et al. 2016). Spectroscopic follow-ups for the kinematic
and chemical properties are rapidly catching up with the
discoveries of the new satellites, but it is a technical challenge
to study more than a handful of member stars in these systems

due to their intrinsic low total luminosities and therefore lack of
bright red giant branch (RGB) stars (Kirby et al. 2015a;
Koposov et al. 2015b; Martin et al. 2015, 2016a, 2016b; Simon
et al. 2015; Walker et al. 2015, 2016; Ji et al. 2016; Roederer
et al. 2016).
Pegasus III (Peg III hereafter) is an MW satellite galaxy

originally found in the SDSS Data Release 10 photometry (Ahn
et al. 2014) by Kim et al. (2015a), who also provided detection
confirmation at the s~10 level based on DECam photometry.
The follow-up imaging with DECam further revealed the
presence of six blue-horizontal-branch (BHB) candidate stars.
Their apparent magnitudes implied that Peg III is located at a
heliocentric distance of 205±20 kpc in the outer region of the
MW halo. From the relatively shallow DECam photometry,
Peg III appeared to be elongated with a rather irregular stellar
distribution, possibly indicative of tidal disturbance. Deeper
imaging was thus required to confirm its true nature.
Peg III is a member of the small population of presently

known MW satellites in the distance range
< <d130 kpc 250 kpcGC . It is also located close to another

distant satellite, Pisces II (Psc II hereafter, ~d 180 kpc;
Belokurov et al. 2010). These two satellites seem to form a
physical pair with an angular separation of 8°.5 on the sky and a
relatively small difference in the line-of-sight distance of
∼30 kpc. Other close pairs of MW satellites have been reported
before—for example, Boötes I (Belokurov et al. 2006) and
Boötes II (Walsh et al. 2007), Leo IV (Belokurov et al. 2007)
and Leo V (Belokurov et al. 2008), or Horologium I (Bechtol
et al. 2015; Koposov et al. 2015a) and Horologium II (Kim &
Jerjen 2015b), leading to speculations about their companion-
ship or common origin. The most notable pair is Leo IV–V,
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another pair of distant satellites ( >d 150 kpc), for which the
systemic line-of-sight velocities differ only by ∼40 km s−1

(Simon & Geha 2007; Belokurov et al. 2008), supporting the
scenario that the pair might be gravitationally bound as a
“tumbling pair” (de Jong et al. 2010). In this context, the
discovery of another close pair of distant MW satellites
naturally raises the question as to whether their systemic
velocities are also similar to each other. To find an answer
requires spectroscopic follow up to obtain their kinematic
information.

We observed Peg III with Magellan/IMACS for deep
photometry and Keck/DEIMOS for spectroscopy in order to
firmly establish its luminosity and structural parameters,
estimate its dynamic mass-to-light ratio, and investigate its
possible association with Psc II.

2. PHOTOMETRY AND ASTROMETRY

We observed Peg III on 2015 July 22nd with the f 4 mode
of the Inamori-Magellan Areal Camera & Spectrograph
(IMACS) at the Magellan/Baade Telescope in the g and
r bands. Magellan/IMACS has eight 2k×4k CCDs with a
total field of view of ¢ ´ ¢15.4 15.4 and a pixel scale of
0. 2 pixel−1 (2× 2 binning).
We obtained a series of ´17 600s dithered exposures in g

and ´15 600s in r together with 20 bias frames, 10 dome flats
in each filter taken before the science exposures, and 7 sky flats
for each filter taken at the end of our observing night. During
the observing run, the weather was clear and seeing ranged
from 0. 8 to 1. 2. We produced the master bias and master flats
using the zerocombine and flatcombine tasks in IRAF, and then
carried out bias subtraction and flat fielding using the
imarith task.

To find the astrometric solutions for the reduced science
images, we used SCAMP (Bertin 2006) and the SDSS DR 10
photometry catalog.4 We then combined the reduced images
into our final image stacks using SWARP (Bertin et al. 2002).

We performed point-spread function (PSF) photometry on
the final image stacks using SExtractor/PSFex (Bertin &
Arnouts 1996; Bertin 2011). These software programs provide
the SPREAD MODEL_ parameter that allows morphological
star/galaxy separation, for which we set a threshold
SPREAD MODEL 0 003 SPREADERR MODEL< +_ . _∣ ∣ (see,
e.g., Desai et al. 2012; Koposov et al. 2015a). This selection
process was applied to the g-band image stack, which has a
longer total integration time than the r-band image stack. After
crossmatching the g and r catalogs using STILTS (Taylor
2005) with a 1 tolerance, we converted the instrumental
magnitudes of the matched catalog into the SDSS photometric
system using unsaturated stars in common with our DECam
photometry catalog for Peg III presented in Kim et al. (2015a),
via bootstrap sampling with 500 iterations and 3σ clipping.
Finally, we corrected the calibrated magnitudes for Galactic
extinction based on the reddening map by Schlegel et al. (1998)
and the correction coefficients from Schlafly & Finkbeiner
(2011). In the studied field of view, the typical value of

-E B V( ) is ∼0.124.
We note that the magnitudes of seven objects in the star

catalog were replaced by average measurements from two best-
seeing individual exposures as they fell onto the edges or
corners of CCD chips in some individual exposures and

suffered the extra-widening of the PSF relative to the typical
full width half maximum (FWHM) in the process of image
stacking. Such stacking-induced degrading of the PSF at CCD
chip boundaries becomes more obvious when the individual
exposures have a seeing difference as large as the pixel scale.
We searched in our sample for stars brighter than =r 230 mag
that have been affected by the phenomenon, and found seven
objects, including stars #1 and#8, in our spectroscopy sample
(see Table 2). This effectively accounts to ∼2% of all objects in
that magnitude range.5 The number of such objects in the
fainter magnitude range of >r 230 mag where a typical
FWHM is not well defined are not precisely determined. This
phenomenon is, however, unlikely to significantly affect the
rest of our analysis as the portion of the affected stars is small,
the resulting magnitude difference is smaller than 0.1 mag, and
the width of the photometric filtering mask used in Section 4 is
sufficiently wide to take the effect into account.
We also measured the completeness levels of our photometry

as a function of color and magnitudes using artificial stars as
described in Kim et al. (2016). At the color - =g r 0.400( ) ,
the 90% and 50% completeness levels correspond to

=r 22.650 and =r 24.920 , respectively.

3. SATELLITE DISTANCE AND STELLAR POPULATION

The distribution of stars in our IMACS photometry and
corresponding color–magnitude diagram are presented in
Figure 1, reaching ∼3 mag fainter than our previous DECam
photometry at the same signal-to-noise ratio (S/N) levels. The
stars within an elliptical radius of ¢2.55, equivalent to 3 half-
light radii, of the center of Peg III are highlighted with black
large dots. The stars outside the 3 half-light radii but within a
circular radius of ¢2.55 are also highlighted with smaller black
dots to take into account the large uncertainty of the ellipticity
derived in Section 4. The large red and blue dots in Figure 1
represent kinematically confirmed member and non-member
stars, respectively (see Section 5 for more details).
We constrain the heliocentric distance of Peg III using the

luminosity of its HB and the fiducial HB track of a globular
cluster. Since the absolute total luminosity of Peg III was
estimated to be −4.1±0.5 in our previous work, the mean
metallicity of the system is expected to be as low as
[Fe/H]~ -2.5 according to the mass–metallicity relation by
Kirby et al. (2013). We note that the recent metallicity
measurements of the MW satellite dwarf galaxies in the same
luminosity range as Peg III; for example, Psc II
(á ñFe H[ ] =−2.45±0.07; Kirby et al. 2015c) and Reticulum
II (á ñFe H[ ] =−2.65±0.07; Simon et al. 2015) are consis-
tent with the mass–metallicity relation. Accordingly, we
adopted the fiducial HB sequence of M15, one of the most
metal-poor globular clusters ([Fe/H]=−2.42), from Bernard
et al. (2014). We converted the fiducial into the SDSS
photometric system with the help of transformation equations
and coefficients provided by Tonry et al. (2012). We took

4 http://www.sdss3.org/dr10/

5 We found the stars affected by the degrading of PSF in the g or r band by
crossmatching catalogs from the stacked image and best-seeing individual
frames, and filtering the matched catalog with the following criteria:

• fwhm fwhmindi indi fwhm indis< + 3 ,
• fwhm fwhmstack stack fwhm stacks> + 3 ,

• SPREAD MODEL

0 003 SPREADERR MODEL

indi

indi< +

_

. _ .

∣ ∣
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literature values of E(B− V )=0.11 and - =m M 15.250( )
(Kraft & Ivans 2003) to obtain the reddening-corrected fiducial
HB sequence. We then expressed this fiducial HB sequence as
a function of color -g r 0( ) by means of a fifth order
polynomial regression, fit this function to the six BHB
candidate stars in the blue polygon in the middle panel of
Figure 1 with the least-squares method, and derived a distance
modulus of - = m M 21.66 0.120( ) . For the uncertainty in
the final estimate of the distance modulus, we combined in
quadrature the uncertainties associated with our calibration to
our DECam photometry (<0.01mag), the adopted distance
modulus of M15 (∼0.1 mag; Kraft & Ivans 2003), our fiducial
HB sequence fit (0.03 mag, determined by jackknife resam-
pling), and galactic reddening in the r band (<0.01mag). In
addition, we took into account the systematic uncertainty
associated with the metallicity–luminosity relation, for which
our estimate is ∼0.05 mag.

In the middle panel, a Dartmouth isochrone (Dotter
et al. 2008) for age 13.5 Gyr, [Fe/H]=−2.5, and
[α/Fe]=+0.4 (solid curve); an isochrone from the same set
but for age 12 Gyr, [Fe/H]=−1.1, [α/Fe]=+0.2 (dashed
curve); and the M15 fiducial HB sequence are plotted on the
CMD at a distance modulus of - =m M 21.660( ) or a
heliocentric distance of 215 kpc. The three kinematic member
stars in the red polygon appear systematically brighter than the
BHB and bluer than the RGB. An excess of such stars relative
to the RGB has been noticed in the CMD of the Hercules dwarf
galaxy (e.g., Figure 2 in Sand et al. 2009) and the majority of
them has been identified as its asymptotic giant branch (AGB)
or red horizontal branch (RHB) population by photometric and
spectroscopic studies (e.g., Adén et al. 2009; Fabrizio
et al. 2014). Most likely the three Peg III member stars in the
red polygon are AGB/RHB stars, too. Three of the other four
kinematic members of Peg III are consistent with the RGB
while the last one, star #2, is almost 0.1 mag redder. That color
difference cannot be explained by photometric uncertainties
alone. There are different factors that can cause a color spread

in the RGB, including dispersions in metallicity and carbon
abundances. The metallicity of stars in MW satellite dwarf
galaxies with similar total luminosities to Peg III ranges largely
from [Fe/H]=−3.5 up to [Fe/H]=−1.0 dex (e.g., Ursa
Major II; Vargas et al. 2013). The red star #2 of Peg III can
indeed be fitted with an isochrone for a higher metallicity of
[Fe/H]=−1.1 (dashed curve in the middle panel) at the same
distance modulus. Carbon stars ([Ca/Fe] + 1.0) in dwarf
galaxies also tend to be redder than carbon-normal RGB stars
due to the Bond–Neff effect (Bond & Neff 1969), as shown for
instance in Figure 7 of Kirby et al. (2015b). The possibility of a
metallicity and carbon spread among the Peg III stars can be
tested once the information on the chemical abundances of the
individual stars becomes available. The low signal-to-noise of
our spectra does not permit a detailed analysis for the chemical
abundances of the individual targets.
We present a background-subtracted Hess diagram in

Figure 2, which allows us to qualitatively assess the stellar
population of Peg III by means of model isochrone fitting for
different properties. The Hess diagram was constructed based
on the CMD of all stars within the radial distance of ¢2.55 and
subtracting a control CMD of all stars in an equal area outside
¢4.0. We overplot Dartmouth isochrones with different ages
(8,10,12,13.5 Gyr) and metallicity [F/H] values (−2.5, −2.0,
−1.5 dex). The [α/Fe] values for the isochrones are
determined based on the [Fe/H]–[α/Fe] relation from Vargas
et al. (2013). The distance modulus is fixed at 21.66 mag. The
most notable difference among the isochrone fits is found in
the main-sequence turnoff region, where the isochrones for
metal-poor ([Fe/H]  -2.0) and old (12 Gyr) stellar
populations appear to be most consistent. This suggests that
Peg III shares similar properties, i.e., low metallicities and old
ages, of stellar populations with previously known ultra-faint
MW satellite dwarf galaxies (e.g., Brown et al. 2014 and
references therein).

Figure 1. Left panel: distribution of all objects classified as stars in a ¢ ´ ¢10.0 10.0 field centered on Peg III. Large black dots are the stars within an ellptical radius of
¢2.55, equivalent to 3 half-light radii, of the center of Peg III (red ellpse) whereas the small dots are the stars outside the ellipse but within a circular-radial distance of
¢2.55 (dashed circle). The red, blue, and orange large dots represent the 12 stars for which we obtained velocity measurements with Keck/DEIMOS, where red (blue)
dots identify kinematic members (non-members). The small gray dots are the rest of the stars from our IMACS photometry. The large orange dot is a star whose
membership is ambiguous. Middle panel: Magellan/IMACS CMD of the stars in the left panel. The symbols are the same as in the left panel. The two Dartmouth
isochrones (Dotter et al. 2008) of age 13.5 Gyr, [Fe/H]=−2.5, and [α/Fe]=+0.4 (solid) and of age 12 Gyr, [Fe/H]=−1.1, and [α/Fe]=+0.2 (dashed) are
overplotted at a distance of 215 kpc. The HB fiducial track has been derived from Bernard et al. (2014) by using the observed CMD of the globular cluster M15
([Fe/H]=−2.42). The blue and red polygons highlight the HB and AGB/RHB candidate stars of Peg III, respectively. Right panel: radial velocity distribution of the
12 stars observed with Keck/DEIMOS. The colors are the same as in the left/middle panels. The solid line illustrates the predicted distribution of MW stars from the
Besancon model (Robin et al. 2003), within a radius of ¢5.0, normalized to the number of observed stars.
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4. STRUCTURAL PROPERTIES AND
ABSOLUTE LUMINOSITY

Figure 3 shows the convolved contour map of the star
density centered on Peg III made of stars that passed a
photometric filtering mask constructed from the Dartmouth
isochrone for age 13.5 Gyr, [Fe/H]=−2.5, and [α/Fe]=
+0.4 and the M15 HB fiducial line, as illustrated with a light-
red shadow in Figure 1. The width of the mask gradually
increases in the faint regime to take into account photometric
uncertainties. The shape of the outer isodensity lines still
remains irregular in the deep imaging data as previously seen in
our DECam data (Kim et al. 2015a), which lends support to the
scenario that the observed irregularity reflects the true structure,
rather than being a consequence of the limited depth of the
previous photometry. Given such a small population of stars in
the system, however, assessing the observed irregularity is
always subject to small number statistics (see, e.g., Martin et al.
2008; Walsh et al. 2008; Sand et al. 2010; Muñoz et al. 2012).

The central coordinates and structural parameters of Peg III
were derived using the Maximum Likelihood (ML) routine as
described in Kim et al. (2016) based on Martin et al. (2008)
using our IMACS photometry catalog and the photometric
filtering mask. The upper panels of Figure 4 show marginalized
PDFs for key structural parameters. In this analysis, Peg III
remains elliptical with  = -

+0.38 0.38
0.22 at a position angle of

q = -
+114 17

19, but its half-light radius ( = r 53 14h pc) appears
∼32% smaller than the previous estimate ( = -

+r 78h 24
30 pc; Kim

et al. 2015a). Nevertheless the two values are consistent at the
1σ level. The radial density profile with the best-fit exponential
model based on the resulting values is presented in the lower
panel of Figure 4. We further estimated the absolute luminosity
of Peg III using the Dartmouth luminosity function (LF) for age
13.5 Gyr, [Fe/H]=−2.5, and [α/Fe]=+0.4 with the mass
function by Chabrier (2001) as follows. We first normalized the
theoretical LF and multiplied with the photometric complete-
ness function derived in Section 2. We note that the Dartmouth
isochrone accounts for RGB and MS stars but not AGB/HB
sequences. We then integrated the scaled LF in the magnitude
range of >r 22.00 mag to calculate the probability density for

the number of detected RGB/MS stars fainter than
=r 220 mag in our IMACS photometry. Accordingly, we

repeated the ML routine using the previous filtering mask but
excluding the AGB/HB sequences and the RGB sequence
brighter than r0=22.0 mag to estimate the number of RGB/
MS stars fainter than r0=22.0 mag that belong to the
overdensity N with Equation (5) in Martin et al. (2008). The
ratio of the star count N to the probability density allowed us to
scale the normalized LF to the observed level. Integrating the
upscaled LF estimates the integrated total luminosity of RGB/

Figure 2. Background-subtracted Hess diagrams of Peg III within ¢2.55 (dashed circle in the left panel of Figure 1). Overplotted are Dartmouth isochrones at a distance
modulus of 21.66 mag for different ages, metallicities, and α abundances.

Figure 3. Convolved density contour map of Peg III candidate stars that pass
the photometric filter illustrated in the middle panel of Figure 1. The density
map was binned with a pixel size of 10. 0 and smoothed with a Gaussian kernel
with FWHM of 23. 6. The contours mark the levels of star density in units of
the standard deviation above the background (median value). The white dotted
ellipse represents 3 half-light radii of the center of Peg III. The left and right
arrows point to the nearby outer halo satellite Psc II and the Galactic Center,
respectively.
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MS stars in Peg III as = - -
+M 3.2r 0.4

0.3 or = - -
+M 3.0V 0.4

0.3 by
luminosity-weighted mean color - =V r 0.17 mag for the
model LF. Finally, we calculated the flux of AGB/HB
candidate stars in the red and blue polygons presented in the
middle panel of Figure 1 using the transformation equation by
Jordi et al. (2006) to convert their g and r magnitudes into V
magnitudes. Their contribution increased the total luminosity in
the V band by 0.4 mag and the uncertainty by 0.1 mag for the
upper (fainter) limit and by less than 0.1 mag for the lower
(brighter) limit. Therefore, we adopted = - M 3.4 0.4V as
our final estimate for the total luminosity of Peg III.

All the new estimates for the parameters are consistent with
their previous estimates at the 1–σ level. The new values
suggest that Peg III is somewhat smaller and fainter than
previously estimated (Kim et al. 2015a). All resulting values
presented in this and the next sections are summarized in
Table 1.

5. SPECTROSCOPY

The data were taken with the KeckII 10 m telescope and the
DEIMOS spectrograph (Faber et al. 2003). One multislit mask
was observed in Peg III on the night of 2015 July 17. We
selected 30 targets based on their color–magnitude distribution
and distances from the center of the system using the DECam
photometry from Kim et al. (2015a). We assigned priorities to
potential RGB, AGB, and HB stars selected to follow the best-
fitting isochrone to the CMD of Peg III in the DECam data. We
used the 1200linemm−1 grating that covers a wavelength

range 6400–9100Å at the spectral resolution 1.37Å (FWHM,
equivalent to 47 km s−1 at the Ca II triplet). Slitlets were 0. 7
wide. The total exposure time was 2.5 hr.
We reduced the data using a modified version of the

DEIMOS spec2d software pipeline(Cooper et al. 2012;
Newman et al. 2013). We refer the reader to Simon & Geha
(2007) for a more detailed description of the radial velocity
measurement method. We measured the spectra of 12 out of the
30 targets, and their median S/N per pixel ranged from 1.4
to 7.0.
The membership of the sample stars was determined based

on radial velocity, position in the CMD, and distance from the
center of the dwarf galaxy. We identify seven secure members
shown in red in Figure 1. An eighth member (shown in
Figure 1 in orange) is 30 km s−1 away from the systemic
velocity, but also has very large velocity errors. This star has
the colors of a horizontal branch member star and may be a RR
Lyrae star. We do not include this star in the calculations
below.
The velocities for all the observed Peg III candidate

members are presented in Table 2. We note that the color
and magnitude of star #11 was taken from our previous
DECam photometry as its PSF on the IMACS images in g band
was considerably affected by a saturated object nearby.

6. METALLICITY

Given the low S/N of the spectra, we attempted to measure
the spectra-averaged metallicity of the four brightest stars in
our sample (#5, 6, 7, 10) using the Ca II triplet lines. The
measured strength of the spectral lines for RGB stars can be
calibrated to metallicity [Fe/H] based on the empirical
relationship between the equivalent width and the luminosity
offset from the HB of the system -V V0 0,HB (e.g., Starkenburg
et al. 2010; Da Costa 2016). The g0 and r0 magnitudes of the
stars were converted into V0 magnitudes using the Jordi et al.
(2006) Pop II transformation equations. We calculated the

-V V0 0,HB of the member stars based on the distance moduli
for Peg III and M15 in Section 3, for which we assumed the
VHB for M15 from Harris and - =E B V 0.11( ) from Kraft &
Ivans (2003). After smoothing the observed spectra with a

Figure 4. Upper panels: marginalized probability distrubtion functions (PDFs)
of the structural parameters of Peg III. Lower panel: radial stellar density profile
of Peg III. R is the elliptical radius. Overplotted are the best exponential model
based on the parameters in Table 1 (dotted line), the contribution of foreground
stars (dashed line), and the combined fit (solid line). The error bars were
derived from Poisson statistics.

Table 1
Properties of Peg III

Parameter Value Unit

aJ2000 22 24 24.48 h m s
dJ2000 +05 24 18.0 ° ′ ″
l 69.8452 deg
b −41.8293 deg

-m M 0( ) 21.66±0.12 mag

d 215±12 kpc
rh 0.85±0.22 ′

53±14 pc
ò -

+0.38 0.38
0.22 L

θ -
+114 17

19 deg

MV −3.4±0.4 mag
LV 1960±720 L
á ñv −222.9±2.6 km s−1

vGSR −67.6 km s−1

sv -
+5.4 2.5

3.0 km s−1

M1 2 -
+1.4 1.1

3.0
M106

M LV -
+1470 1240

5660
 M L

5
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5 pixel boxcar using the splot command in IRAF, we dealt with
the spectra in two ways as follows. First, we add them all
together in order to increase the S/N. The l8542 Å and
l8662 Å Ca II line strengths were then measured using the
procedure described in Da Costa (2016). The summed
equivalent width å »W 2.34 Å and the average

- » -V V 0.630 0,HB mag give a reduced equivalent width ¢W
of 1.93 Å. Applying the metallicity calibration with Equation
(2) in Da Costa (2016) yields [Fe/H]=−2.40 dex with an
uncertainty of order 0.15 dex. We then added the spectra for
stars #6 and #10, and for #5 and #7 together separately.
Repeating the above measurement process on these two
spectra, we obtained å »W 2.72 Å with average

- » -V V 0.740 0,HB mag for stars #6 and #10, and
å »W 1.99 Å with average - » -V V 0.510 0,HB mag for stars
#5 and #7. These values transform into [Fe/H]=−2.24 dex
and [Fe/H]=−2.55 dex with uncertanties of order 0.15 dex,
respectively. At face value, this is inconsistent with the CMD
where stars #6 and #10 appear ∼0.2 mag bluer than stars #5
and #7 and so should be more metal poor. Stars #6 and #10
are, however, possibly AGB stars to which the calibration
process strictly may not apply. It must also be kept in mind that
the S/N of the summed spectra, even after smoothing, remains
low. Nevertheless, this result confirms that Peg III includes
stars with metallicity as low as [Fe/H]=−2.55±0.15 dex.

7. KINEMATICS

In order to characterize the kinematics of Peg III, we
employed a simple “non-rotation” model based on the method
of Drukier et al. (1998). This method assumes that the
measured radial velocities have a Gaussian distribution with
mean velocity á ñv and dispersion sv. The likelihood of the ith
measurement dvi i is then given by

s s dá ñ = á ñ + L v v G v v, , , 1i i v i v i
2 2( ∣ ) ( ∣ ) ( )

where m sG x ,( ∣ ) is a Gaussian function of x with the mean μ

and the standard deviation σ. The likelihood for the available
data set º =D vi i

N
1{ is the product of the individual likelihoods:

s sá ñ = á ñ L D v L v v, , . 2v
i

i i v( ∣ ) ( ∣ ) ( )

Applying Bayes’ theorem leads to

s s sá ñ µ á ñ á ñ  P v D L D v P v, , , , 3v v v( ∣ ) ( ∣ ) ( ) ( )

where sá ñP v D, v( ∣ ) is the the posterior probability and
s sá ñ º á ñ P v P v P, v v( ) ( ) ( ) is the prior. For the mean

velocity, the appropriate prior is a uniform prior
á ñ =P v C( ) , for which we have set a finite range between

−200 and −245 km s−1 to make it normalizable. In the case of
the velocity dispersion, the appropriate prior is the Jeffreys
prior s sµ -P v v

1( ) (see, e.g., Drukier et al. 1998, 2007;
Koposov et al. 2015b; Torrealba et al. 2016b), which is
“non-informative” for a scale parameter such as the dispersion
sv (see Section VII of Jaynes 1968 for justification). In fact, the
choice of the prior has minimal impact on the posterior
probability once the data are sufficiently constraining with a
large sample size and small measurement errors. Otherwise, a
uniform prior leads to a biased estimate for a scale parameter
(see, e.g., Section 3.8 of Gregory 2005; Eriksen et al. 2008).
Since the Jeffreys prior s sµ -P v v

1( ) is also an improper prior,
it requires reasonable bounds to turn into a proper prior such
that the likelihood distribution is not significantly
truncated (see, e.g., Section 3.3 in Drukier et al. 2007). We
have set a finite interval for the prior s Î 1, 30v ( ) km s−1,
where the lower bound is ~1 5 of the typical error on our
measurements. We note that the likelihood for
s Î 0, 1v ( ) km s−1 is equivalent to only 0.5% of that
for s Î 0, 30v ( ) km s−1.
The upper panel of Figure 5 shows the resulting posterior

probability distribution in two-dimensional (2D) space, which
appears asymmetric, spreading out toward larger velocity
dispersions, most likely due to the small sample size (see, e.g.,
Figure 2 in Walker et al. 2009). The lower panels show the
corresponding marginalized PDFs (solid curves) and also the
PDFs constructed with a uniform prior on the velocity
dispersion for comparison (dotted curves). Noticeably, the
uniform prior favors larger velocity dispersions and displaces
the modal value by +1.2 km s−1. When it comes to determin-
ing the typical values and related uncertainties of the
parameters, two different methods are commonly used in the
literature: (a) find the modal values of the marginalized PDFs
and the values that correspond to 61% of the peak probability
for the confidence interval (e.g., Martin et al. 2014) or (b) read
the 16, 50, and 84 percentiles of the marginalized PDFs (e.g.,
Walker et al. 2015). The results from each method are: (a)
á ñ = - v 222.9 2.6 km s−1 and s = -

+5.4v 2.5
3.0 km s−1 and (b)

á ñ = - -
+

v 222.8 2.9
3.0 km s−1 and s = -

+6.2v 2.7
3.7 km s−1. We note

Table 2
Keck/DEIMOS Target List

Object R.A. (J2000) Decl. (J2000) -g r 0( ) r0 v S/N Membership Photometry
(deg) (deg) (mag) (mag) (km s−1) (pixel−1)

1 336.17139 5.38661 0.47 22.28 −165.26±5.78 1.89 N IMACS
2 336.10198 5.38908 0.77 21.39 −220.57±4.71 5.04 Y IMACS
3 336.08657 5.39344 −0.08 22.05 −193.35±22.92 1.43 ? IMACS
4 336.09530 5.39583 0.37 21.27 −234.68±3.84 4.32 Y IMACS
5 336.11372 5.40772 0.49 20.88 −218.51±3.64 7.00 Y IMACS
6 336.09952 5.41176 0.65 21.07 −226.16±5.04 5.73 Y IMACS
7 336.11021 5.41590 0.53 20.94 −229.45±5.29 6.56 Y IMACS
8 336.07514 5.41965 0.63 21.65 −208.45±6.66 4.10 Y IMACS
9 336.09502 5.42197 0.58 21.94 −50.69±6.94 2.72 N IMACS
10 336.10019 5.42418 0.68 21.07 −218.26±3.56 6.37 Y IMACS
11 336.05841 5.43938 0.40 21.71 −260.11±9.97 3.43 N DECam
12 336.05740 5.45859 0.42 20.83 −25.71±3.06 6.13 N IMACS
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that the inclusion of the ambiguous star#3 with
= - v 193.35 22.92 km s−1 in our sample does not make

a significant difference in the results as follows: (a)
á ñ = - v 222.5 2.6 km s−1 and s = -

+5.4v 2.4
3.1 km s−1, and

(b) á ñ = - -
+

v 222.3 2.9
3.1 km s−1 and s = -

+6.3v 2.8
3.8 km s−1. On the

other hand, the exclusion of star#4 with
= - v 234.68 3.84 km s−1 from our sample leads to an

unresolved solution for the velocity dispersion, no matter
which one of the above two priors is used. We noticed the same
phenomenon in a test with the member stars for Psc II reported
by Kirby et al. (2015c); removing the star ID10694 with

= - v 232.0 1.6 km s−1 causes an unresolved solution. In
an experiment with the kinematic members of Segue 1 reported
by Simon et al. (2011), we found that such an unresolved
solution occurs in ∼50% of the cases when 6 stars are randomly
selected out of 32 stars having comparable measurement errors
( d< <2 7v km s−1) and Bayesian membership probabilities

larger than 90%. This variation is even larger than the 1–σ
uncertainty of the velocity dispersion and the influence of
binary stars in the sample (∼0.5 km s−1; see Figure 6 in Simon
et al. 2011). This result therefore suggests that the unresolved
solutions are most likely a consequence of the small sample
size. We will adopt the values and uncertainties obtained from
method (a) as our final estimates in Table 1 and throughout the
text. It is interesting to note that the measured systemic velocity
for Peg III is very similar to that found for its neighboring
satellite Psc II (á ñ = - v 226.5 2.7 km s−1) independently
measured by Kirby et al. (2015c).
Assuming dynamical equilibrium, the mass enclosed within

the half-light radius of a stellar system can be accurately
measured by the following equation as demonstrated by Wolf
et al. (2010):

s M
G

r M
4

, 4v h1 2
2 ( )

where sv is the line-of-sight velocity dispersion and rh is the 2D
projected half-light radius. According to this relation, the mass
within the elliptical half-light radius of Peg III is estimated to
be = ´-

+
M M1.4 101 2 1.1

3.0 6 . The absolute magnitude of Peg
III we derived in Section 4 translates into a total luminosity of

 L1960 720 , which corresponds to a mass-to-light ratio of
= -

+
 M L M L1470V 1240

5660 . This value is consistent with the
inverse correlation between luminosity and mass-to-light ratio
for other nearby dwarf galaxies (see Figure 6).

8. DISCUSSION AND SUMMARY

We have obtained Magellan/IMACS photometry and Keck/
DEIMOS spectroscopy for Peg III. The deep photometry
confirms that Peg III is a faint ( = - M 3.4 0.4V ), elongated
( = -

+0.38 0.38
0.22), irregular, and distant ( = d 215 12 kpc)

stellar system. We measured radial velocities for individual

Figure 5. Upper panel: two-dimensional posterior probability distribution for
the mean velocity and velocity dispersion of Peg III. Contours outline the
s s1 3– confidence levels. (In two dimensions, Gaussian densities within 1σ,
2σ, and 3σ correspond to 39.3%, 86.5%, and 98.9%, respectively.) Lower
panels: corresponding marginalized PDFs (solid curves). The PDFs for a
uniform prior on the velocity dispersion are overplotted for comparison (dotted
curves). All the PDFs are normalized such that each PDF covers an equal
probability density underneath. The dashed lines correspond to the modal
values of the marginalized posterior PDFs. The circle and square with error
bars indicate the typical values and uncertainties determined by methods (a)
and (b) in Section 7, respectively.

Figure 6. Mass-to-light ratio of Peg III (red) in comparison with other nearby
galaxies within 1 Mpc. Mass-to-light ratios were calculated from the velocity
dispersion, angular sizes (half-light radii), heliocentric distances, and absolute
magnitudes collected by McConnachie (2012) for consistency with our
estimate for Peg III. For the objects given “symmetric” uncertainties on the
parameters, the error bars were determined based on the regular error
propagation, and for the rest based on the upper and lower limits of the
parameters.
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candidate member stars and identified seven, possibly eight,
member stars in the system based on their radial velocities,
where the member stars could be either red giants or AGB stars
(red large dots in Figure 1). The stellar population of Peg III
contains stars with metallicity as low as [Fe/H]=
−2.55±0.15 dex. The velocity dispersion of Peg III
(s = -

+5.4v 2.5
3.0 km s−1) significantly exceeds the value expected

from its observed stellar mass alone (<0.3 km s−1; see Table 5
in Pawlowski et al. 2015), which supports the picture that Peg
III is a satellite dwarf galaxy rather than a star cluster.

Peg III and Psc II are approximately 43 kpc away from each
other in three dimensions (3D) and their radial velocities in
the Galactic standard-of-rest (GSR) frame differ only by
∼10 km s−1 ( = - v 67.6 2.6GSR km s−1 for Peg III and

= - v 79.9 2.7GSR km s−1 for Psc II). Given that only
relatively few distant MW satellite galaxies are presently
known, the close spatial proximity of Peg III and Psc II, and
their very similar radial velocities suggest a possible
association between them. We note that another companion-
ship of two distant MW satellites has been previously
identified, namely the Leo IV–Leo V pair. Despite the
difference in their radial velocities in the GSR frame
(D ~v 50GSR km s−1, Simon & Geha 2007; Belokurov et al.
2008), their close spatial proximity in 3D (D ~d 22spatial kpc)
has led to the hypothesis of a possible physical connection or
common origin (e.g., de Jong et al. 2010). Such a companion-
ship of two satellites, as Walker et al. (2009) suggested, may
imply a rather circular orbit on which MW tides have a
minimum effect. Assuming that the two satellites are currently
a bound pair with an equal halo mass and follow a circular
orbit on their average Galactocentric distance of
~ 198 10 kpc, we have estimated their total halo mass
following the method of Evslin (2014). This method estimates
the mass of the binary satellite system on the basis of the virial
theorem using the difference in their line-of-sight velocities
(12.3± 3.7 km s−1) and the separation between its constitu-
ents ( = d 43 19spatial kpc) in 3D space. The derived mass of
a satellite halo is  ´ M2.3 1.7 109 , which yields a tidal
radius of = r 16 4 kpct . The ratio of the separation to the
tidal radius is = d r 2.7 1.0tspatial . At face value, the tidal
radius is smaller than the separation, in which case the
binding energy of the two satellites is too low to remain
undisrupted in the MW tidal field. This result, however, does
not entirely rule out the possibility of a physical pair as the
tidal radius is comparable to the separation at the s1.7 level.
Information about their tangential velocities and dark-matter
halo profiles, as well as more accurate measurements for other
parameters, would provide more constraints on this result.

In both our DECam and IMACS photometry, Peg III appears
irregular and elongated (ò= -

+0.38 0.38
0.22), at the 1-σ limit,

compared to Psc II, which only has an upper limit for its
measured ellipticity ( < 0.28; Sand et al. 2012) with an
unconstrained position angle. In fact, a similarity is found
with the Leo IV–V pair (see Table 7 in Sand et al. 2012),
where Leo V features larger ellipticity (ò=0.55± 0.22) with
an unconstrained position angle and lower luminosity
( = - M 4.4 0.4V ) than Leo IV ( < 0.23, =MV
- 5.5 0.3). We consider three possible scenarios for the
origin of the ellipticity of Peg III. The first is that it is simply a
result of its formation process. The second is that it results from
tidal interaction with the MW. Under the assumption that the
stars of Peg III are in dynamic equilibrium this seems unlikely,

given (a) the large velocity dispersion implying a substantial
mass, (b) the compact physical size, (c) the elongation
misaligned with the direction toward the Galactic center, and
(d) the likelihood that Peg III and Psc II are moving on similar
circular or near circular orbits at large Galactocentric distances.
On the other hand, if the large velocity dispersion of the Peg III
stars reflects a non-equilibrium state or being inflated by
unresolved binary stars rather than the presence of a large
amount of dark matter, then the system might be a remnant of a
dwarf galaxy tidally disrupted by the MW. This would require
the orbit of Peg III to be significantly eccentric in order to reach
the required smaller Galactocentric distances. In turn, this
would make the spatial and velocity agreement with Psc II
coincidental, which seems highly unlikely. The third alternative
is that the ellipticity of Peg III results from a tidal interaction
with Psc II. To test these different ideas will require N-body
simulations or full 3D orbit information (i.e., the radial
velocities and proper motions of the objects). Much deeper
and wider imaging or higher resolution spectroscopy with new
forthcoming telescopes such the Wide-Field Infrared Survey
Telescope (WFIRST) and the Giant Magellan Telescope (GMT)
may provide crucial keys to these questions.

The authors thank the anonymous referee for helpful
suggestions that improved the clarity and quality of the paper.
We also thank Holger Baumgardt, Mila Chadayammuri, Joshua
Simon, John Norris, and David Yong for interesting discus-
sions and valuable comments. HJ and BC acknowledge the
support of the Australian Research Council through Discovery
projects DP120100475 and DP150100862. A.C. and A.F.
acknowledge support from NSF-CAREER grant AST-
1255160. A.P.M. acknowledges support by the Australian
Research Council through Discovery Early Career Researcher
Award DE150101816. G.D.C. and A.D.M. are grateful for
support from the Australian Research Council through
Discovery Projects DP120101237 and DP150103294.
This research made use of Astropy, a community-developed

core Python package for Astronomy (Astropy Collaboration
et al. 2013), and Matplotlib library (Hunter 2007).
Some of the data presented herein were obtained at the W.M.

Keck Observatory, which is operated as a scientific partnership
among the California Institute of Technology, the University of
California and the National Aeronautics and Space Adminis-
tration. The Observatory was made possible by the generous
financial support of the W.M. Keck Foundation. The authors
wish to recognize and acknowledge the very significant cultural
role and reverence that the summit of Mauna Kea has always
had within the indigenous Hawaiian community. We are most
fortunate to have the opportunity to conduct observations from
this mountain.

REFERENCES

Adén, D., Feltzing, S., Koch, A., et al. 2009, A&A, 506, 1147
Ahn, C. P., Alexandroff, R., Allende Prieto, C., et al. 2014, ApJS, 211, 17
Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A,

558, A33
Balbinot, E., Santiago, B. X., da Costa, L., et al. 2013, ApJ, 767, 101
Bechtol, K., Drlica-Wagner, A., Balbinot, E., et al. 2015, ApJ, 807, 50
Belokurov, V., Irwin, M. J., Koposov, S. E., et al. 2014, MNRAS, 441, 2124
Belokurov, V., Walker, M. G., Evans, N. W., et al. 2008, ApJL, 686, L83
Belokurov, V., Walker, M. G., Evans, N. W., et al. 2010, ApJL, 712, L103
Belokurov, V., Zucker, D. B., Evans, N. W., et al. 2006, ApJL, 647, L111
Belokurov, V., Zucker, D. B., Evans, N. W., et al. 2007, ApJ, 654, 897

8

The Astrophysical Journal, 833:16 (9pp), 2016 December 10 Kim et al.

http://dx.doi.org/10.1051/0004-6361/200912718
http://adsabs.harvard.edu/abs/2009A&amp;A...506.1147A
http://dx.doi.org/10.1088/0067-0049/211/2/17
http://adsabs.harvard.edu/abs/2014ApJS..211...17A
http://dx.doi.org/10.1051/0004-6361/201322068
http://adsabs.harvard.edu/abs/2013A&amp;A...558A..33A
http://adsabs.harvard.edu/abs/2013A&amp;A...558A..33A
http://dx.doi.org/10.1088/0004-637X/767/2/101
http://adsabs.harvard.edu/abs/2013ApJ...767..101B
http://dx.doi.org/10.1088/0004-637X/807/1/50
http://adsabs.harvard.edu/abs/2015ApJ...807...50B
http://dx.doi.org/10.1093/mnras/stu626
http://adsabs.harvard.edu/abs/2014MNRAS.441.2124B
http://dx.doi.org/10.1086/592962
http://adsabs.harvard.edu/abs/2008ApJ...686L..83B
http://dx.doi.org/10.1088/2041-8205/712/1/L103
http://adsabs.harvard.edu/abs/2010ApJ...712L.103B
http://dx.doi.org/10.1086/507324
http://adsabs.harvard.edu/abs/2006ApJ...647L.111B
http://dx.doi.org/10.1086/509718
http://adsabs.harvard.edu/abs/2007ApJ...654..897B


Bernard, E. J., Ferguson, A. M. N., Schlafly, E. F., et al. 2014, MNRAS,
442, 2999

Bertin, E. 2006, in ASP Conf. Ser. 351, Astronomical Data Analysis Software
and Systems XV, ed. C. Gabriel et al. (San Francisco, CA: ASP), 112

Bertin, E. 2011, in ASP Conf. Ser. 442, Astronomical Data Analysis Software
and Systems XX, ed. I. N. Evans et al. (San Francisco, CA: ASP), 435

Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393
Bertin, E., Mellier, Y., Radovich, M., et al. 2002, in ASP Conf. Ser. 281,

Astronomical Data Analysis Software and Systems, ed. D. A. Bohlender,
D. Durand, & T. H. Handley (San Francisco, CA: ASP), 228

Bond, H. E., & Neff, J. S. 1969, ApJ, 158, 1235
Brown, T. M., Tumlinson, J., Geha, M., et al. 2014, ApJ, 796, 91
Chabrier, G. 2001, ApJ, 554, 1274
Cooper, M. C., Newman, J. A., Davis, M., Finkbeiner, D. P., & Gerke, B. F.

2012, spec2d: DEEP2 DEIMOS Spectral Pipeline, Astrophysics Source
Code Library, ascl:1203.003

Da Costa, G. S. 2016, MNRAS, 455, 199
de Jong, J. T. A., Martin, N. F., Rix, H.-W., et al. 2010, ApJ, 710, 1664
Desai, S., Armstrong, R., Mohr, J. J., et al. 2012, ApJ, 757, 83
Dotter, A., Chaboyer, B., Jevremović, D., et al. 2008, ApJS, 178, 89
Drlica-Wagner, A., Bechtol, K., Rykoff, E. S., et al. 2015, ApJ, 813, 109
Drukier, G. A., Cohn, H. N., Lugger, P. M., et al. 2007, AJ, 133, 1041
Drukier, G. A., Slavin, S. D., Cohn, H. N., et al. 1998, AJ, 115, 708
Eriksen, H. K., Jewell, J. B., Dickinson, C., et al. 2008, ApJ, 676, 10
Evslin, J. 2014, MNRAS, 440, 1225
Faber, S. M., Phillips, A. C., Kibrick, R. I., et al. 2003, Proc. SPIE, 4841, 1657
Fabrizio, M., Raimondo, G., Brocato, E., et al. 2014, A&A, 570, A61
Gregory, P. C. 2005, Bayesian Logical Data Analysis for the Physical Sciences

(Cambridge: Cambridge Univ. Press)
Hunter, J. D. 2007, CSE, 9, 90
Irwin, M. J., Belokurov, V., Evans, N. W., et al. 2007, ApJL, 656, L13
Jaynes, E. T. 1968, IEEE Trans. Syst. Sci. Cybernetics, SSC-4, 227
Ji, A. P., Frebel, A., Chiti, A., & Simon, J. D. 2016, Natur, 531, 610
Jordi, K., Grebel, E. K., & Ammon, K. 2006, A&A, 460, 339
Kim, D., & Jerjen, H. 2015a, ApJ, 799, 73
Kim, D., & Jerjen, H. 2015b, ApJL, 808, L39
Kim, D., Jerjen, H., Mackey, D., Da Costa, G. S., & Milone, A. P. 2015a,

ApJL, 804, L44
Kim, D., Jerjen, H., Mackey, D., Da Costa, G. S., & Milone, A. P. 2016, ApJ,

820, 119
Kim, D., Jerjen, H., Milone, A. P., Mackey, D., & Da Costa, G. S. 2015b, ApJ,

803, 63
Kirby, E. N., Cohen, J. G., Guhathakurta, P., et al. 2013, ApJ, 779, 102
Kirby, E. N., Cohen, J. G., Simon, J. D., & Guhathakurta, P. 2015a, ApJL,

814, L7
Kirby, E. N., Guo, M., Zhang, A. J., et al. 2015b, ApJ, 801, 125
Kirby, E. N., Simon, J. D., & Cohen, J. G. 2015c, ApJ, 810, 56
Koposov, S., de Jong, J. T. A., Belokurov, V., et al. 2007, ApJ, 669, 337

Koposov, S. E., Belokurov, V., Torrealba, G., & Evans, N. W. 2015a, ApJ,
805, 130

Koposov, S. E., Casey, A. R., Belokurov, V., et al. 2015b, ApJ, 811, 62
Kraft, R. P., & Ivans, I. I. 2003, PASP, 115, 143
Laevens, B. P. M., Martin, N. F., Bernard, E. J., et al. 2015a, ApJ, 813, 44
Laevens, B. P. M., Martin, N. F., Ibata, R. A., et al. 2015b, ApJL, 802, L18
Laevens, B. P. M., Martin, N. F., Sesar, B., et al. 2014, ApJL, 786, L3
Luque, E., Queiroz, A., Santiago, B., et al. 2016, MNRAS, 458, 603
Martin, N. F., Chambers, K. C., Collins, M. L. M., et al. 2014, ApJL, 793, L14
Martin, N. F., de Jong, J. T. A., & Rix, H.-W. 2008, ApJ, 684, 1075
Martin, N. F., Geha, M., Ibata, R. A., et al. 2016a, MNRAS, 458, L59
Martin, N. F., Ibata, R. A., Collins, M. L. M., et al. 2016b, ApJ, 818, 40
Martin, N. F., Nidever, D. L., Besla, G., et al. 2015, ApJL, 804, L5
McConnachie, A. W. 2012, AJ, 144, 4
Muñoz, R. R., Padmanabhan, N., & Geha, M. 2012, ApJ, 745, 127
Newman, J. A., Cooper, M. C., Davis, M., et al. 2013, ApJS, 208, 5
Pawlowski, M. S., McGaugh, S. S., & Jerjen, H. 2015, MNRAS, 453, 1047
Robin, A. C., Reylé, C., Derrière, S., & Picaud, S. 2003, A&A, 409, 523
Roederer, I. U., Mateo, M., Bailey, J. I., III, et al. 2016, AJ, 151, 82
Sand, D. J., Olszewski, E. W., Willman, B., et al. 2009, ApJ, 704, 898
Sand, D. J., Seth, A., Olszewski, E. W., et al. 2010, ApJ, 718, 530
Sand, D. J., Strader, J., Willman, B., et al. 2012, ApJ, 756, 79
Schlafly, E. F., & Finkbeiner, D. P. 2011, ApJ, 737, 103
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
Simon, J. D., Drlica-Wagner, A., Li, T. S., et al. 2015, ApJ, 808, 95
Simon, J. D., & Geha, M. 2007, ApJ, 670, 313
Simon, J. D., Geha, M., Minor, Q. E., et al. 2011, ApJ, 733, 46
Starkenburg, E., Hill, V., Tolstoy, E., et al. 2010, A&A, 513, A34
Taylor, M. B. 2005, in ASP Conf. Ser. 347, Astronomical Data Analysis

Software and Systems, ed. P. Shopbell, M. Britton, & R. Ebert (San
Francisco, CA: ASP), 29

Tonry, J. L., Stubbs, C. W., Lykke, K. R., et al. 2012, ApJ, 750, 99
Torrealba, G., Koposov, S. E., Belokurov, V., & Irwin, M. 2016a, MNRAS,

459, 2370
Torrealba, G., Koposov, S. E., Belokurov, V., et al. 2016b, MNRAS, 463, 712
Vargas, L. C., Geha, M., Kirby, E. N., & Simon, J. D. 2013, ApJ, 767, 134
Voggel, K., Hilker, M., Baumgardt, H., et al. 2016, MNRAS, 460, 3384
Walker, M. G., Belokurov, V., Evans, N. W., et al. 2009, ApJL, 694, L144
Walker, M. G., Mateo, M., Olszewski, E. W., et al. 2015, ApJ, 808, 108
Walker, M. G., Mateo, M., Olszewski, E. W., et al. 2016, ApJ, 819, 53
Walsh, S. M., Jerjen, H., & Willman, B. 2007, ApJL, 662, L83
Walsh, S. M., Willman, B., Sand, D., et al. 2008, ApJ, 688, 245
Weisz, D. R., Koposov, S. E., Dolphin, A. E., et al. 2016, ApJ, 822, 32
Willman, B., Blanton, M. R., West, A. A., et al. 2005, AJ, 129, 2692
Willman, B., & Strader, J. 2012, AJ, 144, 76
Wolf, J., Martinez, G. D., Bullock, J. S., et al. 2010, MNRAS, 406, 1220
York, D. G., Adelman, J., Anderson, J. E., Jr., et al. 2000, AJ, 120, 1579
Zucker, D. B., Belokurov, V., Evans, N. W., et al. 2006, ApJL, 643, L103

9

The Astrophysical Journal, 833:16 (9pp), 2016 December 10 Kim et al.

http://dx.doi.org/10.1093/mnras/stu1081
http://adsabs.harvard.edu/abs/2014MNRAS.442.2999B
http://adsabs.harvard.edu/abs/2014MNRAS.442.2999B
http://adsabs.harvard.edu/abs/2006adass..15..112B
http://adsabs.harvard.edu/abs/2011adass..20..435B
http://dx.doi.org/10.1051/aas:1996164
http://adsabs.harvard.edu/abs/1996A&amp;AS..117..393B
http://adsabs.harvard.edu/abs/2002adass..11..228B
http://dx.doi.org/10.1086/150283
http://adsabs.harvard.edu/abs/1969ApJ...158.1235B
http://dx.doi.org/10.1088/0004-637X/796/2/91
http://adsabs.harvard.edu/abs/2014ApJ...796...91B
http://dx.doi.org/10.1086/321401
http://adsabs.harvard.edu/abs/2001ApJ...554.1274C
http://www.ascl.net/1203.003
http://dx.doi.org/10.1093/mnras/stv2315
http://adsabs.harvard.edu/abs/2016MNRAS.455..199D
http://dx.doi.org/10.1088/0004-637X/710/2/1664
http://adsabs.harvard.edu/abs/2010ApJ...710.1664D
http://dx.doi.org/10.1088/0004-637X/757/1/83
http://adsabs.harvard.edu/abs/2012ApJ...757...83D
http://dx.doi.org/10.1086/589654
http://adsabs.harvard.edu/abs/2008ApJS..178...89D
http://dx.doi.org/10.1088/0004-637X/813/2/109
http://adsabs.harvard.edu/abs/2015ApJ...813..109D
http://dx.doi.org/10.1086/510721
http://adsabs.harvard.edu/abs/2007AJ....133.1041D
http://dx.doi.org/10.1086/300231
http://adsabs.harvard.edu/abs/1998AJ....115..708D
http://dx.doi.org/10.1086/525277
http://adsabs.harvard.edu/abs/2008ApJ...676...10E
http://dx.doi.org/10.1093/mnras/stu340
http://adsabs.harvard.edu/abs/2014MNRAS.440.1225E
http://dx.doi.org/10.1117/12.460346
http://adsabs.harvard.edu/abs/2003SPIE.4841.1657F
http://dx.doi.org/10.1051/0004-6361/201423792
http://adsabs.harvard.edu/abs/2014A&amp;A...570A..61F
http://dx.doi.org/10.1109/MCSE.2007.55
http://adsabs.harvard.edu/abs/2007CSE.....9...90H
http://dx.doi.org/10.1086/512183
http://adsabs.harvard.edu/abs/2007ApJ...656L..13I
http://dx.doi.org/10.1109/TSSC.1968.300117
http://dx.doi.org/10.1038/nature17425
http://adsabs.harvard.edu/abs/2016Natur.531..610J
http://dx.doi.org/10.1051/0004-6361:20066082
http://adsabs.harvard.edu/abs/2006A&amp;A...460..339J
http://dx.doi.org/10.1088/0004-637X/799/1/73
http://adsabs.harvard.edu/abs/2015ApJ...799...73K
http://dx.doi.org/10.1088/2041-8205/808/2/L39
http://adsabs.harvard.edu/abs/2015ApJ...808L..39K
http://dx.doi.org/10.1088/2041-8205/804/2/L44
http://adsabs.harvard.edu/abs/2015ApJ...804L..44K
http://dx.doi.org/10.3847/0004-637X/820/2/119
http://adsabs.harvard.edu/abs/2016ApJ...820..119K
http://adsabs.harvard.edu/abs/2016ApJ...820..119K
http://dx.doi.org/10.1088/0004-637X/803/2/63
http://adsabs.harvard.edu/abs/2015ApJ...803...63K
http://adsabs.harvard.edu/abs/2015ApJ...803...63K
http://dx.doi.org/10.1088/0004-637X/779/2/102
http://adsabs.harvard.edu/abs/2013ApJ...779..102K
http://dx.doi.org/10.1088/2041-8205/814/1/L7
http://adsabs.harvard.edu/abs/2015ApJ...814L...7K
http://adsabs.harvard.edu/abs/2015ApJ...814L...7K
http://dx.doi.org/10.1088/0004-637X/801/2/125
http://adsabs.harvard.edu/abs/2015ApJ...801..125K
http://dx.doi.org/10.1088/0004-637X/810/1/56
http://adsabs.harvard.edu/abs/2015ApJ...810...56K
http://dx.doi.org/10.1086/521422
http://adsabs.harvard.edu/abs/2007ApJ...669..337K
http://dx.doi.org/10.1088/0004-637X/805/2/130
http://adsabs.harvard.edu/abs/2015ApJ...805..130K
http://adsabs.harvard.edu/abs/2015ApJ...805..130K
http://dx.doi.org/10.1088/0004-637X/811/1/62
http://adsabs.harvard.edu/abs/2015ApJ...811...62K
http://dx.doi.org/10.1086/345914
http://adsabs.harvard.edu/abs/2003PASP..115..143K
http://dx.doi.org/10.1088/0004-637X/813/1/44
http://adsabs.harvard.edu/abs/2015ApJ...813...44L
http://dx.doi.org/10.1088/2041-8205/802/2/L18
http://adsabs.harvard.edu/abs/2015ApJ...802L..18L
http://dx.doi.org/10.1088/2041-8205/786/1/L3
http://adsabs.harvard.edu/abs/2014ApJ...786L...3L
http://dx.doi.org/10.1093/mnras/stw302
http://adsabs.harvard.edu/abs/2016MNRAS.458..603L
http://dx.doi.org/10.1088/2041-8205/793/1/L14
http://adsabs.harvard.edu/abs/2014ApJ...793L..14M
http://dx.doi.org/10.1086/590336
http://adsabs.harvard.edu/abs/2008ApJ...684.1075M
http://dx.doi.org/10.1093/mnras/stw605
http://adsabs.harvard.edu/abs/2016MNRAS.458L..59M
http://dx.doi.org/10.3847/0004-637X/818/1/40
http://adsabs.harvard.edu/abs/2016ApJ...818...40M
http://dx.doi.org/10.1088/2041-8205/804/1/L5
http://adsabs.harvard.edu/abs/2015ApJ...804L...5M
http://dx.doi.org/10.1088/0004-6256/144/1/4
http://adsabs.harvard.edu/abs/2012AJ....144....4M
http://dx.doi.org/10.1088/0004-637X/745/2/127
http://adsabs.harvard.edu/abs/2012ApJ...745..127M
http://dx.doi.org/10.1088/0067-0049/208/1/5
http://adsabs.harvard.edu/abs/2013ApJS..208....5N
http://dx.doi.org/10.1093/mnras/stv1588
http://adsabs.harvard.edu/abs/2015MNRAS.453.1047P
http://dx.doi.org/10.1051/0004-6361:20031117
http://adsabs.harvard.edu/abs/2003A&amp;A...409..523R
http://dx.doi.org/10.3847/0004-6256/151/3/82
http://adsabs.harvard.edu/abs/2016AJ....151...82R
http://dx.doi.org/10.1088/0004-637X/704/2/898
http://adsabs.harvard.edu/abs/2009ApJ...704..898S
http://dx.doi.org/10.1088/0004-637X/718/1/530
http://adsabs.harvard.edu/abs/2010ApJ...718..530S
http://dx.doi.org/10.1088/0004-637X/756/1/79
http://adsabs.harvard.edu/abs/2012ApJ...756...79S
http://dx.doi.org/10.1088/0004-637X/737/2/103
http://adsabs.harvard.edu/abs/2011ApJ...737..103S
http://dx.doi.org/10.1086/305772
http://adsabs.harvard.edu/abs/1998ApJ...500..525S
http://dx.doi.org/10.1088/0004-637X/808/1/95
http://adsabs.harvard.edu/abs/2015ApJ...808...95S
http://dx.doi.org/10.1086/521816
http://adsabs.harvard.edu/abs/2007ApJ...670..313S
http://dx.doi.org/10.1088/0004-637X/733/1/46
http://adsabs.harvard.edu/abs/2011ApJ...733...46S
http://dx.doi.org/10.1051/0004-6361/200913759
http://adsabs.harvard.edu/abs/2010A&amp;A...513A..34S
http://adsabs.harvard.edu/abs/2005adass..14...29T
http://dx.doi.org/10.1088/0004-637X/750/2/99
http://adsabs.harvard.edu/abs/2012ApJ...750...99T
http://dx.doi.org/10.1093/mnras/stw733
http://adsabs.harvard.edu/abs/2016MNRAS.459.2370T
http://adsabs.harvard.edu/abs/2016MNRAS.459.2370T
http://dx.doi.org/10.1093/mnras/stw2051
http://adsabs.harvard.edu/abs/2016MNRAS.463..712T
http://dx.doi.org/10.1088/0004-637X/767/2/134
http://adsabs.harvard.edu/abs/2013ApJ...767..134V
http://dx.doi.org/10.1093/mnras/stw1132
http://adsabs.harvard.edu/abs/2016MNRAS.460.3384V
http://dx.doi.org/10.1088/0004-637X/694/2/L144
http://adsabs.harvard.edu/abs/2009ApJ...694L.144W
http://dx.doi.org/10.1088/0004-637X/808/2/108
http://adsabs.harvard.edu/abs/2015ApJ...808..108W
http://dx.doi.org/10.3847/0004-637X/819/1/53
http://adsabs.harvard.edu/abs/2016ApJ...819...53W
http://dx.doi.org/10.1086/519684
http://adsabs.harvard.edu/abs/2007ApJ...662L..83W
http://dx.doi.org/10.1086/592076
http://adsabs.harvard.edu/abs/2008ApJ...688..245W
http://dx.doi.org/10.3847/0004-637X/822/1/32
http://adsabs.harvard.edu/abs/2016ApJ...822...32W
http://dx.doi.org/10.1086/430214
http://adsabs.harvard.edu/abs/2005AJ....129.2692W
http://dx.doi.org/10.1088/0004-6256/144/3/76
http://adsabs.harvard.edu/abs/2012AJ....144...76W
http://dx.doi.org/10.1111/j.1365-2966.2010.16753.x
http://adsabs.harvard.edu/abs/2010MNRAS.406.1220W
http://dx.doi.org/10.1086/301513
http://adsabs.harvard.edu/abs/2000AJ....120.1579Y
http://dx.doi.org/10.1086/505216
http://adsabs.harvard.edu/abs/2006ApJ...643L.103Z

	1. INTRODUCTION
	2. PHOTOMETRY AND ASTROMETRY
	3. SATELLITE DISTANCE AND STELLAR POPULATION
	4. STRUCTURAL PROPERTIES AND ABSOLUTE LUMINOSITY
	5. SPECTROSCOPY
	6. METALLICITY
	7. KINEMATICS
	8. DISCUSSION AND SUMMARY
	REFERENCES



