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ABSTRACT

The most prodigious starburst galaxies are absent in massive galaxy clusters today, but their connection with large-
scale environments is less clear at z 2. We present a search of large-scale structure around a galaxy cluster core
at z = 2.095 using a set of spectroscopically confirmed galaxies. We find that both color-selected star-forming
galaxies (SFGs) and dusty star-forming galaxies (DSFGs) show significant overdensities around the z = 2.095
cluster. A total of eight DSFGs (including three X-ray luminous active galactic nuclei, AGNs) and 34 SFGs are
found within a 10′ radius (corresponds to ∼15 cMpc at ~z 2.1) from the cluster center and within a redshift range
of D =z 0.02, which leads to galaxy overdensities of d ~ 12.3DSFG and d ~ 2.8SFG . The cluster core and the
extended DSFG- and SFG-rich structures together demonstrate an active cluster formation phase, in which the
cluster is accreting a significant amount of material from large-scale structure while the more mature core may
begin to virialize. Our finding of this DSFG-rich structure, along with a number of other protoclusters with excess
DSFGs and AGNs found to date, suggest that the overdensities of these rare sources indeed trace significant mass
overdensities. However, it remains puzzling how these intense star formers are triggered concurrently. Although an
increased probability of galaxy interactions and/or enhanced gas supply can trigger the excess of DSFGs, our
stacking analysis based on 850 μm images and morphological analysis based on rest-frame optical imaging do not
show such enhancements of merger fraction and gas content in this structure.
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1. INTRODUCTION

Large-scale structure plays a critical role in the evolution and
assembly of galaxies. Red and massive elliptical galaxies are
preferentially located in high-density environments today (e.g.,
Dressler 1980; Postman & Geller 1984; Hogg et al. 2004),
where star formation is strongly suppressed (e.g., Hashimoto
et al. 1998; Gómez et al. 2003; Goto 2005). In a hierarchical
structure formation paradigm, these correlations with local
environments should become less significant and even overturn
at earlier epochs (e.g., Hopkins et al. 2008). Although some
studies have observed the reversal of the star formation–density
relation at ~z 1 (Elbaz et al. 2007; Cooper et al. 2008), exactly
when and where these correlations with local environments are
established remains highly uncertain (e.g., Patel et al 2009;
Tran et al. 2010; Brodwin et al. 2013; Darvish et al. 2014,
2016; Smail et al. 2014). In fact, the existence of mature cluster
cores and evidence of early mass assembly of brightest cluster
galaxies at z ∼ 1–2 suggest that the formation of these rare
objects takes place rapidly at even higher redshifts (e.g.,
Collins et al. 2009; Gobat et al. 2011; Zeimann et al. 2012). It
is thus critical to probe beyond ~z 2 so we can observe the
formation of massive galaxy clusters and directly infer the early
environmental influences on galaxy evolution.

Common probes of galaxy clusters (e.g., X-ray emission
from hot intracluster gas, red galaxy sequence, inverse
Compton scatter of the Cosmic Microwave Background
photons off the hot intracluster medium; Allen et al. 2011)
reach their limits at ~z 2 due to the combination of survey
sensitivity and the less-evolved nature of large-scale structure.
Identification of protoclusters at z 2 thus often rely on
significant overdensities of galaxies on the sky and in the
redshift space (e.g., Steidel et al. 1998; Miley et al. 2004). One
successful strategy to identify high-z protoclusters is to place
the survey area around highly biased galaxies like radio
galaxies and quasars since they are likely progenitors of
massive elliptical galaxies in the core of present-day galaxy
clusters (e.g., Kurk et al. 2000; Miley et al. 2004; Venemans
et al. 2007; Utsumi et al. 2010; Capak et al. 2011; Hatch
et al. 2011; Hayashi et al. 2012; Koyama et al. 2013a;
Wylezalek et al. 2013). Meanwhile, some protoclusters have
also been discovered serendipitously via narrow-band imaging
or spectroscopic surveys (e.g., Steidel et al. 1998; Shimasaku
et al. 2003; Toshikawa et al. 2012; Lee et al. 2014b). In either
case, the z 2 protoclusters are often traced by optically
selected galaxies like (spectroscopically confirmed) Lyman
Break galaxies (LBGs), Lyα emitters (LAEs), and/or Hα
emitters (HAEs).
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The recent advent of large submillimeter surveys has enabled
an alternative window to search for z 2 protoclusters.
Clustering analysis of submillimeter galaxies (SMGs, Blain
et al. 2002) show that SMGs are located in massive halos at
~z 2 (e.g., Blain et al. 2004; Hickox et al. 2012), yet it

remains highly debated whether SMGs indeed trace the densest
environments at z = 0 (Capak et al. 2011; Carilli et al. 2011;
Cowley et al. 2015; Miller et al. 2015). Observations of SMG
overdensities have led to contradictory interpretations. Casey
et al. (2015) discover a highly unusual filamentary structure at
z = 2.47 containing seven dusty star-forming galaxies (DSFGs
with star formation rates (SFRs) 200 Me yr−1; Casey et al.
2014), five active galactic nuclei (AGNs with LX

1043.5 erg s−1), and 33 other spectroscopically confirmed LBGs
within a comoving volume of 15,000Mpc3. Such overdensities
in DSFGs (d = 10DSFG ) and AGNs (d = 35AGN ) are unlikely to
be a result of survey incompleteness or biases, and Casey et al.
(2015) argue that this structure is a possible progenitor of the
present-day Coma-like cluster. On the other hand, Blain et al.
(2004) and Chapman et al. (2009) identify an association of
SMGs at z = 1.99 in the GOODS-N field, in which Chapman
et al. (2009) find a strong overdensity of SMGs (d = 10SMG ),
but only a moderate overdensity of UV-selected galaxies
(d = 2.5UV ). Based on the linear theory of spherical collapse,
Chapman et al. (2009) conclude that the structure traced by
UV-selected galaxies will not collapse by11 z = 0, and they
attribute the contradictory conclusions based on SMG over-
densities as a result of an even larger galaxy bias of SMGs than
they assumed.

Protoclusters that are identified through both submillimeter
and optical windows can provide crucial insights to understand
the nature of DSFG-rich structures and their differences with
protoclusters traced by optically selected galaxies. Tamura
et al. (2009, also see Umehata et al. 2014, 2015) present an
imaging survey of 1.1 mm emission in SSA 22 (a z = 3.09
protocluster, Steidel et al. 1998), and they find that the
population of SMGs is enhanced near the protocluster core and
there is a spatial correlation between SMGs and LAEs. In
MRC1138−262 (a z = 2.16 protocluster, Kurk et al. 2000),
Dannerbauer et al. (2014) find an excess of SMGs in the
protocluster, yet the concentration of SMGs does not coincide
with the central radio galaxy. Such offset between the dusty
starburst population and the densest regions of protocluster is
also seen in a z = 1.62 structure (Smail et al. 2014). Does the
spatial distribution of dusty starbursts represent the evolu-
tionary status of protoclusters? What are the implications when
using DSFGs as tracers of large-scale structure? A systematic
search of DSFG populations in the known protoclusters is
necessary to shed light on these questions.

In this paper, we present a search of DSFGs and large-scale
structure around a bona-fide galaxy cluster at z = 2.095 (Yuan
et al. 2014, hereafter Y14). We provide an overview of this
z = 2.095 cluster in Section 1.1, and we detail our analysis in
Section 2. In Sections 3–5, we present our results on the large-
scale structure found around the z = 2.095 cluster, the
environmental dependence of galaxy properties, and a detailed
scrutiny of DSFGs in the structure. We discuss the implications
of our results and provide a brief summary in Section 6.

Throughout this paper, we adopt a ΛCDM cosmology with
=H 700 km s−1 Mpc, W =- , 0.3M

1 , and W =L 0.7.

1.1. A z = 2.095 Cluster in the COSMOS Field

Spitler et al. (2012) presented a candidate protocluster at
z = 2.2 located12 in the central region of the COSMOS field
(Scoville et al. 2007). This discovery is based on an
overdensity of red galaxies selected via medium-bandwidth
near-IR imaging from ZFOURGE (Tomczak et al. 2014,
Straatman et al. submitted). No significant diffuse X-ray
emission is detected at the location of this structure (Spitler
et al. 2012). The galaxy density maps constructed based on
photometric-redshifts from Muzzin et al. (2013) also recover
the same structure (located at z = 2.07, Chiang et al. 2014).
Y14 presented the spectroscopic confirmation of this structure,
in which they identified 57 confirmed cluster members with a
median redshift of z = 2.095 (hereafter the ZFIRE cluster). The
ZFIRE cluster identified by Y14 spans a ∼12′ × 12′ region on
the sky and has a velocity dispersion of s ~ 552 km s−1. Based
on the comparison with cosmological simulations, Y14
concluded that the ZFIRE structure may evolve to a Virgo-
like cluster ( ~M 10vir

14.4Me) at z = 0. There have been several
ongoing efforts to characterize the physical properties of the
member galaxies in the ZFIRE cluster. The mass–metallicity
relation in this cluster is consistent to the field (Kacprzak
et al. 2015), and detailed studies of rest-frame optical line ratios
toward 13 cluster members also find no significant differences
in ISM properties of galaxies in the cluster and field galaxies at
the same redshift (Kewley et al. 2015).

2. DATA AND ANALYSIS

To search for the populations of DSFGs within and near the
ZFIRE cluster, we draw a sample of spectroscopically
confirmed galaxies at  z2.07 2.12 from a number of
redshift surveys. We note that the ZFIRE cluster members in
Y14 span a redshift range of  z2.08 2.11, and here we
enlarge this redshift range by 0.01 to search for galaxies in the
large structure that may also be associated with the cluster core.
However, all of the cluster members defined based on the
friends-of-friends (FoF) analysis (Section 3.1) fall within a
similar redshift range as the ZFIRE cluster members. The
redshift surveys included in this work are listed below.

1. The ZFIRE survey from Y14 and Nanayakkara et al.
(2016, submitted). The targets were originally selected
based on photometric redshifts from Spitler et al. (2012)
as part of the ZFOURGE survey and observed with Keck
I Multi-Object Spectrometer For Infra-Red Exploration
(MOSFIRE). The ZFIRE survey achieves a detection
limit (S/N ∼ 5) of objects with ~Ks 25.

2. The redshift survey of Herschel SPIRE-selected and
SCUBA 2-selected sources from Casey et al. (2012) and
C. M. Casey et al. (2016, in preparation). The
submillimeter-bright galaxies were observed with the
Keck I Low Resolution Imaging Spectrometer (LRIS),
the Keck II DEep Imaging Multi-Object
Spectrograph (DEIMOS), and MOSFIRE.

3. The zCOSMOS-deep redshift survey from Lilly et al.
(2007) and S. Lilly et al. (2016, in preparation). The

11 However, Casey (2016) argue that when comparing with cosmological
simulations in Chiang et al. (2013), this structure is among the top 30% of
structures that will collapse by z = 0.

12 This structure is located at z = 2.1 based on updated photometric
measurements (L. Spitler 2016, private communication).
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targeted galaxies were selected based on BzK criteria
(Daddi et al. 2004) and UGR criteria (Steidel et al. 1996)
with K 23.5AB (Lilly et al. 2007; Diener et al. 2013), in
which the sample yields a set of SFGs that are mostly at

 z1.3 3. We exclude sources with insecure redshift
measurements that are also inconsistent with photometric
redshift estimates (flag 1.1 and 2.2 defined by Lilly et al.
2009). These SFGs were observed with the VLT VIMOS
spectrograph.

4. Additional public MOSDEF and VUDS redshift catalogs
are also included our analysis (Kriek et al. 2015; Tasca
et al. 2016). Both of these redshift surveys cover the
CANDELS-COSMOS field, and thus the ZFIRE cluster.

We obtain the full UV-near-IR multiwavelength data set of
spectroscopically confirmed sources through the COSMOS
photometric redshift catalogs (Capak et al. 2007; Ilbert
et al. 2009; McCracken et al. 2010). When available, mid-
far-IR photometry are obtained from the Spitzer-COSMOS
survey (Sanders et al. 2007), the PACS Evolutionary Probe
program (Lutz et al. 2011), the Herschel Multitiered Extra-
galactic Survey (HerMES Oliver et al. 2012), and the SCUBA 2
450 and 850 μm survey from Casey et al. (2013). The MIPS
24 μm through SPIRE 500 μm catalog is compiled in Lee et al.
(2013). The spectroscopically confirmed sources from all
redshift catalogs were also cross-correlated with the Chan-
dra-COSMOS catalog (Elvis et al. 2009; Civano et al. 2012) to
search for X-ray luminous AGNs in and near the ZFIRE
cluster. In this study, we focus only on X-ray selected AGNs,
and we refer the reader to Cowley et al. (2016) for the
population of mid-IR selected and radio-selected AGNs in the
ZFIRE cluster.

We require potential DSFGs to have 24 μm detections and to
be detected (S/N  3) in at least two additional bands from
PACS 100, 160 μm, SPIRE 250, 350, 500 μm, or SCUBA 2 450,
850 μm. We measure the far-infrared luminosity (LIR
º m-L8 1000 m in the object rest-frame), dust temperature, and
dust mass of these sources by fitting their FIR spectral energy
distributions (SEDs) to a coupled modified graybody and mid-
IR power law (Casey 2012). We assume a dust emissivity (β)
of 1.5, and the results do not change significantly with

–b = 1.5 2.0. Furthermore, we assumed the slope of mid-
infrared power law (α) to be 2. In the cases where more than
three data points are available at rest-frame wavelengths shorter
than ∼70 μm, we do not see significant differences when
leaving α as a free fitting parameter. Within a 10′ circle from
the center of the ZFIRE cluster13 and a redshift range of

 z2.07 2.12, we find a total of nine sources with LIR 
1012 Le.

14 Four X-ray luminous AGNs are found within the
same search area, and all of them are DSFGs. The IR and X-ray
properties of the nine DSFGs (including four X-ray luminous
AGNs) identified within a 10′ circle from the center of the
ZFIRE cluster are summarized in Table 1, and the best-fit FIR
SEDs are shown in Figure 1.

3. LARGE-SCALE STRUCTURE AROUND THE ZFIRE
CLUSTER

3.1. Distribution of SFGs and Rare Sources

Figure 2 shows the spatial distribution of all spectro-
scopically confirmed sources at  z2.07 2.12 (D =z 0.05
corresponds to a velocity range of D ~v 4800 km s−1) and
their distribution in the redshift space. Within a 10′
(corresponds to a proper distance of ∼5Mpc) radius from the
ZFIRE cluster center, the redshift distribution of SFGs from the
zCOSMOS survey peaks at similar redshift (median
= -

+z 2.097 0.003
0.001, the error represents the bootstrapped uncer-

tainties) as the ZFIRE cluster members. We perform the FoF
analysis (Huchra & Geller 1982) to determine which galaxies
from the zCOSMOS, SPIRE/SCUBA 2 surveys and MOSDEF/
VUDS can be linked to the ZFIRE cluster members (from
redshift survey (1); blue dots in Figure 2) with a linking length
of 2 Mpc, a scale that accommodates the large spatial extent of
unvirialized structure at >z 2 (e.g., Chiang et al. 2013;
Muldrew et al. 2015). The structure identified from the FoF
algorithm (black circles in Figure 2) spans a comoving volume
of ∼25,000Mpc3, and its spatial extent is consistent with the
z = 2.07 structure identified based on photometric redshifts
(Chiang et al. 2014). This structure also covers three candidate
galaxy groups selected based on zCOSMOS survey (Diener
et al. 2013).
The rare sources (DSFGs and AGNs) identified via all

redshift surveys span an area of~ ¢ ´ ¢20 20 on the sky. For the
nine DSFGs (four of them are X-ray luminous AGNs) that fall
within a 10′ radius from the ZFIRE cluster center, they have
comparable median redshift ( = -

+z 2.099 0.005
0.004) as the ZFIRE

cluster members and zCOSMOS SFGs (we note that here three
DSFGs are drawn from ZFIRE and two DSFGs are drawn from
zCOSMOS surveys). If we define potential cluster members
using the FoF analysis instead of a fixed 10′ aperture, then there
are also nine DSFGs (four of them are X-ray luminous AGNs)
included in the large-scale structure. Such an excess of DSFGs
and AGNs within and around the ZFIRE clusters is comparable
to several DSFG- and AGN-rich structures at z 1.5 (Chap-
man et al. 2009; Tamura et al. 2009; Digby-North et al. 2010;
Dannerbauer et al. 2014; Smail et al. 2014; Casey et al. 2015;
Ma et al. 2015, see a compilation by Casey 2016).
In the 11′ × 11′ deep medium-bandwidth NIR survey area

presented by Spitler et al. (2012) and Allen et al. (2015), the
cluster shows four prominent cores that are linked by a
filamentary structure. The spatial metallicity distribution of the
galaxies in the ZFIRE cluster indicates a few low-metallicity
substructures that could be recently accreted on (T. Yuan 2016,
private communication). Based on the spatial and redshift
distribution traced by zCOSMOS SFGs and the population of
DSFGs, it is possible that the large-scale structure associated
with the ZFIRE cluster may extend beyond the ZFIRE survey
area. In fact, Chiang et al. (2015) also detect three LAEs a few
arcmins offset from the ZFIRE cluster (their positions are also
shown in Figure 2). Such a large spatial extent traced by these
various galaxies is consistent with the cosmological simula-
tions (e.g., Chiang et al. 2013), where the ~z 2.1 cluster may
still be actively accreting from large-scale structure while more
mature cluster cores begin to assemble in the densest regions.

13 Here we use the median position of ZFIRE cluster members as the cluster
center (the same position as the center used in Y14). Although the ZFIRE
cluster shows several substructures and the position of cluster center is highly
uncertain, our search of DSFG overdensity is insensitive to the chosen
reference point in the ZFIRE cluster.
14 This definition is the same as the selection of ultraluminous infrared
galaxies based on rest-frame far-infrared emission (e.g., Sanders & Mira-
bel 1996; Casey et al. 2014). All but one of these Herschel-selected DSFGs
also fall in the dusty star-forming region defined based on the rest-frame UVJ
color selection (Wuyts et al. 2007; Spitler et al. 2014).
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Table 1
Properties of DSFGs Associated with the ZFIRE Cluster

Name z Redshift S24 S100 S160 S250 S350 S450 S500 S850 LIR LX
Survey (μJy) (mJy) (mJy) (mJy) (mJy) (mJy) (mJy) (mJy) (1012 Le) (1043 erg s−1)

J100017.9+021807.2 2.094 (1)a Hαb 198 ± 14 L L 10.7 ± 2.2c 10.0 ± 2.9 L 9.9 ± 3.4 L -
+2.58 0.75

1.05 20.2 ± 2.8

J100030.0+021413.1 2.098 (1) Hα 153 ± 101 L 14.0 ± 3.1 8.1 ± 2.2 8.8 ± 3.1 L L L -
+3.19 1.58

3.12 L
J100031.8+021242.7 2.104 (1) Hα 746 ± 18 15.3 ± 1.6 25.9 ± 4.7 40.0 ± 2.2 37.1 ± 3.2 L 31.8 ± 4.3 L -

+9.47 0.87
0.96 L

J100020.2+021725.7 2.104 (2) Hα 401 ± 16 L L 20.0 ± 2.2 12.6 ± 3.5 L 22.3 ± 3.7 2.6 ± 1.1 -
+5.23 0.88

1.06 23.9 ± 2.7

J100035.9+021128.1 2.103 (2) Lyα 158 ± 17 L 11.2 ± 2.9 11.6 ± 2.2 12.9 ± 3.0 L 12.1 ± 3.1 L -
+2.50 0.70

0.97 L
J100039.2+022220.9 2.085 (2) Hα 544 ± 17 9.7 ± 1.5 22.6 ± 4.5 41.5 ± 2.2 35.8 ± 2.7 19.3 ± 4.8 19.2 ± 3.0 5.8 ± 1.1 -

+7.47 0.69
0.76 L

J100032.7+021331.1 2.091 (3) Lyα 301 ± 15 L L 20.2 ± 2.2 14.7 ± 3.2 L L L -
+3.94 0.86

1.10 5.6 ± 1.5

J100056.7+021720.9 2.076 (3) Lyα 278 ± 17 L L 13.5 ± 2.2 15.7 ± 2.7 L 10.5 ± 3.1 L -
+3.47 0.74

0.94 20.5 ± 2.4

J100018.2+021842.6 2.102 (4) Hα 490 ± 99 L 9.1 ± 2.6 13.5 ± 2.2 9.5 ± 7.3 L L L -
+4.28 1.28

1.83 L

Notes.
a Redshift surveys: (1) ZFIRE, (2) SPIRE and SCUBA 2-bright sources, (3) zCOSMOS, and (4) MOSDEF.
b The main spectral line used to determine redshift.
c Uncertainties of SPIRE photometry refer to the quadrature sum of instrumental and confusion noise (Smith et al. 2012).
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3.2. Significance of this Structure

In this section, we examine the significance of the large-scale
structure around the ZFIRE cluster traced by color-selected
SFGs from zCOSMOS and Herschel-selected DSFGs. A total
of 34 SFGs from the zCOSMOS survey is detected within a 10′
radius and a redshift slice of D =z 0.02. We estimate the
average number density of SFGs in the zCOSMOS survey first
by excluding the data at = z 2.095 0.020 and then
smoothing the galaxy redshift distribution with D =z 0.1.
After interpolating the redshift distribution to z = 2.095 and
scaling to an area with 10′ radius andD =z 0.02, the expected
galaxy number density is ∼8.9. This leads to an overdensity of
zCOSMOS SFGs (dSFG) of ( )- = -

+34 8.9 8.9 2.8 0.7
0.8.

In Section 3.1, we show that a total of eight DSFGs
(excluding the one at z = 2.076) are detected within a 10′
radius and a redshift slice of D =z 0.02. The average number
density of Herschel-selected galaxies with LIR  1012 Le in

the COSMOS field is ∼0.011 Mpc−3 at ~z 2.1 (Lee
et al. 2013), in which we utilize the same procedures to
select DSFGs and derive LIR as described in Section 2. Within
a redshift slice ofD =z 0.02 at ~z 2.1 and a ∼10′ radius, the
expected number of DSFGs is ∼0.6. Using this expected
number and assuming an uniformly distributed field, the
probability of detecting eight or more DSFGs within a 10′
radius and D =z 0.02 with Poisson sampling is < ´ -3 10 7,
suggesting that the excess of DSFGs is highly unlikely drawn
by random chance. A total of eight DSFG within and around
the ZFIRE cluster therefore corresponds to an overdensity
of ( )d = - = -

+8 0.6 0.6 12.3DSFG 4.6
6.6.

Assuming linear biasing, the overdensity of galaxies (dgal) can
be related to the overdensity of mass (dm) with a known galaxy
bias (b) and corrections of redshift space distortions
from peculiar velocities (C), ( )d d+ = +b C1 1m gal (Steidel
et al. 1998, 2005), where º = + -C V V f1apparent true

( )d+f 1 m
1 3 with ( )= Wf zM

0.6. We assume the bias of

Figure 1. Rest-frame far-infrared SED of nine DSFGs (including four X-ray luminous AGNs) within a 10′ circle from the center of the ZFIRE cluster and a redshift
range of  z2.07 2.12. The MIPS, PACS, SPIRE, and SCUBA 2 photometric data points and uncertainties are shown in red. The best-fit SED using a coupled
graybody and mid-IR power law (Casey 2012) is shown by a black solid line, with the underlying graybody shown as a dotted line.
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DSFGs is ∼3.9 based on the clustering analysis of Herschel-
selected galaxies (Mitchell-Wynne et al. 2012), which leads to
d = -

+1.81m 0.56
0.46 as traced by DSFGs. The errors are propagated

from the uncertainties in dDSFG. Similarly, assuming a galaxy
bias of ∼2 for BzK-selected galaxies with comparable stellar
masses (M*) and SFR as the zCOSMOS SFGs in the structure
(Lin et al. 2012), the overdensity of SFGs d = -

+2.8SFG 0.6
0.8 leads

to d = -
+0.95m 0.19

0.15. The mass overdensities d = 1.81m and
d = 0.95m traced by DSFGs and SFGs correspond to linear
overdensities of d = 0.77L and d = 0.55L in a spherical
collapse model (Mo & White 1996), in which they are expected
to evolve to d ~ 2L and d ~ 1.5L at z = 0. The structure traced

by DSFGs exceeds the collapse threshold (d = 1.69c ), and thus
it is expected to virialize by z = 0. Yet SFGs with d ~ 1.5L
implies that the structure does not collapse by z = 0.
The estimate based on DSFG and SFG overdensities leads to

an inconsistent fate of the large-scale structure around the
ZFIRE cluster, though we note that the results based on SFGs
and DSFGs are consistent with each other once taking into
account the uncertainties in dSFG and dDSFG. Chapman et al.
(2009) have reached a similar inconsistency in a z = 1.99
structure, in which the overdensity traced by SMGs suggests
that the structure can collapse whereas the overdensity traced
by UV-selected galaxies suggests otherwise. They thus
conclude that SMGs must be an even more biased tracer of
mass than they assumed. However, it is worth noting that a
considerable number of assumptions and approximations have
gone into these estimates based on the linear theory of the
spherical collapse model, yet the propagation of these
uncertainties is not straightforward to determine. In fact,
Chiang et al. (2013) demonstrate that at d~z 2, gal of 2.6 for
bright galaxies with M* >1010Me in a 25Mpc (comoving)
window is sufficient to collapse to Virgo-type clusters,
suggesting that the overdensity traced by SFGs (d = 2.8SFG )
is likely to collapse by z = 0.

4. ENVIRONMENTAL DEPENDENCE

The ZFIRE cluster (Spitler et al. 2012, Y14) and its
associated large-scale structure traced by Herschel-selected
DSFGs and color-selected SFGs represent a site that the cluster
assembly may be actively taking place. It is thus an ideal
laboratory to test whether any early environmental impacts
have begun to influence galaxy evolution. In this section, we
examine the environmental dependence on galaxies’ physical
properties: M*, SFR, gas content, and morphology.

4.1. M* and SFR

We measure the M* and SFR of all spectroscopically
confirmed galaxies by fitting the full SEDs using the MAGPHYS

code (da Cunha et al. 2008), and the HIGHZ extension (da
Cunha et al. 2015) is used here since it includes stellar and dust
emission priors that are more comparable to >z 1 galaxies.
Since SED fitting-based SFRs often suffer from large
uncertainties for highly obscured sources (e.g., Wuyts et al.
2011), we convert LIR of DSFGs to their SFRs using the
relation SFR/Me yr−1 = 9.5 × 10−11 LIR/Le(Kennicutt 1998,
adjusted for a Chabrier initial mass function). The zCOSMOS
SFGs (galaxies from redshift survey 3) that are linked to the
ZFIRE cluster have mean M* ( )=  ´1.23 0.36 1010 Me and
mean = SFR 47 12 Me yr−1, where the uncertainties
correspond to the standard deviation of the mean. For the
control sample, we use those SFGs from the same redshift
survey (zCOSMOS; redshift survey 3) at the same redshift
range (  z2.07 2.12) but are not linked to the ZFIRE
cluster based on the FoF analysis in Section 3.1. This selection
yields 140 SFGs with their mean M* ( )=  ´7.17 0.80 109

Me and mean = SFR 34 10 Me yr−1.
Figure 3 takes a closer examination of the M* and SFR

distributions of all SFGs in the large-scale structure and the
control sample (here we include all SFGs from redshift surveys
2 and 3). A Kolmogorov–Smirnov (K–S) test does not reject
either consistent or different distributions of M* between the
protocluster and the field (the p-value is 0.61). However, the

Figure 2. (Top) Spatial distributions of all spectroscopically confirmed
galaxies at the redshift range of  z2.07 2.12 from four redshift surveys
(light blue dots: ZFIRE survey, orange dots: SPIRE/SCUBA 2 survey, gray dots:
zCOSMOS survey, pink dots: MOSDEF/VUDS surveys). The right and top
axes label the proper distance at z = 2.1 with respect to the cluster center. Black
circles indicate sources that are linked to the ZFIRE cluster members with a
linking length of 2 Mpc. Red circles show galaxies with LIR  1012 Le, and
blue boxes indicate X-ray sources. Purple diamonds show the positions of three
LAEs from Chiang et al. (2015). Brown crosses mark the group candidates
identified by Diener et al. (2013). Background dark green contours outline the
z = 2.07 structure identified based on photometric redshifts (dgal = 0.2, 0.5, 0.8
from Figure 2 in Chiang et al. 2014). (Bottom) Redshift distribution of the
zCOSMOS SFGs (gray solid line), ZFIRE SFGs (sky blue solid line), and
DSFGs (red shaded area) at  z2.07 2.12 within a 10′ radius from the
ZFIRE cluster center. The dashed lines indicate the median redshifts of each
sample, and the error bars represent the bootstrapped uncertainties. The gray
dotted line represents the expected number of SFGs from the zCOSMOS
survey.
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lack of an excess of massive galaxies in the protocluster
environment may be a bias introduced by primarily selecting
star-forming populations (e.g., Muldrew et al. 2015). Despite
the fact that protocluster and field SFGs have similar mean
SFR, their SFR cumulative distributions show a slight
discrepancy in which the cluster members are composed with
slightly more high-SFR galaxies but fewer low-SFR galaxies
(the p-value from the K-S test is 0.04). This excess of high-SFR
galaxies in the large-scale structure is consistent with the
significant overdensity of DSFGs found within and around the
ZFIRE cluster.

4.2. Gas Content

One possible explanation for the excess of DSFGs in the
protocluster is the enhanced gas supply in the dense
environments at z 2 (e.g., Davé et al. 2010). Although no
direct CO measurements are available for these SFGs, Scoville
et al. (2014, 2015) have developed an alternative probe of gas
content of high -z galaxies based on long wavelength dust
continuum ( l m250rest m). Part of this large-scale structure is
covered by the SCUBA 2 850 μm imaging survey (with the root-
mean-square noise down to s = 0.8 mJy, Casey et al. 2013),

and thus we can constrain the gas content of protocluster and
field SFGs via stacking analysis. We note that here we enlarge
our control sample defined in Section 4.1 by including both
zCOSMOS SFGs at < <z2.07 2.12 that are not linked to the
ZFIRE cluster and SFGs at < <z2.04 2.07
and < <z2.12 2.15.
Following the stacking analysis outlined in Coppin et al.

(2015), we first remove 850 μm detected sources ( s>3 ) from
Casey et al. (2013). These sources are removed by subtracting
the image with point-spread functions (PSFs) at the source peak
positions, and the PSFs are scaled according to the flux density
of each source. We measure the stacked flux densities of
zCOSMOS SFGs in the protocluster and the control sample
using SIMSTACK (Viero et al. 2013), in which the flux densities
are determined through regression with source-subtracted
maps. The measured S850 of the zCOSMOS SFGs and the
control sample are −0.10 ± 0.19 mJy (25 sources) and 0.28 ±
0.15 mJy (43 sources), respectively. The errors are propagated
from the noise of individual stacked positions. S850 of the
protocluster SFGs remains undetected even including the
ZFIRE cluster members ( = S 0.01 0.15850 mJy based on 47
sources). Our stacking sensitivity limit of ∼0.15 mJy
corresponds to molecular gas mass (Mmol) of ~ ´1.5 1010

Me (based on the empirical calibration derived by Scoville
et al. 2015), which leads to an upper limit of the molecular gas
fraction of ∼0.5 for the protocluster SFGs.
Of the SFGs that are included for stacking analysis, the mean

SFR of zCOSMOS SFGs are comparable to the control sample.
The stacking results suggest that, on average, the protocluster
SFGs do not show enhanced gas supply compared to the field
galaxies with comparable SFRs, and it is possible that their gas
content may be even lower than the field galaxies. These results
are contradictory to the finding in the DSFG-rich z = 2.47
protocluster (Casey et al. 2015), in which they show that the
gas content of protocluster galaxies may be enhanced based on
the same stacking analysis. However, we stress that the S850
detection of protocluster SFGs in Casey et al. (2015) is at 1.5σ
significance, and the detection of the control sample in this
~z 2.1 structure is at 2σ significance. Incorporating additional

850 μm observations (Coppin et al. 2015; Koprowski
et al. 2016) or follow-up molecular gas observations are
needed to confirm these tentative trends. With only a modest
amount of Atacama Large Millimeter Array (ALMA) time (a
few hours), the sensitivity of S850 can be improved by a factor
of 10 when stacking ∼30 sources.

4.3. Galaxy Morphology

Part of this ~z 2.1 structure is covered by the deep WFC3
F125W/F160W images from CANDELS (Cosmic Assembly
Near-infrared Deep Extragalactic Legacy Survey; Grogin
et al. 2011; Koekemoer et al. 2011), enabling our examination
of the rest-frame optical morphology for a subset of SFGs in
the protocluster and the control sample. Allen et al. (2015)
show that there is no difference of average Sérsic index of
SFGs in the ZFIRE cluster and the control sample from
ZFOURGE. Here we examine if this result extends toward
zCOSMOS SFGs, which traces the structure within and beyond
the ZFIRE cluster. Based on a catalog of galaxy structural
parameters from van der Wel et al. (2012, 2014), we find that
the mean Sérsic index of the zCOSMOS SFGs (based on 18
galaxies with reliable structural parameters) is 1.64 ± 0.23,

Figure 3. Normalized cumulative distributions of M* (the top panel) and SFR
(the bottom panel) of all SFGs from the zCOSMOS and SPIRE/SCUBA 2
surveys. The black solid lines show the distributions of SFGs that can be linked
to the ZFIRE cluster and the gray solid lines show the distributions of the
control sample.
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which is consistent with the mean Sérsic index of the cluster
SFGs in Allen et al. (2015).

In addition to the morphological properties based on
parametric fits, we use an H-band morphology catalog based
on neural networks from Huertas-Company et al. (2015), in
which the algorithm is trained based on the visual classifica-
tions in CANDELS GOOD-S field (Kartaltepe et al. 2015). In
the catalog, each galaxy is assigned the probabilities of having
a spheroid, a disk, showing irregular features, being a point
source, and being unclassifiable. Based on these morphological
classifications, we find that the zCOSMOS SFGs show higher
spheroid fractions but similar disk and irregular fractions
compared to the control sample. For the zCOSMOS SFGs
(based on 26 galaxies), the fraction of galaxies with a
prominent spheroid component (probability of spheroid,

>f 0.67sph ), a prominent disk component (probability of disk,
>f 0.67disk ), and obvious irregular features (probability of

irregular, >f 0.67irr ) are -
+

-
+0.28 , 0.440.10

0.15
0.13
0.18, and -

+0.24 0.09
0.14,

respectively. In the control sample (based on 28 galaxies), these
spheroid, disk, and irregular fractions are -

+
-
+0.07 , 0.550.05

0.10
0.14
0.18,

and -
+0.15 0.07

0.12, respectively. These differences are suggestive
that SFGs in this large-scale structure may be undergoing more
violent assembly through rapid accretion or galaxy interaction,
where these processes can lead to fast build-up of bulge (e.g.,
Hopkins et al. 2006; Ceverino et al. 2010).

Several studies at ~z 1 have demonstrated an increase of
galaxy merger fractions in dense environments (e.g., Lin
et al. 2010; de Ravel et al. 2011; Sobral et al. 2011). Here we
examine if the frequency of galaxy mergers/interacting
systems are indeed higher in the protocluster using visual
inspection. We assign galaxies as merger candidates if they
show prominent irregular features and/or have a close
companion (e.g., Kartaltepe et al. 2012; Hung et al. 2013).
The merger fractions of zCOSMOS SFGs and the control
sample are -

+0.46 0.13
0.17 and -

+0.36 0.11
0.15, respectively. These fractions

are similar if we define merger candidates as galaxies with
irregular fractions of >f 0.4irr using the Huertas-Company
et al. (2015) classifications. No significant differences in galaxy
merger fractions are measured between zCOSMOS SFGs and
the control sample.

5. TRIGGERING OF DSFGS IN THIS STRUCTURE

One important question to address is the origin of excess
DSFGs in this ~z 2.1 structure (both in the ZFIRE cluster and
its associated large-scale structure). A possible explanation is
that the underlying SFG main sequence (e.g., Brinchmann
et al. 2004; Noeske et al. 2007) in the protocluster environ-
ments are intrinsically different from the field. An elevated
galaxy main sequence can naturally lead to an increase of high-
SFR population at a given M*. However, Koyama et al.
(2013b) have shown that the SFR–M* relation of SFGs is
independent of environments at ~z 2, and in this ~z 2.1
structure, the mean specific SFR of protocluster SFGs does not
differ significantly from the control sample. We thus conclude
that there is no obvious evidence to attribute the excess DSFGs
to an elevated galaxy main sequence.

The excess of DSFGs in the protoclusters represents an
enhanced population of galaxies that are “outliers” of the SFR–
M* relation at ~z 2, and these DSFGs may be triggered by an
enhanced gas supply (with respect to the SFGs on the galaxy
main sequence) or through galaxy interactions (e.g., Engel et al.
2010; Tacconi et al. 2010). However, based on the stacking and

morphological analysis in Sections 4.2 and 4.3, we find no
evidence that the protocluster SFGs exhibit more gas supply or
higher merger fraction than the field. Among the eight DSFGs
that have CANDELS WFC3 images available (Figure 4), four
of them may exhibit ongoing interaction (J100031.8,
J100030.0, J100039.2, and J100032.7). This leads to a merger
fraction of 0.5, which is also consistent with the field DSFGs at
~z 2 (Kartaltepe et al. 2012).

6. DISCUSSION AND SUMMARY

We present a search of large-scale structure around a
z = 2.095 cluster (Spitler et al. 2012, Y14). Within a 10′
(corresponds to a proper distance of ∼5Mpc) radius from the
cluster center and a redshift range of  z2.07 2.12, there
are nine DSFGs (including four X-ray luminous AGNs), and
34 BzK- and UV-selected SFGs. This leads to galaxy
overdensities of d ~ 12.3DSFG and d ~ 2.8SFG . An estimation
based on the linear theory of spherical collapse model suggests
that only the overdensity traced by DSFGs can collapse by
~z 0. However, dSFG of 2.8 is only slightly under the

collapsing threshold, and it is expected to collapse to a
Virgo-type structure when comparing to the prediction of
cosmological simulations with M* > 1010 Me in a 25
(comoving) Mpc window (Chiang et al. 2013). The ZFIRE
cluster and its associated DSFG- and SFG-rich structure
represents an active cluster formation phase, in which the
~z 2.1 cluster is still accreting from large-scale structure while

more mature cluster cores begin to assemble. This structure is
thus an ideal site to explore early environmental dependence of
galaxy properties, and the interplay between intergalactic
medium and galaxies during the formation of massive clusters
(e.g., Lee et al. 2014a, 2016; Cai et al. 2015).

Figure 4. Three-color images of eight DSFGs in the ~z 2.1 structure with
CANDELS WFC3 images available. WFC3 F125W, (F125W+F160W)/2 and,
F160W used for the blue, green, and red channel, respectively. All images have
the size of  ´ 5 5 . The short name and morphology type of each DSFG are
displayed in each panel. “Sph,” “Disk,” and “Irr” are shown when f fsph, disk , and
firr are >0.5. DSFGs indicated as “Int” are candidates of mergers/interacting
galaxies.
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The identification of this ~z 2.1 structure, along with
previous findings of DSFG- or AGN-rich structures in known
protoclusters (Tamura et al. 2009; Digby-North et al. 2010;
Dannerbauer et al. 2014; Smail et al. 2014), demonstrate that
the excess of these rare systems indeed traces bona-fide
overdensities (of mass) and protoclusters (also see Casey et al.
2015). In fact, searching for the overdensities of DSFGs or
AGNs can be an efficient probe15 of large structure across
several tens of Mpc at z 2, and there is potentially a large
population of such DSFG-rich protoclusters as revealed by
Herschel and Planck observations (Planck Collaboration
et al. 2015). Without prior knowledge of the ZFIRE cluster,
it is still possible to identify this structure relying only on the
excess of DSFGs. The redshift survey targeted on SPIRE/
SCUBA 2-bright sources finds four DSFGs within an area of
∼140 arcmin2 on the sky andD =z 0.02 (orange dots with red
circle in Figure 2), which leads to an overdensity
of d ~ 10.4DSFG .

A clear picture that explains the triggering of excess DSFGs/
AGNs has not yet emerged. It is plausible that galaxies in dense
environments at z 2 exhibit elevated gas supply and higher
chances of galaxy interactions. However, our morphological
analysis shows that the merger fraction of the protocluster
galaxies is consistent with the control sample, and there are
also no obvious enhancements of mergers/interacting systems
in protocluster DSFGs as compared to the field populations.
Follow-up high-resolution observations with integral field
spectrographs can provide further information on the dynamics
and/or reveal recent merger histories of these DSFGs (e.g.,
Hung et al. 2016). The stacking results based on 850 μm
images are not yet sensitive enough to constrain the gas content
of both protocluster and field galaxies, and it is necessary to
incorporate additional submillimeter imaging or pursue follow-
up molecular gas observations for both SFGs and DSFGs.
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