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ABSTRACT

We study the amplification of magnetic fields during the formation of primordial halos. The turbulence generated
by gravitational infall motions during the formation of the first stars and galaxies can amplify magnetic fields
very efficiently and on short timescales up to dynamically significant values. Using the Kazantsev theory, which
describes the so-called small-scale dynamo—a magnetohydrodynamical process converting kinetic energy from
turbulence into magnetic energy—we can then calculate the growth rate of the small-scale magnetic field. Our
calculations are based on a detailed chemical network and we include non-ideal magnetohydrodynamical effects
such as ambipolar diffusion and Ohmic dissipation. We follow the evolution of the magnetic field up to larger scales
until saturation occurs on the Jeans scale. Assuming a weak magnetic seed field generated by the Biermann battery
process, both Burgers and Kolmogorov turbulence lead to saturation within a rather small density range. Such fields
are likely to become relevant after the formation of a protostellar disk and, thus, could influence the formation of
the first stars and galaxies in the universe.
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1. INTRODUCTION

Magnetic fields play an important role in star formation. There
is increasing evidence that dynamically important magnetic
fields were also present in the early universe (Banerjee &
Jedamzik 2004; Silk & Langer 2006; Schleicher et al. 2010;
Sur et al. 2010; Federrath et al. 2011a; Turk et al. 2012). If this
turns out to be true, current models for the formation of the first
stars and galaxies need to be revisited.

The theory of primordial star formation has gone through a
change recently. It was previously assumed that the first stars
were extremely massive and isolated (Abel et al. 2002; Bromm
& Larson 2004). However, new high-resolution calculations
(Stacy et al. 2010; Clark et al. 2011; Smith et al. 2011; Greif
et al. 2011, 2012) show that the accretion disk of a collapsing
primordial halo fragments into multiple stars. The inclusion of
magnetic fields could change this picture again. The magnetic
pressure can stabilize an accretion disk and, depending on the
field strength, suppress the fragmentation (Machida et al. 2004;
Hennebelle & Teyssier 2007; Price & Bate 2007; Peters et al.
2011; Seifried et al. 2011). So far, there are only a few studies
of primordial star formation that include magnetic fields (Tan
& Blackman 2004; Maki & Susa 2004, 2007; Silk & Langer
2006; Schleicher et al. 2010; Machida 2010; Federrath et al.
2011b; Sur et al. 2012; Turk et al. 2012). The magnetic field is
expected to have similar effects to those seen in present-day star
formation, such as the launching of winds and jets (Machida
et al. 2006, 2008a). The latter eject gas from the accretion disk
which could otherwise have collapsed onto the star. Thus, the
star formation efficiency is reduced, especially for high-mass
stars (Tan & Blackman 2004; Machida 2010). Strong jets can
transport matter even out of the star-forming halo, leading to a
magnetization of the intergalactic medium (Xu et al. 2011).

To develop primordial star formation theory further, we need
to know the structure and strength of the magnetic fields. The
mechanism we suggest for producing strong fields is the small-
scale dynamo. This magnetohydrodynamical (MHD) process
amplifies weak magnetic seed fields exponentially by converting
kinetic energy from the turbulence into magnetic energy.

Kazantsev (1968) developed a theory for describing the small-
scale or turbulent dynamo. The main equation of this theory is
the Kazantsev equation, the eigenvalue of which is the growth
rate of the magnetic energy. There are different solutions of
this equation (Rogachevskii & Kleeorin 1997; Kleeorin &
Rogachevskii 2011; Schekochihin et al. 2002a). In this work,
we use the solution proposed by Schober et al. (2012), which
takes into account different types of turbulence. The growth
rates of the magnetic field obtained in that work are comparable
to previous results for Kolmogorov turbulence (Subramanian
1997; Brandenburg & Subramanian 2005).

We model the physical and chemical processes during the
collapse of a primordial halo to quantitatively determine the
properties of the small-scale dynamo. We calculate the magnetic
Prandtl number and the magnetic Reynolds number. The latter
is compared to the critical magnetic Reynolds number for small-
scale dynamo action. Furthermore, we calculate the growth
rate, which depends on the magnetic Prandtl number and the
hydrodynamic Reynolds number. We assume a weak initial
magnetic field of 10−20 G on the viscous scale produced by
the Biermann battery (Biermann 1950; Kulsrud et al. 1997; Xu
et al. 2008). This allows us to determine the evolution of the
magnetic field strength during the collapse.

The structure of our study is as follows. In Section 2,
we review the properties of primordial gas. We present our
numerical calculation of the chemistry and thermal evolution of
the gas and discuss the characteristic magnetohydrodynamical
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Figure 1. Temperature as a function of the number density. The different lines
indicate different initial conditions. The dashed green line corresponds to an
initial temperature of 104 K, the dotted red line to 103 K, and the solid orange
line to 102 K.

(A color version of this figure is available in the online journal.)

quantities. Furthermore, we discuss the origin of turbulence
and weak magnetic seed fields in primordial halos, which are
essential for operation of the small-scale dynamo. Section 3
concentrates on the small-scale magnetic field evolution. We
give the basic equations of the Kazantsev theory and the
resulting growth rates of the magnetic energy. We apply these
results for the small-scale magnetic field to our model for
the collapse of a primordial halo. In Section 4, we present a
model for the transport of the magnetic energy to larger scales.
This allows us to calculate the magnetic energy on the Jeans
scale of the primordial halo.

2. PROPERTIES OF THE PRIMORDIAL GAS

2.1. Chemical and Thermal Evolution

We determine the chemical and thermal evolution of gravi-
tationally collapsing primordial gas using the one-zone model
of Glover & Savin (2009), together with a modification im-
plemented by Schleicher et al. (2009) that relates the collapse
time to the equation of state. Moreover, we have included ad-
ditional Li+ chemistry by using the reaction rates from Bovino
et al. (2011b) and HeH+ chemistry according to Bovino et al.
(2011a). Glover & Savin (2009) model the chemistry of the
gas with a chemical network that includes around 30 different
atomic and molecular species linked by around 400 different
chemical reactions. In our calculations, we use the same initial
chemical abundances as in the default model in Glover & Savin
(2009). The elemental abundances of helium, deuterium, and
lithium relative to hydrogen are taken to be 0.083 for helium,
2.6 × 10−5 for deuterium, and 4.3 × 10−10 for lithium (Cyburt
2004). The initial density and temperature of the gas were as-
sumed to be n0 = 1 cm−3 and T0 = 1000 K, respectively, but
we have verified that our results are not sensitive to these values.

In the one-zone model the mass density ρ evolves as

dρ

dt
∝ ρ

tff
, (1)

where tff = √
3π/(32Gρ) is the free-fall time. Moreover, the

temperature evolution is determined by the energy equation,

dε

dt
= p

ρ2

dρ

dt
− Λcool + Λheat, (2)

Figure 2. Fractional abundances of different chemical species as a function of
the number density.

(A color version of this figure is available in the online journal.)

where ε is the specific internal energy, p is the thermal pressure,
and Λcool and Λheat are the total cooling and heating rates per
unit mass, respectively. The resulting temperature evolution is
shown in Figure 1. Besides the initial temperature of 103 K, we
also show in this figure the results for initial temperatures of
102 K and 104 K. Our calculations result in roughly the same
evolution for all the initial temperatures after an increase in the
density of about one order of magnitude.

In Figure 2, the fractional abundances of H, He, H2, H+,
Li+, and free electrons vary with increasing density in our
calculations. The abundance of H is constant at low densities,
but decreases at densities higher than about 1010cm−3 due to
the formation of H2. As there is no dust in primordial gas, large
quantities of H2 are produced only at high densities, via the
three-body reactions:

H + H + H → H2 + H, (3a)

H + H + He → H2 + He, (3b)

H + H + H2 → H2 + H2. (3c)

For the magnetic properties of the primordial gas the abundances
of the charged species are especially important. They determine
for example the conductivity, which is calculated in the next
section. At densities n < 108 cm−3, ionized hydrogen is the
main positive ion, while at higher densities, Li+ dominates. The
sharp drop in the H+ abundance at densities n > 108 cm−3

results from the removal of H+ from the gas by the reaction
chain (Glover & Savin 2009)

H2 + H+ → H+
3 + γ, (4a)

H+
3 + e− → H2 + H. (4b)

2.2. Characteristic Magnetohydrodynamical Quantities

Viscosity. It can be shown that the kinematic viscosity is

ν = 1

4d2n

(
kT

πm

)1/2

, (5)
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if the molecules are assumed to be rigid spheres (Choudhuri
1998). Here, n = ρ/m is the number density, k is the Boltzmann
constant, and T is the temperature. Furthermore, d = ∑

i ξidi is
the mean particle diameter and m = ∑

i ξimi the mean mass.
ξi is the relative abundance of the species i, and mi and di are
the masses and the van der Waals diameters, respectively. The
temperature as well as the abundances of the individual species
are functions of the number density.

Diffusivity. For calculating the magnetic diffusivity η we need
the conductivity of the gas. In a plasma the three most important
contributions to the conductivity of a neutral species (indicated
by index n) are (Wardle & Ng 1999)

σ||,n = c

B

∑
s

ξsnqsβns, (6a)

σP,n = c

B

∑
s

ξsnqs
βns

1 + β2
ns

, (6b)

σH,n = c

B

∑
s

ξsnqs
1

1 + β2
ns

, (6c)

as given in Pinto et al. (2008). The Hall parameters βns are
defined as

βns = qsB

msc

ms + mn

mnξnn 〈σv〉sn
. (7)

Here, mn and ms are the masses of the neutral and the charged
particles, ξn and ξs are the abundance fractions of the species, and
〈σv〉sn is the momentum transfer rate coefficient. We take these
coefficients, which are functions of the temperature, from Pinto
& Galli (2008), where we use the polarization approximation
for Li+.

The two dominant effects that lead to the dissipation of mag-
netic energy are the Ohmic resistivity and ambipolar diffusion.
We can neglect the contribution of the Hall effect to the resistiv-
ity, as here the force acts perpendicular to the current and, thus,
no energy is dissipated into heat. We calculate the distributions
of the Ohmic resistivity and the ambipolar diffusion by

ηOhm,n = c2

4πσ||,n
, (8a)

ηAD,n = c2

4π

(
σP,n

σ 2
P,n + σ 2

H,n

− 1

σ||,n

)
. (8b)

We focus on the most important neutral species H, He, and H2
and the charged species H+, e−, and Li+. For each neutral species
we calculate the resistivities ηOhm,n and ηAD,n. The magnetic
field strength B drops out in the Ohmic case. Finally, the total
Ohmic magnetic diffusivity is ηOhm = ∑

n ηOhm,n and the total
resistivity due to ambipolar diffusion is ηAD = 1/(

∑
n η−1

AD,n).5

Reynolds numbers. The hydrodynamic and magnetic Reynolds
numbers are defined as

Re ≡ V L

ν
(9a)

Rm ≡ V L

η
, (9b)

5 From private communication with Daniele Galli.
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Figure 3. Hydrodynamic and magnetic Reynolds numbers, Re and Rm, as
well as the magnetic Prandtl numbers, Pm, on the current Jeans scale. The
numbers are presented as a function of the hydrogen nuclei number density,
n. The solid lines represent an initial temperature of 103 K, the dashed lines
102 K, and the dotted lines 104 K. Moreover, the horizontal lines indicate the
critical magnetic Reynolds number for Kolmogorov and Burgers turbulence
(RmK

crit = 107 and RmB
crit = 2718) as derived in Schober et al. (2012).

The rapid decrease of Rm and Pm from the very high starting values is caused
by the exponential dynamo amplification of the magnetic field. We show the
results for Kolmogorov turbulence in the upper plot and the results for Burgers
turbulence in the lower plot.

(A color version of this figure is available in the online journal.)

where L is the length of the largest turbulent fluctuations and
V is the typical velocity on that scale. Note that we give these
numbers on the forcing scale, i.e., the Jeans scale, which means
L = �J and V = vJ.

For the calculation of the magnetic Reynolds number we use
the sum of ηOhm and ηAD. The resulting Reynolds numbers are
shown in Figure 3 as a function of the density. The critical
magnetic Reynolds numbers (15) are also indicated for the two
extreme types of turbulence.

Magnetic Prandtl number. The definition of the magnetic
Prandtl number is

Pm ≡ Rm

Re
= ν

η
. (10)

We can calculate this quantity by using Equations (5) and (8).
In Figure 3, the density dependency of the magnetic Prandtl
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number is shown for both Kolmogorov and Burgers turbulence.
For clarification we point out that the rapid decrease of the
magnetic Reynolds and Prandtl numbers is caused by the
dynamo amplification of the magnetic field. At the beginning of
the collapse Ohmic resistivity is the dominant diffusion process.
With increasing magnetic field ηAD increases proportional to
B2 (see Equations (6)–(8)) and becomes the main process for
magnetic diffusion. Since Rm and Pm are both proportional to
1/ηAD, in the limit where ηAD 	 ηOhm, both decrease rapidly
with increasing magnetic field strength.

In addition, we tested the influence of varying the initial
temperature on the evolution of the Reynolds numbers and the
magnetic Prandtl number. For the initial temperature ranging
from 102 K to 104 K we found only small variations in
the Reynolds numbers and the magnetic Prandtl number, as
illustrated in Figure 3.

2.3. Turbulence

Turbulence is an omnipresent phenomenon in astrophysics.
Turbulence is observed, for example, in the convection zone of
stars, in accretion disks, and in the interstellar medium.

For the first star-forming halos considered here, we assume
that turbulence is driven by virialization (Wise & Abel 2007;
Greif et al. 2008) or by accretion of gas into the center of the
halos (Klessen & Hennebelle 2010; Elmegreen & Burkert 2010;
Federrath et al. 2011b). The presence of turbulence affects star
formation strongly, as the turbulent pressure works against the
collapse to a star (Vazquez-Semadeni et al. 1998; Mac Low &
Klessen 2004; Krumholz & McKee 2005; McKee & Ostriker
2007). Moreover, Federrath et al. (2011b) show in a Fourier
analysis that the turbulence is effectively driven on the Jeans
scale.

There are different types of turbulence. In this paper we
concentrate on the two extreme cases, Kolmogorov turbulence
and highly compressible Burgers turbulence. The different types
are described in the inertial range by the relation between the
length scale � and the velocity v on that scale,

v ∝ �ϑ . (11)

The exponent ϑ ranges from 1/3 for incompressible turbulence
(Kolmogorov 1941) to 1/2 for highly compressible turbulence
(Burgers 1948). In real astrophysical objects, we expect the
turbulence index ϑ to lie between these extreme cases (Kritsuk
et al. 2007; Schmidt et al. 2008; Federrath et al. 2010).

2.4. Magnetic Seed Fields

There are different theories that describe the origin of weak
primordial magnetic fields. The first seed fields could already
have been produced during inflation. Turner & Widrow (1988)
find that a magnetic field B0 ≈ 10−25 to 10−1 nG on a scale
of 1 Mpc can be produced when the conformal invariance is
broken.

Following Sigl et al. (1997), there is also a possibility to create
a magnetic field during first-order phase transitions in the very
early universe. They predict a field strength B0 ≈ 10−20 nG
from the electroweak phase transition and B0 ≈ 10−11 nG from
the QCD phase transition on a scale of 10 Mpc.

Battery mechanisms are another popular way to generate
magnetic fields. The so-called Biermann battery uses the fact
that electrons and ions have very different masses. If there is
a pressure gradient in the plasma the particles get accelerated.
Due to their smaller masses the electrons are more strongly

accelerated than the ions. This leads to charge separation and
an electric field is generated. If the electron density ne is
constant in space the electric field is static; however, if it varies
in space electric currents are generated, which give rise to
a corresponding magnetic field. Note that for the Biermann
term to be non-zero the cross-product of the electron pressure
gradient and the electron density gradient needs to be non-zero
(Biermann 1950; Kulsrud & Zweibel 2008).

3. MAGNETIC FIELD AMPLIFICATION
ON THE VISCOUS SCALE

In this section, we analyze the evolution of the small-scale
magnetic field. We outline the Kazantsev theory, which gives
the growth rates of the magnetic field on the viscous scale.
Together with the amplification due to gravitational compression
and dissipation processes we can calculate the resulting small-
scale magnetic field evolution.

3.1. Small-scale Dynamo Growth

Kazantsev theory. An arbitrary magnetic field B can, in general,
be separated into a mean component B0 and a fluctuating
component δB with

B = B0 + δB. (12)

The induction equation,

∂B
∂t

= ∇ × (v × B − η∇ × B) , (13)

describes the time evolution of this field, where v is the velocity
and η is the magnetic diffusivity. Substitution of Equation (12)
into the induction equation leads to two equations: an equation
for the large-scale field evolution and the Kazantsev equation
(Kazantsev 1968; Brandenburg & Subramanian 2005), which
describes the small-scale evolution of the field.

The derivation of the Kazantsev equation is based on the
assumption that the fluctuations of the magnetic field as well
as the fluctuations of the velocity field are homogeneous and
isotropic even if the mean fields are not isotropic. Furthermore,
the fluctuations are assumed to be a Gaussian random field
with zero mean and the velocity fluctuations are assumed
to be delta-correlated in time. For simplicity the helicity of
the magnetic field is neglected. With these assumptions the
Kazantsev equation is

− κdiff(r)
d2ψ(r)

d2r
+ U (r)ψ(r) = −Γψ(r). (14)

The eigenfunctions of this equation are related to the longitudi-
nal correlation function of the magnetic fluctuations ML(r, t) by
ML ≡ 1/(r2√κdiff)ψ(r) exp (2Γt). We call Γ the growth rate of
the small-scale magnetic field. The function κdiff is the magnetic
diffusion coefficient, which contains in addition to the magnetic
diffusivity η a scale-dependent turbulent diffusivity also. U is
called the “potential” of the Kazantsev equation. Both κdiff and
U depend only on the correlation function of the turbulent veloc-
ity field and the magnetic diffusivity. The correlation function
of the turbulent velocity field in turn depends on the different
types of turbulence.

With a model for the turbulent correlation function, Schober
et al. (2012) solved the Kazantsev equation (Equation (14))
with the WKB approximation. They found that the critical
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magnetic Reynolds number for dynamo action Rmcrit increases
with compressibility. The values that Rm needs to exceed are

RmK
crit ≈ 107, (15a)

RmB
crit ≈ 2718, (15b)

for Kolmogorov and Burgers turbulence, respectively.
Moreover, Schober et al. (2012) found different growth rates

of the magnetic field for different turbulence models, with

Γ = (163 − 304ϑ)

60

V

L
Re(1−ϑ)/(1+ϑ) (16)

in the limit of infinite magnetic Prandtl numbers. Here V is the
typical velocity on the largest scale of the turbulent eddies of
size L and Re is the hydrodynamical Reynolds number.

In this paper, we analyze the two extreme types of turbulence,
Kolmogorov with ϑ = 1/3 and Burgers with ϑ = 1/2. We find
in the limit of large magnetic Prandtl numbers

ΓK = 37

36

V

L
Re1/2, (17a)

ΓB = 11

60

V

L
Re1/3. (17b)

For the typical velocity of the largest fluctuations we use the
sound speed V = vJ ≈ √

γ kT /m, as the Mach number in the
first star-forming halos is roughly one (Greif et al. 2008). Here
γ is the adiabatic index. We take L to be the Jeans length, as
this is the effective driving scale for turbulence in a collapsing
system (Schleicher et al. 2010; Federrath et al. 2011b). Hence
we set L ≈ �J =

√
γ kT /(Gm2n), where G is the gravitational

constant.
We compare the growth rate of the small-scale dynamo Γ on

the viscous scale �ν = lJRe−1/(1+ϑ) to the inverse free-fall time
1/tff = [3π/(32Gmn)]−1/2. The result is shown in Figure 4.
In our model, the magnetic field on the fastest growing scale
increases one to three orders of magnitude faster than the halo
collapses. Note that the dynamo growth is exponential in time.

Gravitational compression. The gravitational compression due
to the collapse of the halo provides additional amplification of
the magnetic field. As long as the condition of flux freezing is
fulfilled, the magnetic field B increases with density like

B ∝ n2/3 (18)

for spherically symmetric collapse. Before the dynamo satu-
rates, the amplification by gravitational compression is minor
compared to the dynamo growth.

Dissipation. Part of the magnetic energy is converted into heat
by dissipation processes. The dissipation term in the induction
Equation (13) is η∇2B. We consider Ohmic dissipation and
ambipolar diffusion and approximate this by ηB/�2 and ∂B/∂t
by BΓOhm and BΓAD, respectively. We get

ΓOhm ≈ ηOhm

�2
, (19a)

ΓAD ≈ ηAD

�2
. (19b)

ΓOhm and ΓAD are the rates of magnetic energy dissipation by
Ohmic resistivity and ambipolar diffusion.
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Figure 4. Different characteristic rates on the viscous scale as a function of the
density. We compare the growth rate of the magnetic field (solid orange line)
to the inverse free-fall time (dash-dotted gray line) and the dissipation rates
(Ohmic dissipation: dashed green line, ambipolar diffusion: dotted red line).
We show the results for Kolmogorov turbulence in the upper plot and the results
for Burgers turbulence in the lower plot.

(A color version of this figure is available in the online journal.)

3.2. Critical Magnetic Reynolds Number

The dependency of the magnetic Reynolds number Rm on the
number density is shown in Figure 3 for the two extreme types
of turbulence. We also indicate the critical magnetic Reynolds
number for small-scale dynamo action Rmcrit. One can see that
the magnetic Reynolds number is larger than Rmcrit at the onset
of the collapse. For densities above roughly 4 cm−3 Rm becomes
smaller than the critical value in the case of Burgers turbulence.
For Kolmogorov turbulence Rm also becomes smaller than
Rmcrit for high densities, which are not shown in Figure 3.
However, as we see below, at this point the dynamo is already
saturated on the small scale as well as on the large scale. Thus,
in the density regime where the small-scale dynamo operates,
the condition Rm > Rmcrit is always fulfilled.

3.3. Resulting Small-scale Magnetic Field

In principle, the magnetic energy density, EB = B2/(8π ),
evolves as

dEB

dt
=

[
Γ +

4

3n

dn

dt
− ΓOhm − ΓAD(EB)

]
EB, (20)

where we assume spherically symmetric collapse.

5



The Astrophysical Journal, 754:99 (9pp), 2012 August 1 Schober et al.

By solving Equation (20) numerically we find the evolution
of the magnetic energy density on small scales. In Figure 7,
we show the resulting growth of the magnetic field strength.
As an initial field strength B0 we use 10−20 G on the viscous
scale, which is a conservative value for a field generated by
a Biermann battery (Biermann 1950; Xu et al. 2008). The
field strength grows extremely rapidly as the density increases.
However, we cannot trust the whole evolution of the magnetic
field exactly as shown in Figure 7. When the field has become
strong enough, the magnetic Prandtl number becomes unity
or less (see Figure 3). Then the WKB approximation breaks
down and Equations (17) are no longer valid. Complementary
studies have shown, however, that the small-scale dynamo still
operates for Pm < 1 (Boldyrev & Cattaneo 2004; Schekochihin
et al. 2005, 2007; Eyink 2011), although the growth rate may
decrease by a factor of a few. We note that Boldyrev & Cattaneo
(2004) find in their studies that the critical magnetic Reynolds
number increases with decreasing magnetic Prandtl number.
Furthermore, we see in Figure 4 that the ambipolar diffusion rate
becomes higher than the growth rate of the magnetic field. In this
regime, Equation (16) is no longer a solution of Equation (14).
We expect that the field grows at the rate given by Equation (16)
almost until saturation, then decreases and the field reaches
saturation more slowly.

3.4. Validity of our Approximation

In Figure 3, the magnetic Prandtl number Pm is shown as
a function of the density. Pm starts with an extremely high
value of roughly 1012 and then after a rather constant phase
decreases rapidly. The magnetic Prandtl number is defined in
Equation (10) with η = ηOhm + ηAD. For low densities the
Ohmic resistivity, which is independent of the magnetic field
strength dominates. With increasing density the magnetic field
increases due to the dynamo amplification and with ηAD ∝ B2

the ambipolar diffusion rate becomes dominant. In this regime
the magnetic Prandtl number decreases proportional to B−2.
As the magnetic field increases exponentially during the small-
scale dynamo amplification at the beginning of the collapse, the
magnetic Prandtl number decreases rapidly.

The approximation of large magnetic Prandtl numbers
(Schober et al. 2012) is accurate during most of the dynamo
growth. At the end of the dynamo phase, however, Pm reaches
unity, decreases even further and our approximations eventually
break down. Schober et al. (2012) show that for decreasing Pm
the growth rate decreases. However, they make no prediction for
the regime Pm ≈ 1. But numerical simulations show that the dy-
namo also operates in this regime (e.g., Federrath et al. 2011b).
For Pm � 1 there is again analytical evidence for small-scale
dynamo action (e.g., Schekochihin et al. 2007). We note that
this treatment concerns the viscous scale only.

4. MAGNETIC FIELD AMPLIFICATION
ON LARGER SCALES

4.1. Model for the Transport of Magnetic
Energy to Larger Scales

After the magnetic field saturates on the viscous scale the
peak of the magnetic energy spectrum moves to larger scales.
In this section we present a model for the time evolution
of the magnetic energy spectrum. The situation is illustrated
schematically in Figure 5. Here we indicate three different
curves, which represent different times. The dashed green line
is the spectrum at the time of saturation on the viscous scale,
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Figure 5. Schematic model for the time evolution of the spectrum of the
magnetic field strength in the inertial range of turbulence. For simplicity we
use a fixed frame of reference, where the viscous and the Jeans scales stay
constant. The different colors and line types represent the spectrum at different
times. The green dashed line shows the spectrum at saturation on the viscous
scale. To larger scales the spectrum decreases according to the Kazantsev slope
(B ∝ �−5/4). At a time after saturation on the viscous scale the spectrum
is indicated by the dotted red line. Finally, the solid orange line shows the
spectrum when the field is saturated on the Jeans scale.

(A color version of this figure is available in the online journal.)

the dotted red line shows a later time and the solid orange line
represents an even later point in time at which the magnetic field
has saturated on the Jeans scale.

During saturation, the coherence length of the magnetic
field shifts toward larger scales, a well-known behavior for the
small-scale dynamo (Schekochihin et al. 2002b; Brandenburg
& Subramanian 2005), recently shown to be true also in
a collapsing system (Sur et al. 2012). Analytical arguments
suggest that this occurs on the eddy timescale of the current
peak scale �p,

�p

vp
= �J

vJ

(
�p

�J

)1−ϑ

, (21)

where we used vp = vJ(�p/�J)ϑ . Considering that the peak scale
moves from the viscous scale �ν(tν) toward larger scales, we
find for the time dependency of the peak scale

�p(t) = �ν(tν) +

(
vJ

�ϑ
J

(t − tν)

)1/(1−ϑ)

, (22)

where tν is the point in time when saturation occurs on the
viscous scale.

The slope of the curves proportional to �−5/4 is known as
the Kazantsev slope in real space,6 which can be derived from
the Fourier-transformed Kazantsev equation (Equation (14))
(Brandenburg & Subramanian 2005). This characteristic slope
is also observed in simulations (Federrath et al. 2011b; Xu et al.
2011). The curve that connects the peak maxima at different

6 In many references, the magnetic energy spectrum is given as a function of
the wave number k, defined for example as B2/(8πρ) = 1/2

∫
M(k)dk. In this

case the Kazantsev slope is M(k) ∝ k3/2. From this we find B2 ∝ k5/2 and
B ∝ �−5/4.
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results for Burgers turbulence in the lower plot.

(A color version of this figure is available in the online journal.)

times (red-colored curve) is a relic of the turbulence spectrum
and thus is proportional to �ϑ .

At each time step we calculate the peak magnetic field
strength by solving the stationary case of Equation (20). How-
ever, we find that the magnetic field strength exceeds the equipar-
tition field strength on scales larger than the viscous scale. The
reason for this is that the ambipolar dissipation rate, which is
proportional to B2/�2, decreases rapidly in this regime. Thus,
it cannot balance the growth rate any longer and we need to set
the equipartition field strength as an upper limit B�,max. With
B2

�,max/(8π ) = 1/2ρv(�)2 we find the maximum magnetic field
strength B�,max = √

4πρv(�).
Taking the typical turbulent velocity on the scale of the

turbulence � to be related to the sound speed by v(�) =
(�/�J)ϑcs  (γ kT /m)1/2(�/�J)ϑ , we find that

B�,max =
√

4πγ kT n (�/�J)
ϑ . (23)

Using the Kazantsev slope, we can extrapolate the magnetic
field strength onto the current Jeans length. By this we are able
to determine the time evolution of the magnetic field on the
Jeans scale.

For this process to be relevant during collapse, the eddy
timescale needs to be smaller than the collapse timescale. Thus,
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Figure 7. Magnetic field strength as a function of the number density on different
scales. The dashed green line corresponds to the field evolution on the viscous
scale, the dotted red line to the peak scale, and the solid orange line to the Jeans
scale. We show the results for Kolmogorov turbulence in the upper plot and the
results for Burgers turbulence in the lower plot.

(A color version of this figure is available in the online journal.)

the small-scale dynamo is unlikely to produce magnetic fields
on scales larger than the Jeans scale. Figure 6 shows the viscous,
the peak, and the Jeans scale as a function of density. During the
small-scale dynamo growth the spectrum of the magnetic energy
peaks at the viscous scale. After saturation on the viscous scale
the peak moves to larger scales according to Equation (22) until
it reaches the Jeans scale.

4.2. Resulting Jeans-scale Magnetic Field

As described in the last section, we determine the magnetic
field on the Jeans scale by extrapolation from the peak scale.
The result of the large-scale magnetic field is shown in Figure 7
together with the field on the current peak scale and the one on
the viscous scale. One can see that the magnetic energy is shifted
rapidly onto larger scales. For Kolmogorov turbulence the field
on the Jeans scale saturates at a density of roughly 3 cm−3 and
for Burgers turbulence at a density of roughly 4 cm−3. At the end
of dynamo growth on the Jeans scale we have a magnetic field
strength of about 10−6 G throughout the entire inertial range of
the turbulence, i.e., within the Jeans volume.

After the rapid initial dynamo amplification the only way
to amplify the magnetic field on the Jeans scale further is
gravitational compression, which leads to B ∝ n2/3. However,
the field has already reached equipartition with the kinetic
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energy at the end of the dynamo amplification and, thus,
increases only with n1/2 (see Equation (23)). The growth rate of
the magnetic field on the Jeans scale ΓJ is then

ΓJ = 1

n

dn

dt
. (24)

In Figure 8, we compare the growth rate ΓJ to the ambipolar
and Ohmic diffusion rates on the Jeans scale, ΓAD,J and ΓOhm,J.
As ΓJ is always larger than the diffusion rates in the density
range shown, the magnetic energy on the Jeans scale is not
dissipated again during the collapse. At a density of 1012 cm−3,
we determine with B ∝ n1/2 a magnetic field strength of 0.4 G.

4.3. Implications for Numerical Simulations

Our calculations show that, due to the rather small viscosity
and resistivity in primordial gas, the hydrodynamical Reynolds
number, the magnetic Reynolds number, and the magnetic
Prandtl numbers have very high values as long as the magnetic
field is not saturated. Such Reynolds numbers are well above
what can be reached in numerical simulations, implying that
the physical growth rate of the magnetic field largely exceeds
the growth rate obtained in numerical simulations. Particularly
important here is the fact that the typically unresolved viscous
scales are highly relevant for magnetic field amplification even
on larger scales. In this sense, numerical simulations can only
show the presence of a dynamo, but will typically underestimate
the magnetic field amplification rate. This behavior has also
been demonstrated in pioneering studies by Sur et al. (2010)
and Federrath et al. (2011b).

On the other hand, our results show that magnetic fields
quickly saturate once turbulence forms, and the limiting
timescale may thus be the timescale on which turbulence is
generated. This is again an issue which can be addressed with
numerical simulations and, indeed, simulations for instance by
Turk et al. (2012) convincingly demonstrated the release of
turbulence from the gravitational energy during primordial col-
lapse. Overall, such simulations are thus relevant to explore the
origin and generation of turbulence, while the strength of the
magnetic field should rather be estimated based on the physi-
cal growth rates. As a net effect, we therefore expect that the

magnetic energy is always close to saturation once turbulence
is generated in the halo.

5. SUMMARY

We computed the evolution of the magnetic field and its sat-
uration level in typical primordial halos based on the Kazantsev
theory of the turbulent dynamo in combination with a detailed
description of the physical and chemical processes in zero-
metallicity gas. The model is in principle applicable only to
magnetic field fluctuations on very small scales. However, when
interested in the influence of the field on the overall dynamical
evolution of the halo gas, it is most important to understand
how saturation occurs on larger scales. To address this problem,
we also considered the transport of magnetic energy from the
viscous scale to the Jeans scale.

Starting with a weak magnetic seed field of 10−20 G, as can be
produced by the Biermann battery, we followed the evolution of
magnetic field fluctuations on the viscous scale and found that
they are amplified very rapidly on timescales much shorter than
the free-fall time. As a consequence, the field saturates almost
immediately after the onset of gravitational collapse in the halo.
By extrapolating the small-scale magnetic field to larger scales
and assuming the peak of the magnetic spectrum shifts on the
local eddy timescale, we were able to follow the evolution of the
magnetic field strength throughout the full inertial range within
the Jeans volume. For typical halo parameters, the dynamo
growth of the magnetic energy saturates at a density of roughly
3 cm−3 for Kolmogorov turbulence and 4 cm−3 for Burgers
turbulence. At this point in time the field has a strength of about
10−6 G. We point out, however, that the field continues to grow
in the collapsing gas due to gravitational compression.

Our results show that the magnetic energy on small scales,
and more importantly also on dynamically important large
scales, can grow to very high values. In order to understand
the influence of this strong field on the evolution of the halo gas,
it is important to know whether the small-scale magnetic field
can be transformed into a coherent large-scale field. One way
to produce more coherent magnetic structures is by forming
disks, which is suggested by Latif et al. (2011). Moreover,
the saturation behavior of the small-scale dynamo should be
explored further in the regime Pm < 1, as we have shown
that the magnetic Prandtl number is in this regime for high
densities.

If indeed the processes discussed here can produce dynami-
cally significant fields on large scales, then the magnetic field
will influence the star formation process in high-redshift ha-
los. For example, since recent high-resolution simulations in-
dicate that the accretion disks around the very first stars were
strongly susceptible to fragmentation (Turk et al. 2009; Stacy
et al. 2010; Clark et al. 2011; Greif et al. 2011; Smith et al. 2011)
it is expected that most primordial stars formed as members
of binary or higher-order multiple systems with a wide range
of masses rather than being isolated, high-mass stars. From
studies of low-mass star formation at present day, however,
we know that magnetic fields close to the equipartition value
can effectively redistribute angular momentum via a process
called magnetic braking (Machida et al. 2008b; Mouschovias &
Paleologou 1979) and can thereby reduce the fragmentation
probability in the disk (Hennebelle & Ciardi 2009; Peters et al.
2011; Hennebelle et al. 2011; Seifried et al. 2011). The correct
treatment of magnetic fields in calculations of primordial star
formation therefore seems critical to better understand the mass
function and multiplicity of metal-free stars.
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