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ABSTRACT

Non-local electron energy probability functions (EEPFs) are shown to have an important effect on the
thermodynamic behavior of plasmas in the context of solar wind and laboratory plasmas. A conservation relation is
held for electron enthalpy and plasma potential during the electron transport. For an adiabatic system governed by
non-local electron dynamics, the correlation between electron temperature and density can be approximated by a
polytropic relation, with different indexes demonstrated using three cases of bi-Maxwellian EEPFs. This scenario
differs from a local thermodynamic equilibrium having a single polytropic index of 5/3 for adiabaticity.
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1. INTRODUCTION

Astrophysical plasmas have been studied for many decades,
including numerous work on the solar wind(Parker 1958;
Meyer-Vernet 2007; Ofman 2010), a typical representation for
stellar winds(Holzer & Axford 1970; Cassinelli 1979;
Kudritzki & Puls 2000). Direct space measurements of the
solar wind have been achieved using probes on board
satellites(Scudder & Olbert 1979; Sittler & Scudder 1980;
Doorsselaere et al. 2011). Additionally, many developments in
understanding space phenomena can be linked and attributed to
advances in theoretical modeling and experiments for labora-
tory plasmas(Koepke 2008). Hence an investigation of
interrelation between the solar wind and laboratory plasmas
can contribute to a better interpretation of the physics for both
systems. Electrons in magnetically expanding low-pressure
plasmas(Takahashi et al. 2009; Boswell et al. 2015) and in the
solar wind share the following similarities: (1) they are
confined along magnetic field lines; (2) they are nearly
collisionless, due to the long mean free path in the low-
pressure condition; (3) they have a thermal velocity greater
than the plasma drift velocity, due to the small electron mass
compared to that of ions; and (4) they are closely associated
with a potential drop along the divergent magnetic field. The
ions, however, demonstrate different behaviors in the solar
wind and laboratory plasmas, but this does not affect the
electron similarities stated above. For a laboratory plasma, the
internal thermal energy of ions is small compared to their
convective energy and they can be treated as a cold species for
many cases(Tonks & Langmuir 1929; Chabert &
Braithwaite 2011), while for the solar wind, the thermal energy
of ions (mostly protons) is comparable to the convective energy
and its effect is not negligible when determining the proton
dynamics(Sittler & Scudder 1980; Bruno & Carbone 2013).

Since the mean velocity of a plasma flow is normally small
compared to the electron velocity, the comoving frame attached
to the flow can be considered as a stationary frame for electrons
on first-order approximation, and this setting is used by default
unless otherwise specified. When the electron energy and
momentum relaxation paths are larger than the scale of the
potential drop, the electrons move across the potential structure
( ( )f z , where z is the spatial position) without encountering

short-range electron-neutral collisions (including both elastic
and inelastic collisions), and the kinetic energy term (ò) in the
electron energy probability function (EEPF) ( )F z,p is
replaced by the mechanical energy ( ) f- e z , i.e.,

( ) [ ( )]  f= -F z f e z,p p . This generalized relation has been
adopted for both space plasmas(Livadiotis 2015) and low-
pressure laboratory plasmas(Tsendin 2009), and it is also
known as the “non-locality” of EEPFs(Lieberman & Lichten-
berg 2005). When the pressure of neutral gases increases and
the effect of electron-neutral collisions becomes dominant
during electron transport, the “local” collision rate should be
included in the expression of EEPF. A particle group
dominated by collisions is considered to be under local
thermodynamic equilibrium (LTE), which is the basis of
traditional thermodynamic concepts such as the polytropic
relation(Horedt 2004; Cengel & Boles 2011). However, a
collisionless or low-collisionality particle system, defined here
as “non-LTE,” behaves in a manner that is fundamentally
different from that of an LTE system(Marsch 2006;
Tsendin 2009): the mechanical energy of a non-LTE particle
is conserved along its transport path, while that of an LTE
particle is dissipated through collisions. Consequently, tradi-
tional thermodynamic properties based on LTE should be
revisited for non-LTE plasmas(Livadiotis 2016).
A recent study(Zhang et al. 2016) has shown the role of

non-local EEPFs in the thermodynamic behavior of plasma
expansion in a laboratory helicon double layer thruster: the
electron evolution along a potential drop in a divergent
magnetic field is an adiabatic process and can be approximated
by a polytropic relation with an index of 1.17. This could be
erroneously misinterpreted as the existence of thermal conduc-
tion from the surroundings into the system, since for traditional
thermodynamic theory(Cengel & Boles 2011) based on an
LTE, an adiabatic process should have a polytropic index of
5/3. Most interestingly, this polytropic index of 1.17 is
consistent with that identified for the solar wind(Totten
et al. 1995; Roussev et al. 2003; Jacobs & Poedts 2011).
Since the electrons in the solar wind and laboratory plasmas
share important similarities, a reasonable hypothesis is that
their polytropic relations are likely governed by the same
principle of non-local EEPFs. Characterization of EEPFs along
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the acceleration direction of the solar wind is currently
unavailable and additional space measurements are still needed
to verify this hypothesis. This study focuses on a new
theoretical perspective of how non-local EEPFs determine the
polytropic index of electrons. It should be noted that the
polytropic approach has also been applied to protons, which is
not discussed here but can be found in relevant literature
(Kartalev et al. 2006; Nicolaou et al. 2014).

2. ENTHALPY RELATION FOR
NON-LOCAL ELECTRONS

When electrons move non-locally along decreasing poten-
tials, such as during plasma expanding along a divergent
magnetic field(Boswell et al. 2015; Zhang et al. 2016), their
transport is a self-consistent adiabatic process (the total
mechanical energy of each electron is conserved) in which
the EEPF is continuously depleted from low-energy electrons
while high-energy electrons overcome the potential barrier.
Electron enthalpy he is defined using the formula

= + =dh dq dp n dp ne e e e e e, with the heat term dqe omitted
due to adiabaticity, where pe and ne are the electron pressure
and density given by · ( )   ò f= -

¥
p f e d2 3e p0

and

( )  ò f= -
¥

n f e de p0
, respectively. Integrating the above

differential-form enthalpy along the potential path yields the
enthalpy relation:
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for which ( )   f- =¥ f elim 0p x has been used when
applying integration by parts to the numerator.
Rearranging the above equation yields a conservation

relation ( )fD + D - =h e 0e , which shows that the electrons
transfer their enthalpy into the potential energy in an adiabatic
process. It should be noted that this conservation relation is a
typical form of the Bernoulli integral(Kartalev et al. 2006;
Livadiotis 2016), where the macro (convective) kinetic energy
of the plasma flow is omitted due to the approximation of a
stationary comoving frame as stated in the previous section.
Equation (1) is a generalized result that is independent of the
specific form of non-local EEPFs, and its differentiation with
respect to the plasma transport path z yields:

( )+ =
dp

dz
n E 0, 2e

e z

where Ez is the electric field along the z direction. Equation (2)
has a consistent form of momentum balance with a LTE
system, but the pressure term here is an effective parameter
determined by non-local motion of electrons rather than by
local collisions. Previous experiments in laboratory plas-
mas(Zhang et al. 2016) have verified enthalpy relation(1)
for electrons along a divergent magnetic field. It should be
noted that for solar electrons covering large distances, the
electron enthalpy will be partially consumed in order to
overcome the gravitational barrier of the Sun.

3. POLYTROPIC APPROXIMATION

Although the enthalpy relation is independent of the specific
form of non-local EEPFs, another important thermodynamic
property, the “polytropic relation” (widely used to characterize
processes involving energy exchange between a system and its
surrounding environment) is shown to depend on the shape of
EEPFs in an adiabatic system using the example of a typical

Figure 1. Three cases of bi-Maxwellian EEPFs: (a) the convex case
( ( )= = =T T c10 eV, 5 eV, exp 4e e1 2 ), (b) the linear case
( ( )= = =T T c10 eV, exp 2e e1 2 ), and (c) the concave case
( ( )= = =T T c10 eV, 20 eV, exp 1e e1 2 ), with a break energy of
 = 20 eVb . The origins of the EEPF curves at different potential locations
are indicated by the vertical dashed lines.
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bi-Maxwellian EEPF:
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where c, b, Te1, and Te2 are the scale coefficient, break energy,
first electron temperature for a low-energy range and second
electron temperature for a high-energy range, respectively. For
the present demonstration, we use a break energy of
 = 20 eVb , a first electron temperature of =T 10 eVe1 , and
three different values for the second electron temperature

=T 5, 10, 20 eVe2 , which result in “convex,” “linear,” and
“concave” EEPF curves as a function of  f- e (Figures 1(a),
(b), and (c), respectively). For simplicity, the scale coefficient c
for each case is chosen to have ( ) =f 0 1p and the initial
maximum potential is set to zero f = 00 , with the reminding
range satisfying f 0. The EEPFs at different potential
locations are represented by the curves with right-shifting
origins (vertical dashed lines) and their non-locality is reflected
by the amplitude consistency. The plasma parameters of
electron pressure, electron density, and electron temperature
are calculated from the bi-Maxwellian EEPFs, given by
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These expressions are valid for potential values satisfying
f - eb . For f < - eb the electrons are located in the

Maxwellian region (as illustrated by the EEPF at f = -30 V
in Figure 1) and the corresponding results are simply given by
the Boltzmann-type relations:
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It should be noted that for other forms of EEPFs, analytical
expressions for the above parameters may not be available and
numerical approximation should be used.
The results of electron pressure, electron density, and

electron temperature versus potential are respectively given in
Figures 2(a)–(c) for the “convex,” “linear,” and “concave”

Figure 2. (a) Electron pressure, (b) electron density, and (c) electron
temperature as a function of potential for three EEPF cases: the convex case
(open circles, ( )= = =T T c10 eV, 5 eV, exp 4e e1 2 ), the linear case (open
squares, ( )= = =T T c10 eV, exp 2e e1 2 ), and the concave case (open
triangles, ( )= = =T T c10 eV, 20 eV, exp 1e e1 2 ), with a break energy
of  = 20 eVb .
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EEPFs. The electron pressure and density decrease most
dramatically for the convex EEPFs (open circles) and decrease
to a lesser degree for the concave EEPFs (open triangles). For

f < - eb the three cases show a constant temperature, while
for f > - eb the electron temperature decreases for the
convex EEPFs and increases for the concave EEPFs.

A correlation between the logarithm of normalized electron
density ( )n nlog e e0 and the logarithm of normalized electron

pressure ( )p plog e e0 , where the subscript “0” indicates para-
metric values at the position of the zero plasma potential, is
shown in Figure 3(a) for the three EEPF cases in the potential
range of f- < <15 V 0 V (data from Figures 2(a) and (b)).
This data can be fitted by the polytropic relation

( ) · ( )g=p p n nlog loge e e e e0 0 , where ge is the polytropic index
for electrons, with results for the convex EEPFs fitted by a
polytropic curve with an index of g = 1.18e (solid line), the
linear EEPFs with g = 1e (dashed line), and the concave EEPFs
with g = 0.805e (dashed–dotted line). Figure 3(b) shows the
polytropic index ge as a function of ( )n nlog e e0 given by the
ratio of ( )p plog e e0 to ( )n nlog e e0 at different data points on
Figure 3(a), and for each EEPF case [ ( )]g n nloge e e0 presents a
relatively constant value that is consistent with their respective
fitted indices represented by horizontal lines. It should be noted
that the polytropic relation is an approximation method used to
describe a thermodynamic process rather than an exact model,
and hence a perfect fitting between the sampled data and
polytropic curve is not always expected. The polytropic index
depends on the specific shape of EEPFs, increasing when the
EEPF curves become more convex and decreasing when they
are more concave. Additionally, a typical case of convex non-
local EEPFs with a rectangular shape is constructed as follows:
the non-local probability function is constructed using the
Heaviside function (denoted by H) to give

( ) [ ( ) ( )]  f f f- = + - - -f e c H T e H e2.5p e0 , where
c is the scale coefficient and the plasma potential satisfies
f 0. In this case the EEPFs present a sequence of depleted

rectangles along the potential drop and result in an exact
polytropic index of g = 5 3e .
Hence, for an adiabatic process governed by non-local

EEPFs, multiple polytropic index values can be achieved, as
illustrated above using bi-Maxwellian EEPFs with
g = 1.18, 1, 0.805e and rectangular EEPFs with g = 5 3e .
Using traditional thermodynamics based on LTE would
misinterpret the adiabatic processes with g < 5 3e as additional
heat being brought into the system. The classic adiabatic index
of 5/3 for LTE systems is only an element in the set of
polytropic indexes for non-LTE adiabatic systems. These
results suggest that although the electrons in the solar wind
present a polytropic index of less than 5/3, as previously
reported(Sittler & Scudder 1980; Doorsselaere et al. 2011),
their actual transport could be an adiabatic process.

4. SUMMARY

This paper revisits the thermodynamic behaviors of plasmas
in the solar wind and in the laboratory. As electrons in the two
systems share many similarities, they may be dominated by the
same principle of non-local EEPFs. For an adiabatic evolution
of electrons along a potential path, a conservation relation
between the electron enthalpy and plasma potential has been
found. Correlation between the electron temperature and
density can be approximated by the polytropic relation for
which three typical cases of bi-Maxwellian EEPFs with
convex, linear, and concave shapes have been treated. Multiple
polytropic indexes can be achieved during an adiabatic process
depending on the specific shape of non-local EEPFs; the
polytropic index increases when the EEPF becomes more
convex and decreases when the EEPF becomes more concave.
The classic adiabatic index of 5/3 for LTE systems is only one
element in the set of polytropic indexes for non-LTE adiabatic
systems governed by non-local particles. These results suggest

Figure 3. (a) Correlation data between the logarithm of normalized electron
density and the logarithm of normalized electron pressure in a potential range
of f- < <15 V 0 V, and (b) polytropic indices given by the ratio of

( )p plog e e0 to ( )n nlog e e0 at different data points, for three EEPF cases: the
convex (open circles, ( )= = =T T c10 eV, 5 eV, exp 4e e1 2 ), linear (open
squares, ( )= = =T T c10 eV, exp 2e e1 2 ), and concave (open triangles,

( )= = =T T c10 eV, 20 eV, exp 1e e1 2 ) cases, with a break energy of
 = 20 eVb . Their respective polytropic relations are fitted with indexes of
1.18 (solid line), 1 (dashed line), and 0.805 (dash–dotted line).
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that although the electrons in the solar wind have a polytropic
index of less than 5/3, their actual transport might be adiabatic.
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