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ABSTRACT

Context. Delayed detonations of Chandrasekhar-mass white dwarfs are a promising model for normal Type Ia supernova explosions.
In these white dwarfs, the burning starts out as a subsonic deflagration and turns at a later phase of the explosion into a supersonic
detonation. The mechanism of the underlying deflagration-to-detonation transition (DDT) is unknown in detail, but necessary con-
ditions have been recently determined. The region of detonation initiation cannot be spatially resolved in multidimensional full-star
simulations of the explosion.
Aims. We develop a subgrid-scale model for DDTs in thermonuclear supernova simulations that is consistent with the currently known
constraints.
Methods. The probability of a DDT occurring is calculated from the distribution of turbulent velocities measured on the grid scale
in the vicinity of the flame and the fractal flame surface area that satisfies further physical constraints, such as fuel fraction and fuel
density.
Results. The implementation of our DDT criterion provides a solid basis for simulations of thermonuclear supernova explosions in
the delayed detonation scenario. It accounts for the currently known necessary conditions for the transition and avoids the inclu-
sion of resolution-dependent quantities in the model. The functionality of our DDT criterion is demonstrated by the example of one
three-dimensional thermonuclear supernova explosion simulation.
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1. Introduction

In the Chandrasekhar-mass model for Type Ia supernovae
(SNe Ia), a thermonuclear burning front (flame) ignites near
the center of a white dwarf star when its mass approaches the
Chandrasekhar limit (see Hillebrandt & Niemeyer 2000 for a
review on SNe Ia models). In principle, there are two possible
modes for this flame to burn through the degenerate material:
a supersonic detonation and a subsonic deflagration. The result
of the thermonuclear burning process has to be consistent with
the main observational features, in particular the observed range
in brightness. Differences in the radioactive 56Ni produced in
the explosion are the primary origin of the diversity in bright-
ness of SNe Ia (Truran et al. 1967; Colgate & McKee 1969).
According to studies of Contardo et al. (2000), Stritzinger et al.
(2006), and Mazzali et al. (2007), any valid model for normal
SN Ia explosions should cover a range in the 56Ni production
of ∼0.4 to 1.0 M�.

Numerical simulations show that prompt detonations lead to
strong explosions that produce almost exclusively iron group el-
ements (Arnett et al. 1971), which is inconsistent with observed
spectra. In contrast, pure deflagrations produce not enough iron
group elements and release too little energy to explain the bulk
of normal SNe Ia (Khokhlov 2000; Gamezo et al. 2003; Röpke
et al. 2007). Moreover, Kozma et al. (2005) argue that unburned

material left behind by the deflagration near the center of the star
leaves imprints in nebular spectra that are not observed in nor-
mal SNe Ia. These problems are cured if a detonation triggers
sometime during the late deflagration phase. In this delayed det-
onation scenario (Khokhlov 1991a), the detonation stage leads
to a more complete burning of the white dwarf, resulting in an
explosion strength and a chemical structure of the ejecta that
are more consistent with the observed characteristics of SNe Ia
(e.g., Gamezo et al. 2005; Golombek & Niemeyer 2005; Röpke
& Niemeyer 2007; Mazzali et al. 2007; Kasen et al. 2009; Röpke
et al. 2012; Seitenzahl et al. 2011, 2013).

Whether or not a transition of the flame from a subsonic de-
flagration to a supersonic detonation is possible in SNe Ia has
remained an open question since Blinnikov & Khokhlov (1986)
first alluded to such a possibility. To understand deflagration-
to-detonation transitions (DDTs) in general, the microphysical
nature of turbulently mixed flames has to be analyzed. Extensive
studies in this field were carried out by Lisewski et al. (2000),
Woosley (2007), Aspden et al. (2008), and Woosley et al. (2009).
Although these studies do not provide stringent evidence for
DDTs in SNe Ia, necessary conditions for such transitions can be
derived from them. In particular, their analyses show that strong
turbulence must interact with the flame during later stages of
the explosion in order to facilitate a DDT. This raises the ques-
tion of whether sufficiently high turbulent velocity fluctuations
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still occur when the deflagration is close to extinction due to the
expansion of the star. The Rayleigh-Taylor instability becomes
weaker in the later expansion phase; hence this expansion will
ultimately freeze out all turbulent motions (Khokhlov 1995).
Röpke (2007) showed that high turbulent velocities, although
rare, are indeed still found in late stages of three-dimensional
simulations of the deflagration phase.

This indicates that the macroscopic conditions for a DDT
are met, but it is clear that evidence for DDTs requires resolv-
ing the microscopic mechanism of this transition as well. The
length scales on which this process takes place, however, are too
small to be resolved in multidimensional full-star simulations
of the explosion. Therefore, large-scale simulations of the de-
layed detonation scenario have to invoke some kind of model
for DDTs. A simple parameterization is to prescribe a certain
fuel density ahead of the flame at which the DDT is triggered
(Khokhlov et al. 1997; Höflich et al. 1998; Gamezo et al. 2005;
Townsley et al. 2009; Jackson et al. 2010). This, however, does
not account for the important role that turbulence plays in the
DDT mechanism. An alternative is to trigger the DDT at patches
of the burning front, where turbulent eddies first penetrate the
internal flame structure (Golombek & Niemeyer 2005; Röpke &
Niemeyer 2007). The onset of this so-called distributed burning
regime (e.g., Peters 2000) is necessary (Niemeyer & Woosley
1997), but still not sufficient for a DDT. Woosley et al. (2009)
argue that, in addition to entering the distributed burning regime,
particularly large velocity fluctuations are required. In a very
simple way this constraint has been implemented in a series of
two-dimensional delayed detonation simulations (Kasen et al.
2009). Here, we present a subgrid-scale (SGS) model of DDTs
for full-star simulations of the delayed detonation scenario. In
particular, we aim at consistency with the microphysical mech-
anism of this process, as far as known, and independence of the
numerical resolution in the simulation. Due to the stochastic na-
ture of turbulence, an SGS model for DDTs cannot provide any
proof for a DDT to occur, but it can evaluate a probability for
this transition under certain assumptions.

This paper is organized as follows. In Sect. 2 we outline the
constraints on DDTs in SNe Ia according to current knowledge.
The implementation of the DDT-SGS model in the hydrody-
namic code is described in Sect. 3. The resolution dependence
of this model is tested in Sect. 4. Section 5 gives a summary and
an outlook for further applications.

2. Constraints on DDTs in SNe Ia

Which physical mechanism causes a DDT in unconfined media
(as required in the supernova case) remains uncertain, but sev-
eral possibilities have been suggested. One proposed mechanism
for the initiation of a detonation relies on the dissipation and the
consequential conversion of turbulent energy into internal en-
ergy on the Kolmogorov length scale (Woosley 2007). Here, it
is assumed that the rate of dissipating turbulent energy is high
enough that the temperature of a region of fuel reaches the ig-
nition point. Provided that a sufficient amount of fuel is avail-
able (the ignition region is large enough), a detonation may be
formed. Another mechanism recently proposed by Charignon &
Chièze (2013) is based on the amplification of acoustic waves in
the steep outer density gradient of the white dwarf. This would
trigger the detonation wave far away from the deflagration front.
In our work, however, we assume that the deflagration flame it-
self produces conditions suitable for a DDT and follow the con-
cept of the Zel’dovich gradient mechanism (Zel’dovich et al.
1970), even though it has been suggested that the formation of

a preconditioned hot spot may not be a neccessary prerequi-
site (Poludnenko et al. 2011; Kushnir et al. 2012). In the gra-
dient mechanism, it is assumed that a spontaneous ignition of
the fuel in a region with a shallow spatial gradient of induction
times leads to a supersonic reaction wave and the build-up of
a shock. If the phase velocity of the reaction wave approaches
the Chapman-Jouguet velocity, it may transition into a detona-
tion. The gradient mechanism was first applied to SNe Ia by
Blinnikov & Khokhlov (1986, 1987) and has been further in-
vestigated by Khokhlov (1991a,b), Khokhlov et al. (1997), and
Niemeyer & Woosley (1997). The most important result of their
analyses is that DDTs in SNe Ia can only occur if turbulence
approaches an intensity that causes strong mixing of cold fuel
and hot burned material. A microphysical study of Lisewski
et al. (2000) revealed that the required turbulent velocity fluc-
tuations v′crit must be higher than 108 cm s−1. By analyzing some
time steps of a pure deflagration model, Röpke (2007) found a
nonvanishing probability of such large velocity fluctuations to
occur at the flame. Hence, the probability of finding sufficiently
large velocity fluctuations in the entire late deflagration phase
may reach high values.

The occurrence of high turbulent velocity fluctuations is at-
tributed to intermittency in the turbulent motions. Weak intermit-
tency in burned regions in the exploding white dwarf was found
by Schmidt et al. (2010) by calculating and fitting characteristic
scaling exponents of the turbulent velocity field. These expo-
nents were obtained from the computation of high-order veloc-
ity structure functions (Ciaraldi-Schoolmann et al. 2009) using
the data of a highly resolved numerical simulation, the deflagra-
tion model of Röpke et al. (2007). The high velocity fluctuations
that Röpke (2007) found in the same model indicate that inter-
mittency is significantly stronger at the flame than in burned re-
gions. However, due to the challenges of performing a detailed
analysis of intermittency at a highly wrinkled and folded flame
front in full-star simulations, some uncertainties in the origin of
these high velocity fluctuations remain.

That high velocity fluctuations occur somewhere at the flame
is necessary, but not sufficient for a DDT. It is important that
these fluctuations are located within a certain amount of fuel
of the turbulently mixed regions. The minimum amount of
fuel XDDT

fuel required for ignition and creation of a self-propagating
detonation wave depends on various quantities, such as fuel den-
sity, chemical composition, and fuel temperature (see Arnett &
Livne 1994; Khokhlov et al. 1997; Seitenzahl et al. 2009). Due to
these dependencies, one cannot specify a general, constant value
for XDDT

fuel (but see Seitenzahl et al. 2009, and tables therein).
Niemeyer & Woosley (1997) point out that a necessary con-

straint for a DDT is the burning in the distributed burning
regime. In this regime, turbulent eddies are able to penetrate
the internal flame structure. Under this condition, the nuclear
burning time scale τnuc becomes independent of heat conduction
processes and is exclusively given by the dynamics of turbulent
eddies. The reason is that these eddies reach the fuel faster than
the flame itself and mix it during the turnover into the reaction
zone. The eddy turnover time is given by

τeddy(�) = �/v′(�), (1)

where � is the typical length scale of a turbulent eddy and v′(�)
the velocity fluctuation on that scale.

Woosley (2007) point out that the carbon and the oxygen
flame have to be sufficiently separated spatially for a successful
DDT. They argue that this is expected to be the case for fuel
densities below ∼3×107 g cm3, which covers the density regime
we consider here.
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The distributed burning regime for the canonical compo-
sition of equal mass 12C and 16O is reached when the fuel
density ρfuel at the flame has declined below ∼3 × 107 g cm−3

(Niemeyer & Woosley 1997). Recent studies of Woosley (2007)
and Woosley et al. (2009) suggest that there are further con-
straints on triggering detonations. Within the distributed burning
regime, it is necessary that the balance between turbulent mix-
ing and nuclear burning becomes disturbed. This is the case for
DT = τeddy(L)/τnuc � 1, where DT is the turbulent Damköhler
number and L the turbulent integral scale. During the burning
in this so-called stirred flame regime (Kerstein 2001), the flame
becomes significantly broadened until at DT ∼ 1 the flame width
δ approaches L, which is approximately 106 cm (e.g., Woosley
2007). With turbulent intensities typically expected for deflagra-
tions in SNe Ia, the density at which this condition is expected
to be met is 0.5 � ρfuel/(107 g cm−3) � 1.5 (Woosley 2007).

Finally, a DDT region that meets the described constraints
concerning v′crit, XDDT

fuel , and ρfuel has to exceed a critical spatial
scale �crit, which is of the order of 106 cm (e.g., Khokhlov et al.
1997; Dursi & Timmes 2006; Seitenzahl et al. 2009) and hence
comparable to the integral scale L. The time scale of mixing
the fuel and ash in this region can be estimated with Eq. (1).
Assuming that both fuel and ash elements can be carried by a
turbulent eddy of size �crit over the distance �crit in half an eddy
turnover time, it takes

τeddy1/2 (�crit) = τeddy(�crit)/2 = �crit/2v
′(�crit) (2)

to mix the components. While v′ is well determined in our
model, �crit is uncertain because of the unresolved shape of the
temperature gradient (Seitenzahl et al. 2009). Using v′(�crit) =
108 cm s−1 (Lisewski et al. 2000), we find τeddy1/2 (�crit) = 5 ×
10−3 s and adopt this typical, fixed value in our model. A region
fulfilling all DDT criteria described above must exist for at least
this amount of time such that a DDT may occur.

3. Formulation of a subgrid-scale model for DDTs

3.1. Three-dimensional full-star simulations

The hydrodynamics code that is used to carry out the simula-
tions of this study is based on the Prometheus code (Fryxell
et al. 1989), which implements the Piecewise Parabolic Methods
(PPM) of Colella & Woodward (1984) to solve the reactive Euler
equations in a finite volume approach. The thermonuclear com-
bustion waves are modeled as sharp discontinuities between fuel
and ash and are numerically represented with a level set tech-
nique following Reinecke et al. (1999). Our implementation fol-
lows some basic concepts of large eddy simulations, in which the
largest turbulent structures and motions are resolved on the grid
scale or above. Turbulence on unresolved scales is calculated
with a SGS turbulence model (Schmidt et al. 2006a,b). In our
simulations, we use a comoving grid technique (Röpke 2005;
Röpke et al. 2006). We discretize our set of model equations
on two nested computational grids for which the grid spacing is
continuously enlarged to capture the explosion. While an outer
inhomogeneous grid follows the overall expansion of the white
dwarf, the deflagration flame is tracked with an inner homoge-
neous Cartesian grid.

For the initial composition of the white dwarf, we choose
a 12C and 16O mixture in equal amounts by mass and set the elec-
tron fraction to Ye = 0.49886, corresponding to solar metallicity.
The white dwarf is assumed to be cold (T = 5 × 105 K). We use
an initial central density of 2.9 × 109 g cm−3. The initial flame

configuration from which the deflagration front evolves equals
the setup described in Röpke et al. (2007) with 1600 spherical
kernels of 2.6 km radius distributed within a sphere of 180 km
around the center of the white dwarf. In our full-star simula-
tions, the DDT regions are not resolved since Δ(t) > �crit for all
times, where Δ(t) is the time-dependent resolution of the inner
comoving grid. Therefore, we employ an SGS model for DDTs,
which models the DDT relevant quantities on unresolved scales.

3.2. Determination of the flame surface area

As described in Sect. 2, we have to determine the area of the
flame where the values of XDDT

fuel , ρfuel, and v′crit are appropriate for
a DDT. Here we face the problem that the discontinuity approach
of the flame generally prevents us from precisely determining the
physical conditions at the flame. Below we show how to obtain
an approximation for the physical conditions at the flame front
by considering only grid cells that are split into two approxi-
mately equal parts by the flame (i.e., the level set).

We define Xfuel as the mass fraction of unburned material in
a grid cell. For the later analysis, we are interested in the quan-
tities at the flame. These are difficult to measure since the flame
is numerically represented as a discontinuity and the computa-
tional cells intersected by it contain a mixture of fuel and ash.
We therefore consider only cells with 1/3 ≤ Xfuel ≤ 2/3. This
way we ensure that the flame separates the grid cell into roughly
equal size parts of fuel and ash and that the thermodynamic val-
ues at the cell center reasonably approximate the real values at
the turbulent flame, instead of being dominated by fuel or ash
material. We emphasize that the numerical quantity Xfuel is not
directly equivalent to the required physical amount of fuel XDDT

fuel
for triggering a DDT; XDDT

fuel cannot accurately be determined on
scales �crit < Δ(t) and we cannot precisely evaluate whether the
required amount of fuel for a DDT is available.

As described in Sect. 2, we further have to ensure that
the flame resides in the distributed burning regime and obeys
the constraints described by Woosley (2007). Therefore we
limit our analysis to grid cells in the density range of 0.5 �
ρfuel/(107 g cm−3) � 1.5.

We define the number of all grid cells at the flame at a given
time t as Nflame(t) and the cells that also meet the constraints
concerning Xfuel and ρfuel as N∗flame(t). In the same context we
define the flame surface area as Aflame(t) and the part which meets
the mentioned constraints as A∗flame(t). To determine Aflame(t), we
assume that due to the nature of turbulence the flame is similar
to a fractal object with fractal dimension D (see Kerstein 1988,
1991; Niemeyer 1995; Blinnikov & Sasorov 1996). We note that
compared to an ideal fractal the wrinkles and curvatures of the
flame are not sustained on very small scales.

In our model, the DDT occurs shortly after entering the dis-
tributed regime. Strictly speaking, the description of the flame as
a fractal was established for the flamelet regime only. However,
for the specific case we consider here, the flame neither fills
the entire star nor a large fraction of its volume. Instead, seen
from the large scales resolved in our simulations, the burn-
ing is still confined to a narrow sheet, to which we apply our
fractal description. The same line of argument was used by
Schmidt (2007) to justify a level set-based flame model beyond
the flamelet regime. Therefore, for our large-scale simulations, a
fractal approach is an acceptable description of the flame for all
physical scales directly relevant to our DDT model.

If turbulence is driven by the Rayleigh-Taylor instabil-
ity, D = 2.5. For Kolmogorov turbulence without intermittency,
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a value of D = 2.33 is expected (e.g., Kerstein 1988, 1991;
Sreenivasan 1991; Niemeyer 1995, and references therein),
while for intermittent turbulence, it is argued that D = 2.36 (e.g.,
Halsey et al. 1986; Sreenivasan 1991).

The level set method offers us the opportunity to relate the
quantities Δ(t) and Nflame(t) to Aflame(t). Since for every numeri-
cal resolution the flame propagates like a thin interface through
the grid cells, we assume that the flame surface is self-similar
and does not depend on resolution on all considered length
scales. We therefore determine the self-similarity dimension de-
fined by

D =
log N
log ε

, (3)

where N is the number of self-similar pieces and ε the reduction
(or zoom) factor. For our purposes we need the number of grid
cells Nflame1 and Nflame2 from two simulations with different res-
olutions Δ1(t) and Δ2(t) of the same initial white dwarf model.
Then D is given by

D =
log[Nflame2 (t)/Nflame1 (t)]

log[Δ1(t)/Δ2(t)]
· (4)

From here it follows that

Nflame1 (t)(Δ1(t))D = Nflame2 (t)(Δ2(t))D, (5)

and since Aflame(t) should be equal for both simulations, we
identify

Aflame(t) ≈ Nflame(t)(Δ(t))D (6)

as the flame surface area. Once D is determined, we evaluate
A∗flame(t) with Eq. (6) by using N∗flame(t) instead of Nflame(t). Since
N∗flame(t) 	 Nflame(t), there are not enough data to derive a re-
liable value of D for A∗flame(t) directly. The calculation of D is
performed together with a resolution test in Sect. 4.1.

3.3. The probability density function of turbulent velocity
fluctuations

The turbulent velocity fluctuations v′(�) are determined by the
SGS model of Schmidt et al. (2006a,b). This model has al-
ready been applied to a simulation of a pure deflagration in a
Chandrasekhar-mass white dwarf (e.g., Röpke et al. 2007), and
turbulence properties of this model were analyzed in Ciaraldi-
Schoolmann et al. (2009). However, it has not yet been explicitly
tested whether the SGS model can properly reproduce the rare
high velocity fluctuations at the flame required for a DDT. In
this section we perform some test calculations in order to evalu-
ate whether the SGS model can be used for the construction of a
DDT model.

3.3.1. Testing the SGS model in reproducing the high
velocity fluctuations

To judge whether the SGS model is capable of correctly mod-
eling the high velocity fluctuations at the flame, we first have
to find out how often these fluctuations occur. A commonly used
statistical method is the calculation of a probability density func-
tion (PDF) of v′(�). By definition, a PDF constitutes a continuous
distribution function, but in our case only discrete data are avail-
able. However, by sorting and sampling the data into bins, we
can construct a histogram of v′(�). Fitting this histogram with
an appropriate fit function then gives us an approximated PDF

of v′(�). This procedure has already been performed by Röpke
(2007). The result clearly shows a slow decline of the histogram
toward higher velocity fluctuations, indicating a nonvanishing
probability of finding sufficiently high velocity fluctuations for
a DDT. However, an open question is whether the slow decline
seen in the histogram is of physical origin or whether it is an arti-
fact of turbulence- or flame-modeling. To investigate this, we de-
veloped an algorithm that derives the velocity fluctuations from
the resolved velocity field of the hydrodynamic flow. This allows
us to compare the histogram that contains the data of these re-
solved fluctuations with the histogram that contains the values
v′(�) of the SGS model.

The resolved velocity field u(r) of the hydrodynamic flow
is a superposition of the turbulent velocity fluctuations and the
bulk expansion of the white dwarf, where the latter contribution
points in radial direction. We have to subtract the bulk expan-
sion from u(r) to obtain the pure fluctuating part uturb(r). For de-
tails on how the turbulent velocity fluctuations are calculated,
see Ciaraldi-Schoolmann et al. (2009). To compare vturb(r) =
|uturb(r)| with v′(�), we have to take into account that the SGS
model returns a value on the scale Δ(t) and that the quantity
vturb(r) has to be considered on the same scale. We thus de-
termine the average absolute velocity differences |vturb[Δ(t)]| of
neighboring grid cells, which are given by

|vturb[Δ(t)]| = 1
N

N∑
i=1

|vturb(r) − vturbi (r + d)| (7)

where vturb(r) is the velocity fluctuation in the chosen grid cell
and vturbi (r+ d) is the velocity fluctuation in the ith of the N adja-
cent grid cells (we note that |d| = Δ(t)). The described procedure
has been performed with a Monte-Carlo based program for a to-
tal number of randomly chosen 106 different grid cells, where
for a larger number of cells, no change in the results was found.
We then construct a histogram of |vturb[Δ(t)]|.

In Fig. 1a the histograms of |vturb[Δ(t)]| and v′[Δ(t)] that con-
tain the data in the vicinity of the flame are shown. The sim-
ulation is based on a grid with 5123 cells, and the histograms
shown are for t ≈ 0.9 s as an illustrative example. This instant
corresponds to the late deflagration phase, when turbulence is
strong and significantly affects the structure and propagation
of the flame. We see in both histograms a slowing decline to-
ward higher velocity fluctuations, which shows that the decline
in the histogram of v′[Δ(t)] is not an artifact of the SGS turbu-
lence model. Another possibility, however, is that slow decline
is caused by our level set-based flame model and the flame-flow
coupling on the resolved scales. We therefore repeat the analysis
described above using a fixed length scale of |d| = 4Δ(t). Even
though the turbulence model calculates quantities on the grid
scale, in this case a rescaling of the velocity fluctuation fromΔ(t)
to 4Δ(t) is not required for evaluating the presence of the highest
velocity fluctuations in the tail of the histogram. For |d| = 4Δ(t),
we impose the additional constraint Xfuel ≤ 0.5 to avoid counting
cells containing mainly fuel far ahead of flame. This result is also
shown in Fig. 1a. We can identify again a slow decline toward
high velocity fluctuations similar to the histogram of |vturb[Δ(t)]|
and hence also similar to that of v′[Δ(t)]. Thus, the slow decline
seems not only to originate from computational cells that are in-
tersected by the flame but also to persist in a certain region away
from it. This indicates that it is not an artifact of the modeling
but is rather due to intermittency in the turbulent flow field near
the flame.
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Fig. 1. Histograms of the turbulent velocity fluctuations at t ≈ 0.9 s. a) Comparison between the histograms that contain the data at the flame of the
resolved velocity fluctuations |vturb(�)| for the scales � = Δ(t) and � = 4Δ(t) and the histogram of the velocity fluctuations v′[Δ(t)] of the turbulence
SGS model. b) Histogram of v′(�crit) using a rescaling factor of α = 1/3 (Kolmogorov) and α = 1/2 (Rayleigh-Taylor instability) using 2563 grid
cells. c) Histogram of v′(�crit) using a rescaling factor of α = 1/3 (Kolmogorov) and α = 1/2 (Rayleigh-Taylor instability) using 5123 grid cells.
d) Comparison of the histograms of v′(�crit) that contain the data at the flame front and in ash regions.

3.3.2. Rescaling of the velocity fluctuations

Since our simulation code uses a comoving grid technique, we
rescale the value of v′[Δ(t)] to v′(�crit) with �crit = 106 cm (see
Sect. 2). The rescaled velocity fluctuations are given by

v′(�crit) = v′[Δ(t)][�crit/Δ(t)]α, (8)

where the scaling exponent α depends on the mechanism that
drives the turbulence. We assume incompressible and isotropic
Kolmogorov turbulence (Kolmogorov 1941), where α = 1/3.
We note, however, that Ciaraldi-Schoolmann et al. (2009) found
in burned regions a transition of the turbulence-driving mech-
anism at a certain length scale (see also Niemeyer & Woosley
1997). This length scale is of the same order of magnitude as �crit
and separates the regime of small-scale isotropic Kolmogorov
turbulence from Rayleigh-Taylor instability-driven anisotropic
turbulence on large scales. For the latter, α = 1/2. These con-
siderations take into account the entire turbulent velocity field,
which has well-defined statistical properties. However, for a
DDT only the strong turbulent velocity fluctuations are im-
portant. Turbulence is most intense in trailing patches of the
Rayleigh-Taylor “mushroom caps”, where strong shear insta-
bilities occur (see Röpke 2007). The scaling properties of an

intermittent velocity field for scales � � �crit in such regions
at the flame front are not known. We can estimate the differ-
ence fdiff between the scaling relations of a Kolmogorov- and
Rayleigh-Taylor instability-driven turbulence. Using Eq. (8), we
find

fdiff =
[Δ(t)/�crit]

1/2

[Δ(t)/�crit]1/3
= [Δ(t)/�crit]1/6 . (9)

For highly resolved simulations, where Δ(t) ≈ �crit, the
difference is negligible. We perform simulations with 2563

and 5123 grid cells and find for the late deflagration phase, where
DDTs are expected, Δ(t) ≈ 4 × 106 cm for the lower resolved
and Δ(t) ≈ 2×106 cm for the higher resolved simulation, leading
to uncertainties of about 26% and 12%, respectively. To check to
what extent these deviations affect the rescaled values of the high
velocity fluctuations, we compare the histograms of v′(�crit) with
both scaling exponents α = 1/3 and α = 1/2. Since we imple-
ment a DDT model, we now only take grid cells into account that
meet certain DDT constraints; hence the data N∗flame(t) is used for
the histogram construction. The result is shown in Fig. 1b,c for
the late deflagration phase at t ≈ 0.9 s. The agreement of both
histograms is excellent, particularly in the high resolution case.
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We note that intermittency may slow down the decrease of
the velocity fluctuations towards smaller scales, compared to the
scaling given in Eq. (8). However, if it dominates the scaling be-
havior, it may change the trend completely. Our model would
still be a good approximation in the first case. Comparing the
histograms in Fig. 1a suggests that the velocity fluctuations in-
deed still decrease with scale, but a more rigorous verification
is not possible with our simulations. While studying intermit-
tency effects in ash regions is possible based on the computation
of structure functions of the velocity field (Schmidt et al. 2010;
Ciaraldi-Schoolmann et al. 2009), such functions cannot easily
be determined at the flame front itself for geometrical reasons.

3.3.3. Fitting the data of the histogram

To calculate the probability of finding sufficiently high veloc-
ity fluctuations for a DDT, we apply a fit to the histogram of
v′(�crit) to obtain an approximated PDF (see also Röpke 2007).
Since for a DDT only the high velocity fluctuations are of in-
terest, we are justified in restricting our fit to the right of the
maximum of the histogram. The fit should further be motivated
by an appropriate distribution function that can explain the in-
termittent behavior in turbulence at the flame. Schmidt et al.
(2010) used a log-normal distribution of an intermittency model
of Kolmogorov (1962) and Oboukhov (1962) to fit characteris-
tic scaling exponents that were obtained from the computation of
high-order velocity correlation functions. This detailed analysis
revealed that the intermittency in ash regions is weaker than pre-
dicted in the log-normal model. In contrast, Röpke (2007) found
that a log-normal fit fails to reproduce the distribution of the high
velocity fluctuations at the flame since it declines faster toward
larger v′(�crit) than do the velocity data of the histogram. This
result suggests that intermittency at the flame is fundamentally
different than in ash (see also the discussion in Schmidt et al.
2010). In Fig. 1d we show histograms of v′(�crit) that contain the
data N∗flame(t) and the data in ash regions in the late deflagration
phase at t ≈ 0.9 s (again, this instant is chosen as an illustrative
example). The simulation was run with 5123 grid cells. There
is a significant difference between the shapes of the PDFs. The
slow decline of the histogram that contains the data in ash re-
gions appears almost linear in the log-normal illustration, while
the histogram that contains the data in the vicinity of the flame
has a significant positive curvature after its maximum. This is
further evidence that turbulence near the flame has stronger in-
termittency than in ash regions.

As of yet there is no physically motivated model for ex-
plaining intermittency at a deflagration front in white dwarfs.
Consequently, an empirical distribution function has to be used
to fit the slow decline of the histogram of v′(�crit) at the flame
front. Here we follow Röpke (2007) and use an ansatz of the
form

f [v′(�crit)] = exp{a1[v′(�crit)]a2 + a3}. (10)

This geometric function is able to fit the right part of the his-
togram over a large range and a1, a2 and a3 are the three fitting
parameters. The probability P[v′(�crit) ≥ v′crit](t) of finding veloc-
ity fluctuations of at least v′crit is given by

P[v′(�crit) ≥ v′crit](t) =
∫ ∞
v′crit

f [v′(�crit)] dv′(�crit)

=
exp(a3)Γ(1/a2,−a1v

a2)
a2(−a1)1/a2

, (11)

where Γ is the upper incomplete gamma function.

We note that the DDT instant determined below is not really
a special point in the time evolution of the PDF. When a det-
onation is triggered in the model, the parts of the deflagration
flame that are directly attached to the quickly spreading detona-
tion front are excluded from the determination of the PDF.

3.4. The detonation area and the DDT criterion

In Sect. 3.2 we defined A∗flame(t) as the part of the flame that meets
the required conditions for a DDT concerning the quantities ρfuel
and Xfuel. The probability of finding sufficiently high velocity
fluctuations at this restricted flame surface area was derived sep-
arately in the previous section. We define now

Adet(t) = A∗flame(t)P[v′(�crit) ≥ v′crit](t) (12)

as the part of the flame surface area that can potentially undergo
a DDT (see also Röpke 2007). This quantity has to exceed a crit-
ical value Acrit, which is required for a DDT. We assume that a
DDT region has a smooth two-dimensional geometry and use
therefore Acrit = �

2
crit = 1012 cm2. For Adet(t) > Acrit, we fi-

nally check whether this condition holds for at least τeddy1/2 (�crit)
to ensure a sufficient mixing (see Sect. 2). If this is true, our
DDT criterion is met and detonations are initialized. The num-
ber of DDTs NDDT in our model is given by

NDDT =
Adet(t)
Acrit

, (13)

where NDDT is always rounded down to the next inte-
ger. We note that both quantities A∗flame(t) and particularly
P[v′(�crit) ≥ 108 cm s−1](t) may rise steeply within τeddy1/2 (�crit);
hence we often get NDDT > 1. The minimum time between
two DDTs is τeddy1/2 (�crit), because the time for Adet(t) > Acrit
is restarted after a successful DDT. It is also restarted if Adet(t)
falls below Acrit before τeddy1/2 (�crit) is reached.

We still have to decide on the location where detonations
are initialized. Since the high turbulent velocity fluctuations are
crucial for a DDT, we chose those NDDT grid cells from N∗flame(t)
that contain the highest values of v′(�crit). In analogy to the defla-
gration ignition, detonations are set by initializing an additional
level set that propagates supersonically at the appropriate det-
onation speed (see Fink et al. 2010) through the white dwarf
matter.

A shortcoming of this DDT model is that it does not assess
whether there is indeed a “connected” region of size 1012 cm2

that fulfills the requirements for a DDT. The probability
P[v′(�crit) ≥ v′crit](t) and the flame surface area A∗flame(t) are de-
termined from all (possibly disconnected) grid cells suitable for
a DDT. Therefore they do not provide any information on local-
ized areas. They are rather global quantities. The same holds for
τeddy1/2 (�crit) since here we also use a uniform value.

From a computational point of view, we emphasize that the
inclusion of τeddy1/2 (�crit) is also important to keep the DDT cri-
terion independent of resolution. Since the maximum time step
ΔCFL of our code is given by the Courant-Friedrichs-Lewy (CFL)
condition (Courant & Friedrichs 1948), the time steps of higher
resolved simulations are shorter than for lower resolved ones.
Applying our criterion without a time-dependent variable would
mean that higher resolved simulations get an enhanced chance
for a successful detonation. This simply results from the fact that
the criterion then tests for DDTs more frequently. We note that in
our simulations ΔCFL is usually much shorter than τeddy1/2 (�crit).
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Fig. 2. Analysis of the fractal dimension of the flame and resolution dependence of the histogram of v′(�crit). a) Number of all grid cells at the flame
front for two different resolutions (thick curves) as well as theoretical curves if a specific fractal dimension is assumed. b) Fractal dimension D of
the flame as function of time. c) Flame surface area A∗flame(t) for different resolutions with D = 2.36. d) Histograms of v′(�crit) at the flame front
and the corresponding fits (Eq. (10)) for different resolutions.

4. Fractal dimension of the flame and resolution
test in one full-star model

To test the resolution dependence of the implemented DDT
criterion, we apply it to the deflagration model described in
Sect. 3.1 and run it with a resolution of 2563 and 5123 grid cells.
Unfortunately, we cannot perform a detailed resolution study
since simulations with more than 5123 grid cells are computa-
tionally too expensive, while the DDT model cannot be applied
for very low resolved simulations due to insufficient data for fit-
ting the histogram of v′(�crit). In summary, the quantities and the
corresponding threshold values of the DDT criterion are 1/3 ≤
Xfuel ≤ 2/3, 0.5 � ρfuel/(107 g cm−3) � 1.5, v′crit = 108 cm s−1,
Acrit = 1012 cm2, and τeddy1/2 (�crit) = 5 × 10−3 s. One parameter
still undetermined is the fractal dimension of the flame, which
we now derive from the resolution test.

4.1. Fractal dimension of the flame

In Fig. 2a we show Nflame(t). The thick black curve is the re-
sult for the lower resolved simulation and the thick red (dashed)
curve for the higher resolved one. The other curves are theo-
retically expected results for the higher resolved simulation if a

certain fractal dimension of the flame is assumed. These curves
can be calculated from Nflame1 (t) and the known resolutionsΔ1(t)
and Δ2(t) of the simulations by specifying a value for D in
Eq. (5). We see that the curves for D = 2 and D = 3 are not
consistent with the data, which shows that the flame is indeed a
fractal.

In Fig. 2b the fractal dimension D (calculated from Eq. (4) is
shown as function of time. A necessary constraint in our criterion
is that ρfuel must be in a certain range (see Sect. 2). At approx-
imately t = 0.8 s, the first grid cells at the flame front approach
ρfuel = 1.5 × 107 g cm−3, while most of the flame resides at
higher densities. We see that at this time D ≈ 2.5, but DDTs will
occur later when a sufficiently large part of the flame surface area
meets the DDT constraints and τeddy1/2 (�crit) has elapsed. At these
times, D < 2.5. In agreement with theory (e.g., Halsey et al.
1986; Sreenivasan 1991), we use a constant value of D = 2.36
for our DDT model (see Sect. 3.2). In Fig. 2c, we show the quan-
tity A∗flame(t) (calculated from Eq. (6) with D = 2.36) for both
simulations. Since the curves are in good agreement, the choice
of D = 2.36 is justified.

We next discuss some caveats concerning the determination
of the fractal dimension of the flame. It is obviously a rough ap-
proximation to take D as a constant since we see in Fig. 2b that
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Fig. 3. a) Probability P[v′(�crit) ≥ 108 cm s−1(t) of finding velocity fluctuations higher than 108 cm s−1 and b) size of the potential detonation area
Adet(t). For most of the time between t = 0.90 s and t = 1.07 s, Adet(t) > Acrit holds. The DDT criterion is met for the first time at t ≈ 0.92 s in both
simulations (see dots at the curve of Adet(t)).

this quantity declines continuously until t ≈ 1.2 s. Moreover, one
could expect that models with a different deflagration phase may
have another curve progression of D. Therefore a determination
of D for every delayed detonation simulation that has a different
evolution of the deflagration would be necessary. However, at
the time when DDTs occur, we assume that turbulence in the de-
flagration phase is fully developed and obeys well-defined statis-
tical properties. Hence a significant deviation of D for different
deflagrations seems unlikely but cannot be ruled out completely.
Finally, the results may be different if higher resolutions with
more data are used for the determination of D, so that a conver-
gence of D may be obtained at very high resolutions only. Apart
from the limited computational resources that prevent simula-
tions at such high resolutions, we mention in Sect. 3.2 that the
flame is not an ideal fractal, so that at some length scale Eq. (4)
becomes inappropriate to derive D.

We note that the values for D in Fig. 2b may also indicate
that the flame is affected by different mechanisms and instabil-
ities that drive the turbulence because 2.3 � D � 2.5 are ex-
pected for different instabilities at the flame front (see Sect. 3.2).
In any case, the chosen value of D = 2.36 is appropriate for
our purposes since both curves of A∗flame(t) in Fig. 2c are in good
agreement.

4.2. Probability of finding high velocity fluctuations

In Fig. 2d, a histogram of v′(�crit) with the fit according to
Eq. (10) through the data for both simulations is shown at
t = 0.9 s. Since we are mainly interested in the high velocity
fluctuations, the starting point of the fit is at twice the velocity
at the maximum of the corresponding histogram. We see that the
approximated PDFs are in very good agreement with the his-
tograms. For the lower resolved simulation, however, the data
contain more scatter and there is an earlier cutoff toward higher
velocity fluctuations. This is the result of a coarser binning due
to less data in lower resolved simulations.

The probability P[v′(�crit) ≥ 108 cm s−1](t) is shown in
Fig. 3a for both simulations. The good agreement of both curves
reflects that the approximated PDFs are largely independent of
resolution. The highest values are found for 0.95 s < t < 1.00 s
when the intermittency in the turbulence is most pronounced.

4.3. Detonation area

The quantity Adet(t) is shown in Fig. 3b for both resolu-
tions. Since Adet(t) is calculated from A∗flame(t) and P[v′(�crit) ≥
108 cm s−1](t), it is also independent of resolution. This mani-
fests in Fig. 3, in which the overall shape of the curve of Adet(t)
is very similar to that of P[v′(�crit) ≥ 108 cm s−1](t). In particular
the strong variations of P[v′(�crit) ≥ 108 cm s−1](t) can be iden-
tified again. This indicates that the change of the flame surface
area A∗flame(t) for a given interesting time interval τeddy1/2 (�crit) is
much smaller than the fast temporal variations of the probabil-
ity P[v′(�crit) ≥ 108 cm s−1](t). To see this, compare A∗flame(t) in
Fig. 2c with Fig. 3a.

For our resolution test, we have chosen Acrit = 1012 cm2, and
we see that this value is exceeded by Adet(t). Therefore, DDTs
will occur if Adet(t) > Acrit for at least τeddy1/2 (�crit). This condi-
tion is indeed reached in both simulations, where the first DDTs
are initialized at approximately 0.92 s. This time is marked with
a dot at the curve of Adet in Fig. 3b. For the lower resolved simu-
lation, we find Adet ≈ 1.72×1012; hence NDDT = 1. In the higher
resolved simulation we find Adet ≈ 2.12 × 1012; hence here det-
onations are already initialized in two grid cells. We note that
these cells are located at different deflagration plumes and are
spatially disconnected. As long as Adet(t) > Acrit for τeddy1/2 (�crit),
new DDTs commence at later time steps. This happens in our
simulations since Adet(t) > Acrit for most of the time in the in-
terval 0.92 s � t � 1.07 s. However, there are a few interrup-
tions: In some time steps, the condition Adet(t) < Acrit occurs
before τeddy1/2 (�crit) was reached, preventing some DDTs. The
maximum of NDDT is 10 for the lower resolved and 12 for the
higher resolved simulation, which is reached at t ≈ 0.96 s for
both cases. The last DDT occurs at t ≈ 1.06 s in one single grid
cell in both simulations.

In Fig. 4, the time of the first DDT is visualized for both
simulations. The deflagration flame, represented by the level set
function, is shown as a transparent iso-surface. While the num-
ber of DDTs is largely resolution independent, their localization
is generally quite different. In Fig. 4, the first DDT occurs at
different places at the deflagration flame (both figures show the
same viewing angle). The reason is that the exact number and
locations of the grid cells in which the highest velocity fluctu-
ations occur differs. In subsequent papers in this series, we will
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(a) (b)

Fig. 4. Deflagration flame (transparent iso-surface) at the time of the first DDT for both simulations. The DDT spots are encircled. a) Simulation
with 2563 grid cells. b) Simulation with 5123 grid cells.

show that different distributions of DDT spots have an impact on
the 56Ni production rate in the detonation phase.

5. Conclusion

We introduced the first subgrid-scale model for implementing
DDTs in a hydrodynamic code for large-scale simulations of
SN Ia explosions. The model includes the current knowledge on
DDTs in SNe Ia and can be summarized as follows: We first
ensure that a sufficient number of grid cells at the flame have
a certain fuel fraction and are in a certain fuel density range.
From the number and size of these cells, we determine a suitable
flame surface area for DDTs, where we assume that the flame
can be considered as a fractal. Simultaneously, we construct a
histogram of the turbulent velocity fluctuations in the above-
mentioned cells, where we rescale these fluctuations from the
grid scale to the critical length scale of a DDT region by assum-
ing Kolmogorov turbulence. Then we estimate the probability of
finding sufficiently high velocity fluctuations for a DDT by ap-
plying a fit function to the histogram. This probability multiplied
by the flame surface area that is suitable for a DDT constitutes
a potential detonation area, which we compare with the required
critical size of a DDT region. When the potential detonation area
exceeds this critical size for at least half of an eddy turnover
time, the DDT constraints are fulfilled. In this case detonations
are initialized in the grid cells with the highest velocity fluctua-
tions that are located within the flame surface area suitable for a
DDT. The number of initialized detonations equals the ratio of
the potential detonation area to the critical size of a DDT region.

Although our model refers to the initiation of the detonation
via the Zel’dovich gradient mechanism, we note that other pro-
posed mechanisms for forming a detonation out of a turbulent
deflagration burning regime (Poludnenko et al. 2011; Kushnir
et al. 2012) would require a similar parameterization of the DDT-
SGS model. In all cases, the critical quantity is the strength of
turbulence. However, the models of Poludnenko et al. (2011) and

Kushnir et al. (2012) require turbulence speeds close to sonic,
which we do not observe in our simulations of deflagrations in
white dwarfs. The velocity fluctuations of 108 cm s−1 assumed in
our DDT-SGS model correspond to Mach numbers of ∼0.3 with
respect to the fuel material (∼0.1 with respect to the ashes) in the
density range in which DDTs are expected.

We show that the DDT-SGS model is largely resolution in-
dependent. Assuming that the DDT region has a smooth two-
dimensional geometry we found that the criterion is met in a spe-
cific deflagration model, indicating that the necessary constraints
for DDTs in SNe Ia were appropriate. Our model includes a
global criterion because the histograms of v′(�crit) and A∗flame(t)
do not provide any information about local areas. Therefore, a
shortcoming of our model is that we cannot fully ensure that
there is indeed a compact region that obeys the necessary con-
straints for a DDT.

For testing our DDT model, we used a specific simulation
of the deflagration phase in a thermonuclear explosion of a
Chandrasekhar-mass WD. The evolution of the turbulent defla-
gration depends strongly on the ignition scenario of the flame,
which is currently unknown. Certain turbulent deflagrations will
meet a given DDT criterion more frequently, which will conse-
quently affect the occurrence of DDTs. Therefore the ignition
scenario of the deflagration is another crucial model parameter
for simulations of delayed detonations. An analysis of the im-
portance of the ignition scenario for the DDT-SGS model will
be the subject of future research. The values of the DDT param-
eters are not well known and have been kept constant or fixed in
a certain range in our DDT model. For this reason, we intend to
perform a parameter study by varying all DDT quantities. These
future studies will reveal further insights into the relevance and
constraints of delayed detonations in Chandrasekhar-mass white
dwarfs.
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