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ABSTRACT

Context. Compressible turbulence influences the dynamics of the interstellar and the intergalactic medium over a vast range of length
scales. In numerical simulations, phenomenological subgrid scale (SGS) models are used to describe particular physical processes
below the grid scale. In most cases, these models do not cover fluid-dynamical interactions between resolved and unresolved scales,
or the employed SGS model is not applicable to turbulence in the highly compressible regime.

Aims. We formulate and implement the Euler equations with SGS dynamics and provide numerical tests of an SGS turbulence energy
model that predicts the turbulent pressure of unresolved velocity fluctuations and the rate of dissipation for highly compressible
turbulence.

Methods. We tested closures for the turbulence energy cascade by filtering data from high-resolution simulations of forced isothermal
and adiabatic turbulence. Optimal properties and an excellent correlation are found for a linear combination of the eddy-viscosity
closure that is employed in LES of weakly compressible turbulence and a term that is nonlinear in the Jacobian matrix of the velocity.
Using this mixed closure, the SGS turbulence energy model is validated in LES of turbulence with stochastic forcing.

Results. It is found that the SGS model satisfies several important requirements: 1. The mean SGS turbulence energy follows a power
law for varying grid scale. 2. The root mean square (rms) Mach number of the unresolved velocity fluctuations is proportional to the
rms Mach number of the resolved turbulence, independent of the forcing. 3. The rate of dissipation and the turbulence energy flux
are constant. Moreover, we discuss difficulties with direct estimates of the turbulent pressure and the dissipation rate on the basis of
resolved flow quantities that have recently been proposed.

Conclusions. In combination with the energy injection by stellar feedback and other unresolved processes, the proposed SGS model
is applicable to a variety of problems in computational astrophysics. By computing the SGS turbulence energy, the treatment of star
formation and stellar feedback in galaxy simulations can be improved. Furthermore, we expect that the turbulent pressure on the grid
scale affects the stability of gas against gravitational collapse. The influence of small-scale turbulence on emission line broadening,
e.g., of O VI, in the intergalactic medium is another potential application.
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1. Introduction

The effects of numerically unresolved turbulence have recently
met increasing attention in a variety of astrophysical simula-
tions (see, for instance, Scannapieco & Briiggen 2008; Maier
et al. 2009; Joung et al. 2009; Oppenheimer & Davé 2009).
Some approaches comprise subgrid scale (SGS) models, al-
though these models are basically phenomenological parame-
terizations of astrophysical processes on length scales smaller
than the grid scale. The full multi-scale dynamics of turbulence,
however, is not embraced. The essence of an SGS model in the
fluid-dynamical sense is that, at high Reynolds numbers, energy
is transported through a turbulent cascade from larger, numeri-
cally resolved length scales to the subgrid scales. The energy of
the unresolved turbulent velocity fluctuations is eventually dis-
sipated into heat. Numerical simulations, in which an explicit
closure for the turbulent cascade is applied on the grid scale, are
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called large eddy simulations (LES). A closure is an approxima-
tion to an SGS quantity in terms of resolved flow quantities.

If the unresolved turbulent velocity fluctuations reach a non-
negligible fraction of the speed of sound, they give rise to a tur-
bulent pressure in addition to the thermal pressure of the gas.
This contribution to the pressure is proportional to the energy
density of the SGS turbulence. Turbulent pressure effects in the
baryonic gas component of star-forming galaxies are discussed
in Burkert et al. (2010). In contemporary numerical simulations
of disk galaxies (e.g., Dobbs et al. 2008; Tasker & Tan 20009;
Agertz et al. 2009, 2010) or in galactic-scale simulations of the
interstellar medium (e.g., Joung & Mac Low 2006; Joung et al.
2009), the minimal grid scale (or the SPH smoothing length)
A x 1pc. Since this length scale is comparable to the size
of molecular clouds, the unresolved turbulent velocity fluctu-
ations can exceed the speed of sound in the cold-gas phase.
Consequently, it can be expected that a significant turbulent pres-
sure is caused by turbulence below the grid scale. To compute
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the turbulent pressure, which has an impact on the star formation
rate through the stability of the gas against gravitational collapse,
a model for the highly compressible regime is indispensable.
Bonazzola et al. (1987) and Bonazzola et al. (1992) formulate
an analytic theory to calculate the turbulent pressure of isotropic
compressible turbulence on the integral length scale. By apply-
ing an SGS model, on the other hand, the turbulent pressure can
be computed for any length scale within the inertial subrange.
Joung et al. (2009) present an SGS model that is based on the
equation for the kinetic energy of the unresolved turbulent ve-
locity fluctuations, the so-called SGS turbulence energy, where
energy is solely supplied by supernova feedback. Since the non-
diagonal SGS turbulence stresses are neglected, the model of
Joung et al. (2009) reduces the effects of SGS turbulence to the
turbulent pressure alone, and the turbulence energy cascade, i.e.,
the production of SGS turbulence by the shear of the numerically
resolved flow, is not considered.

Another example for this type of SGS models is the model of
Scannapieco & Briiggen (2008) for the simulation of Rayleigh-
Taylor-driven turbulence in active galactic nuclei, where it is as-
sumed that SGS turbulence is produced by buoyancy processes
only on unresolved length scales. These processes are modelled
by an equation for the characteristic length scale of the Rayleigh-
Taylor instability. In contrast, Schmidt et al. (2006b) incorporate
unresolved buoyancy effects into an SGS model that includes the
production by shear for the treatment of turbulent combustion in
thermonuclear supernovae.

In the cosmological simulations of galaxy clusters by Maier
et al. (2009), the role of SGS turbulence has been explored
with a numerical technique that combines adaptive mesh refine-
ment and LES. They apply the SGS turbulence energy model
of Schmidt et al. (2006a). The main effect of the SGS model
is an enhancement of the turbulent heating in the cluster core.
The SGS turbulence energy also serves as a tracer of turbulence
production in the intergalactic medium (Iapichino et al. 2011).
However, a deficiency in these simulations is that the employed
SGS model is only applicable to moderately compressible tur-
bulence. Shocks are treated tentatively, i.e., SGS turbulence pro-
duction is suppressed in the vicinity of shock fronts. While this
is not a severe constraint for the bulk of the intracluster medium,
in which the Mach numbers of the turbulent flow are small com-
pared to unity, an erroneous production of SGS turbulence en-
ergy is likely to occur near accretion shocks in the outer regions
of the cluster.

In this article, we improve on the previous approaches to
SGS modelling by addressing the closure problem for highly
compressible turbulence. In Sect. 2, we discuss the meaning of
the compressible Euler equations in the context of computational
fluid dynamics. The verification of the proposed closure and the
calibration of the closure coefficients are presented in Sect. 3.
Data from several high-resolution simulations of forced turbu-
lence (Schmidt et al. 2007, 2009; Federrath et al. 2010b) al-
low us to compute the rate at which energy is transferred from
length scales greater than the filter length to smaller length scales
and to test the correlation with different closures. As a result,
we propose a combination of the eddy-viscosity closure, which
has been used successfully in LES of incompressible turbulence,
and a nonlinear closure put forward by Woodward et al. (2006).
Then we show that physically reasonable statistics of the SGS
turbulence energy and the rate of dissipation are obtained for
varying grid resolutions and forcing in LES of supersonic tur-
bulence (Sect. 4). Furthermore, we investigate correlations of
the SGS quantities with quantities derived from the numerically
resolved flow. We demonstrate that the turbulent pressure and
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energy dissipation cannot be predicted in a straightforward way
on the basis of the resolved turbulent flow, as proposed, for in-
stance, by Pan et al. (2009) and Zhu et al. (2010). Instead, a full
SGS model is needed to estimate unresolved turbulence effects.
In the last section, we summarize the results and discuss poten-
tial astrophysical applications of the closure for the highly com-
pressible turbulent cascade in combination with the phenomeno-
logical approaches described above.

2. The compressible Euler equations
with subgrid-scale dynamics

The Reynolds number of turbulent flows in astrophysics is usu-
ally considered to be high enough so that the approximation of
an inviscid fluid can be applied on numerically resolvable length
scales. For a physically complete picture, we begin with the
compressible Navier-Stokes equations encompassing all phys-
ical length scales. This acknowledges that perfect fluids do not
exist in nature and that the notion of viscous dissipation is essen-
tial for turbulence. The fluid-dynamical variables determined by

this set of equations are denoted by 05 for the mass density of the

gas, u for the velocity of the flow, etc.!. The resolution of a nu-
merical simulation is given by the size of the grid cells A, which
is called the cutoff scale or the grid scale. A consistent formula-
tion of the equations of fluid dynamics with a cutoff scale A can
by derived from the Navier-Stokes equations by means of the
filter formalism introduced by Germano (1992). Generalizing
this formalism to compressible fluid dynamics is straightforward
(see Schmidt et al. 2006a). The basic idea is to identify the nu-

merically computed solution with filtered variables o := (S)A,

u = (E?to)A /o, etc. The filter operator (-)» smooths the physi-
cal variables that are given by the Navier-Stokes equations over
the length scale A. In LES, the filtering corresponds to the dis-
cretization of the equations of fluid dynamics. The dynamical
equations for the computable, filtered quantities are similar to
the unfiltered equations, with additional terms that are related to
the subgrid-scale dynamics on length scales £ < A.

Let us consider the dynamical equation for the momentum
density of the fluid, which is given by the partial differential
equation (PDE)

0 [ooco 0000 00 0o foo X © oo
E(gu)+v-(gu®u)=p(g+f)—VP+V-0', (D
where 2 and f are the accelerations due to gravity and other me-

chanical forces acting on the fluid, and P is the thermal pressure.
The viscous dissipation tensor o is defined by

(o] (o) s 100
oij =2vo (Sij - gdéij)» (2)

where v is the microscopic viscosity of the fluid?, the rate of
strain S; is the symmetic part of the Jacobian matrix OI/CL’,', j=0 joﬁ’[,

and d = u;;. After applying a homogeneous filter operator that
is uniform in time, Eq. (1) is converted into an equation for the

' A mathematical proof of the existence of a solution is still on the
agenda of the Clay Mathematics Institute Millennium Prize Problems,
even in the case of incompressible turbulence.

2 Although we consider compressible fluid dynamics, for brevity, we
neglect the second viscosity that is related to the divergence of the flow.
This does not affect subsequent arguments.
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filtered momentum, ou = ((Eﬁ). This equation has the same form
as the original equation, except for one term. Because of the non-
linear advection term, the filtering introduces a stress term that
accounts for the interaction between the numerically resolved
flow and velocity fluctuations on the subgrid scales:

0
o) +V (ueuw) =plg+ =VP+V (0 +7),  O)
where the SGS turbulence stress tensor is defined by

Tsgs = —(E;lo ® ;JO)A +ou®u. 4)

In the following, the components of 7 are simply denoted by
7;;. The second-order moment (E;lo ® 1)y is not explicitly com-
putable in LES because the variations in the mass density 5 and

the velocity u below the grid scale are unknown. For this rea-
son, an approximation in terms of filtered quantities has to be
devised. This is the closure problem?.

The SGS turbulence energy density is defined by the differ-
ence between the resolved kinetic energy and the filtered kinetic
energy:

loooooo

1
K = _<Qu U — _Q|u|2 = _Etrngs» (5)

where tr T4 = 7y is the trace of the SGS turbulence stress tensor.

One can see that the trace of 7 gives rise to the term — VK%S
on the right hand side of Eq. (3). This term can be absorbed into
the pressure gradient if the thermal pressure P is replaced by the
effective pressure

1
— I Ty (6)

2
_ngs =P- 3

Peﬁ‘=P+3

The relative contribution of the turbulent pressure Py = %ngs
compared to the thermal pressure P is characterized by the SGS
turbulence Mach number Mg = (2Kgs/ pcz)l/ 2 where s is the
thermal speed of sound. M, depends on the temperature of the
fluid and the cutoff scale A. The dependence on A is investigated
in Sect. 4.2. Joung et al. (2009) define the turbulent pressure by
Pgos = (v — 1)Ky, where 7y is the adiabatic coefficient of the
gas. We emphasize that, except for y = 5/3, this definition is in-
consistent with the decomposition of the fluid-dynamical equa-
tions, which fixes the coeflicient to 2/3 (see also Chandrasekhar
1951). This is reasonable because the turbulent pressure is solely
a property of the turbulent flow of a gas on a given length scale,
whereas y is a microscopic property of the gas that is related to
the thermal motions of the atoms or molecules.

The SGS turbulence energy is an intermediate reservoir of
energy that exchanges energy with the resolved flow and loses
energy by dissipation into heat. For the computation of K, a
PDE has to be solved in addition to the filtered equations for the
resolved gas dynamics:

0
ot
While X = 7;;S; is the rate of SGS turbulence energy produc-
tion by the turbulent cascade through the cutoff scale A (also

called the turbulence energy flux) and pe is the viscous dissipa-
tion rate smoothed over A, effects caused by SGS fluctuations of

Ko+ V- (@Kyg) =T+ % — p(e + ) + D. 7)

3 Althernatively, (oéito ® 1), can be expressed in terms of higher-order
moments. But this merely shifts the closure problem to the higher order
moments.

the gravitational potential and the thermal pressure are given by
I" and pA, respectively. The term © accounts for SGS transport
effects. We refer to Schmidt et al. (2006a), Egs. (33)—(37), for the
exact definitions of these terms. For our purpose it is sufficient
to discuss the closures of these terms, which are approximations
in terms of the numerically resolved variables and K.

To compute the SGS turbulence stress tensor (4), we propose
the following closure for the highly compressible regime:

uittiy 2
12 2Ui kU jk
7ij = 2C1AQ20K )2 = 202 Kogs Veup 30~ COKuusbij
3
where |V ® u| := (2u;u;z)"/? is the norm of the resolved ve-

locity derivative, S/ = Sij — 1ds;; is the trace-free part of

S = 2(u,j +uj;), and d = u;;. While the first term in Eq. (8)
corresponds to the eddy-viscosity closure that is commonly used
in incompressible LES, the second, nonlinear term was investi-
gated by Woodward et al. (2006) for transonic decaying turbu-
lence. The standard eddy-viscosity closure follows if C, = 0. In
general, the linear eddy-viscosity term dominates if (Ksgs/p0)'/?
is small compared to A|S*| < A|V ® u|. On the other hand,
for strong turbulence intensity, i.e., (Kss/p)'/? 2 AV ® ul, the
nonlinear term contributes significantly. This particularly ap-
plies to intermittent events in supersonic turbulence, for which
AV ® u| > cs. In moderately compressible turbulence, nonlin-
ear contributions affect the high-intermittency tails of the tur-
bulent energy distribution. Independent of the values of C; and
Cy, ;i = —2K,, as required by the identity (5). We denote the
trace-free part of the SGS turbulence stress tensor by ‘r;‘j. The
verification of the generalized closure (8) for 7;; and the deter-
mination of the coefficients C; and C, for supersonic turbulence
is the key to computing the turbulent pressure Py, = %ngs, as
K first and foremost depends on the production rate X = 7;;S;;
in Eq. (7).

Due to the microscopic viscosity v of the fluid, the viscous
stresses Bo'ij dissipate kinetic energy on the smallest dynamical

length scales £ ~ n of the physical flow u. The length scale 7 is
called the Kolmogorov scale. In the filtered momentum Eq. (3),
viscous dissipation effects are given by the divergence of the fil-

tered tensor o = (0 i»a. The corresponding rate of energy dis-
sipation, filtered on the grid scale, is given by

QE - <o-ljulj>A - <2VQ SU U>A - <VQ|SU| >A (9)

It is important to note that pe # o;u; ;, where o;; and u; ; are the
filtered viscous stress tensor and the filtered velocity gradient,
respectively.

For fully developed incompressible turbulence, the
Kolmogorov scale can be related to the Reynolds number:
n/L ~ Re**, where Re := VL/v for an integral length L and
characteristic velocity V of the flow. As pointed out at the
beginning of this section, Re is assumed to be very high in
astrophysical systems. In this case,  is much smaller than
any feasible grid resolution A, and simple scaling arguments
show that the viscous stress term in the filtered momentum
Eq. (3) is negligible (Ropke & Schmidt 2009), i.e., |0 < [Tgsl-
Consequently, the physical energy dissipation occurs entirely
on subgrid scales { <« A. As 7 decreases in comparison to
A, the velocity fluctuations on ever smaller length scales give
rise to arbitrarily steep velocity gradients, which add up to a
non-vanishing product of the viscosity times the squared rate of
strain on the right hand side of Eq. (9), regardless of how small
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the viscosity is. This results in a non-zero, asymptotically con-
stant mean rate of energy dissipation in the limitnp — 0 (v — 0),
which is supported by experimental and numerical evidences
(see Frisch 1995; Ishihara et al. 2009). We may reasonably
conjecture that the viscous dissipation tensor is negligible in
the filtered momentum equation and the energy dissipation rate
does not vanish in the limit of infinite Reynolds numbers also
in the case of compressible turbulence. A posteriori tests imply
that this conjecture is fulfiled for driven supersonic turbulence
(see Sect. 4.2). However, the question of energy dissipation
in inhomogeneous turbulence is more difficult. For example,
it is known from boundary layers of terrestrial turbulence that
viscous effects can affect the flow on relatively large scales near
a wall. For this reason, the microscopic viscosity cannot be
neglected in LES of such flows. Although solid walls are not
encountered in astrophysics, many relevant problems exhibit
pronounced inhomogeneities, and we cannot entirely exclude
the possibility that viscous effects might become noticeable on
resolved length scales in certain cases.

A closure for € follows from simple dimensional reasoning:

Ky
pe = Ce m (10)
Here, it is assumed that the SGS turbulence energy is dissi-
pated into heat at a rate proportional to K, divided by the time
scale A(Kygs/p)~'/%. For the pressure-dilatation term pA several
closures have been proposed (e.g., Sarkar 1992; Fureby et al.
1997). However, applying a priori tests (see Sect. 3), we find that
these closures clearly fail in the case of supersonic turbulence.
The simplest solution is to neglect pressure dilatation entirely
(Woodward et al. 2006). In this article, we also set pAd = 0, al-
though we are aware that pressure-dilatation effects have poten-
tial significance, particularly in the case of adiabatic turbulence.
The transport term in Eq. (7) can be modelled by a gradient-
diffusion approximation (see Sagaut 2006):

K
D B V . [ngsv( . ):| |
P

where the SGS turbulent diffusivity is approximated by kg =~
0.65A(pKsgs)'/%, as shown by Schmidt et al. (2006a).

In this work, we assume that self-gravity has no significant
effects on length scales ¢ < A. This corresponds to the condition
that the local Jeans length A = c,(7/Gp)'/?, where G is the grav-
itational constant, is sufficiently large compared to the grid scale
A (Truelove et al. 1997; Federrath et al. 2010a). Thus, setting
I' = 0, the filtered equations resulting from the compressible
Navier-Stokes equations in the limit of n <« A (Schmidt et al.
2006a) read as

(11)

d
—0+V- (o) =0
52V W) =0,

S ow) + Vo o) =plg + )~ V(P + Py + VT, (1)

12)

£E+V-(uE) =—L+pu-(g+f)—V-[u(P + Psyy)l

+ V(- 1g) — X+ pe, (14)
where E = %pu2 + Ejy 1s the sum of the resolved kinetic and
internal energy density, and —£ accounts for sources and sinks
of the internal energy due to heating and cooling, respectively.
Since the resolved fluid dynamics on length scales £ > A is un-
affected by the viscosity of the fluid, the above set of equations
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defines the compressible Euler equations for computational fluid
dynamics in a physically meaningful and consistent way. These
equations are supplemented by an equation of state, the SGS tur-
bulence energy Eq. (7), and the Poisson equation for the gravi-
tational potential. The pure compressible Euler equations with-
out SGS terms, on the other hand, do not follow from the com-
pressible Navier-Stokes equation in the limit of infinite Reynolds
number. In this case, there is no viscous dissipation at all, and,
by definition, € vanishes identically. This is a mathematical ide-
alization that does not describe turbulent flows in nature.

As a special case, implicit large eddy simulations (ILES) fol-
low from the above approach. ILES is the most commonly used
method in astrophysical fluid dynamics. It is based on two as-
sumptions, which are usually not stated in the literature. First,
the discretization of the compressible Euler equations introduces
a dissipative leading error term Dy, in the momentum Eq. (12).
Implicitly, this term is assumed to be equivalent to the SGS tur-
bulence stress term V - 7. The second assumption in ILES is
that u - Dpym = —pé, i.e., kinetic energy on the resolved scales
is directly dissipated into heat at a rate that approximates the
viscous dissipation on unresolved length scales. This is referred
to as numerical viscosity or numerical dissipation. Actually, the
following equations are solved in ILES:

)
—0+V-(uo) =0,

ot (15)
%(gu)+\7~(gu ®u) =p(g+ f)— VP + Duum, (16)
%E+V-(uE)=—£+pu~(g+f)—V-(uP). (17)

Despite the lack of a mathematical justification, ILES serves
as an approximation of turbulent compressible fluid dynamics
that has proven its utility in numerous astrophysical applications.
Benzi et al. (2008) demonstrate that the ILES approach closely
reproduces two-point statistics of weakly compressible turbu-
lence in the inertial subrange in comparison to direct numerical
simulations that solve the Navier-Stokes equations. In this arti-
cle, we make use of ILES to compute high-resolution data for the
explicit verification of SGS closures. In contrast, LES treat the
energy dissipation explicitly. However, it cannot be avoided that
numerical schemes for compressible fluid dynamics such as the
piecewise parabolic method (PPM, Colella & Woodward 1984)
introduce some numerical dissipation. Thus, by running an LES
with an explicit SGS model, there is inevitably a numerical dis-
sipation channel that competes with the transfer of energy to the
subgrid scales and the subsequent dissipation of SGS turbulence
energy into heat. Notwithstanding this caveat, we demonstrate
in this article that physically sensible predictions can by made
by an explicit SGS model, which are not possible on the basis of
ILES.

3. Closure verification

To test different closures for the turbulence energy flux X, we
apply the method described in Schmidt et al. (2006a). The basic
idea is to use data from ILES of non-selfgravitating isothermal
and adiabatic turbulence with high numerical resolution and to
apply an explicit filter to these data on a length scale that is in
between the forcing and the dissipative range. The applied filters
are Gaussian with filter lengths Ag = 24A and 32A for 768°
and 1024 grids, respectively. Although the bottleneck effect has
some influence on the chosen length scales (Schmidt et al. 2009;
Federrath et al. 2010b), we show that the results change only
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slightly if the filter length decreases or increases by a factor of
two. Moreover, comparing to box filters, the results turn out to
be rather insensitive to the filter type.

3.1. Single-coefficient closures for supersonic isothermal
turbulence

The turbulence energy flux on the filter scale Ag can be com-
puted explicitly from the unfiltered numerical data by the
formula

ot 0117\
one )ui,j, (18)

EAG = (—Quiuj +

where the first factor on the right hand side is the turbulence
stress tensor on the filter scale (defined analogous to Eq. (4))
and the second factor is the derivative of the filtered velocity. As
a shorthand notation, we denote the explicitly filtered quantities
by an overline, for instance, p = {0)a,, and u; = {ou;)a;/p-

The above expression for X5, can be compared to closures.
For the eddy-viscosity closure, X, is given by

_ —x 2 —
I = C1AG(20Ka,)' IS 1 - 3 Kaad, (19)
where
| (— o
Ka = 5 (e»ﬂ - %) (20)

is the turbulence energy on length scales smaller than Ag.
Strictly speaking, Ka, is the turbulence energy for the length
scales ranging from the grid resolution A to the smoothing length
Ag of the Gaussian filter. If Ag is sufficiently larger than A, this
distinction can be neglected (see Schmidt et al. 2006a).

When defining

2

Is) ._ y(cls) i
Cif .= )+ §KAGd, 1)
the squared error function of the closure can be written as
2 _ 2
err’(Cy) = f T + gKAGd —C1 [ d’x, (22)
v

where X5, and K, are given by Eqs. (18) and (20), respectively,
and the volume integral extends over the whole domain V. The
minimum of err?(C;) yields the least squares error solution for
the closure coefficient,

L [Zaq + 2Kaod]| dx
- fq} |fe92d3 x

where £ = AC,(ZEKAG)I/ 2|§*|2 for the eddy-viscosity closure.
For statistically stationary and isotropic turbulence, the closure
coefficient C; is independent of the filter length scale because of
the local equilibrium of the transfer of turbulence energy in the
inertial subrange. Thus, the value of C| inferred from Eq. (23) is
an approximation to the coefficient of the SGS closure for X in
LES.

To calculate C;, we use data from two 1024° simula-
tions of supersonic isothermal turbulence with a root-mean-
square (RMS) Mach number around 5.5 (Federrath et al.
2010b). Statistically stationary and isotropic turbulence is pro-
duced by stochastic forcing. Solenoidal (divergence-free) forc-
ing is applied in one simulation, while the forcing is com-
pressive (rotation-free) in the other simulation. We choose

G (23)

Ag = 32A for the filtering of the simulation data. Figures 1
and 2 show the correlation between Z(Acés) and X,, by means
of two-dimensional probability density functions. For the eddy-
viscosity closure (19), the correlation is quite good (the spacing
of the contour lines in Figs. 1 and 2 is logarithmic in the two-
dimensional probability density), but there is a problem with
negative flux values. The values of the closure coefficient C; fol-
lowing from Eq. (23) are listed in Table 1. Also listed are the
correlation coefficients

1s)
corr[ZAG,Z(ACG ]1=
Jy (20 = Cand |2 - )] da
Sd[Z, Istd[Z ]

, (24)

where std[-] denotes the standard deviation and the angle brack-
ets indicate an average over the whole domain.

An important question for the LES of supersonic turbulence
is whether shocks can be accommodated in closures for the tur-
bulence energy. Since the eddy-viscosity closure originates from
incompressible turbulence, Maier et al. (2009) suggests setting =
equal to zero in the vicinity of shock fronts. This should suppress
the spurious production of SGS turbulence energy by the large
strain at shock fronts. Thus, we tested whether excluding shocks
in the computation of the eddy-viscosity closure for the turbu-
lence energy flux would improve the correlations. However, pan-
els (b) in Figs. 1 and 2 make it clear that such a cutoff deterio-
rates the correlations and implies a significant underestimate of
large positive fluxes. Although the applied shock detection cri-

terion d < —cs/Ag is rather crude, we interpret this trend as an
indication that shocks must not be separated from the supersonic
turbulent cascade.

In addition to the conventional eddy-viscosity closure, we
investigate a closure that is based on the determinant of the ve-
locity gradient (Woodward et al. 2001). In this case, the trace-
free part of the SGS turbulence stress tensor is still given by the
expression 7/, = 2pvge S . The eddy viscosity, however, does

not depend on Kigs, but is defined by vees = —C1A?|S*| 72 det S*.
Hence, the turbulence energy flux on the filter scale is given by
sz) = —C1pAL detS — %KAGd (25)
for this closure. Woodward et al. (2001) employ the same
method as we do to test the correlation between their closure and
the turbulence energy flux. A particularly interesting feature of
the determinant is that it switches signs, thereby describing two
different flow topologies. In one case, the determinant is neg-
ative. This corresponds to the forward turbulent cascade trans-
porting energy from large to smaller eddies. In the other case,
the flow is contracting in one dimension and expanding in the
other two. Then the determinant is positive, corresponding to a
backscattering of energy from small to larger eddies. This phe-
nomenon can be explained by the alignment of vortices along
a single stretching direction (the “tornado" topology). While an
energy flux of the form (19) fails to describe the reverse cascade,
we see in panels (c) of Figs. 1 and 2 that the determinant closure
yields a good correlation for negative energy flux. However, the
overall correlation does not significantly improve (see Table 1),
because of the relatively large scatter in the forward cascade.

In Woodward et al. (2006), a nonlinear expression for the
turbulence stress tensor is investigated, which depends on the
full Jacobian V ® u of the velocity:

2ut; gt

2
Tij = _2C1ngs— - 5(1 - Cl)ngsé‘ijo

26
|V ®ul? (26)
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Fig. 1. Correlation diagrams for the SGS turbulence energy flux in the case of isothermal supersonic turbulence with solenoidal forcing (Mms ~
5.3). The applied filter length is 32A. The blue dots indicate the average prediction of the closure for a given value of X3,.

Since |V ® u| = (2u;u;x)'/?, the above expression fulfills the
identity 7; = —2K,g,. The corresponding turbulence energy flux
on the filter length scale Ag is given by

A 27

- oS
oY = ~AC Kng o o
Figures 1d and 2d show that the correlation is excellent for the
above closure, with correlation coeflicients above 0.99, as listed
in Table 1. Like the determinant closure discussed above, the
trace-free part of the nonlinear closure for the SGS turbulence
stress switches signs and, thus, allows for a backward energy
cascade. To compare the quality of the different closures, slices
of the two-dimensional probability density functions are plot-
ted in Fig. 3. While both the determinant and the nonlinear clo-
sures yield good approximations to negative values of the energy
flux, the nonlinear closure is cleary superior for large positive
fluxes. However, the tails are flatter for compressively driven tur-
bulence, which implies that large deviations are more frequent
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in this case. The eddy-viscosity closure closely reproduces low
positive values of the energy flux. For high positive values, the
deviations are less pronounced in comparison to the determinant
closure, but greater than for the nonlinear closure.

3.2. Mixed closure for supersonic isothermal turbulence

Even though the correlation of the turbulence energy flux is very
good, the purely nonlinear closure (26) is generally not adequate
as a model for the turbulence stress tensor for the following rea-
sons. Most importantly, rotation invariance is violated because
of the antisymmetric part of V ® u. As a consequence, spuri-
ous turbulence energy would be produced for a uniformly rotat-
ing fluid. Apart from that, the application of this closure in LES
of forced turbulence show that the growth of turbulence energy
during the transition from laminar to turbulent flow is insuffi-
cient for this closure. This is because of the linear dependence
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Fig. 2. Correlation diagrams for isothermal supersonic turbulence with compressive forcing (M,,s ~ 5.6) as in Fig. 1.

Table 1. Closure and correlation coefficients for the closures shown in
Figs. 1 and 2.

Closure C Corr[Z3o4, 2(3“212)]
Solenoidal forcing, ¢ = 1.0, My = 5.3
Eddy viscosity 0.102 0.950
Eddy viscosity (shocks excluded)  0.055 0.931
Determinant 0.803 0.950
Nonlinear 0.849 0.991
Compressive forcing, ¢ = 0.0, My = 5.6
Eddy viscosity 0.092 0.930
Eddy viscosity (shocks excluded)  0.059 0.914
Determinant 0.834 0.947
Nonlinear 0.833 0.991

on ngs4. As pointed out by Woodward et al. (2006), a seed term
has to be included in order to trigger the production of turbu-

4 The eddy-viscosity closure depends on K./c. Writing Kye = T
a factor g, can be cancelled from the SGS turbulence energy Eq. (7).
This results in an equation for g, with a nonvanishing production rate

lence energy. If the seed term is constructed from the symmetric
part of the velocity gradient, then turbulence energy production
vanishes for a uniformly rotating fluid, and, consequently, the
problem of rotation invariance is also resolved. Woodward et al.
(2006) consider a linear combination of the closure (26) with
the determinant closure. Because of the relatively large scatter
of the determinant closure for large positive energy fluxes, how-
ever, we propose a combination of the nonlinear closure with
the linear eddy-viscosity closure. Conceptually, this combina-
tion has the advantage that the eddy-viscosity closure, which is
well established for LES of incompressible turbulence, follows
as a limiting case.

The least-squares-error approach can be generalized to a
mixed closure with two coefficients, C; and C,. For

2 _
CLf™ + Cog ™ =I5 + ZKad,

3 (28)

of g, even starting from the initial condition gs,s = 0. For the nonlinear
closure, on the other hand, g, = 0 is a fixed point of the equation.
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Fig. 3. Slices of the two-dimensional probability density functions plotted in Figs. 1 and 2, showing the predictions of different closures for the
values of the explicitly computed energy flux X3, that are indicated by the vertical dashed lines. The top and bottom rows of panels show the

results for solenoidal and compressive forcing, respectively.

the closure coefficients are given by the linear system of
equations

( f |f(ds)|2d3x) C +( f f‘“‘s>g<°“>d3x) G (29)
4% 4%

- [ el +§KAGE dx, (30)
( f f(C'S)g(C'S)d3x) Ci+ f |g‘°15)|2d3X) Ca €1V

4% %

_ fv s zwgz%g dx, (32)
where

1 = Ag(20Kag) IS P2, 33)
g = —4KAG%L;T§‘ (34)

The solutions for C; and C, that are obtained from our numer-
ical data are listed in Table 2. As one can see, the correlation
coefficients are about as high as for the purely nonlinear clo-
sure and there is only little variation with the forcing and the
filter length scale. For Ag = 64A the ratio of Ag to the integral
scale L is 8, which is quite small. As a consequence, the driving
force marginally influences this length scale. The filter length
Ag = 16A, on the other hand, is significantly affected by numer-
ical dissipation. The correlation diagrams for the mixed closure

are plotted in Fig. 4. Although the relation between E(;ZIZ) and
2304 1s slightly tilted for negative fluxes, the results are compara-
ble to Figs. 1d and 2d. This can also be seen in Fig. 3. Therefore,
we base our SGS model on the mixed nonlinear closure (8) with

the averaged coefficients C; = 0.02 and C, = 0.7.

A106, page 8 of 19

Table 2. Closure and correlation coeflicients for the linear combination
of the eddy-viscosity and the nonlinear closure.

(cls)

AG MAG C| C2 COIT[ZAG s EAG
Solenoidal forcing ({ = 1.0), Myms = 5.3
16A 096 0.0204 0.749 0.991
32A 1.48 0.0229 0.723 0.991
64A 216 0.0242 0.696 0.986
Compressive forcing ( = 0.0), Mims = 5.6
32A 1.29  0.0189 0.698 0.991

3.3. Supplementary tests for different Mach numbers

For the data listed in Table 2, the average Mach numbers associ-
ated with the filter scale, Ma, = ((2Kx/ pc2)1/2), assume values
around the speed of sound. Thus, the question arises whether the
closure coefficients calculated above are applicable to subsonic
velocity fluctuations. To test the mixed closure for a different
Mach number, we calculated the turbulence energy flux Z(Acés)
with fixed values C; = 0.02 and C, = 0.7 for data from a simu-
lation of isothermal turbulence with Mg ~ 2.2 (Schmidt et al.
2009). The resulting correlation diagram is plotted in Fig. 5a.
There is a small bias to overestimate the turbulence energy flux,
but the prediction of the mixed closure is still very good. Indeed,
a correlation coefficient COIT[ZG,ZgIS)] = 0.990 is obtained in
this case (see Table 3). In addition, we investigated data from an
adiabatic turbulence simulation (Schmidt et al. 2007), in which
the rms Mach number gradually decreases with time because of
the dissipative heating of the gas. The results are summarized
in Table 3, and the correlation diagram for the final snapshot of
the simulation is shown in Fig. 5b. Our results suggest that the
closure coefficients are not very sensitive to the Mach number.
Nevertheless, we cannot exclude that the optimal values of C;


http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201015630&pdf_id=3

W. Schmidt and C. Federrath: An SGS model for highly compressible turbulence

0 2000 4000

L34
(a) solenoidal, M, = 5.3, Ag = 32A

6000

(cls)
232&

0 2000 4000
2324
(b) compressive, M, = 5.6, Ag = 32A

6000

Fig. 4. Correlation diagrams for the mixed closures for isothermal supersonic turbulence with different forcing.

4A

(cls)
2

z

0 200

Zosa
(a) isothermal, M, = 2.2

400 600

(cls)

ZZ«M_\

0 200

Loan
(b) adiabatic, M, = 0.5

400 600

Fig. 5. Correlation diagrams for the mixed closure in the case of isothermal a) and adiabatic b) turbulence with lower rms Mach numbers as in

Fig. 4.

and C, differ significantly if the SGS turbulence Mach number
Mg (see Sect. 2) is only a tiny fraction of the speed of sound.
Answering this question is left for future studies.

3.4. Energy dissipation

For the turbulence energy on the length scale Ag, which
is defined by Eq. (20), a dynamical equation analogous to
Eq. (7) can be formulated. By averaging this equation over the
whole periodic domain and assuming statistical equilibrium, i.e.,
0<Kn;) = 0, the following global balance equation is obtained:

<2AG>—@—TDE>—CE<_— (35)

)

The first term is the mean turbulence energy flux, the second
term is the mean pressure dilatation (see Schmidt et al. 2006a),
and the third term is the mean dissipation rate expressed in terms
of Ky, Substituting Eq. (18) for X, yields the coefficient of tur-
bulence energy dissipation, C.. From the supersonic isothermal
turbulence data, we find a value C, ~ 1.5, which is somewhat
higher yet still comparable to typical values calculated for in-
compressible turbulence (see Sagaut 2006).

4. Large eddy simulations of forced supersonic
turbulence

To investigate statistical properties of the SGS turbulence energy
and related quantities, we run LES of forced supersonic isother-
mal turbulence with the SGS model defined in Sects. 2 and 3.
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Table 3. Correlation coeflicients for the linear combination of the eddy-
viscosity and the nonlinear closure with C; = 0.02 and C, = 0.7 for
isothermal turbulence and adiabatic turbulence at various instants with
different Mach numbers.

YT M (Mosn)  Corr[Zo4n, X571
Isothermal (y = 1.01)
9.1 2.2 0.66 0.990
Adiabatic (y = 1.4)
2.0 1.3 0.48 0.981
39 09 0.34 0.986
80 0.6 0.26 0.990
159 0.5 0.21 0.990

For the implementation, we use the code Enzo 1.5 developed by
the Laboratory for Computational Astrophysics at the University
of California in San Diego (http://lca.ucsd.edu). In these
simulations, we apply solenoidal, compressive and mixed force
fields to produce statistically stationary and homogeneous tur-
bulence with different rms Mach numbers (see Schmidt et al.
2006¢; Schmidt et al. 2009; Federrath et al. 2010b). The forc-
ing acts on length scales around the integral length L, where L
is one half of the box size. The autocorrelation time of the force
field is given by the time scale 7 = L/V, where the character-
istic velocity V specifies the magnitude of the turbulent veloc-
ity fluctuations on the integral scale. The mixture of solenoidal
(divergence-free) and compressive (rotation-free) modes of the
force field is adjusted by means of a Helmholtz decomposi-
tion with weighing parameter 0 < ¢ < 1. Purely solenoidal
forcing results for £ = 1. When setting the adiabatic exponent
y = 1.001, the energy dissipated per integral time is much lower
than the internal energy for M, up to about 10. For this rea-
son, the gas is pseudo-isothermal. This approximate treatment
of isothermality enables us to monitor energy conservation. With

A106, page 10 of 19

Fig. 6. Visualization of the SGS turbulence en-
ergy density K in a 512% LES with solenoidal
forcing.

our implementation of the SGS model, the sum of resolved ki-
netic energy, SGS turbulence energy, and internal energy minus
the power of the forcing integrated over time is conserved for the
whole computational domain to a relative precision better than
1078. The fraction of computational time consumed by the SGS
model is in the percent range.

4.1. Correlations with resolved flow quantities
and the effective pressure

As an example, Fig. 6 shows a visualization of K prepared
from an LES with 512° grid cells. The parameters of this sim-
ulation were chosen to match the ILES with solenoidal forc-
ing in Sect. 3.1. The rms Mach number of the flow is about
5.5 in the statistically stationary regime. In the reddish regions,
K is higher than the spatial mean, while it is lower in the
bluish regions. For comparison, Fig. 7 shows the local denstro-
2

phy Q> = 1 ‘V X (g”zu)’ , which is an indicator of compress-
ible turbulent velocity fluctuations (Kritsuk et al. 2007). It ap-
pears that high SGS turbulence energy is concentrated in regions
of intense denstrophy. On average, Ky ~ 0.1A%Q,, for high
denstrophy values, as one can see in the correlation diagram of
Kigs vs. A*Q;, in Fig. 8a. The same relation is found for com-
pressive forcing (see panel (b) of Fig. 8). Nevertheless, the local
values of Ko and A*Q, /2 deviate substantially from the aver-
age relation. This is a consequence of the various processes con-
tributing to the SGS dynamics, which are not fully encompassed
by the derivative of the resolved velocity field. For this reason,
derived quantities such as the rate of strain or the denstrophy are
only of limited utility for estimating the effects of turbulence on
unresolved length scales. Since Pggs = %ngs, this applies also to
the turbulent pressure.

The phase diagrams of the effective pressure (6) vs. the mass
density are plotted in Fig. 9 for both LES. One can see that the
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average of the effective pressure for a given mass density closely
follows the isothermal relation P « p. This is because the mean
turbulent pressure is small compared to the thermal pressure for
the resolution A = L/256 (see Sect. 4.2). Locally, however, the
intermittency of turbulent velocity fluctuations can give rise to
an effective pressure that exceeds the thermal pressure by one
order of magnitude. For this reason, the contribution of the tur-
bulent pressure Py is locally not negligible. This effect becomes
stronger as the cutoff scale A increases in comparison to the in-
tegral scale of turbulence.

In Sect. 2, we argue that the viscous stress term in the filtered
momentum Eq. (3) vanishes in the limit of infinite Reynolds
number, and the rate of energy dissipation on the grid scale, €,
is determined by the SGS turbulence energy (see Eq. (10)). In
contrast, an extrapolation of the expression for the microscopic
dissipation rate on length scales £ ~ 5 to the grid scale A was
proposed by Pan et al. (2009):

0€ = ovalS™ . (36)

The grid-scale viscosity vo = const. in the above expression
is treated as a constant coefficient that is determined by the
mean numerical dissipation of PPM. Defining the compressible
Reynolds number of the resolved flow by Rep = 2L%(|S*[*) /u2,..,
where i1 is the root mean square velocity”, the viscosity can be
evaluated from vpo = VL/Rea. The problem with this approach
is that the viscosity on the grid scale, which corresponds to the
SGS eddy-viscosity, cannot be assumed to be constant.

When neglecting diffusion, compressibility, and the non-
linear term in the SGS turbulence stress (8), the equilib-
rium between production and dissipation of SGS turbulence
energy in Eq. (7) implies Ky ~ (Cy /CoA?|S*|?, hence,
€ ~ (A/C)*(C1|S*))? according to Eq. (10). We emphasize that a

> See Schmidt et al. (2009). Here, we replace w2 by (S*]?) =
(w? + %d®) for consistency with Eq. (36).

Fig.7. Visualization of the denstrophy Q;, for
the same snapshot as in Fig. 6.

relation of the form € ~ A?|S*|* follows from any common SGS
model under the assumption of local equilibrium (Sagaut 2006).
Comparing to Eq. (36), we see that that v4 ~ A?|S*|, which is
not a constant. This is because pe # o7ju; j o |S *|?, as explained
in Sect. 2. The discrepancy becomes apparent in Fig. 10, which
shows the correlation diagrams of the rate of energy dissipation
calculated via Eq. (36) vs. € following from the SGS model.
Toward low values of €, we find an average relation close to
|S*?> oc €2/3, which is just the relation that follows from the above
estimate of the equilibrium dissipation rate. This behaviour is
reasonable because the contribution of the nonlinear term in the
closure (8), which is neglected in the estimate, is relatively small
for low values of Kg (corresponding to low energy dissipation).
Moreover, the unresolved velocity fluctuations tend to be signif-
icantly smaller than the speed of sound in this limit, which cor-
responds to low compressibility. Consequently, the results from
the LES support the theoretical arguments against Eq. (36) as an
approximation to the dissipation rate on the grid scale. Although
Egs. (10) and (36) yield about the same mean dissipation rate,
the former determines the local rate of energy dissipation on the
footing of a physically well motivated scale-separation of fluid
dynamics, while the latter is based on a putative analogy between
the numerical and the microscopic viscosity.

4.2. Dependence on the cutoff scale

The scaling of the turbulent velocity fluctuations in supersonic
hydrodynamic turbulence has been inferred from energy spec-
trum functions and structure functions (e.g., Kritsuk et al. 2007,
Schmidt et al. 2008, 2009; Federrath et al. 2010b; Price &
Federrath 2010). The pure velocity scaling in the supersonic
regime is stiffer than Kolmogorov scaling, and it appears that
the scaling exponent depends on the forcing. For example,
Federrath et al. (2010b) find indices of the turbulence energy
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Fig. 8. Correlation diagrams of the SGS turbulence energy vs. the denstrophy, normalized by the cutoff scale A, for 5123 LES with solenoidal and
compressive forcing. The contours are logarithmic. The average relation between both quantities is indicated by the dotted lines, and the dashed

line shows the relation Ky, ~ 0. 1A%2Q, /2.
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Fig. 9. Phase diagrams of the effective pressure defined by Eq. (6) vs. the mass density for 5123 LES with solenoidal and compressive forcing. The
contours are logarithmic. The averages of the SGS turbulence energy for particular values of the denstrophy are indicated by the dotted lines.

spectra f = —1.86 + 0.05 and —1.94 = 0.05 for solenoidal
and compressive forcing, respectively. For incompressible tur-
bulence, 8 = —5/3. Velocity variables with fractional mass-

weighing, in particular p'/3u, exhibit similar scaling laws, which

can be interpreted as indicating universality (Kritsuk et al. 2007,
Schmidt et al. 2008).

The SGS turbulence energy is given by the fluctuations in
the velocity and density fields on length scales £ < A, as de-
fined by Egs. (4) and (5). However, there is no obvious relation
to the known scaling laws for turbulence, because the decompo-
sition of the fluid dynamical variables cannot be related to the
two-point statistics (structure functions) or the Fourier modes
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(energy spectra) in a straightforward manner. To determine the
scaling of SGS turbulence as a function of A, we run several LES
with A ranging from L/256 to L/32. The mean values of the rms
Mach number and the SGS turbulence Mach number are plotted
as functions of time in Fig. 11. The flow approaches a statisti-
cally stationary state after about 2 integral time scales (Schmidt
et al. 2009; Federrath et al. 2010b), for which M settles at val-
ues between 5 and 6. The temporal variation in M, is caused
by the stochastic forcing. As expected, (Mggs)l/ 2 decreases with
the cutoff scale. Averaging the spatial means from ¢t = 27 to 107,
we find the time-averaged mean values listed in Table 4. As one

can see in Fig. 12a, the time averages of (Mfgs)l/ 2 closely follow
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Fig. 10. Correlation diagrams of the normalized rate of energy dissipation defined by Eq. (36), where v, assumes a constant value that is given by
the numerical Reynolds number, vs. the rate of energy dissipation (10) that is predicted by the SGS model. The averages of expression (36) for

given values of g€, are indicated by the dotted lines.

Table 4. Time-averaged spatial mean values of various quantities and their standard deviations from the averages for different numerical

resolutions.

N A/L Mrms <M§gs>l/2 <ngs>/(p0 Vz) (L/V3)<f>

Solenodial forcing ({ = 1)

64 1/32 5.38 1.107 £0.053  0.0726 £ 0.0055 1.236 +0.141

128 1/64 5.50  0.787 £0.030 0.0407 £0.0025 1.230+0.113

256 1/128 555 0.578 £0.022  0.0236 +0.0013  1.213 + 0.098

512 1/256 552  0412+0.012 0.0138 +0.0012  1.219 +0.159

Compressive forcing (£ = 0)

64 1/32 5.29 1.353 £0.049  0.0235 £0.0044  0.253 +£0.072

128 1/64 543  1.040 £0.041 0.0148 £0.0018 0.286 + 0.047

256 1/128 557  0.767 £0.029  0.0086 + 0.0013  0.293 + 0.061

512 1/256  5.86  0.528 +£0.023  0.0048 +0.0008  0.292 + 0.067
power laws, remarkable, because it suggests that the scaling properties of tur-

2 » bulence on small length scales are independent of the forcing.

(Migs) 7 oc AT, G7 As can be seen in the bottom panels of Fig. 13, the above

with ay; = 0.475 + 0.004 for solenoidal and 0.451 + 0.026 for
compressive forcing.

The behaviour of the mean SGS turbulence energy is simi-
lar, although the intermittent fluctuations of (K) are more pro-
nounced than the mean SGS turbulence Mach number (see top
panels of Fig. 13). The higher degree of intermittency stems
from the mass density that is included in K. For compres-
sive forcing, (K is systematically lower in comparison to the
LES with solenoidal forcing. This indicates that the total amount
of energy in the turbulent structures on a given length scale is
smaller in the compressive forcing case. The ratio of the mean
values of Ky for compressive and solenoidal forcing in Table 4
approximately agrees with the ratio 0.38 that is inferred from the
filtered high-resolution data. On the other hand, the scaling laws

<ngs> oc A", (38)

are nearly the same for solenodial and compressive forcing
(see Fig. 12b). We find the slopes ax = 0.799 + 0.009 and
0.769 + 0.029, which agree within the error bars. This result is

scaling law of (Kg) results in a mean dissipation rate {pe) that
is independent of the cutoff scale, which is an essential property
of the energy dissipation predicted by the SGS model. The time-
averaged mean values are listed in Table 4. Since turbulence is
statistically stationary in these simulations, the constant rate of
energy dissipation corresponds to a mean turbulence energy flux
that is also constant. Theoretical arguments implying the exis-
tence of a scale-free energy flux in the compressible turbulent
cascade have recently been presented by Aluie (2011). The sig-
nificantly lower mean dissipation rate in the case of compres-
sive forcing is consistent with the energy spectra of p'/3u (see
Fig. A.1, in Federrath et al. 2010b). This mass-weighted veloc-
ity variable is related to the energy dissipation rate (Kritsuk et al.
2007). Moreover, Fig. 14 (left panel) shows that the growth of
the mean internal energy in time becomes smaller as the weigh-
ing parameter { decreases from 1 (solenodial forcing) to 0 (com-
pressive forcing). After subtracting the contribution from numer-
ically resolved compression effects (see Schmidt et al. 2006c),
we find that, independent of the cutoff length A, about 3/4 of the
change of the internal energy stems from SGS turbulence energy
dissipation. The remainder is caused by numerical dissipation.
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Fig. 11. Temporal evolution of the rms Mach number (fop) and the mean SGS turbulence Mach number (bottom) for solenoidal (left column) and
compressive forcing (right column). The cutoff length A decreases from L/32 (light colour) to L/256 (full colour).

2 1/2
<Msgs> /
150

L
comp. .- -
P f’.”
100! T
,//' /,J/
070"
"’¢”‘ ”'f”
0.504--" e soln.
f”"'
0.30 ‘ ‘ ‘ A
0.005 0.010 0.020 /L

(a) SGS turbulence Mach number

<ngs/p0 V2>
—". “““
0.050} soln. 7"
: g
00200 " <
T "’"
ooof”
—’.’
,,,,,,, comp.
0.005 .«
I I I A L
0.005 0.010 0.020 /

(b) SGS turbulence energy

Fig. 12. Scaling laws for the mean SGS turbulence Mach number a) and energy b) as functions of the numerical resolution A.

This does not imply that the total rate of energy dissipation is
much higher in LES than in ILES, because the total energy dis-
sipation is always determined by the energy injection due to the
forcing. In conclusion, the greater part of kinetic energy is dissi-
pated through the SGS turbulence energy reservoir at a scale-free
rate.

To quantify the relative importance of high values of Mg,
we determined the volume fractions of cells with an SGS
turbulence Mach number greater than a particular value. This
fraction is given by 1 — cdf(M.gs), where cdf(Ms) is the cu-
mulative distribution function of M. In Fig. 15, the resulting
functions are plotted for the LES with different cutoff lengths. As
expected, the fraction with M, > 1 decreases with the cutoff
length A. However, the tails toward high M., demonstrate that
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even at relatively high resolution there are supersonic velocity
fluctuations on unresolved length scales, and the corresponding
turbulent pressure decreases only a little with the cutoff scale.

For the lowest resolution LES, we can compare the dis-
tribution of Mg to the distribution inferred from the corre-
sponding filtered 1024 data (see Sect. 3.1). The filter length
Ag = 16A = L/32 is equivalent to the cutoff length in the 64°
LES. Choosing an even lower resolution of the LES, correspond-
ing to a larger filter length for the ILES, turned out not to be
feasible. Even for the LES with A/L = 1/32, the forcing range
and the range of length scales that are directly affected by nu-
merical dissipation overlap. For the filtering of the ILES, on the
other hand, the filter length cannot be lowered (corresponding to
a higher resolution of the LES), because the dynamical range of
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left panel (the curves for { = 1 and ¢ = 2/3 almost coincide).

fluctuations between the grid scale and the filter length would
become insufficient and the numerical smoothing would be too
strong. Nevertheless, Fig. 15a demonstrates that the distributions
agree remarkably well in the case of solenoidal forcing. For com-
pressive forcing, there are larger discrepancies. However, given
that Gaussian filtering only corresponds roughly to the implicit
filter in an LES and that the SGS model is based on various ap-
proximations, the match is quite satisfactory.

The larger deviations in the case of compressive forcing sug-
gest that it is not possible to calibrate the SGS model coeffi-
cients in such a way that an optimal match is obtained both
for solenoidal and for compressive forcing at the same time.
The different shape of the distribution that is obtained from
the high-resolution simulation with compressive forcing points
toward a missing physical effect such as the pressure-dilatation,

which is entirely neglected in our SGS model. Either way, purely
compressive forcing is a limiting case. In nature, some mix-
ture of solenoidal and compressive forcing is more likely to
occur. In Fig. 14 (right panel), we compare the distributions
of Mg for force fields with ¢ varying from 1 (solenoidal) to
0 (compressive). High SGS turbulence Mach numbers become
more frequent as the contribution of compressive forcing modes
increases.

4.3. Dependence on the Mach number

At fixed resolution, the SGS turbulence energy increases with
the resolved kinetic energy of the flow. For isothermal tur-
bulence, this also implies an increase in the SGS turbulence
Mach number with rising rms Mach number. To investigate this
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Table 5. Time-averaged spatial mean values of various quantities and their standard deviations from the averages for different forcing magnitudes
(defined by Ma = V/c¢() and mixtures of solenoidal and compressive modes.

Ma Mims (MEDM? M Mims (Kigs)/poV? (L/V3)e)
=23

333 291 0.293+0010 0.101 0.0193 £ 0.0016 _ 0.933 + 0.109

6.67 538  0.559 +0.021 0.104 0.0223 +0.0016  1.125+0.123

1000 7.54  0.778 +0.044 0.103 0.0229 +0.0018  1.150 + 0.142

1667 1049  1.097 +0.117 0.105 0.0232 +0.0017  1.168 +0.130
7=1/3

425 296 03200009 0.108 0.0120 = 0.0011 _ 0.535 = 0.064

850 573  0.636+0.020 0.111 0.0149 +0.0015  0.641 + 0.089

1275 814  0.896 +0.052 0.110 0.0153 +0.0017  0.666 + 0.101

2125 11.81 1.268 +0.123 0.107 0.0152 +0.0015  0.654 + 0.094

dependence, we varied the magnitude of mixed forcing with
{ =2/3and ¢ = 1/3. In the case { = 1/2, a forcing field with
two solenoidal and one longitudinal degrees of freedom is ob-
tained. Figure 8 in Federrath et al. (2010b) demonstrates that the
ratio of the energy that is contained in transversal and longitu-
dinal modes approaches a constant value for > 1/2 (see also
Kritsuk et al. 2010). Correspondingly, the cumulative distribu-
tions of Mg, plotted in Fig. 14b show that there is almost no
difference between forcing with { = 2/3 and purely solenoidal
forcing ({ = 1). On the other hand, one can see that there is a
noticeable influence of compressive modes for { = 1/3, but the
distribution differs from the purely compressive case ({ = 0).

The dependence of the RMS SGS turbulence Mach number
on the forcing amplitude is shown in the top panels of Fig. 16 for
2563 LES. The corresponding characteristic Mach numbers and
time-averaged statistics are listed in Table 5. Independent of the
Mach number, the ratio of (MZ,)"/? to M is nearly equal for
¢ = 2/3 and 1/3. This ratio is 0.102 for purely solenoidal forc-
ing (£ = 1), and 0.138 for purely compressive forcing (£ = 0).
Consequently, (MZ,)'/?/ Mums is mostly determined by the grid
scale A, except for small £. As one can see in the middle pan-
els of Fig. 16, the normalized mean SGS turbulence energy,
(Ksgs) /poV?, is about the same for the different Mach numbers,
with a weak trend to decrease toward low Mach numbers (see
also Table 5). The same behaviour is found for the mean dissi-
pation rate (Fig. 16, bottom panels), which further supports the
validity of the SGS model in the supersonic regime. Following
the trend discussed in Sect 4.2, clearly the mixture of solenoidal
and compressive forcing modes has an influence.
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Figure 17 shows the distributions of M, for £ = 2/3 (a)
and 1/3 (b), as explained in Sect. 4.2. For both forcing types,
the volume fractions with Mg, > 1 increase with the forcing
magnitude. For rms Mach numbers greater than 5, supersonic
turbulent velocity fluctuations at the cutoff scale fill more then
10% of the total volume. If the ratio between the integral scale
of turbulence and the cutoff scale is less, the volume filling factor
increases further.

5. Conclusion

In formulating a mixed closure for the flux of energy from the
numerically resolved to the unresolved scales, we generalized
the subgrid-scale (SGS) turbulence energy model to the regime
of highly compressible turbulence. This closure is based on
ideas of Woodward et al. (2006) and features a nonlinear term
in addition to a linear eddy-viscosity term. In general, the tur-
bulence energy cascade is an important source of SGS turbu-
lence energy production in turbulent flows, and it should not be
neglected even if other subresolution sources are emphasized
in particular astrophysical applications (e.g., Scannapieco &
Briiggen 2008; Joung et al. 2009). Our proposed closure for the
transfer of energy by the turbulent cascade complements theses
models. We verified this closure by means of explicit filtering
of high-resolution data from various simulations of supersonic
isothermal and adiabatic turbulence (Schmidt et al. 2007, 2009;
Federrath et al. 2010b). Tests in large eddy simulations of forced
supersonic turbulence show that the SGS model meets several
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important requirements that should be satisfied by any sound
SGS model:

— for statistically stationary turbulence, an equilibrium be-
tween the production and the dissipation of SGS turbulence
is reached. The mean SGS turbulence energy depends on the
grid scale via a power law;

— the SGS turbulence Mach number, which specifies the im-
portance of the turbulent pressure on the grid scale relative
to the thermal pressure of the gas, depends linearly on the
rms Mach number of the resolved turbulence;

— the SGS turbulence energy dissipation is independent of the
grid scale.

Forced turbulence simulations in a periodic box are very suit-
able to testing the properties listed above, because of the well-
defined statistics of the isotropic, homogeneous and stationary
turbulence that is produced. In addition to these properties, we

find a dependence of the SGS turbulence energy and the rate
of energy dissipation on the mixture of solenoidal (divergence-
free) and compressive (rotation-free) forcing modes. However,
the scaling laws for the SGS turbulence energy are very similar
for solenoidal and compressive forcing. This indicates that the
SGS model describes the dynamics in the inertial subrange, al-
though the length scales close to the cutoff scale are affected by
numerical dissipation. The differences in the mean values result
from the substantial differences in the turbulent flow structure on
larger scales (see Federrath et al. 2008, 2009, 2010b).

The implementation of the SGS model into a fluid-dynamical
code such as Enzo is rather straightforward. The SGS turbulence
energy can be treated as a passive scalar with various source
terms. To evaluate the mixed closure for the turbulence energy
cascade, derivatives of the resolved velocity field are computed
by means of centred differences. Care must be taken to ensure
energy conservation, particularly if the net change of the SGS
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mixtures of solenoidal and compressive modes, as in Fig. 16.

turbulence energy in a certain grid cell exhausts the available
energy over a time step or, vice-versa, if too much energy is
drained from the resolved scales. However, these are exceptions
that can be handled numerically. The effective increase in com-
puting time is less than 10%. Moreover, the hydrodynamic cou-
pling of the SGS model to the resolved flow introduces a re-
duction of the bottleneck effect in the turbulence energy spectra
(Woodward et al. 2006; Schmidt 2010).

In our large eddy simulations, we find correlations be-
tween resolved flow quantities, such as the rate of strain or the
denstrophy and SGS quantities, but the scatter is large. This is
problematic if one intends to estimate unresolved flow proper-
ties on the basis of such correlations. In particular, this applies
to the calculation of the dissipation rate from a constant numer-
ical viscosity and the rate of strain, as proposed by Pan et al.
(2009). We have shown that the assumption of a constant numer-
ical dissipation coefficient is inconsistent with the equilibrium
relation between the dissipation rate and the rate of strain on the
grid scale in the limit of large Reynolds numbers. This relation,
which follows from the SGS turbulence energy model with the
linear eddy-viscosity closure (and also from the Smagorinsky
model), is verified by our LES data for low turbulence intensity,
while deviations become apparent for strong turbulent dissipa-
tion. This can be understood as a consequence of the nonlinear
term in the closure for the turbulence energy flux. Also the esti-
mate of turbulent pressure effects using the rate of strain and the
vorticity of the resolved flow that is put forward by Zhu et al.
(2010) is incomplete because they do not distinguish between
the contributions from the resolved flow and from the subgrid
scales. The predictions from both approaches with regard to tur-
bulence in the intergalactic medium are compared in ongoing
work (Iapichino et al. 2011).

From the probability distributions of the SGS turbulence
Mach number, it follows that the turbulent pressure locally ex-
ceeds the thermal pressure even at moderate rms Mach num-
bers and for relatively small grid scales. Since the grid scale in
contemporary galactic disk simulations (e.g., Agertz et al. 2009;
Tasker & Tan 2009) is close to molecular cloud scales (a few pc),
unresolved supersonic velocity fluctuations are quite likely and
the turbulent pressure plays an important role. This has implica-
tions for the treatment of collapsing gas regions. The criterion
for gravitational stability, which influences the grid resolution
in adaptive mesh refinement simulations and controls the pro-
duction of sink particles to capture the collapsing gas, is usu-
ally based on the thermal Jeans mass (among other criteria; see
Federrath et al. 2010a). To account for the effects of turbulence
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below the grid scale, we suggest including the turbulent pressure
in the definition of the Jeans mass, in analogy to the magnetic
pressure in self-gravitating MHD turbulence.

To model the fragmentation below the grid scale in more de-
tail, a possible approach could be based on the assumption that
the local star formation efficiency is regulated by turbulence on
the grid scale. Then the star formation rate can be parameterized
in terms of the turbulent Mach number that is calculated from the
SGS model (see Krumholz & McKee 2005; Padoan & Nordlund
2009). On the other hand, star formation acts back on the SGS
turbulence energy via stellar feedback. As suggested by Joung
et al. (2009), a stellar feedback term can be included in the SGS
turbulence energy equation. Statistically, we have

%ngs ~ X+ X, —pE,

where X, o« pe, /Tg accounts for the energy injection per unit
mass, e4, by supernovae. The associated time scale is the free-
fall time scale ¢ = [37/(32Gp)]"/?, which is the fundamental
time scale of star formation. Neglecting the fluctuations of the
gas density and setting the mean production rate & ~ V?/T,
where V and T are the typical velocity and the turn-over time
scale, respectively, of the resolved turbulent flow, it follows that
the turbulent pressure in equilibrium is of the order

V2 e |
2/3 *
P ~ pi” T +C*nJ '

(39)

Kolmogorov scaling becomes manifest in the factor A>3 in
Eq. (39). For highly compressible turbulence, however, the scal-
ing of the SGS turbulence energy deviates from the Kolmogorov
law (see Sect. 4.2). Depending on the ratios V?/e, and T /7y, the
production of SGS turbulence energy by the turbulent cascade or
by supernovae dominates. The model of Joung et al. (2009) fol-
lows in the limit (V?/e4)(tg/T) < 1. In general, shear instabil-
ities, gravitational instabilities, cooling instabilities, etc. above
the grid scale feed energy to smaller scales. For disk galaxies, a
simple estimate can be obtained from the velocity dispersion of
atomic hydrogen, which is about 10kms~!. Agertz et al. (2009)
show that gravitational instabilities grow on length scales rang-
ing from 0.1 to about 2kpc. Setting V = 10°cms™" and as-
suming L > 0.1kpc ~ 3 x 10*° cm, the turbulence energy flux
to smaller length scales is V?/T = V?/L < 0.003ergg 's7!.
On the other hand, e, ~ 4 X 10¥ perg M' ~ 2 x 10 erg g!
and C, ~ 0.025 imply =, ~ 0.0377(n/1cm™3)/2erg g~ s7! (see
Joung et al. 2009). Since the efficiency of the energy transfer
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from supernova blast waves to the interstellar gas is roughly
n =~ 0.1 (Mac Low & Klessen 2004), the energy injection by
stellar feedback is comparable to the turbulence energy flux for
atomic hydrogen with density n ~ 1 cm™>. The dependence of
>, on the gas density implies a greater contribution from su-
pernova feedback in the cold-gas phase, but the above estimate
does not account for the intermittency of turbulent velocity fluc-
tuations, which entails large deviations from the mean. As a con-
sequence, the assumption of Joung et al. (2009) to consider the
energy injection by supernova as the main source of the turbulent
pressure is marginally fulfiled in cosmological simulations, in
which the internal structure of galaxies is very poorly resolved.
In galactic-scale simulations with high resolution, on the other
hand, turbulence is not uniformly produced, and including the
turbulence energy cascade improves the description of numeri-
cally unresolved processes. In particular, it will be useful to at-
tempt a further generalization of the SGS model to multiphase
turbulence. A very simple ansatz has recently been presented by
Murante et al. (2010). A complete SGS model that treats a warm
and a cold gas phase is presently under development (Braun &
Schmidt, in prep.).

Including stellar feedback and cooling into our SGS model
will be of further utility for the numerical treatment of turbulence
in the intergalactic medium (see Springel & Hernquist 2003),
where turbulence is produced by different processes (see, for in-
stance, Cen & Ostriker 1999; Subramanian et al. 2006; Ryu et al.
2008; Iapichino et al. 2008, 2011). Oppenheimer & Davé (2009)
show that a significant amount of the line broadening of O VI
in cosmological simulations stems from numerically unresolved
turbulence. They apply a heuristic model in the postprocessing
of the simulation data. When using an SGS model, on the other
hand, the effect on the line broadening can be computed on the
fly. Moreover, metals are mixed into the intergalactic medium
by turbulence that is driven by galactic outflows. SGS turbu-
lence enhances the turbulent mixing. Following an approach that
is quite similar to the treatment of stellar feedback in galaxy
simulations, our SGS model can be used in combination with
phenomenological models for supernova-driven outflows (Joung
et al. 2009; Evoli & Ferrara 2011). In both cases, the use of adap-
tive mesh refinement is mandatory for achieving a sufficient dy-
namical range. Therefore, an essential objective for future work
will be to incorporate the new closure for the highly compress-
ible turbulent cascade into fluid mechanics with adaptively re-
fined large eddy simulations (FEARLESS; Maier et al. 2009).
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