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Bi-directional plasma expansion resulting in the formation of ion beams travelling in opposite

directions is respectively measured in the converging and diverging parts of a magnetic nozzle

created using a low-pressure helicon radio-frequency plasma source. The axial profile of ion satura-

tion current along the nozzle is closely correlated to that of the magnetic flux density, and the ion

“swarm” has a zero convective velocity at the magnetic throat where plasma generation is local-

ized, thereby balancing the bi-directional particle loss. The ion beam potentials measured on both

sides of the magnetic nozzle show results consistent with the maximum plasma potential measured

at the throat. VC 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4943583]

Ion acceleration along a magnetic field plays an important

role in physical systems spanning astro-physical phenomena1

down to electric propulsion systems for spacecrafts2,3 and

plasma processing for semiconductors.4 In these low pressure

plasmas, the light electrons are approximately in equilibrium

due to their large thermal velocity, while the heavy ions are

not and their motion is greatly affected by the electron pres-

sure via the electric field.5,6 As a magnetic field confines

charged particles across its perpendicular direction and guides

their fluxes along the parallel direction which functions like a

nozzle7,8 and the pressure-determined momentum perform-

ance of an ion swarm is similar to a compressible gas flow,

ion acceleration along a convergent-divergent magnetic field

has been previously studied as a classic uni-directional nozzle

flow.9,10 Numerous studies have investigated factors that influ-

ence ion acceleration, including double layer,11–13 gas types,14

and neutral depletion.15,16 The present study focuses on an ex-

perimental observation of bi-directional ion acceleration along

a convergent-divergent magnetic nozzle with a zero convec-

tive velocity at the magnetic throat.

The experiment is carried out in the Chi-Kung reactor as

shown in Figure 1(a), which, on the left hand side

(z < 0 cm), consists of a cylindrical plasma source termi-

nated with an aluminium earthed plate and, on the right hand

side (z > 0 cm), a contiguously attached 30-cm long, 32-cm

diameter, earthed aluminium diffusion chamber. The plasma

source is made of a 31-cm long, 13.7-cm inner diameter,

0.65-cm thick Pyrex glass tube, and surrounded by an 18-cm

long double saddle antenna operating at a constant power of

310 W at a radio frequency (RF) of 13.56 MHz. A solenoid

close to the source exit is used to generate a convergent-

divergent magnetic nozzle whose field lines are calculated

from the Biot-Savart law and shown in Figure 1(a) as solid

curves. A turbo/primary pumping system is implemented to

obtain a base pressure of 4:5� 10�6 Torr in the reactor

monitored with an ion gauge. Argon gas is fed to the system

through a side wall port of the diffusion chamber at a

constant gas pressure of 5:0� 10�4 Torr measured with a

Baratron gauge.

Four electrostatic probes are used as experimental diag-

nostics: a Langmuir probe (LP), an emissive probe (EP), and

two retarding field energy analysers (RFEAs), with their

probe shafts and the reactor walls being grounded. A vacuum

slide is mounted on the back plate of the diffusion chamber

to allow positioning of the probes along both the axial and

radial directions without breaking vacuum (except when

changing the probe). The LP has a 1.9-mm diameter nickel

tip and measures the ion saturation current at a negative bias

voltage of �95 V. The EP consisting of a 0.2-mm diameter

tungsten wire measures the plasma potential using the float-

ing potential method. The RFEA, previously described in

detail in Ref. 17, comprises of a structure with a 2-mm diam-

eter orifice, four grids (an earthed grid, a repellor grid biased

at �80 V, a discriminator grid, and a secondary suppressor

grid at �18 V), and a collector plate biased at �9 V. It meas-

ures the characteristic current-voltage curve IcðVdÞ by

sweeping the discriminator voltage from 0 V to 80 V and

measuring the corresponding collector current. The first de-

rivative of IcðVdÞ curve represents the ion energy distribution

function (IEDF), which can be used to: (1) detect the

FIG. 1. Chi-Kung reactor implemented with a convergent-divergent mag-

netic nozzle, showing the major components and diagnostic probes. The

calculated field lines are plotted within the reactor geometry.a)yunchao.zhang@anu.edu.au

0003-6951/2016/108(10)/104101/4/$30.00 VC 2016 AIP Publishing LLC108, 104101-1

APPLIED PHYSICS LETTERS 108, 104101 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions.  IP:  150.203.242.36 On: Mon, 07 Mar 2016 20:02:25

http://dx.doi.org/10.1063/1.4943583
http://dx.doi.org/10.1063/1.4943583
http://dx.doi.org/10.1063/1.4943583
mailto:yunchao.zhang@anu.edu.au
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4943583&domain=pdf&date_stamp=2016-03-07


presence of an ion beam (IEDF exhibiting two peaks) or the

absence of an ion beam (single-peak IEDF), and (2) derive the

direct-current components of local plasma potential (Vp) and

ion beam potential (Vb, if an ion beam is present). Here, any

sheath oscillation in front of the earthed RFEA17 simply

results in some peak broadening (as confirmed by the consis-

tency between the RFEA and EP measurement of potentials).

For the present experiment, a current of 9 A generated

from the direct-current (DC) power supply is transmitted into

the double-coil-wound solenoid, i.e., a current of 4:5 A in

each coil, and this setting is used by default unless otherwise

specified. The magnetic flux density (where Bz ¼ B) on the

central axis ranging from z ¼ �25 cm to 10 cm, is measured

by a gaussmeter. The data, represented by open squares scaled

with the right labelled y-axis in Figure 2(a), show a maximum

of 200 Gauss at z ¼ �9 cm (i.e., location of the magnetic

throat) and a symmetric decrease to tens of Gauss in the top

region of the plasma source and in the diffusion chamber.

Calculated results from the Biot-Savart law are given by the

solid line and are consistent with the measurements.

The normalized ion saturation current, represented by

open circles scaled with the left labelled y-axis in Figure

2(a), follows a similar profile to that of the magnetic flux

density with a maximum at the magnetic throat (z ¼ �9 cm).

This configuration is similar to that generated in previous ex-

perimental studies of electrode-less Helicon thrusters,6,18

where the maximum ion saturation current corresponds to

the location of plasma generation, which is further verified

by measuring the axial plasma potential profile using the EP,

represented by open circles in Figure 2(b): a peak value of

about 40 V is measured at z ¼ �9 cm and decreases along

both axial directions; the larger potential decrease of �10 V

measured from z ¼ �15 cm to �25 cm compared to �5 V

from z ¼ �3 cm to 10 cm results from the closer proximity

of the grounded source end plate at z ¼ �31 cm.

In order to fully characterize ion transport and accelera-

tion along both directions of the magnetic nozzle, two

RFEAs are positioned face-to-face: one RFEA is mounted

through the vacuum slide into the diffusion chamber with its

orifice facing the plasma source (Figure 1(a)), denoted as

“RFEA_c,” and the second RFEA is inserted via the top alu-

minium grounded plate terminating the plasma source with

its orifice facing the diffusion chamber, denoted as

“RFEA_s.” Under the present experimental condition, the

placement of RFEA_c in the axial range of z > 2 cm or

RFEA_s in the range of z < �18 cm has a negligible pertur-

bation (less than a few percent) on plasma parameters, deter-

mined by moving one RFEA on axis and using the other one

as a witness probe. For these regions, the local plasma poten-

tial measured by the RFEAs show similar results to those

obtained by the EP, with a maximum deviation of about 3 V

and an ion beam is simultaneously detected by both RFEAs:

the beam potential values measured by RFEA_s in the range

from z ¼ �25 cm to �18 cm in the plasma source, repre-

sented by solid triangles in Figure 2(b), and those measured

by RFEA_c from z ¼ 2 cm to z ¼ 10 cm in the diffusion

chamber, represented by solid diamonds, are in very good

agreement with the EP-measured maximum plasma potential

at the magnetic throat (z ¼ �9 cm). Other high-field experi-

ments6 have also shown that the plasma density and potential

profiles are defined by the magnetic flux density profile.

These results provide clear evidence that bi-directional

ion acceleration is present where an ion beam, with a zero

convective velocity at the magnetic throat, is formed and simul-

taneously travels “forward” into the diffusion chamber and

“backward” in the closed region of the plasma source.

Examples of the IEDF curves obtained by RFEA_c at z ¼ 7 cm

in the diffusion chamber and by RFEA_s at z ¼ �25 cm in

the plasma source (both locations being 16 cm away from

the magnetic throat as indicated in Figure 2(b)) are shown as

solid lines in Figures 3(a) and 3(b) and present a similar two-

peak distribution with a beam potential value of about 40 V.

The ion beam energy at those positions is about 10 eV. This

confirms that the plasma generation due to ionization must

be localized in the throat region of the magnetic nozzle to

supplement this bi-directional particle loss carried by the ion

FIG. 2. (a) Right labelled y-axis: On-axis magnetic flux density generated

by a current of 9 A supplied into the solenoid, measured using a gaussmeter

(�) and calculated by the Biot-Savart law (solid line). Left labelled y-axis:

axial profile of normalized ion saturation current measured by the LP (�).

(b) Axial profiles of plasma potential measured by the EP (�), beam poten-

tial obtained by RFEA_c (�) and RFEA_s (�), and plasma potential

obtained by RFEA_c (�) and RFEA_s (�). The vertical dashed line show

the location of source-chamber interface at z ¼ 0 cm.
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beam. Details of the ionization mechanism are beyond the

scope of this study and it is simply noted that the magnetic

field intensity influences the ion beam strength as shown by

the IEDF measurements (represented by dashed-dotted lines)

at both RFEA locations with a smaller current of 5 A sup-

plied into the solenoid: a two-peak IEDF is still observed

where the beam potential is unchanged (compared to the

case of 9 A) as previously observed in similar systems,19 but

exhibits a lower magnitude at the beam potential. Additional

measurements (not given in Figure 3) show that the solenoid

has a minimum threshold current of about 4 A for stable ion

beam condition as observed in other experiments with differ-

ent geometries.20

The experimental nozzle configuration is not fully

“symmetric” due to the geometric expansion (at z ¼ 0 cm)

marked by the vertical dashed line in Figure 2. To illustrate

this, the radial profiles of normalized ion saturation current

at z ¼ �2 cm in the source-exit region and at z ¼ �17 cm in

the source-top region are shown in Figures 4(a) and 4(b),

respectively. Both profiles are symmetric around the central

axis, but a single-peak profile is observed in the exit region

likely due to plasma expansion from the source-chamber

interface into the diffusion chamber. These results confirm

that additional radial and azimuthal effects need to be con-

sidered when analysing the momentum behavior in a mag-

netic nozzle.5,6

Plasma dynamics in a magnetic nozzle can be greatly

affected by details of ionization. Ion “swarm” acceleration

along one direction of the nozzle similarly to a compressible

gas flow in a Laval nozzle has been described.7–10 By using a

one-dimensional fluidic approach to describe a fully magne-

tized plasma expansion along a magnetic nozzle, Fruchtman21

predicted that ionization (acting as a mass addition term to the

nozzle equation) could cause bi-directional ion fluxes. In the

simple case of no magnetic field, ionization is the source of

free-fall ions moving along decreasing potentials as detailed

by Tonks and Langmuir.22 Here, we show the direct experi-

mental evidence of bi-directional ion acceleration along a

magnetic nozzle, a result of localized plasma generation in the

magnetic throat region. Interestingly, the present plasma

source configuration generating bi-directional ion acceleration

could provide a compact and simplified system for deorbiting

space debris where one ion beam targets the space debris and

the opposite ion beam prevents spacecraft drift. A few studies

on the “ion beam shepherd” technique involving two plasma

propulsion systems implemented onto the spacecraft have

FIG. 3. IEDFs obtained by (a) RFEA_c at z ¼ 7 cm in the diffusion chamber

and (b) RFEA_s at z ¼ �25 cm in the plasma source, for current values of

9A (solid line) and 5A (dashed-dotted line) supplied into the solenoid.

FIG. 4. Radial profiles of normalized ion saturation current measured by the

LP at, (a) z ¼ �2 cm in the source-exit region (�) and (b) z ¼ �17 cm in

the source-top region (�).
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been recently conceptually described23,24 in the active field of

space debris mitigation.

In summary, this experimental study shows experimen-

tal evidence of bi-directional ion acceleration along the

axis of a convergent-divergent magnetic nozzle in a low

pressure laboratory plasma. The ion beam has a zero con-

vective velocity at the magnetic throat where localized

plasma generation occurs to balance the bi-directional par-

ticle loss. Its strength is positively correlated to the mag-

netic field intensity.
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